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Abstract

We present an analysis of the spatiotemporal dynamics of the oscillations
in the electric potential that arises from neural activity. Depending on the
frequency and phase of oscillations, these dynamics can be characterized
as standing waves or as out-of-phase and modulated waves, which repre-
sent a combination of standing and moving waves. We characterize these
dynamics as optical flow patterns, in terms of sources, sinks, spirals and
saddles. Analytical and numerical solutions are compared with real EEG
data acquired during a picture-naming task. Analytical approximation of
standing waves allows us to establish some properties of pattern location
and number. Namely, sources and sinks have mainly the same location,
while saddles are located between them. The number of saddles correlates
with the sum of all the other patterns. These properties are confirmed in
both the simulated and real EEG data.

Keywords: human EEG data, spatiotemporal patterns, optical flow meth-
ods, picture-naming task

1 Introduction 1

Developing adequate theoretical frameworks to describe the extreme com- 2

plexity of the spatiotemporal electrical dynamics of 3D cortical neural tissue 3

in electroencephalogram (EEG) recordings still remains a real challenge. 4

These frameworks have a key role in the way we understand how corti- 5

cal electrical activity functionally contributes to the dynamics in human 6

behavior. 7

EEG records the electric potentials in the brain at the scalp. The 8

amplitude and phase of the oscillations that characterize the dynamics 9

of electric potentials depend on the spatial locations of the electrodes. 10
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Spatiotemporal dynamics in EEG data has been studied since the 1930s (see 11

[1] and the references therein) when oscillations in the electric potentials in 12

the brain were found to originate from specific brain sources (originally called 13

focuses) located in the occipital lobes. It was suggested that these sources 14

can shift within limited areas in the brain, giving rise to phase and amplitude 15

shifts in the signals recorded at different electrodes, and interpreted as 16

moving waves, also referred to as travelling waves. The contemporary use 17

of the term travelling waves has come to be mathematically more defined 18

and is a function which depends on the combination of variables x − ct, 19

where c is the wave speed. Simple definitions consider travelling wave to 20

have constant speed and amplitude, but general definitions acknowledge 21

that speed and amplitude can be variable [2]. 22

The phase and amplitude of these travelling waves have been extensively 23

studied for different brain states in humans and in animals (see literature 24

reviews [3,4]). Travelling alpha waves were found in [5] across four occipital- 25

parietal electrodes during a visual cognitive interference task in human 26

subjects. Periodic travelling waves along the frontal-occipital axis were 27

also found during a cognitive control task [6] and suggested as a way of 28

viewing slow sleep waves [7]. They were recorded during 15-20% of the 29

observation time and their direction changed, being slightly more frequent 30

for frontal-occipital waves pre-stimulus and occipital-frontal waves post- 31

stimulus. Bidirectional travelling waves were found in [8] with posterior- 32

to-anterior travelling waves being more frequent during visual input and 33

anterior-to-posterior during rest. Travelling waves have been observed in 34

the primary visual cortex where they were reduced when a wide part of the 35

visual field is strongly stimulated [9]. They can also help in understanding 36

language processing [10], such as that involved in semantic feature during 37

lexical access [11]. It should be noted that the phase component of the 38

signal observed in individual trials can be lost in across-trial average [12]. 39

Moreover, oscillations are not simply plane waves but can be rotating like 40

in sleep spindles [13, 14] or spiral waves [15]. 41

Approaches in analyzing brain dynamics, however, have focused on trial 42

and group averages, as is the case with analyses of event-related potentials 43

(ERP) using global field power (GFP), which has been associated with 44

brain micro-states [16–20], brain sources, and networks for various cognitive 45

tasks [21–23]. For example, GFP was used to compare the dynamics 46

of phonological encoding between stroke patients and healthy subjects 47

in [24]. Different approaches to analyze brain dynamics at scalp, sources and 48

networks during picture naming task are discussed in [25]. Spatiotemporal 49

dynamics of electric potentials have been characterized using block-matching 50

motion estimation [26] and calculating peak amplitude trajectories [27] from 51

topographic maps. 52

To characterize neural oscillation dynamics in EEG recordings that 53

might be relevant to cognitive processes but lost in averaged data, we 54

propose an individual- and trial-by-trial based approach inspired by optical 55

flow methods used in computational vision models. With this approach, we 56

determined types of spatiotemporal regimes (optical flow patterns, OFP) 57

in simulated data of neural activity under alternate current stimulation as 58

well as real EEG data recorded in healthy human subjects during a picture- 59

naming task. This approach can be used to characterize any sufficiently 60

smooth function F (x, y, t) that varies in space (x, y) and time t. Trajectories 61

of points in space (x(t), y(t)) determined by this function constitute a vector 62

field in a plane which can have singular points (nodes, focuses, saddles) 63
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characterizing the function F . This method can be applied to either the 64

amplitude or phase of EEG signals treated as a (discrete) function of space 65

and time. 66

This method has been used in [28] to analyze local field potentials (LFPs) 67

measured in the visual cortex of anesthetized marmoset monkeys in the delta 68

frequency range. Analysis of the phase fields revealed sources (unstable 69

nodes), sinks (stable nodes), spirals (focuses) and saddles. When plane 70

waves are present, singular points are absent, implying that plane waves and 71

other patterns are mutually exclusive. Plane waves were found to be the 72

dominating pattern 60% of the time, while spatial patterns were present in 73

20.4% of the time, and synchronized EEG (no spatial distribution) in 19.6%. 74

Transitions between simple waves (synchrony, plane) were also less frequent 75

than transitions from simple to complex waves. Complex patterns arise 76

around preferential locations, as has been found in [29] and in local complex 77

wave patterns in the phase velocity field of spontaneous dorsal brain activity 78

in anesthetized mice [30]. It was observed that sources, sinks and saddles 79

frequently coexisted while global plane waves inversely correlated with these 80

patterns. Large-scale waves propagate preferentially in the anteroposterior 81

direction, and the change of their direction was related to the emergence 82

of sinks or sources. Location preferences of these patterns appear to be 83

anatomically motivated, as suggested by the localized propagation in limited 84

visual cortex subregions at rest [30] to wider propagation beyond the visual 85

cortices during visual stimulation [31]. 86

Depending on the frequency and phase as well as source location, we 87

observed different types of dynamics in simulated spatiotemporal regimes 88

(Section 2) that can be characterized as standing waves, out-of-phase stand- 89

ing waves, and modulated waves. The dynamics in the EEG data are 90

qualitatively similar. 91

In Section 3, we characterize simulated dynamics with OFP and deter- 92

mine some properties of these patterns, such as their mutual location and 93

number. These properties are then verified on real EEG data and additional 94

general OFP found in the EEG data are described. 95

Finally, more specific properties of optical flow patterns evoked during 96

the picture-naming task are described in Section 4. 97

2 Brain sources and spatiotemporal dynamics 98

2.1 Spatiotemporal dynamics in simulated data 99

In this section we present the results of numerical simulations with 3D realis- 100

tic brain geometry using software SimNIBS [32]. This tool allows modelling 101

of transcranial direct current stimulation (tDCS) with stimulating electrodes 102

located at the brain surface. The model uses Poisson equation [33]. Since 103

this equation is linear, it is thus possible to use it for modelling of tran- 104

scranial alternating current stimulation (tACS) with several simultaneously 105

acting time-dependent sources [32]. Numerical implementation is presented 106

in Supplementary Materials B. 107

In numerical simulations, we use 30 electrodes including 3 tACS elec- 108

trodes and 27 registering electrodes. We consider two stimulating electrodes 109

and one return electrode, where stimulation observes the conservation of 110

charges, that is, the sum of injected currents is equal to zero at any given 111

time point. With this configuration, different regimes can be identified 112
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Figure 1. Simulations of tACS with three electrodes generated by the
software SimNIBS. Each colored curve is the simulated electric potential
time series at one of the 27 electrodes. The three heuristic cases are shown:
1) equal frequencies and phases (left), which results in standing waves; 2)
equal frequencies and different phases (middle), which results in
out-of-phase waves; and 3) different frequencies and phases (right), which
gives rise to either out-of-phase standing waves or amplitude-modulated
out-of-phase waves. Bold black lines showtime-dependent global field
power (GFP).

depending on frequency and phase at the two stimulating electrodes, and 113

can be basically considered as three cases: 1) equal frequencies and phases, 114

2) equal frequencies and different phases, and 3) different frequencies and 115

phases. 116

t = 80 ms t = 136 ms

Figure 2. Spatial 2D projection (topographic map) of the 30 simulated
electrodes for the case of equal frequencies and phases. The numerical
solution is a standing wave with synchronized time oscillations. The two
topographic maps shown are two snapshots of the solution with opposite
values.

