bioRxiv preprint doi: https://doi.org/10.1101/2022.11.24.517789; this version posted November 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Characterization of spatiotemporal dynamics in EEG

data during picture naming with optical flow
patterns

V. Volpert!, B. Xu?, A. Tchechmedjiev?, S. Harispe?, A. Aksenov?, Q.
Mesnildrey®, A. Beuter?

! Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622
Villeurbanne, France

2 EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales,
Ales, France

3 CorStim SAS, Montpellier, France

Abstract

We present an analysis of the spatiotemporal dynamics of the oscillations
in the electric potential that arises from neural activity. Depending on the
frequency and phase of oscillations, these dynamics can be characterized
as standing waves or as out-of-phase and modulated waves, which repre-
sent a combination of standing and moving waves. We characterize these
dynamics as optical flow patterns, in terms of sources, sinks, spirals and
saddles. Analytical and numerical solutions are compared with real EEG
data acquired during a picture-naming task. Analytical approximation of
standing waves allows us to establish some properties of pattern location
and number. Namely, sources and sinks have mainly the same location,
while saddles are located between them. The number of saddles correlates
with the sum of all the other patterns. These properties are confirmed in
both the simulated and real EEG data.

Keywords: human EEG data, spatiotemporal patterns, optical flow meth-
ods, picture-naming task

1 Introduction .

Developing adequate theoretical frameworks to describe the extreme com-
plexity of the spatiotemporal electrical dynamics of 3D cortical neural tissue s
in electroencephalogram (EEG) recordings still remains a real challenge.  «

These frameworks have a key role in the way we understand how corti- s
cal electrical activity functionally contributes to the dynamics in human
behavior. 7

EEG records the electric potentials in the brain at the scalp. The s
amplitude and phase of the oscillations that characterize the dynamics o
of electric potentials depend on the spatial locations of the electrodes. 10
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Spatiotemporal dynamics in EEG data has been studied since the 1930s (see  u
[1] and the references therein) when oscillations in the electric potentials in 1
the brain were found to originate from specific brain sources (originally called 13
focuses) located in the occipital lobes. It was suggested that these sources 1
can shift within limited areas in the brain, giving rise to phase and amplitude s
shifts in the signals recorded at different electrodes, and interpreted as 1
moving waves, also referred to as travelling waves. The contemporary use 17
of the term travelling waves has come to be mathematically more defined s
and is a function which depends on the combination of variables x — ct, 1
where c is the wave speed. Simple definitions consider travelling wave to 20
have constant speed and amplitude, but general definitions acknowledge
that speed and amplitude can be variable [2]. 2

The phase and amplitude of these travelling waves have been extensively 23
studied for different brain states in humans and in animals (see literature 2
reviews [3,4]). Travelling alpha waves were found in [5] across four occipital- 2
parietal electrodes during a visual cognitive interference task in human
subjects. Periodic travelling waves along the frontal-occipital axis were
also found during a cognitive control task [6] and suggested as a way of
viewing slow sleep waves [7]. They were recorded during 15-20% of the
observation time and their direction changed, being slightly more frequent
for frontal-occipital waves pre-stimulus and occipital-frontal waves post- =
stimulus. Bidirectional travelling waves were found in [8] with posterior- =
to-anterior travelling waves being more frequent during visual input and
anterior-to-posterior during rest. Travelling waves have been observed in
the primary visual cortex where they were reduced when a wide part of the s
visual field is strongly stimulated [9]. They can also help in understanding s
language processing [10], such as that involved in semantic feature during =
lexical access [11]. It should be noted that the phase component of the s
signal observed in individual trials can be lost in across-trial average [12]. s
Moreover, oscillations are not simply plane waves but can be rotating like 4
in sleep spindles [13,14] or spiral waves [15]. n

Approaches in analyzing brain dynamics, however, have focused on trial
and group averages, as is the case with analyses of event-related potentials
(ERP) using global field power (GFP), which has been associated with 4
brain micro-states [16-20], brain sources, and networks for various cognitive s
tasks [21-23]. For example, GFP was used to compare the dynamics 4
of phonological encoding between stroke patients and healthy subjects
in [24]. Different approaches to analyze brain dynamics at scalp, sources and 4
networks during picture naming task are discussed in [25]. Spatiotemporal 4
dynamics of electric potentials have been characterized using block-matching s
motion estimation [26] and calculating peak amplitude trajectories [27] from =
topographic maps. 52

To characterize neural oscillation dynamics in EEG recordings that s
might be relevant to cognitive processes but lost in averaged data, we s
propose an individual- and trial-by-trial based approach inspired by optical s
flow methods used in computational vision models. With this approach, we s
determined types of spatiotemporal regimes (optical flow patterns, OFP) &
in simulated data of neural activity under alternate current stimulation as s
well as real EEG data recorded in healthy human subjects during a picture-  so
naming task. This approach can be used to characterize any sufficiently e
smooth function F(x,y,t) that varies in space (z,y) and time ¢. Trajectories &
of points in space (z(t), y(t)) determined by this function constitute a vector e
field in a plane which can have singular points (nodes, focuses, saddles)
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characterizing the function F'. This method can be applied to either the e
amplitude or phase of EEG signals treated as a (discrete) function of space s
and time. 66

This method has been used in [28] to analyze local field potentials (LFPs) &
measured in the visual cortex of anesthetized marmoset monkeys in the delta s
frequency range. Analysis of the phase fields revealed sources (unstable e
nodes), sinks (stable nodes), spirals (focuses) and saddles. When plane 7o
waves are present, singular points are absent, implying that plane waves and =
other patterns are mutually exclusive. Plane waves were found to be the =
dominating pattern 60% of the time, while spatial patterns were present in 73
20.4% of the time, and synchronized EEG (no spatial distribution) in 19.6%.
Transitions between simple waves (synchrony, plane) were also less frequent
than transitions from simple to complex waves. Complex patterns arise
around preferential locations, as has been found in [29] and in local complex
wave patterns in the phase velocity field of spontaneous dorsal brain activity
in anesthetized mice [30]. It was observed that sources, sinks and saddles
frequently coexisted while global plane waves inversely correlated with these s
patterns. Large-scale waves propagate preferentially in the anteroposterior &
direction, and the change of their direction was related to the emergence e
of sinks or sources. Location preferences of these patterns appear to be s
anatomically motivated, as suggested by the localized propagation in limited s
visual cortex subregions at rest [30] to wider propagation beyond the visual s
cortices during visual stimulation [31]. 8

Depending on the frequency and phase as well as source location, we &
observed different types of dynamics in simulated spatiotemporal regimes s
(Section 2) that can be characterized as standing waves, out-of-phase stand- s
ing waves, and modulated waves. The dynamics in the EEG data are o
qualitatively similar. o1

In Section 3, we characterize simulated dynamics with OFP and deter- «
mine some properties of these patterns, such as their mutual location and o
number. These properties are then verified on real EEG data and additional

general OFP found in the EEG data are described. o
Finally, more specific properties of optical flow patterns evoked during e
the picture-naming task are described in Section 4. o7

2 Brain sources and spatiotemporal dynamics

2.1 Spatiotemporal dynamics in simulated data %

In this section we present the results of numerical simulations with 3D realis- 100
tic brain geometry using software SImNIBS [32]. This tool allows modelling 1
of transcranial direct current stimulation (tDCS) with stimulating electrodes 102
located at the brain surface. The model uses Poisson equation [33]. Since 10
this equation is linear, it is thus possible to use it for modelling of tran- 1o
scranial alternating current stimulation (tACS) with several simultaneously 10
acting time-dependent sources [32]. Numerical implementation is presented 10
in Supplementary Materials B. 107

In numerical simulations, we use 30 electrodes including 3 tACS elec- 108
trodes and 27 registering electrodes. We consider two stimulating electrodes 100
and one return electrode, where stimulation observes the conservation of 110
charges, that is, the sum of injected currents is equal to zero at any given i
time point. With this configuration, different regimes can be identified 1
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Figure 1. Simulations of tACS with three electrodes generated by the
software SimNIBS. Each colored curve is the simulated electric potential
time series at one of the 27 electrodes. The three heuristic cases are shown:
1) equal frequencies and phases (left), which results in standing waves; 2)
equal frequencies and different phases (middle), which results in
out-of-phase waves; and 3) different frequencies and phases (right), which
gives rise to either out-of-phase standing waves or amplitude-modulated
out-of-phase waves. Bold black lines showtime-dependent global field
power (GFP).

depending on frequency and phase at the two stimulating electrodes, and 13
can be basically considered as three cases: 1) equal frequencies and phases, 1
2) equal frequencies and different phases, and 3) different frequencies and s
phases. 116

t =80 ms t =136 ms

Figure 2. Spatial 2D projection (topographic map) of the 30 simulated
electrodes for the case of equal frequencies and phases. The numerical
solution is a standing wave with synchronized time oscillations. The two
topographic maps shown are two snapshots of the solution with opposite
values.