For the case of equal frequencies and phases, the dynamics corresponds 117

to standing waves (Figure 1, left). All signals have constant amplitude 118

and vanish at the same time points. The spatial 2D projection of the 30 119

point-wise simulated values on the circular domain is shown in Figure 2. 120

Time oscillations in this case are synchronized; that is, spatial locations of 121

maximums, minimums, and zeros do not depend on time. 122

In the case of different phases, we obtain out-of-phase standing waves 123

characterized by phase-shifted signals with constant amplitude (Figure 124

1, middle). If frequencies and phases are different, then the dynamics 125

corresponds to an out-of-phase modulated wave (Figure 1, right) with 126

signals periodically changing in amplitude and phase. 127

Figure 3 represents topographic maps of signal amplitude in consecutive 128

time points during one period in the case of different frequencies. These 129

topographic maps repeat for several periods and then change rotational 130

direction. The upper and lower panels in this figure show similar distribution 131
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Figure 3. One period of a rotating wave in the case of different
frequencies for the simulated data. Yellow dots show the maximum
potential for a given time window corresponding to the given time point t
shown and some time points prior to t. Straight black lines show the
transitions of this maximum. Direction of rotation changes after several
periods. Note that rotation is not uniform but corresponds to the fast
transitions between brain states. This transition occurs through the
propagation of the forward front followed by the propagation of backward
fronts. Each map in the upper row is shown with a similar counterpart
directly below it with the sign (hot/warm color) reversed.

patterns of electric potential amplitude but of opposite sign (indicated by 132

inverted hot/warm colors). One more property of this solution is that the 133

rotation is not spatially uniform. Rotation is driven by an alternation 134

of when forward and backward wave fronts propagate. One wave front 135

propagates while the other is fixed, and then the other front propagates 136

in apparent rotating motion while the front that just rotated remains 137

stationary. In the solutions to this case, the maxima alternate between 138

spatially displacing at approximately a constant speed, characteristic for 139

travelling waves, and jumping to distant locations, characteristic of standing 140

waves. 141

Let us note that time-dependent GFP is periodic in the case of equal 142

frequencies (Figure 1, left and center plots). The smallest average value 143

is zero in the case of equal phases, and is positive for different phases. If 144

frequencies are different, the average amplitude is not periodic. 145

The three regimes observed in the simulated data are qualitatively 146

similar to the analytical solution (Supplementary Materials C). Standing 147

waves are observed for equal frequencies and phases, out-of-phase standing 148

waves for different phases, and modulated out-of-phase waves if frequencies 149

are also different. 150

2.2 Spatiotemporal dynamics in EEG data 151

In this section we will consider spatiotemporal dynamics of the EEG data 152

during a picture-naming task for 16 human subjects. Data collection and 153

preprocessing are described in Supplementary Materials A. The analyses 154

were performed on four frequency bands: delta (1–4Hz), theta (4–8Hz), 155

alpha (8–13Hz), and beta (13–30Hz). 156

Like the analysis performed with simulated data, the real evoked EEG 157

signal dynamics can also be described in terms of standing waves, out-of- 158
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phase standing waves and modulated waves. 159
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Figure 4. EEG signal time series averaged across all trials during naming
(upper panes) in three healthy human subjects (S17, S05, S07), and the
corresponding electrical potential topographic projection (topo plots) from
3D scalp coordinates (lower panes). Bold black curves in the signal plots
represent the GFP. Vertical lines mark 5 maxima of the average amplitude
correspond to the moments of time of topo plots below. An image appears
on the screen at time 0. Image recognition and processing is associated
with the ERP increase in the first 300 ms.

An example of standing waves in EEG data during naming with 96 160

electrodes is presented in Figure 4-S17. Time 0 here corresponds to the 161

onset of picture presentation. After the picture appears on the screen, 162

the amplitude of the signal increases for approximately 300 ms, and then 163

it drops back to baseline level. We can identify properties of standing 164

waves during the first 300 ms. Recorded signals have sinusoidal oscillations 165

and vanish at the same time points. The 2D spatial distribution of the 166

electric potentials projected from 96 point-wise signals (electrodes) also has 167

characteristics typical for standing waves, namely synchronized oscillations 168

with fixed maxima, minima, and zero lines (Figure 4-S17). 169

Out-of-phase standing waves were observed for one individual in the 170

same frequency range (Figure 4-S05). Potential distribution in space is not 171
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exactly periodic in time (topographic plot/lower pane). Finally, an example 172

of modulated out-of-phase waves for the β frequency range is shown in 173

Figure 4-S07. 174

To summarize, in the analytical and numerical models with three stimu- 175

lation sources, the spatiotemporal dynamics can be described by standing 176

waves, out-of-phase standing waves and modulated waves. Spatiotemporal 177

dynamics in the EEG data show similar behaviors. Moreover, the differ- 178

ence in the dynamics in Figure 4 (S17 and S05) can be related to equal 179

or different frequencies at brain sources, as is the case for the analytical 180

and numerical models. Therefore, a time-dependent Poisson equation with 181

several sources should also be able to model the spatiotemporal dynamics 182

of ERPs. 183

3 Optical flow patterns 184

In this section we will establish the connection between spatiotemporal 185

dynamics described in the previous section and optical flow patterns. The 186

definitions and the methods of analysis of these patterns can be found 187

in [29, 30] (see also Supplementary Materials, C, D). We will formulate 188

some hypotheses about the location and the number of patterns based 189

on the analytical approximations. We will verify these hypotheses for the 190

generated data and for the acquired EEG data. 191

3.1 Location and number of patterns for standing 192

waves and other regimes 193

Analyzing spatiotemporal regimes (Supplementary Materials, C) allows 194

us to make some hypothesis about location and number of patterns. In 195

the case of standing waves, each maximum or minimum with increasing 196

amplitude (in the absolute value) corresponds to a source (unstable node 197

or focus) and with decreasing amplitude to a sink (stable node or focus). 198

Since standing wave maxima and minima have fixed positions, and their 199

amplitude is a periodic function of time, we have the following properties: 200

Property 1 Sources and sinks of standing waves alternate occupying the 201

same spatial locations. Their location does not depend on time. 202

These properties will be verified below for all regimes and not only for 203

standing waves. Furthermore, according to the properties of dynamical 204

systems, sources (sinks) should be separated by saddles. Therefore, we will 205

also analyze their mutual locations. 206

Some additional information about singular points can be obtained
from the theory of dynamical systems. Let us consider a 2D vector field
(u(ξ, η), v(ξ, η)) in a closed manifold S without a boundary, such as a sphere
in 3D space, (ξ, η) ∈ S. For each singular point (ξi, ηi), that is a point for
which u(ξi, ηi) = v(ξi, ηi) = 0, consider the following Jacobian

J(ξi, ηi) =


∂u

∂ξ
(ξi, ηi)

∂u

∂η
(ξi, ηi)

∂v

∂ξ
(ξi, ηi)

∂v

∂η
(ξi, ηi)

 .
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Assuming that the singular points are non-degenerate, det J(ξi, ηi) ̸= 0,
i = 1, ..., n, we can conclude that their number n is finite, and we can define
the number

γ =
n∑

i=1

(−1)νi ,

where νi is the number of real positive eigenvalues of the matrix J(ξi, ηi). 207

The number γ is called the topological degree or rotation of the vector field, 208

and it is related to the winding number for plane vector fields. 209

Given that νi = 0 for stable nodes (i.e., sink) and foci (spirals), νi = 2
for unstable nodes (sources), and νi = 1 for saddles, we thus have

γ = Nsss −Nsad,

where Nsss is the total number of sources, sinks and spirals, and Nsad is 210

the number of saddles. 211

We know that from dynamical systems, a vector field (uτ (ξ, η), vτ (ξ, η)) 212

continuously dependent on parameter τ , γ(τ) is in fact independent of τ . In 213

terms of optical flow estimations which are a function of time, we therefore 214

hypothesize 215

γ(t) = Nsss(t)−Nsad(t) = constant (1)

That is, the difference between the number of all singular points except 216

saddles and the number of saddles does not depend on time, leading us to 217

our second property. 218

Property 2 The difference between the number of all patterns except sad- 219

dles and the number of saddles does not depend on time. 220

It is important to note that this property holds for the whole brain 221

surface, and not only for standing waves but also for other regimes. If we 222

consider only a part of the surface, as is the case of the EEG data, we 223

should then consider the patterns crossing the boundary of the domain. If 224

this information is not available, then this equality can be considered as an 225

approximation and compared with the available data. 226

Another remark concerns the dependence of the location and number of 227

patterns on the frequency band. In the case of standing waves, location and 228

number are independent of the frequency. We will verify below whether 229

this property is confirmed for both simulated and EEG data. 230

3.2 Optical flow patterns in simulated data 231

Depending on the phase and frequency in the simulated data, we observe 232

standing waves, out-of-phase standing waves and modulated waves. In 233

the case of standing waves, as from the earlier analysis, we can expect 234

that sources and sinks have the same location in this ideal configuration. 235

Furthermore, in analytical approximation, they coincide with the maxima 236

and minima of the potential distribution. For the generated data, there is 237

a number of stages of data processing which could influence the result. Let 238

us recall that 30 signals were simulated as they would have been recorded 239

at the scalp. These signals were then projected onto a circular domain, 240

as is done for the real EEG data. However, the same signals were used 241

to generate optical flow patterns with some other transformations (see 242

Supplementary Materials, A). Different methods of data processing could 243

possibly lead to some discrepancy in the results. We will verify Properties 244

1 and 2 for the simulated data. 245
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Figure 5. Time dependence of pattern locations for three simulated data:
1) inPhase – same frequency (9Hz from electrode positions AFz / POz),
same phase; 2) outPhase – same frequency, different phases; and 3)
diffFrex – different frequencies (9Hz from AFz and 10Hz from POz),
different phases. Evaluated on amplitude and on alpha frequency band
(8− 13Hz). n is the number of patterns.

Location of patterns. Figure 5 shows pattern position in time for the 246

generated data. Since these data were generated with the two different 247

frequencies 9Hz and 10Hz, patterns are only evaluated in the alpha frequency 248

band (8− 13Hz). In the first case with no mixtures (same-frequency, same- 249

phase, upper panel), we observe only two locations of sources and sinks 250

which overlap with each other1. Saddle patterns are alternated and located 251

between source and sinks in a very regular way. The locations of these 252

patterns are time-independent in this case. 253

For a more complex signal with mixed phases (middle panel) or mixed 254

frequencies and mixed phases (lower panel), more patterns are generated 255

and detected thereafter. Since the signal dynamics in these two cases 256

are temporally and spatially (2D/3D) more complex, some variations are 257

expected. However, we still observe very similar phenomena as in the first 258

case: source/sink are most likely overlapped; saddles are found between 259

source/sink. Their positions remain relatively stable – depending less on 260

time. 261

1For numerical reasons, there would be variation at the very beginning stage, after
the pipeline became stable.
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Number of patterns. In the first case (the same frequency and phase), 262

the numbers of sources and sinks are almost the same (17 and 18, respec- 263

tively). There are approximately twice as many saddles (38). According to 264

the theory of dynamical systems, two sources (sinks) are separated by a 265

saddle point in such a way that the number of sources (sinks) and saddles 266

is the same (plus/minus one, see Figure 5, upper panel). However, since 267

sources and sinks replace each other periodically in time, while saddles are 268

present all the time, then the time average number of saddles is twice as 269

many than sources or sinks. In the second case (same frequency, different 270

phases), after a noisy first 400-500ms, the number of patterns stabilize. 271

Though the last case is most complex, the numbers of sources and sinks 272

are similar while there are approximately twice as many saddles. All these 273

observations agree with the hypotheses discussed in Section 3.1. 274

3.3 Optical flow patterns in EEG data 275

Results of Section 2 allow us to interpret EEG dynamics as standing waves, 276

out-of-phase standing waves, and modulated waves. Analysis of optical flow 277

patterns in Appendix D suggests that such regimes satisfy Properties 1 and 278

2. In the previous section, these properties were verified for the simulated 279

data. We will now verify them for the real EEG data. 280
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Figure 6. Proportion and duration of the five patterns identified in all
the 16 subjects’ EEG: sink/source, spiral-in/spiral-out and saddle.

The EEG data for all 16 subjects and 270 trials are included in the 281

analyses. The numbers of sources and sinks are approximately the same, 282

similar to the number of spirals-in and spirals-out (Figure 6). Source/sink 283

patterns occur about 3% more than spiral-type patterns. However, saddles 284

have the largest share of the identified patterns – about 45% of the total 285

number of patterns. Similar to the simulated data, the number of saddles 286

was approximately equal to the total number of the other two patterns 287

(sources and sinks). However, sources are partially replaced by spirals- 288

out and sinks by spirals-in. We note that the analysis in Supplementary 289
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Materials Appendix D does not distinguish between sources (sinks) and 290

spirals. 291

The ratios between the numbers of patterns varied very little across the 292

three main frequency bands: delta [1, 4] Hz, theta [4, 8] Hz, or alpha [8, 13] 293

Hz. 294

We also evaluated only micro patterns covering a 2× 2 grid patch (the 295

whole projected 2D scalp grid is 67 × 67). For each event trial, which 296

lasted 5000 ms, one can identify more than 10 patterns per millisecond, 297

attesting to the highly heterogeneous EEG signal and complex brain/head 298

geometry. These patterns last 20 to 40ms on average. Saddle patterns tend 299

to last slightly longer than the others. However, in the very large number 300

of patterns, certain patterns can last up to 1–2 seconds. 301

Location of patterns. With such a large amount of patterns and due to 302

the complex head geometry, it is not possible to directly apply the same 303

simple approach as for simulated data. We will not study every single 304

pattern but focus on the brain regions where EEG activity is predominant 305

and generated clusters of patterns. 306
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Figure 7. Two examples of pattern clusters in the real EEG data from
Subject 18 (S18) performing the picture-naming task: 1) spiral-sink-source
(two leftmost columns) and 2) saddle-sink-source (right two columns). In
each pair of columns, the plots on the left are spatial plots of main
thresholded pattern clusters across the entire scalp on a 67×67 grid, and
the column to the right counts (and overlapping) of clusters of the given
patterns. Baseline ([-2s, 0s]) – period before onset of picture presentation;
Poststim ([0s, 1.5s]) – after picture was presented; Denom ([1.5s, 3s]) –
naming period. ALL means that patterns from all validated trials are
combined.
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A density (count per pixel) map can be obtained for each pattern in a 307

trial. This map is Z-score normalized and only regions of interest with a 308

pattern density at least two times the standard deviations above the mean 309

overall density are kept. These pixels are traced and enclosed with isolines, 310

forming the cluster regions. We consider the degree of overlap between 311

the cluster regions of different patterns to be proportional to the spatial 312

correlation between the patterns. 313

Figure 7 shows a representative example of this pattern cluster based 314

approach (similar plots are obtained for other subjects). We took the 315

mean area of the three given patterns as reference to calculate the overlap 316

percentage. Clusters from sources and sinks overlap greatly. Spiral clusters 317

are also correlated with sources/sinks, with overlaps ranging between 60− 318

70%. This suggested that locations of source/sink/spiral correlate. However, 319

saddle clusters have less than 1% overlap with source/sink. From the cluster 320

density maps, we can see that saddle clusters are located between source/sink 321

clusters. This way allows us to validate the hypothesis in real EEG data. 322

Based on this approach, we are able to quantify the amount of overlap
among the pattern clusters for each subject’s EEG data. Source and
sink clusters generally overlap by 80 − 90%. We consider here only core
intersections of three patterns (source-sink-spiral, and source-sink-saddle):

Percentage overlap =
Aintersection of all three patterns

ASource +ASink +ASpiral Saddle

3

× 100 ,

where A denotes area. Overall, as shown in Figure 8, source–sink–spiral 323

cluster regions overlap with each other greatly, with median percentages 324

around 60%, and hence have high spatial correlation. Clusters of source 325

or sink overlap less than 1% with saddle clusters. This minimal overlap 326

is coherent with the property of saddles that they are located between 327

sources/sinks, and is also visually apparent in Figure7, where most saddle 328

clusters can be seen surrounded by source and sink clusters. Similar 329

properties are observed for other subjects. 330

Location of patterns very weakly depends on frequency band. These 331

observations hold for the three frequency bands except for the delta band, 332

for which the overlap among source/sink/spiral is slightly higher than the 333

other bands. 334
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Figure 8. Percentage overlap by pattern clusters in three frequency bands
for all subjects.