For the case of equal frequencies and phases, the dynamics corresponds 1
to standing waves (Figure 1, left). All signals have constant amplitude s
and vanish at the same time points. The spatial 2D projection of the 30 119
point-wise simulated values on the circular domain is shown in Figure 2. 120
Time oscillations in this case are synchronized; that is, spatial locations of 1z
maximums, minimums, and zeros do not depend on time. 122

In the case of different phases, we obtain out-of-phase standing waves 12
characterized by phase-shifted signals with constant amplitude (Figure 12
1, middle). If frequencies and phases are different, then the dynamics 1s
corresponds to an out-of-phase modulated wave (Figure 1, right) with 12
signals periodically changing in amplitude and phase. 127

Figure 3 represents topographic maps of signal amplitude in consecutive 12
time points during one period in the case of different frequencies. These 12
topographic maps repeat for several periods and then change rotational 13
direction. The upper and lower panels in this figure show similar distribution s
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Figure 3. One period of a rotating wave in the case of different
frequencies for the simulated data. Yellow dots show the maximum
potential for a given time window corresponding to the given time point ¢
shown and some time points prior to ¢t. Straight black lines show the
transitions of this maximum. Direction of rotation changes after several
periods. Note that rotation is not uniform but corresponds to the fast
transitions between brain states. This transition occurs through the
propagation of the forward front followed by the propagation of backward
fronts. Each map in the upper row is shown with a similar counterpart
directly below it with the sign (hot/warm color) reversed.

patterns of electric potential amplitude but of opposite sign (indicated by 1
inverted hot/warm colors). One more property of this solution is that the 13
rotation is not spatially uniform. Rotation is driven by an alternation 1.
of when forward and backward wave fronts propagate. One wave front 13
propagates while the other is fixed, and then the other front propagates 13
in apparent rotating motion while the front that just rotated remains 1s
stationary. In the solutions to this case, the maxima alternate between 13
spatially displacing at approximately a constant speed, characteristic for 13
travelling waves, and jumping to distant locations, characteristic of standing 140
waves. 141

Let us note that time-dependent GFP is periodic in the case of equal 12
frequencies (Figure 1, left and center plots). The smallest average value s
is zero in the case of equal phases, and is positive for different phases. If 14
frequencies are different, the average amplitude is not periodic. 145

The three regimes observed in the simulated data are qualitatively 14
similar to the analytical solution (Supplementary Materials C). Standing 1
waves are observed for equal frequencies and phases, out-of-phase standing s
waves for different phases, and modulated out-of-phase waves if frequencies 19
are also different. 150

2.2 Spatiotemporal dynamics in EEG data 151

In this section we will consider spatiotemporal dynamics of the EEG data 15
during a picture-naming task for 16 human subjects. Data collection and 153
preprocessing are described in Supplementary Materials A. The analyses 1s
were performed on four frequency bands: delta (1-4Hz), theta (4-8Hz), s
alpha (8-13Hz), and beta (13-30Hz). 156

Like the analysis performed with simulated data, the real evoked EEG 152
signal dynamics can also be described in terms of standing waves, out-of- 1ss
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phase standing waves and modulated waves. 150
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Figure 4. EEG signal time series averaged across all trials during naming
(upper panes) in three healthy human subjects (S17, S05, S07), and the
corresponding electrical potential topographic projection (topo plots) from
3D scalp coordinates (lower panes). Bold black curves in the signal plots
represent the GFP. Vertical lines mark 5 maxima of the average amplitude
correspond to the moments of time of topo plots below. An image appears
on the screen at time 0. Image recognition and processing is associated
with the ERP increase in the first 300 ms.

An example of standing waves in EEG data during naming with 96 1e
electrodes is presented in Figure 4-S17. Time 0 here corresponds to the e
onset of picture presentation. After the picture appears on the screen, 1
the amplitude of the signal increases for approximately 300 ms, and then 16
it drops back to baseline level. We can identify properties of standing 1e
waves during the first 300 ms. Recorded signals have sinusoidal oscillations  1es
and vanish at the same time points. The 2D spatial distribution of the 1
electric potentials projected from 96 point-wise signals (electrodes) also has 1
characteristics typical for standing waves, namely synchronized oscillations e
with fixed maxima, minima, and zero lines (Figure 4-S17). 169

Out-of-phase standing waves were observed for one individual in the 1o
same frequency range (Figure 4-S05). Potential distribution in space is not 1
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exactly periodic in time (topographic plot/lower pane). Finally, an example 1
of modulated out-of-phase waves for the § frequency range is shown in 13
Figure 4-S07. 174

To summarize, in the analytical and numerical models with three stimu- s
lation sources, the spatiotemporal dynamics can be described by standing 1
waves, out-of-phase standing waves and modulated waves. Spatiotemporal 17
dynamics in the EEG data show similar behaviors. Moreover, the differ- s
ence in the dynamics in Figure 4 (S17 and S05) can be related to equal 17
or different frequencies at brain sources, as is the case for the analytical 1
and numerical models. Therefore, a time-dependent Poisson equation with s
several sources should also be able to model the spatiotemporal dynamics 1
of ERPs. 183

3 Optical flow patterns "

In this section we will establish the connection between spatiotemporal 1ss
dynamics described in the previous section and optical flow patterns. The s
definitions and the methods of analysis of these patterns can be found s
in [29,30] (see also Supplementary Materials, C, D). We will formulate s
some hypotheses about the location and the number of patterns based 1so
on the analytical approximations. We will verify these hypotheses for the 190
generated data and for the acquired EEG data. 101

3.1 Location and number of patterns for standing
waves and other regimes 103

Analyzing spatiotemporal regimes (Supplementary Materials, C) allows 10
us to make some hypothesis about location and number of patterns. In 1
the case of standing waves, each maximum or minimum with increasing 19
amplitude (in the absolute value) corresponds to a source (unstable node 107
or focus) and with decreasing amplitude to a sink (stable node or focus). 10
Since standing wave maxima and minima have fixed positions, and their s
amplitude is a periodic function of time, we have the following properties: 200

Property 1 Sources and sinks of standing waves alternate occupying the
same spatial locations. Their location does not depend on time. 202

These properties will be verified below for all regimes and not only for 203
standing waves. Furthermore, according to the properties of dynamical 20
systems, sources (sinks) should be separated by saddles. Therefore, we will 205
also analyze their mutual locations. 206

Some additional information about singular points can be obtained
from the theory of dynamical systems. Let us consider a 2D vector field
(w(&,m),v(&,m)) in a closed manifold S without a boundary, such as a sphere
in 3D space, (§,7n) € S. For each singular point (&;,7;), that is a point for
which u(&;,n;) = v(&,n:) = 0, consider the following Jacobian