Number of patterns. Here we test the validity of Property 2, which 335

states that the difference between the total number of all patterns except for 336

saddles and the number of saddles is constant over time. For a finer-grained 337

analysis, we plot the average frequency of patterns across epochs and over 338
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time for saddles alone as well as for the sum of all the other patterns, by 339

subject, electrode, and frequency. Figure 9 shows the difference between 340

the number of saddles and the sum of all other patterns during the picture- 341

naming task considered for all subjects, trials, brain areas and frequencies. 342

As stated in Property 2, this difference should be constant (positive, close 343

to 0). The number of individual patterns (e.g., saddles) during naming is 344

considered in the next section. 345
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Figure 9. Mean pattern frequency difference between saddles and the
sum of all other patterns across all subjects and all epochs in the real EEG
data. The median of the pattern frequency (red curve) is close to constant,
corroborating the hypothesis of constant difference (Eq. 1). The shaded
green area delimits the first (bottom) and third (top) quartiles. The
shaded gray area demarcates minimum and maximum frequencies.

4 Patterns during picture naming 346

The number of each type of patterns (i.e. source, sink, saddle, spiral- 347

in, spiral-out) was analyzed for each of the 16 subjects by EEG signal 348

frequency band (delta, theta, alpha, beta) and by cortical zone (frontal, 349

parietal, occipital, left temporal, right temporal). The 270 trials of picture 350

naming were separated into two groups: a group of 70 trials with the single 351

control word (chien, i.e. “dog”), and another group with the remaining 200 352

trials with all other words. Trials with signal artifacts were removed, leaving 353

variable number of trials per subject. The average number of patterns for 354

each group was counted in a time window starting 1 s (t0-1) before picture 355

onset (time 0, t0) to the start of the naming prompt at t0+1.5 s. Signal 356

amplitude and phase were analyzed independently. 357

The most regular frequency pattern during picture naming with the 358

least variability was for “saddle” patterns in the delta frequency range for 359

the word group “not-dog” (other words). 360

A typical example of the temporal evolution of the number of patterns 361

is shown in Figure 10. The dependence of the number of patterns on time 362

is similar for frontal and occipital zones and for other types of patterns (not 363

shown). The number of patterns decreases at the beginning of epochs. In 364

the box plots (Figure 10, right), the pattern frequency tends to decrease 365

for the first 3 or 4 intervals in all subjects, with the minimum frequency 366

reached by interval 3 or 4 for much subjects. For subjects where this was 367

not the case, the frequency levels off or reduces in slope around the third 368

and fourth intervals. 369

This decrease of the number of patterns in the beginning of an epoch
can be quantified for all subjects altogether by the following method. Let
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NS

S05, Saddle pattern, Delta waves, parietal area (Average on 175 epochs)

Figure 10. Temporal evolution of the number of saddle patterns from
Subject 5 (S05) for the frequency delta range and non-control words
(“not-dog”) in the parietal zone. The graph represents an average number
of patterns with respect to all trials of this group. Red curve (left plot)
shows the number of patterns averaged across 175 epochs in 5-ms
time-bins. In the box plot (right), the black curve interpolates between the
average number of patterns at each 500-ms interval.
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Figure 11. Distribution of the percentage increase of points across all
subjects for three event intervals: before picture onset/visual stimulus
(baseline), during visual stimulus but before naming (poststim), and during
naming (denom).

Np(ti) be the number of saddles at time ti in the parietal zone (Figure 10,
panel C, red curve). Consider an average number of patterns with respect
to three neighboring time points:

N̂p(ti) = (Np(ti−1) +Np(ti) +Np(ti+1))/3.

For the Heaviside function H(x), defined by the conditions H(x) = 1 for
x > 0 and H(x) = 0 for x ≤ 0, we have

H
(
N̂p(ti)− N̂p(ti−1)

)
= 1

if N̂p(ti) > N̂p(ti−1), that is, if the function N̂p(ti) is increasing at this time
point. Then the sum

Sp =
1

n

n∑
i=1

H
(
N̂p(ti)− N̂p(ti−1)

)
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gives the proportion of time points where the function N̂p(ti) is increasing. 370

Figure 11 presents violin plots showing the distribution across subjects 371

of the percentage of increases for three event intervals: before picture 372

presentation/visual stimulus (baseline), during visual stimulus but before 373

naming, and during naming. The relatively small values for the first 374

histogram correspond to the decrease in the number of patterns. 375

The second event interval (before naming) is characterized by a weak 376

increase (or plateau) of the number of patterns which further decreases, 377

likely due to anticipating vocal articulation. This behavior can be observed 378

in the individual curves for all subjects (e.g., Figure 10) but not for group 379

averages (Figure 11) due to the weakness of the effect. 380

S15, Saddle pattern, Alpha waves, parietal area (Average on 194 epochs)

NS NS

NS

NS

S15, Saddle pattern, Beta waves, parietal area (Average on 194 epochs)

Figure 12. Temporal evolution of the number of saddle patterns in one
subject (S15) in the frequency alpha / beta band for the non-control word
group (“not-dog”) in the parietal zone. The graph represents an average
number of patterns with respect to all trials of this word group. Red curve
(left plot) shows the number of patterns averaged across 175 epochs in
5-ms time-bins. In the box plot (right), the black curve interpolates
between the average number of patterns at each 500-ms interval.

The number of patterns as a function of time across an epoch depends 381

on frequency range. Typical examples of such dependence for the alpha and 382

beta frequency bands are shown in Figure 12 for the same subject. The 383

number of patterns has a tendency to decrease towards halfway through 384

the epoch in the alpha band but a tendency to increase in the beta band. 385

This behavior is somewhat generalizable to other subjects. We will discuss 386

possible interpretations of these results in the next section. The results for 387

other frequency ranges and for phase patterns are not presented here for 388

brevity. All results presented in this section concern the group of words 389
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different from the control word “dog”. The results are similar for the other 390

group of words containing the repetition of the control word. 391

5 Discussion 392

5.1 Spatiotemporal dynamics 393

Brain micro-states and sources. One of the main advantages of EEG 394

data is its very high temporal resolution, which makes it possible to cap- 395

ture fast brain dynamics. The spatiotemporal dynamics in EEG data 396

can be characterized by time-dependent amplitude and phase changes. 397

These dynamics have been found useful in describing different brain states 398

(rest, cognitive tasks, motion) [19,20] or disorders (e.g., aphasia, epilepsy, 399

schizophrenia) [17,24]. 400

Brain micro-states are often defined as relatively stable (weakly changing) 401

distributions of electric potential observed during sufficiently long time 402

intervals (tens of millisecond) with rapid transitions between them [17]. 403

Several dominant micro-states can cover an essential part of dynamics 404

during observation time window. To simplify the analysis of micro-states, 405

they can be commonly characterized by the maximum and minimum of the 406

potential distribution (e.g., direction of the interval connecting them) [16,34] 407

or by the time trajectory of its maximum [27]. 408

Time sequences of micro-states give a rather complete representation 409

of spatiotemporal dynamics, though they do not seem to capture some 410

dynamic effects, such as travelling waves (plane, rotating), or some specific 411

types of dynamics (sources, sinks, saddles). Properties of brain micro-states 412

are related to the underlying brain sources. From the biological point of 413

view, brain sources are determined by cation flux from the intracellular 414

space to the extracellular space, and brain sinks to the inverse flux [35]. 415

Assumption that the brain is electrically neutral implies that sources and 416

sinks have the same intensity. In simplified models, they are considered 417

pairwise and close to each other (dipole). However, positive and negative 418

poles of the dipole can be distant [35]. The distribution of electric potential 419

at the surface is determined by the dipole position and orientation. The 420

maximum and the minimum of the potential distribution do not necessarily 421

correspond to the dipole location. 422

Identification of brain sources for each micro-state and their comparison 423

with fMRI images allow the determination of the corresponding anatomic 424

structures and to associate micro-states to brain functions [18–20]. The 425

inverse problem of source identification has multiple solutions. The choice 426

between them is to some extent arbitrary and can be determined by some 427

additional factors (fMRI, anatomical structures). Thus, spatiotemporal 428

dynamics of EEG data characterized by brain micro-states are determined 429

by the change of brain sources, but the underlying regimes (patterns) are not 430

yet identified. We consider in this work some of these regimes determined 431

by phases and frequencies of brain sources. 432

Regimes determined by phases and frequencies of brain sources. 433

Since spatiotemporal dynamics in EEG data is complex and depends on 434

many factors, one needs to first identify some basic spatiotemporal regimes. 435

We have shown here that the phase and frequency of the signal, for a given 436

EEG signal frequency band (e.g. alpha) give rise to certain regimes in the 437
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spatiotemporal dynamics induced by brain sources and their interactions. 438

For the case of single positive and negative poles (source and sink), only 439

standing waves are possible. We have observed this regime for different 440

frequency bands, but it is more difficult to identify in a broad frequency 441

band such as 2–40 Hz, due to the superposition of different frequency 442

components in the signal. 443

The assumption of the electric neutrality of the brain implies that phase 444

and frequency of the sources are the same if there are only two sources. In 445

the case of three sources, this is not necessarily the case. We have three 446

additional basic spatiotemporal regimes on top of standing waves. 447

If frequency and phase are the same for all three sources, like with two 448

sources, the corresponding regime is a standing wave. However, if there 449

are different phases and/or frequencies, the corresponding dynamics will be 450

represented by a combination of standing and moving waves. These regimes 451

are related to tACS modelling [36], and we have shown that simulation of 452

electrical potentials under tACS stimulation (Supplementary Materials, B) 453

also have dynamics that follow these regimes. 454

In the case of three sources with different phases and the same frequency 455

(with constraints imposed but electric neutrality), we observe out-of-phase 456

waves with periodically changing phases. If the frequencies are different, 457

these are modulated waves with a periodically changing amplitude. 458

Micro-states and waves in basic regimes. These basic regimes also 459

have characteristic micro-states. Standing waves have two micro-states 460

(Figure 2 in Section 2) with periodic transitions between them (and time- 461

dependent amplitude). In our simulated out-of-phase waves, there are three 462

microstates (not shown). Each micro-state slowly varies with the position 463

of the maximum of the potential distribution gradually changing. These 464

maxima jump to distance locations during transitions between micro-states. 465

Similar micro-states are observed for generated data in the case of 466

different frequencies. However, one important difference is that the rotation 467

changes directions every half a period. 468

There are two types of moving waves in basic regimes. The first one 469

is determined by slow variations in basic states. It can be observed as a 470

motion of the maximum of the potential distribution (trajectory of the 471

yellow dots in Figure 3). 472

The second type of moving waves is related to the transition between 473

micro-states since it is not instantaneous. The combination of both wave 474

types can produce the rotating waves as can be seen in Figure 3, from 475

simulated data. We have observed similar regimes in resting-state EEG 476

data from human subjects (not shown) (see [20]). 477

It is important to indicate that in the model considered here, oscillations 478

in the EEG data are measurements of internal brain sources on the outer 479

surface (cortex) and not direct measurements of the neuronal electric activity 480

in the cortex. As indirect justification of this hypothesis, we note that 481

these waves (speed, direction) are not apparently influenced by sulci and 482

gyri, which would be the case if they propagate along the cortex. Moreover, 483

their speed is of the order of meters per second, while the speed of electric 484

impulses in unmyelinated axons in the cortex grey matter is about ten times 485

less. Therefore, if these waves appear only as projection of brain sources, 486

they may not function for the synchronization of distant brain areas but 487

indicate synchronization of distant brain sources. 488
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5.2 Optical flow patterns 489

Location and number of patterns. The three regimes discussed above 490

(standing waves, out-of-phase waves, and modulated waves) are observed in 491

the analytical solution (Supplementary Materials, C), in simulated data, 492

and in real EEG data. Analyzing the properties of optical flow patterns 493

for the theoretical solution, we can expect that similar properties hold for 494

both generated data and real EEG data, since spatiotemporal regimes for 495

them are similar. 496

Analysis of optical flow patterns for standing waves shows that sources 497

and sinks alternate in occupying the same locations and that this location 498

does not depend on time. Moreover, saddles are located between sinks and 499

sources, with their frequency approximately equal to the total frequency of 500

sources and sinks. All these properties are confirmed for the simulated and 501

EEG data, as well as for all three regimes. 502

Another conclusion from the theoretical analysis is that complex patterns 503

and travelling plane waves are mutually exclusive. This result corroborates 504

with previous reports [29,30]. Verification of this in EEG data is beyond 505

the scope of this work. 506

Spatiotemporal patterns and word naming. We have determined 507

some correlations in the picture-naming task and the number of observable 508

spatiotemporal patterns. The most stable behavior across subjects was 509

observed in the delta range; in this range, the number of patterns decreases 510

in the beginning of the epoch. Such a decrease can also be observed in 511

the alpha range, but inter-subject variation is greater. In contrast, the 512

number of patterns in the beta range has the tendency to increase towards 513

the middle of epoch. 514

The number of patterns decreases in the delta range, and this decrease 515

begins before picture presentation (Figure 10). Therefore, we can conjecture 516

that the number of patterns might indicate the effect of anticipation known 517

for delta rhythms (see [37], page 52 and the references therein). If this antic- 518

ipation down-regulates activity of some brain sources, then it can manifest 519

as a decrease in the number of patterns. Similarly, the second (smaller) 520

decrease is observed at vocalization onset during naming, possibly during 521

anticipating word pronunciation. Alpha rhythms have been implicated in 522

inhibition ( [37], pages 46-47) and could be acting on brain sources, leading 523

to the decrease of the number of patterns (Figures in 12). Furthermore, 524

it is known that alpha and gamma rhythms can be complementary ( [37], 525

page 47). We observe a possible complementary interaction between alpha 526

and beta rhythms (Figures in 12). Finally, there is a possible correlation 527

between theta-rhythm amplitude and delta-rhythm phase with the number 528

of patterns for some subjects (not shown). 529

Let us also note that picture recognition is accompanied by a larger 530

ERP amplitude. However, as suggested from our theoretical analysis here, 531

the amplitude of oscillations alone does not influence the number of optical 532

flow patterns. Therefore, activation and/or inhibition between brain sources 533

during cognitive activity is very likely a driving force in spatiotemporal 534

dynamics, which determines these patterns. Changes to the phase and 535

frequency of oscillations from different sources can influence the number 536

and dynamics of patterns, as is seen for the three main regimes, and can 537

arguably be a means to influence communication between sources with 538

possible observable functional behavioral changes. 539
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Appendix A EEG data acquisition and treat- 702

ment 703

A.1 Data collection 704

Sixteen native French-speaking men aged 18–70 years participated in the 705

Picture Naming Task study. Inclusion criteria were normal (or corrected to 706

normal) vision and hearing, and right-handedness as assessed by a handed- 707

ness questionnaire [38]. Exclusion criteria were any history of neurological 708

or psychiatric disorders, drug addiction, or head trauma. Pictures for the 709

task were taken from the Snodgrass & Vanderwart black-and-white line 710

drawing corpus [39]. Pictures were shown on a screen. The subject’s voice 711

was recorded and synchronized with EEG (96 EEG channels with sam- 712

pling frequency 1 kHz). The study was approved by the Research Ethics 713

Committee CER Grenoble Alpes (Avis-2020-09-01-3). 714

A.2 Data preprocessing and analysis 715

The raw signal from the 96 channels for all 270 trials were first epoched with 716

duration 5.5 seconds (2 seconds pre- and 3.5 seconds post-visual stimulation 717

onset), and baseline corrected ([-1s, 0s]). Bad epochs were removed (e.g. eye 718

blinks, eye or head movements), and the remaining epochs were band-pass 719

filtered at 0.1–40Hz. 720

The preprocessed EEG signals with three-dimensional sensor coordinates 721

were then projected onto a two-dimensional scalp plane for selected time 722

points. Values between electrodes were interpolated using biharmonic 723

splines [40], resulting in a 67 × 67 grid. Topographical scalp maps were 724

created in this way from the signal from the 96 channels for all 5500 samples. 725