0 0
afz(fiﬂh) Fu(giﬂli)
JE.mi) =1 & 82

8?(&»772') 877(517772')
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Assuming that the singular points are non-degenerate, det J(&;,n;) # 0,
i =1,...,n, we can conclude that their number n is finite, and we can define

the number .
Y= Z(i]‘)ul )
i=1

where v; is the number of real positive eigenvalues of the matrix J(&;,n;). 20

The number -y is called the topological degree or rotation of the vector field, 20

and it is related to the winding number for plane vector fields. 200
Given that v; = 0 for stable nodes (i.e., sink) and foci (spirals), v; = 2

for unstable nodes (sources), and v; = 1 for saddles, we thus have

Y= Niss _Nsad7

where N4, is the total number of sources, sinks and spirals, and Nguq iS 210

the number of saddles. 21

We know that from dynamical systems, a vector field (u,(&,n),v-(£,n)) a2

continuously dependent on parameter 7, y(7) is in fact independent of 7. In 213

terms of optical flow estimations which are a function of time, we therefore 2.

hypothesize 215
Y(t) = Nggs(t) — Nsqa(t) = constant (1)

That is, the difference between the number of all singular points except 2
saddles and the number of saddles does not depend on time, leading us to a7
our second property. 218

Property 2 The difference between the number of all patterns except sad- 29
dles and the number of saddles does not depend on time. 220

It is important to note that this property holds for the whole brain 2
surface, and not only for standing waves but also for other regimes. If we 2
consider only a part of the surface, as is the case of the EEG data, we 23
should then consider the patterns crossing the boundary of the domain. If 2
this information is not available, then this equality can be considered as an 2
approximation and compared with the available data. 26

Another remark concerns the dependence of the location and number of 2
patterns on the frequency band. In the case of standing waves, location and s
number are independent of the frequency. We will verify below whether 2
this property is confirmed for both simulated and EEG data. 230

3.2 Optical flow patterns in simulated data 231

Depending on the phase and frequency in the simulated data, we observe 23
standing waves, out-of-phase standing waves and modulated waves. In ;s
the case of standing waves, as from the earlier analysis, we can expect 2.
that sources and sinks have the same location in this ideal configuration. 23
Furthermore, in analytical approximation, they coincide with the maxima 236
and minima of the potential distribution. For the generated data, there is 2
a number of stages of data processing which could influence the result. Let 23
us recall that 30 signals were simulated as they would have been recorded 23
at the scalp. These signals were then projected onto a circular domain, 20
as is done for the real EEG data. However, the same signals were used
to generate optical flow patterns with some other transformations (see 2
Supplementary Materials, A). Different methods of data processing could 2
possibly lead to some discrepancy in the results. We will verify Properties 2
1 and 2 for the simulated data. 25
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Figure 5. Time dependence of pattern locations for three simulated data:
1) inPhase — same frequency (9Hz from electrode positions AFz / POz),
same phase; 2) outPhase — same frequency, different phases; and 3)
diffFrex — different frequencies (9Hz from AFz and 10Hz from POz),
different phases. Evaluated on amplitude and on alpha frequency band

(8 — 13Hz). n is the number of patterns.

Location of patterns. Figure 5 shows pattern position in time for the s
generated data. Since these data were generated with the two different 2
frequencies 9Hz and 10Hz, patterns are only evaluated in the alpha frequency 2
band (8 — 13Hz). In the first case with no mixtures (same-frequency, same- 240
phase, upper panel), we observe only two locations of sources and sinks 250
which overlap with each other!. Saddle patterns are alternated and located 25
between source and sinks in a very regular way. The locations of these s
patterns are time-independent in this case. 253

For a more complex signal with mixed phases (middle panel) or mixed 25
frequencies and mixed phases (lower panel), more patterns are generated 25
and detected thereafter. Since the signal dynamics in these two cases s
are temporally and spatially (2D/3D) more complex, some variations are s
expected. However, we still observe very similar phenomena as in the first s
case: source/sink are most likely overlapped; saddles are found between s
source/sink. Their positions remain relatively stable — depending less on 20
time. 261

1For numerical reasons, there would be variation at the very beginning stage, after
the pipeline became stable.
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Number of patterns. In the first case (the same frequency and phase),
the numbers of sources and sinks are almost the same (17 and 18, respec- 3
tively). There are approximately twice as many saddles (38). According to 2
the theory of dynamical systems, two sources (sinks) are separated by a 2
saddle point in such a way that the number of sources (sinks) and saddles 2
is the same (plus/minus one, see Figure 5, upper panel). However, since
sources and sinks replace each other periodically in time, while saddles are 268
present all the time, then the time average number of saddles is twice as 26
many than sources or sinks. In the second case (same frequency, different 2
phases), after a noisy first 400-500ms, the number of patterns stabilize. on
Though the last case is most complex, the numbers of sources and sinks 2
are similar while there are approximately twice as many saddles. All these o3
observations agree with the hypotheses discussed in Section 3.1. 274

3.3 Optical flow patterns in EEG data 275

Results of Section 2 allow us to interpret EEG dynamics as standing waves, s
out-of-phase standing waves, and modulated waves. Analysis of optical flow 27
patterns in Appendix D suggests that such regimes satisfy Properties 1 and s
2. In the previous section, these properties were verified for the simulated 27
data. We will now verify them for the real EEG data. 280
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Figure 6. Proportion and duration of the five patterns identified in a
the 16 subjects’ EEG: sink/source, spiral-in/spiral-out and saddle.
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The EEG data for all 16 subjects and 270 trials are included in the &
analyses. The numbers of sources and sinks are approximately the same, 2
similar to the number of spirals-in and spirals-out (Figure 6). Source/sink  2s
patterns occur about 3% more than spiral-type patterns. However, saddles s
have the largest share of the identified patterns — about 45% of the total s
number of patterns. Similar to the simulated data, the number of saddles  2ss
was approximately equal to the total number of the other two patterns o
(sources and sinks). However, sources are partially replaced by spirals- 2
out and sinks by spirals-in. We note that the analysis in Supplementary s
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Materials Appendix D does not distinguish between sources (sinks) and 20
spirals. 201

The ratios between the numbers of patterns varied very little across the 20
three main frequency bands: delta [1,4] Hz, theta [4,8] Hz, or alpha [8,13] 23
Hz. 294

We also evaluated only micro patterns covering a 2 x 2 grid patch (the s
whole projected 2D scalp grid is 67 x 67). For each event trial, which 20
lasted 5000 ms, one can identify more than 10 patterns per millisecond, 2o
attesting to the highly heterogeneous EEG signal and complex brain/head 20
geometry. These patterns last 20 to 40ms on average. Saddle patterns tend 200
to last slightly longer than the others. However, in the very large number 300
of patterns, certain patterns can last up to 1-2 seconds. 301

Location of patterns. With such a large amount of patterns and due to 30
the complex head geometry, it is not possible to directly apply the same 30
simple approach as for simulated data. We will not study every single 3o
pattern but focus on the brain regions where EEG activity is predominant o

and generated clusters of patterns. 306
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Figure 7. Two examples of pattern clusters in the real EEG data from
Subject 18 (S18) performing the picture-naming task: 1) spiral-sink-source
(two leftmost columns) and 2) saddle-sink-source (right two columns). In
each pair of columns, the plots on the left are spatial plots of main
thresholded pattern clusters across the entire scalp on a 67x67 grid, and
the column to the right counts (and overlapping) of clusters of the given
patterns. Baseline (]-2s, 0s]) — period before onset of picture presentation;
Poststim ([0s, 1.5s]) — after picture was presented; Denom ([1.5s, 3s]) —
naming period. ALL means that patterns from all validated trials are
combined.
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A density (count per pixel) map can be obtained for each pattern in a 3o
trial. This map is Z-score normalized and only regions of interest with a 30
pattern density at least two times the standard deviations above the mean 30
overall density are kept. These pixels are traced and enclosed with isolines, w0
forming the cluster regions. We consider the degree of overlap between 3u
the cluster regions of different patterns to be proportional to the spatial o
correlation between the patterns. 313

Figure 7 shows a representative example of this pattern cluster based .
approach (similar plots are obtained for other subjects). We took the s
mean area of the three given patterns as reference to calculate the overlap 36
percentage. Clusters from sources and sinks overlap greatly. Spiral clusters s
are also correlated with sources/sinks, with overlaps ranging between 60 — s
70%. This suggested that locations of source/sink/spiral correlate. However, s
saddle clusters have less than 1% overlap with source/sink. From the cluster s
density maps, we can see that saddle clusters are located between source/sink sz
clusters. This way allows us to validate the hypothesis in real EEG data. 3