A.3 Pattern extraction pipeline 726

To identify the (2D) pattern types: saddle, spiral-in, spiral-out, sink and 727

source, critical points in the vector fields derived from the EEG signals 728

were identified. Vector fields were obtained by computing the optical flow 729

from the analytical phase or amplitude, which were extracted from the 730

pre-processed EEG signals using the Hilbert transform (planar projection 731

in a grid). 732

The detected patterns are then analyzed via different techniques taking 733

in consideration multiple characteristics such as frequency, spatial area, and 734

observation period. 735

The pattern extraction pipeline can be summarized as follows: 736

1. Signal time-frequency analysis: extract phase and power of signals 737

using the Hilbert transform. 738

The Hilbert transform [41] extracts the instantaneous phase and 739

amplitude from these four frequency bands of the preprocessed EEG 740

data: delta (1–4Hz), theta (4–8Hz), alpha (8–13Hz), and beta 741

(13–30Hz). 742

2. 2D projection: 2D projection of the signal on the scalp for each 743

time frame. 744

The spatial distribution of the power of the EEG signal is visualized by 745

planar projection of electrode position coordinates on the scalp. These 746
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topographic maps were smoothed with biharmonic spline interpolation 747

[40]. 2. 748

3. Optical-flow analysis: identification of the dynamics of the signal 749

by calculation of vector fields (between two time points) with the 750

Horn-Schunck method [43]. 751

4. Pattern identification: Identify patterns in the vector fields (e.g. 752

sinks, sources). 753

NeuroPatt [29] was used to identify patterns on the preprocessed EEG 754

data. 755

This resulted in 270× 5500 = 1.485M projections (topographic maps). 756

Appendix B EEG data simulation with SimNIBS757

SimNIBS [44] was used to generate synthetic EEG data using a realistic 758

head model. Three different 3-electrode tDCS stimulations were simulated, 759

and the generated signals combined with time-dependent weights in order 760

to simulate tACS [32]. 761

B.1 Simulation of tDCS 762

The example head model [45] and the default electrode positions were used. 763

The three setups differed by input currents, as listed in Table S1. The 764

location of the stimulation electrodes were the same for all simulations 765

(AFz, POz, C5). 766

Table S1. The input current at the three stimulation electrodes for the
three tDCS stimulations. i0 = 500µA

Anode at AFz Anode at POz Anode at C5
iAFz 2i0 −i0 −i0
iPOz −i0 2i0 −i0
iC5 −i0 −i0 2i0

Voltage VAFz(x) VPOz(x) VC5(x)

The current i0 = 500µA is a quarter of the maximum stimulation 767

intensity considered safe [46]. Each simulation results in an exogenous 768

electric field where the voltage at each point x, Velec(x) is computed at 769

approximately 250000 points x of the SimNBS head-mesh grid, identified 770

by their 3D coordinates inside the “brain”. Figure S1 shows the results of 771

the tDCS simulation with anode over POz. 772

B.2 Simulation of tACS 773

The results of simulated tDCS stimulations were then combined into simu- 774

lations of tACS. Additional care has to be made because the stimulations 775

are out of phase. 776

2For a brief introduction of projection problems and of the different interpolation
methods that have been used with EEG data (spline surfaces, 2D projection), see [42]:
https://www.egi.com/images/kb/SplineInterpolation.pdf
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Figure S1. One simulation of tDCS with positions of electrodes in 3D.

The input stimulation currents were denoted by:

iAFz(t) = fAFz(t)i0, (Eq. S1)

iPOz(t) = fPOz(t)i0, (Eq. S2)

iC5(t) = fC5(t)i0, (Eq. S3)

such that

fAFz(t) + fPOz(t) + fC5(t) = 0 (Eq. S4)

for all times t. Kirchhoff’s Current Law (Eq. S4) is a necessary condition 777

for physical or simulated stimulation [33], and is analogous to (Eq. S9). 778

The tDCS simulations were assigned normalized weights (α(t), β(t), γ(t)),

such that the point

fAFz(t)
fPOz(t)
fC5(t)

 is the barycentre of the points

eAFz =

 2
−1
−1

 , ePOz =

−1
2
−1

 , eC5 =

−1
−1
2


with these weights. This condition is equivalent to the system: 779

fAFz(t)
fPOz(t)
fC5(t)

 = α(t)

 2
−1
−1

+ β(t)

−1
2
−1

+ γ(t)

−1
−1
2


α(t) + β(t) + γ(t) = 1.

(Eq. S5)

Note that the system (Eq. S5) has a unique solution since all four points 780

belong to the same 2D plane (Eq. S4) of admissible current intensities, and 781

the three points eAFz, ePOz, eC5 are not on the same affine line. 782

The system (Eq. S5) can be solved using linear algebra. The formulae 783

for the weights (α(t), β(t), γ(t)) are the following: 784

α(t) =
fAFz(t) + 1

3
,

β(t) =
fPOz(t) + 1

3
,

γ(t) =
fCP5(t) + 1

3
.

(Eq. S6)
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One can check that these values satisfy both equations of the system 785

(Eq. S5) provided that the input functions satisfy (Eq. S4). 786

The solution of (Eq. S5) can be applied to the results of three tDCS
simulations in order to simulate tACS. Indeed, the tDCS was simulated
with the input currents equal eAFzi0, ePOzi0 and eC5i0. By (Eq. S5) and
the assumption of linearity, the (exogenous) voltage generated by the tACS
stimulation equals:

VtACS(t,x) = α(t)VAFz(x) + β(t)VPOz(x) + γ(t)VC5(x)

=
fAFz(t) + 1

3
VAFz(x) +

fPOz(t) + 1

3
VPOz(x) +

fC5(t) + 1

3
VC5(x)

The above procedure allows computing the simulated voltages for tACS 787

simulation for any input currents determined by the functions felec(t). It 788

was applied to simulate the following types of tACS (see Subsection 2.1). 789

(a) the currents at AFz an POz are equal, and their frequency equals 790

f1 = 9Hz; 791

(b) the phase of the electrode POz is posterior to AFz by ϕ2 = 138◦; 792

(c) the frequency of POz equals f2 = 10Hz. 793

Table S2 contains the formulas being used. The intensity at C5 (return 794

electrode) was adjusted in order to satisfy (Eq. S4).

Table S2. The three tACS stimulations.

a) Same phase b) Different phases (c) Different frequencies
fAFz(t) sin(2πf1t) sin(2πf1t+ ϕ2) sin(2πf1t)
fPOz(t) sin(2πf1t) sin(2πf1t) sin(2πf2t)

795

B.3 Restriction to the EEG electrodes 796

The algorithm above always allows computing the voltages at all points 797

of the grid. Extracting the voltages at a small number of electrodes on 798

the scalp surface is necessary in order to create a dataset with parameters 799

comparable to experimental EEG data. 800

Coordinates of 30 electrodes were chosen from the list of 76 items 801

provided with the example dataset [45]. Their coordinates (3D) were used 802

for estimating the tACS voltages (by using the voltage at the closest point 803

of the grid as an estimation of the voltage at an electrode). 804

Appendix C Analytical solution 805

C.1 Model of brain sources and approximate solution 806

Consider a 3D domain Ω representing human brain with its surface corre- 807

sponding to the brain cortex. The distribution of electric potential in this 808

domain can be described by the Poisson equation: 809

D∆u = f(x, t) (Eq. S7)
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where the source f(x, t) depends on time. Therefore, solution u(x, t) of 810

this equation also depends on time as parameter. If we consider no-flux 811

boundary condition at the boundary, 812

∂u

∂ν
|Ω = 0, (Eq. S8)

where ν is the outer normal derivative vector, then problem (Eq. S7)-(Eq. 813

S8) has a solution if and only if 814∫
Ω

f(x, t)dx = 0. (Eq. S9)

It is a classical solvability condition of elliptic boundary value problems, and 815

it is conventionally used in neuroscience in electric brain stimulation [36]. 816

Consider point-wise sources represented by δ-function with time-periodic
amplitude taken, for certainty, as sin(kt). In the case of two sources located

at points x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 ), i = 1, 2, condition (Eq. S9) implies that

they have opposite phase:

f(x, t) = δ(x− x(1)) sin(kt) + δ(x− x(2)) sin(kt+ π).

Then solution u(x, t) of problem (Eq. S7)-(Eq. S9) can be written as 817

follows: 818

u(x, t) = G1(x) sin(kt) +G2(x) sin(kt+ π), (Eq. S10)

where Gi(x), i = 1, 2 are the corresponding Green’s functions. If the sources
are sufficiently far from the boundary of the domain, then the functions
Gi(x) can be approximated by Green’s function in the whole space:

Gi(x) = − 1

4π|x− x(i)|
, i = 1, 2.

This solution can be easily generalized for any number of sources. 819

Figure S2. Cross-section of the domain Ω with three EEG sources and
the boundary of the domain a straight line above them.

We will study dynamics of solutions of problem (Eq. S7), (Eq. S8) in 820

the case of three point-wise sources: 821

f(x, t) = a1δ(x−x(1)) sin(k1t+ϕ1)+a2δ(x−x(2)) sin(k2t+ϕ2)− (Eq. S11)

δ(x− x(3))(a1 sin(k1t+ ϕ1) + a2 sin(k2t+ ϕ2)).
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Let us note that function f(x, t) is written here in such form that condition 822

(Eq. S9) is satisfied for any values of a1, a2, k1, k2 and source locations 823

x(i), i = 1, 2, 3. Replacing Green’s functions in the bounded domain by 824

the corresponding Green’s functions in the whole space, we approximate 825

solution of problem (Eq. S7), (Eq. S8) by the following function: 826

u(x, t) = −a1 sin(k1t+ ϕ1)

4π|x− x(1)|
−a2 sin(k2t+ ϕ2)

4π|x− x(2)|
+
a1 sin(k1t+ ϕ1) + a2 sin(k2t+ ϕ2)

4π|x− x(3)|
.

(Eq. S12)
In order to more easily assess the properties of this solution, consider the 827

plane passing through the points x(i), i = 1, 2, 3 and suppose, for simplicity 828

of presentation, that the intersection of this plane with the boundary of the 829

domain Ω is a straight line (Figure S2). Thus, we consider a cross-section 830

of the 3D domain by a plane and introduce 2D coordinates (ξ, η) with the 831

coordinates (ξi, ηi) of the sources and distances hi from the sources to the 832

boundary. Then solution (Eq. S12) can be written as follows: 833

Figure S3. Solution (Eq. S13) in the case of equal frequencies and phases
as a function of space variable for different moments of time (left). The
same solution as a function of time at different space points (right). The
values of parameters: k1 = k2 = 1, a1 = a2 = a3 = −4π, h1 = h2 = h3 =
1, ξ1 = 1, ξ2 = 2, ξ3 = 3, ϕ1 = ϕ2 = 0. Left: consecutive moments of time:
t1 = 0(blue), t2 = 2(green), t3 = 3(orange). Right: time dependence at
different space points:
ξ = 2.6(red), ξ = 1.8(green), ξ = 1.5(blue), ξ = 1(violet).

u(ξ, t) = − a1 sin(k1t+ ϕ1)

4π
√
(ξ − ξ1)2 + h2

1

− a2 sin(k2t+ ϕ2)

4π
√
(ξ − ξ2)2 + h2

2

+
a1 sin(k1t+ ϕ1) + a2 sin(k2t+ ϕ2)

4π
√
(ξ − ξ3)2 + h2

3

.

(Eq. S13)
Here ξ is the coordinate of the point at the boundary of the domain. 834

C.2 Standing waves and out-of-phase dynamics 835

We consider dynamics of solution (Eq. S13) in the following cases: equal 836

frequencies and phases, equal frequencies and different phases, different 837

frequencies and equal phases, different frequencies and phases. In the first 838

case, for k1 = k2 and ϕ1 = ϕ2, this solution describes standing waves 839

(Figure S3). Potential distribution in space for a fixed moment of time is 840

positive in one half-axis and negative in the other one. They oscillate in time 841

alternating positive and negative values, but the boundary between them 842

where u(x, t) = 0 does not depend on time. Furthermore, the maximum and 843

the minimums of the solution can have only two possible space locations 844
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periodically jumping between them. These fixed position of the maximum 845

during half-period and jumps to another fixed position are specific for 846

standing waves. 847

If we fix the space point and consider the solution as a function of time 848

(Figure S3, right), we observe a periodic function with a constant amplitude. 849

By analogy with EEG data, such functions can be interpreted as signals 850

registered with different electrodes. Different space points correspond to 851

different electrodes. There is precise synchronization of these signals, they 852

all vanish at the same moments of time. 853

Figure S4. Solution (Eq. S13) in the case of equal frequencies and
different phases as a function of space variable for different moments of
time (left). The same solution as a function of time at different space
points (right). The values of parameters: k1 = k2 = 1, a1 = a2 = a3 =
−4π, h1 = h2 = h3 = 1, ξ1 = 1, ξ2 = 2, ξ3 = 3, ϕ1 = 0, ϕ2 = 1.3π/3. Left:
consecutive moments of time: t1 = 0(blue), t2 = 2(green), t3 = 3(orange).
Right: time dependence at different space points:
ξ = 3.1(red), ξ = 2.2(blue), ξ = 1.8(green), ξ = 1(violet).

In the case of different phases and equal frequencies, the main dynamics 854

of solution resemble standing wave, but the zero of solution is now time- 855

dependent and it can be non-unique (Figure S4, left). Time dependence of 856

solution at different space points are shifted in phase (Figure S4, right). The 857

amplitudes of these signals remain constant in time. To fix the terminology, 858

we call such solutions out-of-phase standing waves. 859

Figure S5. Solution (Eq. S13) in the case of different frequencies and
equal phases as a function of time at different space points. The values of
parameters: k1 = 1, k2 = 1.05, a1 = a2 = a3 = −4π, h1 = h2 = h3 = 1, ξ1 =
1, ξ2 = 2, ξ3 = 3, ϕ1 = ϕ2 = 0, time dependence at different space points:
ξ = 3.1(red), ξ = 2.2(blue), ξ = 1.8(green), ξ = 1(violet).

If the phases are equal but the frequencies are different, we obtain 860

modulated standing waves (Figure S5). The amplitude of signals changes 861
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periodically in time, while their phases are basically the same except for 862

some transition zones. Such modulated signals arise due to addition of two 863

periodic functions with different frequencies. For example, sin(k1t)+sin(k2t) 864

gives a high frequency oscillation corresponding to (k1 + k2)/2 and low 865

frequency modulation corresponding (k1 − k2)/2, assuming that k1, k2 > 0. 866

Figure S6. Solution (Eq. S13) in the case of different frequencies and
phases as a function of space variable for different moments of time (left).
The same solution as a function of time at different space points (right).
The values of parameters: k1 = 1, k2 = 1.05, a1 = a2 = a3 = −4π, h1 =
h2 = h3 = 1, ξ1 = 1, ξ2 = 2, ξ3 = 3, ϕ1 = 0, ϕ2 = 1.3π/3. Left: consecutive
moments of time: t1 = 0(blue), t2 = 2(green), t3 = 3(orange). Right: time
dependence at different space points:
ξ = 3.1(red), ξ = 2.2(blue), ξ = 1.8(green), ξ = 1(violet).