Based on this approach, we are able to quantify the amount of overlap
among the pattern clusters for each subject’s EEG data. Source and
sink clusters generally overlap by 80 — 90%. We consider here only core
intersections of three patterns (source-sink-spiral, and source-sink-saddle):

Aintersection of all three patterns
) x 100 ,
Asource + Asink + Aspiral Saddle
3

Percentage overlap =

where A denotes area. Overall, as shown in Figure 8, source—sink—spiral 32
cluster regions overlap with each other greatly, with median percentages 3
around 60%, and hence have high spatial correlation. Clusters of source s
or sink overlap less than 1% with saddle clusters. This minimal overlap s
is coherent with the property of saddles that they are located between 3
sources/sinks, and is also visually apparent in Figure7, where most saddle s
clusters can be seen surrounded by source and sink clusters. Similar 3
properties are observed for other subjects. 330

Location of patterns very weakly depends on frequency band. These 3z
observations hold for the three frequency bands except for the delta band, 33
for which the overlap among source/sink/spiral is slightly higher than the s
other bands. 334

clelta theta alpha

i

. sink-source vs. spiral
10 fsink-source vs. saddle sink-source vs. spiral] 0 fsink-source vs. saddle 1

! ] op == - ",é
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Flgure 8. Percentage overlap by pattern Clusters in three frequency bands
for all subjects.
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Number of patterns. Here we test the validity of Property 2, which 33
states that the difference between the total number of all patterns except for 33
saddles and the number of saddles is constant over time. For a finer-grained  ss
analysis, we plot the average frequency of patterns across epochs and over s
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time for saddles alone as well as for the sum of all the other patterns, by 33
subject, electrode, and frequency. Figure 9 shows the difference between 340
the number of saddles and the sum of all other patterns during the picture- sa
naming task considered for all subjects, trials, brain areas and frequencies. o
As stated in Property 2, this difference should be constant (positive, close 3
to 0). The number of individual patterns (e.g., saddles) during naming is s«

considered in the next section. 345
S, 1.50
o
c
% 1.00
o
|
w 0.50
c
Lo e e VY E P K S S S
£o
% 0.50
[
s

1.00

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

Figure 9. Mean pattern frequency difference between saddles and the
sum of all other patterns across all subjects and all epochs in the real EEG
data. The median of the pattern frequency (red curve) is close to constant,
corroborating the hypothesis of constant difference (Eq. 1). The shaded
green area delimits the first (bottom) and third (top) quartiles. The
shaded gray area demarcates minimum and maximum frequencies.

4 Patterns during picture naming s

The number of each type of patterns (i.e. source, sink, saddle, spiral-
in, spiral-out) was analyzed for each of the 16 subjects by EEG signal s
frequency band (delta, theta, alpha, beta) and by cortical zone (frontal, s
parietal, occipital, left temporal, right temporal). The 270 trials of picture  ss0
naming were separated into two groups: a group of 70 trials with the single s
control word (chien, i.e. “dog”), and another group with the remaining 200 35
trials with all other words. Trials with signal artifacts were removed, leaving 353
variable number of trials per subject. The average number of patterns for s
each group was counted in a time window starting 1 s (t0-1) before picture 35
onset (time 0, t0) to the start of the naming prompt at t04+1.5 s. Signal s
amplitude and phase were analyzed independently. 357
The most regular frequency pattern during picture naming with the 358
least variability was for “saddle” patterns in the delta frequency range for s
the word group “not-dog” (other words). 360
A typical example of the temporal evolution of the number of patterns sa
is shown in Figure 10. The dependence of the number of patterns on time s
is similar for frontal and occipital zones and for other types of patterns (not  ses
shown). The number of patterns decreases at the beginning of epochs. In 36
the box plots (Figure 10, right), the pattern frequency tends to decrease e
for the first 3 or 4 intervals in all subjects, with the minimum frequency e
reached by interval 3 or 4 for much subjects. For subjects where this was
not the case, the frequency levels off or reduces in slope around the third e
and fourth intervals. 369
This decrease of the number of patterns in the beginning of an epoch
can be quantified for all subjects altogether by the following method. Let

November 23, 2022 13/33


https://doi.org/10.1101/2022.11.24.517789
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.24.517789; this version posted November 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

$05, Saddle pattern, Delta waves, parietal area (Average on 175 epochs)
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Figure 10. Temporal evolution of the number of saddle patterns from
Subject 5 (S05) for the frequency delta range and non-control words
(“not-dog”) in the parietal zone. The graph represents an average number
of patterns with respect to all trials of this group. Red curve (left plot)
shows the number of patterns averaged across 175 epochs in 5-ms
time-bins. In the box plot (right), the black curve interpolates between the
average number of patterns at each 500-ms interval.
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Figure 11. Distribution of the percentage increase of points across all
subjects for three event intervals: before picture onset/visual stimulus
(baseline), during visual stimulus but before naming (poststim), and during
naming (denom).

N, (t;) be the number of saddles at time ¢; in the parietal zone (Figure 10,
panel C, red curve). Consider an average number of patterns with respect
to three neighboring time points:

Np(ti) = (Np(ti-1) + Np(t:) + Np(tis1))/3.
For the Heaviside function H(x), defined by the conditions H(z) = 1 for
x>0 and H(z) =0 for x <0, we have

H(&ﬁgaﬂ@qg:1

if ]Vp (t;) > ]vp(ti_l), that is, if the function Np (t;) is increasing at this time
point. Then the sum

n

Sp = %ZH (ﬁp(ti) - ﬁp(tz‘—l))

i=1
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gives the proportion of time points where the function Np(ti) is increasing. sn
Figure 11 presents violin plots showing the distribution across subjects s
of the percentage of increases for three event intervals: before picture
presentation/visual stimulus (baseline), during visual stimulus but before s
naming, and during naming. The relatively small values for the first s
histogram correspond to the decrease in the number of patterns. 375

The second event interval (before naming) is characterized by a weak s
increase (or plateau) of the number of patterns which further decreases, s
likely due to anticipating vocal articulation. This behavior can be observed a7
in the individual curves for all subjects (e.g., Figure 10) but not for group s
averages (Figure 11) due to the weakness of the effect. 380

$15, Saddle pattern, Alpha waves, parietal area (Average on 194 epochs)
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Figure 12. Temporal evolution of the number of saddle patterns in one
subject (S15) in the frequency alpha / beta band for the non-control word
group (“not-dog”) in the parietal zone. The graph represents an average
number of patterns with respect to all trials of this word group. Red curve
(left plot) shows the number of patterns averaged across 175 epochs in
5-ms time-bins. In the box plot (right), the black curve interpolates
between the average number of patterns at each 500-ms interval.

The number of patterns as a function of time across an epoch depends 3
on frequency range. Typical examples of such dependence for the alpha and s
beta frequency bands are shown in Figure 12 for the same subject. The s
number of patterns has a tendency to decrease towards halfway through s
the epoch in the alpha band but a tendency to increase in the beta band. s
This behavior is somewhat generalizable to other subjects. We will discuss  ss6
possible interpretations of these results in the next section. The results for s
other frequency ranges and for phase patterns are not presented here for s
brevity. All results presented in this section concern the group of words s
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different from the control word “dog”. The results are similar for the other s

group of words containing the repetition of the control word. 301
5 Discussion -
5.1 Spatiotemporal dynamics 303

Brain micro-states and sources. One of the main advantages of EEG  su
data is its very high temporal resolution, which makes it possible to cap- s
ture fast brain dynamics. The spatiotemporal dynamics in EEG data s
can be characterized by time-dependent amplitude and phase changes. 3o
These dynamics have been found useful in describing different brain states e
(rest, cognitive tasks, motion) [19,20] or disorders (e.g., aphasia, epilepsy, 3w
schizophrenia) [17,24]. 400