Let us finally consider the case of different frequencies and phases. In 867

this case we obtain out-of-phase modulated waves (Figure S6) with time- 868

dependent amplitude and shifted phase. Let us note that the maximum of 869

solution sometimes moves in space as a function of time (Figure S6, left). 870

From this point of view, we can characterize this solution as a combination 871

of standing waves and travelling waves, though neither of them exactly 872

corresponds to the strict definition of such waves. 873

Appendix D Optical flow patterns for stand- 874

ing and travelling waves 875

The flow field in the optical flow method is described by the following 876

system of equations: 877

α2∆u− Ix(Ixu+ Iyv + It) = 0, (Eq. S14)
878

α2∆v − Iy(Ixu+ Iyv + It) = 0, (Eq. S15)

where I(x, y, t) is a given function which determines the flow field, the 879

subscripts denote its partial derivatives, α is a regularization constant. We 880

will present here some model examples illustrating the properties of the 881

flow field depending on the function I. 882

Linear function. Consider a linear function 883

I(x, y, t) = I(x0, y0, t0) + a(x− x0) + b(y − y0) + c(t− t0). (Eq. S16)

We look for the solution of system (Eq. S14), (Eq. S15) in the form u = u0, 884

v = ku0. If b ̸= 0, then k = −(au0 + c)/(bu0). A similar expression can be 885

obtained if a ̸= 0. Hence, linear function I gives a constant vector field. 886
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Strictly speaking, solving system (Eq. S14), (Eq. S15) in a bounded 887

domain, we need to specify the boundary conditions. Since we are interested 888

in local behavior of solution, we can choose boundary conditions in such a 889

way that constructed solution satisfies them. If the function I is nonlinear, 890

we can consider function (Eq. S16) as its linear approximation. The 891

corresponding vector field is constant in the first approximation. Though it 892

is not unique (up to a choice of u0 ̸= 0), it does not contain singular points. 893

An interesting particular example of function (Eq. S16) corresponds to
linearization of travelling wave:

I(x, y, t) = a(x− ct)

(propagating in the x-direction). In this case, u = c, v = 1, that is, 894

horizontal component of the flow field equals the wave speed c. As before, 895

there are no singular points of the flow field. 896

Quadratic function. Consider the function 897

I(x, y, t) = I0 + f(t)
(
a(x− x0)

2 + b(y − y0)
2
)
. (Eq. S17)

It can be considered as an approximation of a function around its extremum
where linear terms in x and y vanish. Next, consider a linear approximation
of the function f(t): f(t) = f(t0) + f ′(t0)(t − t0). We look for linear
functions

u = k1(x− x0) + k2(y − y0), v = k3(x− x0) + k4(y − y0)

satisfying the equality 898

f(t)(2a(x− x0)u+ 2b(y − y0)v) + f ′(t0)
(
a(x− x0)

2 + b(y − y0)
2
)
= 0.

(Eq. S18)
Then

k1 = k4 = −f ′(t0)

2f(t)
, k2 = bσ, k3 = −aσ,

where σ is an arbitrary real number which should be determined from the 899

boundary conditions. Thus, linear approximation of the flow field can be 900

determined up to one arbitrary constant. 901

Since u(x0, y0) = v(x0, y0) = 0, then it is a singular point of the flow
field. In order to determine its type, consider the matrix

J =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

( −f ′(t0)
f(t) bσ

−aσ −f ′(t0)
f(t)

)
.

We determine the determinant of this matrix and its eigenvalues:

det J = h2 + abσ2, λ12 = −h±
√
−abσ2 ,

where h = f ′(t0)
f(t) . Depending on parameters, the eigenvalues of the matrix 902

J can be as follows. 903

• If h > 0 and ab > 0, σ ̸= 0 then the eigenvalues have negative real 904

parts and nonzero imaginary parts. The corresponding singular point 905

is a stable focus. If ab = 0 or σ = 0, then it is a stable node with 906

equal eigenvalues. Uncertainty in the choice of σ can change focus 907

to node, but in both cases they are stable. The winding number (or 908

index of stationary point) equals 1. 909
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• If h < 0 and ab > 0, then the singular point is unstable focus or node. 910

The winding number equals 1. 911

• If ab < 0 and σ ̸= 0, then there are two different cases depending on 912

the sign of the inequality h2 ≷ |abσ2|. In the case of upper inequality, 913

both eigenvalues have the same sign, and the single point is stable or 914

unstable node. If the inequality is opposite, then the eigenvalues have 915

opposite signs, and the singular point is saddle. Since we expect to 916

have a saddle in the case of opposite signs of the constants a and b, 917

then |h| should be sufficiently small, that is, |f ′(t0)| is small enough. 918

If this is not the case, then the linear approximation does not give 919

correct result. The choice of σ does not change the type of the singular 920

point provided that condition on h is satisfied. 921

Let us note that Laplacians vanish on linear functions u and v. Therefore 922

we obtain an exact solution of equations (Eq. S14), (Eq. S15). 923

Travelling waves. Consider a particular form of quadratic function 924

I(x, y, t) = I0 + a(x− ct)2 + by2. (Eq. S19)

Then
u = c+ bσy, v = aσ(x− ct),

where σ is an arbitrary real number. If we suppose that the flow field at 925

the boundary does not depend on time, then σ = 0. Hence, u = c, v = 0, 926

and the flow field does not have singular points. 927

Intuitive considerations about the flow field. All examples considered 928

above can be summarized in the following way. Consider level lines of the 929

function I(x, y, t) on the plane (x, y) in two close moments of time, t = t0 930

and t = t1 (Figure S7). 931

Figure S7. Schematic representation of different time dynamics of the
function I(x, y, t) without singular points (left), with stable or unstable
nodes (middle), and with saddle (right).

If the second level line is obtained from the first one by translation 932

(winding number 0), then there are no singular points. If the second level 933

line is obtained by retraction and it is inside the first one (winding number 934

1), then it is a stable node or a stable focus. In the opposite case, it 935

is unstable node or focus (winding number 1). Finally, if it is partially 936

expanded and partially retracted, then it is saddle point (winding number 937

−1). Let us recall that winding numbers can be obtained here as signum of 938

the product of the eigenvalues. 939

We will use this empirical definition of singular points to characterize 940

some other types of functions for which explicit analytical solution cannot 941

be constructed. 942
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Standing waves. Consider the function 943

I(x, y, t) = f(t)
(
I0 − a(x− x0)

2 − b(y − y0)
2
)

(Eq. S20)

which can be considered as a model of standing wave. As before, we consider
a linear approximation of its time dependence

f(t) = f(t0) + f ′(t0)(t− t0)

and suppose that a, b > 0. According to the previous paragraph, consider
level lines of the function I(x, y, t) around its maximum at x = x0, y = y0
assuming for certainty that f(t0) = 1, f ′(t0) > 0. Then I(x0, y0, t0) = I0,
I(x0, y0, t1) = I1 > I0 if t1 > t0. Consider the level lines L0 and L1

determined, respectively, by the equations

I(x, y, t0) = h, I(x, y, t1) = h

for some h < I0. Both of them are circles, and L0 is located inside 944

L1. According to the considerations in the previous paragraph, (x0, y0) is 945

unstable node (source). 946

If h approaches L0, the ratio of circle radii increases and tends to infinity. 947

Therefore, we can expect that the corresponding flow velocity also tends to 948

infinity in the vicinity of the singular point. 949

Together with this geometrical approach consider equations (Eq. S14), 950

(Eq. S15) with α = 0. The flow field u, v should satisfy the equality 951

f(t)(−2a(x−x0)u−2b(y−y0)v)+f ′(t0)
(
I0 − a(x− x0)

2 − b(y − y0)
2
)
= 0.

(Eq. S21)
We set

u = −f ′(t0)

2f(t)

(
(x− x0)−

k1
2a(x− x0)

)
+ bσ(y − y0),

v = −f ′(t0)

2f(t)

(
(y − y0)−

k2
2b(y − y0)

)
− aσ(x− x0),

where σ is an arbitrary real number, k1, k2 are positive and such that 952

k1 + k2 = I0. In agreement with the geometrical considerations, the leading 953

order terms in the flow velocity determine unstable node and the flow 954

velocity tends to infinity at the singular point. This flow field satisfies 955

equations (Eq. S14), (Eq. S15) for α = 0. Small positive α provides 956

regularization of solution. 957
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