Brain micro-states are often defined as relatively stable (weakly changing) s
distributions of electric potential observed during sufficiently long time
intervals (tens of millisecond) with rapid transitions between them [17]. a0
Several dominant micro-states can cover an essential part of dynamics
during observation time window. To simplify the analysis of micro-states, s
they can be commonly characterized by the maximum and minimum of the 40
potential distribution (e.g., direction of the interval connecting them) [16,34] 407
or by the time trajectory of its maximum [27]. 208

Time sequences of micro-states give a rather complete representation o
of spatiotemporal dynamics, though they do not seem to capture some a0
dynamic effects, such as travelling waves (plane, rotating), or some specific a1
types of dynamics (sources, sinks, saddles). Properties of brain micro-states a2
are related to the underlying brain sources. From the biological point of
view, brain sources are determined by cation flux from the intracellular 4.
space to the extracellular space, and brain sinks to the inverse flux [35]. s
Assumption that the brain is electrically neutral implies that sources and 46
sinks have the same intensity. In simplified models, they are considered a7
pairwise and close to each other (dipole). However, positive and negative s
poles of the dipole can be distant [35]. The distribution of electric potential
at the surface is determined by the dipole position and orientation. The
maximum and the minimum of the potential distribution do not necessarily — ax
correspond to the dipole location. "

Identification of brain sources for each micro-state and their comparison s
with fMRI images allow the determination of the corresponding anatomic
structures and to associate micro-states to brain functions [18-20]. The s
inverse problem of source identification has multiple solutions. The choice 4
between them is to some extent arbitrary and can be determined by some 47
additional factors (fMRI, anatomical structures). Thus, spatiotemporal s
dynamics of EEG data characterized by brain micro-states are determined a2
by the change of brain sources, but the underlying regimes (patterns) are not s
yet identified. We consider in this work some of these regimes determined 4
by phases and frequencies of brain sources. 32

Regimes determined by phases and frequencies of brain sources. s
Since spatiotemporal dynamics in EEG data is complex and depends on 4
many factors, one needs to first identify some basic spatiotemporal regimes. 43
We have shown here that the phase and frequency of the signal, for a given
EEG signal frequency band (e.g. alpha) give rise to certain regimes in the
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spatiotemporal dynamics induced by brain sources and their interactions. 43
For the case of single positive and negative poles (source and sink), only
standing waves are possible. We have observed this regime for different 40
frequency bands, but it is more difficult to identify in a broad frequency aa
band such as 2-40 Hz, due to the superposition of different frequency s
components in the signal. a3

The assumption of the electric neutrality of the brain implies that phase s
and frequency of the sources are the same if there are only two sources. In s
the case of three sources, this is not necessarily the case. We have three 4
additional basic spatiotemporal regimes on top of standing waves. aa7

If frequency and phase are the same for all three sources, like with two s
sources, the corresponding regime is a standing wave. However, if there 4o
are different phases and/or frequencies, the corresponding dynamics will be s
represented by a combination of standing and moving waves. These regimes 45
are related to tACS modelling [36], and we have shown that simulation of s
electrical potentials under tACS stimulation (Supplementary Materials, B)  ss3
also have dynamics that follow these regimes. 254

In the case of three sources with different phases and the same frequency s
(with constraints imposed but electric neutrality), we observe out-of-phase s
waves with periodically changing phases. If the frequencies are different, a7
these are modulated waves with a periodically changing amplitude. 258

Micro-states and waves in basic regimes. These basic regimes also s
have characteristic micro-states. Standing waves have two micro-states e
(Figure 2 in Section 2) with periodic transitions between them (and time- aa
dependent amplitude). In our simulated out-of-phase waves, there are three s
microstates (not shown). Each micro-state slowly varies with the position s
of the maximum of the potential distribution gradually changing. These
maxima jump to distance locations during transitions between micro-states. aes

Similar micro-states are observed for generated data in the case of s
different frequencies. However, one important difference is that the rotation e
changes directions every half a period. a8

There are two types of moving waves in basic regimes. The first one 460
is determined by slow variations in basic states. It can be observed as a w0
motion of the maximum of the potential distribution (trajectory of the
yellow dots in Figure 3). 472

The second type of moving waves is related to the transition between a3
micro-states since it is not instantaneous. The combination of both wave 4
types can produce the rotating waves as can be seen in Figure 3, from s
simulated data. We have observed similar regimes in resting-state EEG 4
data from human subjects (not shown) (see [20]). arr

It is important to indicate that in the model considered here, oscillations s
in the EEG data are measurements of internal brain sources on the outer 4
surface (cortex) and not direct measurements of the neuronal electric activity — sso
in the cortex. As indirect justification of this hypothesis, we note that s
these waves (speed, direction) are not apparently influenced by sulci and 4
gyri, which would be the case if they propagate along the cortex. Moreover, s
their speed is of the order of meters per second, while the speed of electric s
impulses in unmyelinated axons in the cortex grey matter is about ten times s
less. Therefore, if these waves appear only as projection of brain sources, s
they may not function for the synchronization of distant brain areas but s
indicate synchronization of distant brain sources. a8
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5.2 Optical flow patterns 489

Location and number of patterns. The three regimes discussed above %0
(standing waves, out-of-phase waves, and modulated waves) are observed in s
the analytical solution (Supplementary Materials, C), in simulated data, s
and in real EEG data. Analyzing the properties of optical flow patterns s
for the theoretical solution, we can expect that similar properties hold for s
both generated data and real EEG data, since spatiotemporal regimes for s
them are similar. 296

Analysis of optical flow patterns for standing waves shows that sources a7
and sinks alternate in occupying the same locations and that this location s
does not depend on time. Moreover, saddles are located between sinks and 490
sources, with their frequency approximately equal to the total frequency of o
sources and sinks. All these properties are confirmed for the simulated and st
EEG data, as well as for all three regimes. 502

Another conclusion from the theoretical analysis is that complex patterns s
and travelling plane waves are mutually exclusive. This result corroborates  so
with previous reports [29,30]. Verification of this in EEG data is beyond  sos
the scope of this work. 506

Spatiotemporal patterns and word naming. We have determined sor
some correlations in the picture-naming task and the number of observable  sos
spatiotemporal patterns. The most stable behavior across subjects was s
observed in the delta range; in this range, the number of patterns decreases s
in the beginning of the epoch. Such a decrease can also be observed in  su
the alpha range, but inter-subject variation is greater. In contrast, the so
number of patterns in the beta range has the tendency to increase towards s
the middle of epoch. 514

The number of patterns decreases in the delta range, and this decrease sis
begins before picture presentation (Figure 10). Therefore, we can conjecture s
that the number of patterns might indicate the effect of anticipation known s
for delta rhythms (see [37], page 52 and the references therein). If this antic- s
ipation down-regulates activity of some brain sources, then it can manifest s
as a decrease in the number of patterns. Similarly, the second (smaller) s»
decrease is observed at vocalization onset during naming, possibly during sx
anticipating word pronunciation. Alpha rhythms have been implicated in s
inhibition ( [37], pages 46-47) and could be acting on brain sources, leading sz
to the decrease of the number of patterns (Figures in 12). Furthermore, sz
it is known that alpha and gamma rhythms can be complementary ( [37], s
page 47). We observe a possible complementary interaction between alpha sz
and beta rhythms (Figures in 12). Finally, there is a possible correlation sx
between theta-rhythm amplitude and delta-rhythm phase with the number s
of patterns for some subjects (not shown). 520

Let us also note that picture recognition is accompanied by a larger s
ERP amplitude. However, as suggested from our theoretical analysis here, s
the amplitude of oscillations alone does not influence the number of optical s
flow patterns. Therefore, activation and/or inhibition between brain sources  ss
during cognitive activity is very likely a driving force in spatiotemporal s
dynamics, which determines these patterns. Changes to the phase and s
frequency of oscillations from different sources can influence the number s
and dynamics of patterns, as is seen for the three main regimes, and can s
arguably be a means to influence communication between sources with s
possible observable functional behavioral changes. 539
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Appendix A EEG data acquisition and treat-
ment 703

A.1 Data collection 704

Sixteen native French-speaking men aged 18-70 years participated in the 70
Picture Naming Task study. Inclusion criteria were normal (or corrected to 7o
normal) vision and hearing, and right-handedness as assessed by a handed- 7o
ness questionnaire [38]. Exclusion criteria were any history of neurological 7o
or psychiatric disorders, drug addiction, or head trauma. Pictures for the o
task were taken from the Snodgrass & Vanderwart black-and-white line 7o
drawing corpus [39]. Pictures were shown on a screen. The subject’s voice
was recorded and synchronized with EEG (96 EEG channels with sam- 7
pling frequency 1 kHz). The study was approved by the Research Ethics s
Committee CER Grenoble Alpes (Avis-2020-09-01-3). 714

A.2 Data preprocessing and analysis 715

The raw signal from the 96 channels for all 270 trials were first epoched with 716
duration 5.5 seconds (2 seconds pre- and 3.5 seconds post-visual stimulation 7
onset), and baseline corrected ([-1s, 0s]). Bad epochs were removed (e.g. eye s
blinks, eye or head movements), and the remaining epochs were band-pass 7o
filtered at 0.1-40Hz. 720

The preprocessed EEG signals with three-dimensional sensor coordinates 721
were then projected onto a two-dimensional scalp plane for selected time 722
points. Values between electrodes were interpolated using biharmonic s
splines [40], resulting in a 67 x 67 grid. Topographical scalp maps were 72
created in this way from the signal from the 96 channels for all 5500 samples. s

A.3 Pattern extraction pipeline 726

To identify the (2D) pattern types: saddle, spiral-in, spiral-out, sink and 7
source, critical points in the vector fields derived from the EEG signals s
were identified. Vector fields were obtained by computing the optical flow 720
from the analytical phase or amplitude, which were extracted from the 730
pre-processed EEG signals using the Hilbert transform (planar projection 7
in a grid). 72

The detected patterns are then analyzed via different techniques taking 733
in consideration multiple characteristics such as frequency, spatial area, and 7z
observation period. 735

The pattern extraction pipeline can be summarized as follows: 736

1. Signal time-frequency analysis: extract phase and power of signals 7
using the Hilbert transform. 738

The Hilbert transform [41] extracts the instantaneous phase and s
amplitude from these four frequency bands of the preprocessed EEG 70
data: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), and beta
(13*30HZ) . 742

2. 2D projection: 2D projection of the signal on the scalp for each 73
time frame. 740

The spatial distribution of the power of the EEG signal is visualized by s
planar projection of electrode position coordinates on the scalp. These s
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topographic maps were smoothed with biharmonic spline interpolation w7
[40]. 2. 748

3. Optical-flow analysis: identification of the dynamics of the signal 7o
by calculation of vector fields (between two time points) with the s
Horn-Schunck method [43]. 751

4. Pattern identification: Identify patterns in the vector fields (e.g.
sinks, sources). 753

NeuroPatt [29] was used to identify patterns on the preprocessed EEG 754
data. 755

This resulted in 270 x 5500 = 1.485M projections (topographic maps). s

Appendix B EEG data simulation with SimNIBS

SimNIBS [44] was used to generate synthetic EEG data using a realistic s
head model. Three different 3-electrode tDCS stimulations were simulated, 7so
and the generated signals combined with time-dependent weights in order o0
to simulate tACS [32]. 761

B.1 Simulation of tDCS 762

The example head model [45] and the default electrode positions were used. 73
The three setups differed by input currents, as listed in Table S1. The e
location of the stimulation electrodes were the same for all simulations s
(AFz, POz, C5). 766

Table S1. The input current at the three stimulation electrodes for the
three tDCS stimulations. ig = 500 uA
Anode at AFz Anode at POz Anode at C5

VAF 2 219 —10 —0

1PO= —io 2ig —1g

105 —1g —10 210
Voltage Varz(x) Vpo.(x) Ves(x)

The current ig = 500 uA is a quarter of the maximum stimulation 7
intensity considered safe [46]. Each simulation results in an exogenous 7es
electric field where the voltage at each point x, Viec(x) is computed at 70
approximately 250000 points x of the SImNBS head-mesh grid, identified o
by their 3D coordinates inside the “brain”. Figure S1 shows the results of
the tDCS simulation with anode over POz. m

B.2 Simulation of tACS 3

The results of simulated tDCS stimulations were then combined into simu- 7
lations of tACS. Additional care has to be made because the stimulations s
are out of phase. 76

2For a brief introduction of projection problems and of the different interpolation
methods that have been used with EEG data (spline surfaces, 2D projection), see [42]:
https://www.egi.com/images/kb/SplineInterpolation.pdf
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Figure S1. One simulation of tDCS with positions of electrodes in 3D.

The input stimulation currents were denoted by:

iar:(t) = fap:()io, (Eqg. S1)
irox(t) = fro=(t)io, (Eq. S2)
ics(t) = fes(t)io, (Eq. S3)
such that
far:(t) + fro:(t) + fos(t) =0 (Eq. S4)
for all times ¢. Kirchhoff’s Current Law (Eq. S4) is a necessary condition
for physical or simulated stimulation [33], and is analogous to (Eq. S9). 778
The tDCS simulations were assigned normalized weights (a(t), 8(¢),v(t)),
fAFz (t)
such that the point | fpo.(¢) | is the barycentre of the points
fes(t)
2 -1 -1
ear, = | —1|,epo. = 2 secs = | —1
-1 -1 2
with these weights. This condition is equivalent to the system: 779
far(t) 2 -1 -1
fro:(t) | =a) | 1] +B8@) | 2 | +~(@) [ -1
fos(t) -1 -1 2 ) (Ba$5)

a(t) + B(t) +~(t) = 1.

Note that the system (Eq. S5) has a unique solution since all four points o
belong to the same 2D plane (Eq. S4) of admissible current intensities, and e

the three points e4r., epo,, €cs are not on the same affine line. 782
The system (Eq. S5) can be solved using linear algebra. The formulae  7s3
for the weights (a(t), 8(t),v(¢)) are the following: 784
2T 1
() +1
B(t) = %, (Eq. S6)
fops(t) +1
1(p) = oD+ L

November 23, 2022 25/33


https://doi.org/10.1101/2022.11.24.517789
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.24.517789; this version posted November 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

One can check that these values satisfy both equations of the system 7ss
(Eq. S5) provided that the input functions satisfy (Eq. S4). 786
The solution of (Eq. S5) can be applied to the results of three tDCS
simulations in order to simulate tACS. Indeed, the tDCS was simulated
with the input currents equal esr.ig, epo.ip and ecsip. By (Eq. S5) and
the assumption of linearity, the (exogenous) voltage generated by the tACS

stimulation equals:

Viacs(t,x) = a(t)Var.(x) + B(t)Vpo.(x) + () Vos(x)

_ fAFZ(;) + 1VAFZ(X) n fpoz;t) +1

Vpo:(x) + %Vm (x)

The above procedure allows computing the simulated voltages for tACS 7
simulation for any input currents determined by the functions ferec(t). It s
was applied to simulate the following types of tACS (see Subsection 2.1). 7

(a) the currents at AFz an POz are equal, and their frequency equals 790
fl = 9HZ, 791

(b) the phase of the electrode POz is posterior to AFz by ¢o = 138°; 70
(c) the frequency of POz equals fo = 10Hz. 703

Table S2 contains the formulas being used. The intensity at C5 (return 7
electrode) was adjusted in order to satisty (Eq. S4).

Table S2. The three tACS stimulations.

a) Same phase | b) Different phases | (c) Different frequencies
far=(t) sin(27 f1t) sin(27 f1t + ¢2) sin (27 f1t)
fro=(t) sin(27 f1t) sin(27 ft) sin (27 fat)
B.3 Restriction to the EEG electrodes 796

The algorithm above always allows computing the voltages at all points 7o
of the grid. Extracting the voltages at a small number of electrodes on s
the scalp surface is necessary in order to create a dataset with parameters o
comparable to experimental EEG data. 800

Coordinates of 30 electrodes were chosen from the list of 76 items su
provided with the example dataset [45]. Their coordinates (3D) were used s
for estimating the tACS voltages (by using the voltage at the closest point so
of the grid as an estimation of the voltage at an electrode). 804

Appendix C Analytical solution 05

C.1 Model of brain sources and approximate solution s

Consider a 3D domain €2 representing human brain with its surface corre- o
sponding to the brain cortex. The distribution of electric potential in this  sos
domain can be described by the Poisson equation: 809

DAu = f(z,t) (Eq. S7)
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where the source f(z,t) depends on time. Therefore, solution u(z,t) of s
this equation also depends on time as parameter. If we consider no-flux su

boundary condition at the boundary, 812
ou
—la=0 Eq. S8
81/‘9 ) (Eq )
where v is the outer normal derivative vector, then problem (Eq. S7)-(Eq. a3
S8) has a solution if and only if a4
/ f(z,t)dx = 0. (Eq. S9)
Q

It is a classical solvability condition of elliptic boundary value problems, and s
it is conventionally used in neuroscience in electric brain stimulation [36]. s
Consider point-wise sources represented by §-function with time-periodic
amplitude taken, for certainty, as sin(kt). In the case of two sources located
at points z(9) = (xgi),xg),xgi)), i = 1,2, condition (Eq. S9) implies that

they have opposite phase:

f(2,t) = 6(x — W) sin(kt) + 6(z — 2 sin(kt 4 7).

Then solution u(z,t) of problem (Eq. S7)-(Eq. S9) can be written as e
follows: 818

u(z,t) = Gy(z) sin(kt) + Go(x) sin(kt + 7), (Eq. S10)

where G;(x),7 = 1,2 are the corresponding Green’s functions. If the sources
are sufficiently far from the boundary of the domain, then the functions
G;(x) can be approximated by Green’s function in the whole space:

1
Gi(x) =———F=, i=12.
i(@) 4r|z — x|
This solution can be easily generalized for any number of sources. 819
hii hs hs
T xT xT9 xr3

Figure S2. Cross-section of the domain 2 with three EEG sources and
the boundary of the domain a straight line above them.

We will study dynamics of solutions of problem (Eq. S7), (Eq. S8) in s
the case of three point-wise sources: 821

f(@,t) = ard(z—azW) sin(k t+¢1 )+ aod(x—2P) sin(kot +¢2)— (Eq. S11)

6(z — ) (ay sin(kit + ¢1) + ag sin(kat + ¢2)).
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Let us note that function f(x,t) is written here in such form that condition s
(Eq. S9) is satisfied for any values of aj,as, k1, ke and source locations s
z®, i = 1,2,3. Replacing Green’s functions in the bounded domain by s
the corresponding Green’s functions in the whole space, we approximate s

solution of problem (Eq. S7), (Eq. S8) by the following function: 826
o sin(kit + ¢1) agsin(kat + ¢2) | arsin(kit + ¢1) + agsin(kat + ¢2)
U 4|z — 2] dr|x — ()| 4r|z — 23| '
(Eq. S12)

In order to more easily assess the properties of this solution, consider the s
plane passing through the points (9, i = 1,2, 3 and suppose, for simplicity s
of presentation, that the intersection of this plane with the boundary of the s
domain {2 is a straight line (Figure S2). Thus, we consider a cross-section s
of the 3D domain by a plane and introduce 2D coordinates (£, n) with the e
coordinates (&;,7;) of the sources and distances h; from the sources to the s
boundary. Then solution (Eq. S12) can be written as follows: 833

u u

Figure S3. Solution (Eq. S13) in the case of equal frequencies and phases
as a function of space variable for different moments of time (left). The
same solution as a function of time at different space points (right). The
values of parameters: k1 = ko = 1,a1 = ag = a3 = —4w,h1 = hy = hy =
1,6 =1,8 =2,& = 3,1 = ¢ = 0. Left: consecutive moments of time:
t1 = 0(blue), ta = 2(green),ts = 3(orange). Right: time dependence at
different space points:

& =2.6(red), & = 1.8(green), & = 1.5(blue), & = 1(violet).

a1 sin(klt + ¢1) as Sin(k‘gt + (;52) a1 Sin(k‘lt + (]51) + aso Sin(k’gt + qf)g)

U’(ga t) == -
dm /(€ — &) + 1T Amy/(§ — €)% + I3 Amy/(§ = &) + h3
(Eq. S13)
Here £ is the coordinate of the point at the boundary of the domain. 834
C.2 Standing waves and out-of-phase dynamics 35

We consider dynamics of solution (Eq. S13) in the following cases: equal s
frequencies and phases, equal frequencies and different phases, different s
frequencies and equal phases, different frequencies and phases. In the first 3
case, for k1 = ko and ¢1 = ¢5, this solution describes standing waves s
(Figure S3). Potential distribution in space for a fixed moment of time is  aw
positive in one half-axis and negative in the other one. They oscillate in time s
alternating positive and negative values, but the boundary between them s
where u(z,t) = 0 does not depend on time. Furthermore, the maximum and s
the minimums of the solution can have only two possible space locations s
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periodically jumping between them. These fixed position of the maximum ss
during half-period and jumps to another fixed position are specific for s«
standing waves. 847

If we fix the space point and consider the solution as a function of time ss
(Figure S3, right), we observe a periodic function with a constant amplitude. s«
By analogy with EEG data, such functions can be interpreted as signals s
registered with different electrodes. Different space points correspond to s
different electrodes. There is precise synchronization of these signals, they s
all vanish at the same moments of time. 853

| "\
N | R=uNEENEN |

LS 0 7
| /5/ N qq J "
os|\ /
N 05

Figure S4. Solution (Eq. S13) in the case of equal frequencies and
different phases as a function of space variable for different moments of
time (left). The same solution as a function of time at different space
points (right). The values of parameters: k1 = ko = 1,a1 = ag = ag =
—4m hy =ha=hs=1,§ = 1,8 =2,& = 3,¢1 = 0,3 = 1.371/3. Left:
consecutive moments of time: t; = 0(blue), to = 2(green), ts = 3(orange).
Right: time dependence at different space points:

& =3.1(red), & = 2.2(blue), £ = 1.8(green), & = 1(violet).

In the case of different phases and equal frequencies, the main dynamics a4
of solution resemble standing wave, but the zero of solution is now time- s
dependent and it can be non-unique (Figure S4, left). Time dependence of s
solution at different space points are shifted in phase (Figure S4, right). The s
amplitudes of these signals remain constant in time. To fix the terminology, sss
we call such solutions out-of-phase standing waves. 850

Figure S5. Solution (Eq. S13) in the case of different frequencies and
equal phases as a function of time at different space points. The values of
parameters: kl = 1,]€2 = 1.05,(11 = a2 = asz = —47T,h1 = h2 = hg = 1,51 =
1,6 = 2,&3 = 3,01 = ¢ = 0, time dependence at different space points:

& =3.1(red), & = 2.2(blue), £ = 1.8(green), & = 1(violet).

If the phases are equal but the frequencies are different, we obtain s
modulated standing waves (Figure S5). The amplitude of signals changes sa
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periodically in time, while their phases are basically the same except for s
some transition zones. Such modulated signals arise due to addition of two e
periodic functions with different frequencies. For example, sin(k1t)+sin(kat)  see
gives a high frequency oscillation corresponding to (ki + k2)/2 and low  ses
frequency modulation corresponding (k1 — k2)/2, assuming that ki, ko > 0. ses

Figure S6. Solution (Eq. S13) in the case of different frequencies and
phases as a function of space variable for different moments of time (left).
The same solution as a function of time at different space points (right).
The values of parameters: k1 = 1,ky = 1.05,a1 = as = a3 = —4mw,hy =
ho=hs=1,& =1,6&=2,£35 = 3,01 =0,¢2 = 1.37/3. Left: consecutive
moments of time: ¢; = 0(blue), ty = 2(green),ts = 3(orange). Right: time
dependence at different space points:

& =31(red), & = 2.2(blue), & = 1.8(green), & = 1(violet).

Let us finally consider the case of different frequencies and phases. In s
this case we obtain out-of-phase modulated waves (Figure S6) with time- ses
dependent amplitude and shifted phase. Let us note that the maximum of e
solution sometimes moves in space as a function of time (Figure S6, left). sw
From this point of view, we can characterize this solution as a combination sn
of standing waves and travelling waves, though neither of them exactly e
corresponds to the strict definition of such waves. 873

Appendix D Optical flow patterns for stand- ..

ing and travelling waves ars

The flow field in the optical flow method is described by the following e

system of equations: 877
?Au — I(I,u+ Ly +I;) =0, (Eq. S14)

?Av — I,(Iu+ I+ I;) =0, (Eq. S15) ”

where I(z,y,t) is a given function which determines the flow field, the e
subscripts denote its partial derivatives, « is a regularization constant. We s
will present here some model examples illustrating the properties of the s
flow field depending on the function I. 882

Linear function. Consider a linear function 883
I(z,y,t) = I(x0,yo0,t0) + a(x — x0) + b(y — yo) + c(t —to). (Eq. S16)

We look for the solution of system (Eq. S14), (Eq. S15) in the form u = ug, s
v =kug. If b # 0, then k = —(aup + ¢)/(bug). A similar expression can be  sss
obtained if a # 0. Hence, linear function I gives a constant vector field. 886
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Strictly speaking, solving system (Eq. S14), (Eq. S15) in a bounded  ss
domain, we need to specify the boundary conditions. Since we are interested — sss
in local behavior of solution, we can choose boundary conditions in such a s
way that constructed solution satisfies them. If the function I is nonlinear, swo
we can consider function (Eq. S16) as its linear approximation. The sn
corresponding vector field is constant in the first approximation. Though it s
is not unique (up to a choice of uy # 0), it does not contain singular points. s

An interesting particular example of function (Eq. S16) corresponds to
linearization of travelling wave:

I(z,y,t) = a(x — ct)

(propagating in the z-direction). In this case, u = ¢, v = 1, that is, s
horizontal component of the flow field equals the wave speed c. As before, s
there are no singular points of the flow field. 896
Quadratic function. Consider the function 807
I(z,y,t) = Io + f(t) (a(z — 20)* + b(y — y0)*) - (Eq. S17)

It can be considered as an approximation of a function around its extremum
where linear terms in z and y vanish. Next, consider a linear approximation
of the function f(¢): f(t) = f(to) + f'(to)(t — to). We look for linear
functions

u=ki(x—x0) +ka(y — o), v=ks(x—xo)+ks(y — o)

satisfying the equality 898
F()(2a(x — zo)u + 2b(y — yo)v) + f(to) (alz — z0)* + b(y — y0)*) = 0.
(Eq. S18)
Then F(to)
— — 0 — I
kl = k’4 = Qf(t) , ]{12 bO’, ]{53 aao,

where o is an arbitrary real number which should be determined from the s
boundary conditions. Thus, linear approximation of the flow field can be o0
determined up to one arbitrary constant. 901

Since u(xo,yo) = v(zo,yo) = 0, then it is a singular point of the flow
field. In order to determine its type, consider the matrix

ou 0 —f"(to)

g a \_( @ b
v oy N SAONE
T ()

We determine the determinant of this matrix and its eigenvalues:

det J = h? + abo®, Ajp = —h 4/ —abo? ,

_ ['(to)
BEFION
J can be as follows. 903

where h Depending on parameters, the eigenvalues of the matrix oo

e If h >0 and ab > 0, 0 # 0 then the eigenvalues have negative real oa
parts and nonzero imaginary parts. The corresponding singular point s
is a stable focus. If ab = 0 or 0 = 0, then it is a stable node with s
equal eigenvalues. Uncertainty in the choice of o can change focus o7
to node, but in both cases they are stable. The winding number (or o
index of stationary point) equals 1. 909
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e If h < 0 and ab > 0, then the singular point is unstable focus or node. oo
The winding number equals 1. o11

e If ab < 0 and o # 0, then there are two different cases depending on o2
the sign of the inequality h? = |abo?|. In the case of upper inequality, o
both eigenvalues have the same sign, and the single point is stable or o4
unstable node. If the inequality is opposite, then the eigenvalues have o
opposite signs, and the singular point is saddle. Since we expect to o
have a saddle in the case of opposite signs of the constants a and b, o7
then |h| should be sufficiently small, that is, |f’(to)| is small enough. as
If this is not the case, then the linear approximation does not give oo
correct result. The choice of o does not change the type of the singular o
point provided that condition on A is satisfied. o1

Let us note that Laplacians vanish on linear functions « and v. Therefore o2

we obtain an exact solution of equations (Eq. S14), (Eq. S15). 923
Travelling waves. Consider a particular form of quadratic function 024

I(z,y,t) = Io + a(x — ct)? + by (Eq. S19)
Then

u=c+boy, v=ao(z—-ct),

where o is an arbitrary real number. If we suppose that the flow field at o
the boundary does not depend on time, then ¢ = 0. Hence, u = c,v =0, o
and the flow field does not have singular points. 027

Intuitive considerations about the flow field. All examples considered s
above can be summarized in the following way. Consider level lines of the o
function I(z,y,t) on the plane (z,y) in two close moments of time, t =ty o0
and t = t; (Figure S7). 931

I(z,y,t2) = Iy
Izyt) =T I(wyty) =1y I(z,y, 1) =T I(z,y,t2) = Iy

I(z,y,t2) = Iy I(z,y,t1) =Ty I(z,y,t1) =Ip

No singular points Stable node Unstable node Saddle

Figure S7. Schematic representation of different time dynamics of the
function I(x,y,t) without singular points (left), with stable or unstable
nodes (middle), and with saddle (right).

If the second level line is obtained from the first one by translation o
(winding number 0), then there are no singular points. If the second level o
line is obtained by retraction and it is inside the first one (winding number o
1), then it is a stable node or a stable focus. In the opposite case, it o
is unstable node or focus (winding number 1). Finally, if it is partially s
expanded and partially retracted, then it is saddle point (winding number o
—1). Let us recall that winding numbers can be obtained here as signum of o3
the product of the eigenvalues. 9390

We will use this empirical definition of singular points to characterize oo
some other types of functions for which explicit analytical solution cannot o
be constructed. 022
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Standing waves. Consider the function 3
I(z,y,t) = f(t) (Io — a(z — 20)* — b(y — y0)?) (Eq. S20)

which can be considered as a model of standing wave. As before, we consider
a linear approximation of its time dependence

f(t) = f(to) + f'(to)(t — to)

and suppose that a,b > 0. According to the previous paragraph, consider
level lines of the function I(x,y,t) around its maximum at x = 2o,y = yo
assuming for certainty that f(to) = 1, f’(to) > 0. Then I(zo,yo,t0) = Io,
I(z0,y0,t1) = Iy > Iy if t; > tg. Consider the level lines Ly and L;
determined, respectively, by the equations

I(x,y,to) = h, I(z,y,t1) =h

for some h < Iy. Both of them are circles, and Lg is located inside o
L;. According to the considerations in the previous paragraph, (zg,yo) is s
unstable node (source). o6

If h approaches Ly, the ratio of circle radii increases and tends to infinity. o
Therefore, we can expect that the corresponding flow velocity also tends to o

infinity in the vicinity of the singular point. 049
Together with this geometrical approach consider equations (Eq. S14), o
(Eq. S15) with @ = 0. The flow field u, v should satisfy the equality 051
F()(=2a(z—z0)u—2b(y—y0)0) + ' (to) (Io — al — o) — bly — yo)2) = 0.
(Eq. S21)
We set

£'(to) b
7 <(z ")~ 5ale — o)

2
= _f/(tO) — 7k2 — aoc\r — X
EYT0) (“’ W) = 35ty yo)) (z =20

where ¢ is an arbitrary real number, ki, ko are positive and such that o
k1 + ko = Iy. In agreement with the geometrical considerations, the leading s
order terms in the flow velocity determine unstable node and the flow o
velocity tends to infinity at the singular point. This flow field satisfies oss
equations (Eq. S14), (Eq. S15) for @« = 0. Small positive o provides os
regularization of solution. 057

> +bo(y = yo),
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