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Abstract 

Moderate levels of synchronization of neuronal oscillations are essential for healthy brain dynamics. 

Synchronization levels exhibit large inter-individual variability the origins of which are unknown. 

Neuronal systems have been postulated to operate near a critical transition point or in an extended regime 

between disorder (subcritical) and order (supercritical phase) characterized by moderate 

synchronization and emergent power-law long-range temporal correlations (LRTCs). We investigated 

whether inter-individual variability in synchronization levels is explained by the individual position 

along the critical regime by analyzing magnetoencephalography (MEG) and intra-cerebral stereo-

electroencephalography (SEEG) human resting-state data. Here we show that variability in 

synchronization levels exhibits a positive linear and quadratic relationships with LRTCs in healthy 

participants and brain areas. In the epileptogenic zone this correlation was negative. These results show 

that variability in synchronization levels is regulated by the individual position along an extended 

critical-like regime, with healthy brain areas tending to operate in its subcritical and epileptogenic areas 

in its supercritical side. 
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Introduction  

Brain activity is characterized by transient, long-range synchronized oscillations that play a fundamental 

role in regulating neuronal processing and communication across the brain (Fries, 2015; Hahn et al., 2019; 

Singer, 1999), which are essential to cognitive functions and behaviour (Fell & Axmacher, 2011; S. Palva & 

Palva, 2012, 2018; Schnitzler & Gross, 2005; Siegel et al., 2012; Thut et al., 2012). Healthy brain functioning 

can be achieved only at moderate levels of synchronization, while inadequate or excessive synchrony is 

characteristic to many brain disorders and associated with functional deficits (Ajramj et al., 2017; Bruining et 

al., 2020;  Pusil et al., 2019; Uhlhaas et al., 2006; Hirvonen et al., 2018) . Even among healthy subjects, however, 

there is a considerable variability in the mean levels of synchronization in large-scale brain networks (J. M. 

Palva et al., 2013; Smit et al., 2011; Wiesman et al., 2022). The factors underlying this variability and regulating 

synchronization levels are not well known. 

The framework of brain criticality offers a putative explanation for this. The ‘critical brain’ hypothesis 

posits that neuronal systems operate at the critical point of a transition between disordered and ordered 

(subcritical and supercritical) phases, or between attenuating and amplifying activity propagation, respectively 

(Chialvo, 2010; Cocchi et al., 2017; Haldeman & Beggs, 2005; Levina et al., 2014; Plenz & Thiagarajan, 2007). 

Operating at such a critical point gives rise to emergent power-law spatio-temporal correlations, 

intermediate mean levels of large-scale synchronization with large variance, and a range of functional benefits. 

At the experimental level, these can be indexed as power-law long-range temporal correlations (LRTCs) in 

fluctuations of local amplitudes (Linkenkaer-Hansen et al., 2001; J. M. Palva et al., 2013; Poil et al., 2012; Smit 

et al., 2011; Zhigalov et al., 2015) and power-law scaling of inter-areal ‘avalanche’ events (Beggs et al., 2007; 

Friedman et al., 2012; Haldeman & Beggs, 2005; Shew et al., 2011; Yang et al., 2012; Zhigalov et al., 2015), 

which together suggest that neuronal oscillations in vivo in humans and animal models indeed express critical-

like dynamics. Theoretical work suggests that inter-areal synchronization, as a form of an emergent correlation, 

should also be dependent on criticality. Indirect support for this comes from results showing that the architecture 

of synchronization is indeed co-localized with that of LRTCs and avalanches (Zhigalov et al., 2017). Yet, despite 

the extensive work both on the synchronization and the power-law scaling of neuronal activity, there is little 

empirical evidence linking the actual strength of large-scale oscillatory synchronization with individual critical 

dynamics in the human brain.  
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LRTCs in oscillations amplitudes exhibit large variability across individuals, regions, and brain states 

implying that there may be a diversity of individual operating points, i.e., the positions of operation along the 

sub- to supercritical continuum around criticality (Linkenkaer-Hansen et al., 2001; Nikulin & Brismar, 2004; J. 

M. Palva et al., 2013; Smit et al., 2011; Zhigalov et al., 2015; 2017). Moreover, extending the original brain 

criticality hypothesis, recent theoretical studies suggest that human brains may not operate at a single critical 

point, but rather in an extended regime of critical-like dynamics known as the Griffiths phase (Moretti & Muñoz, 

2013; Ódor & de Simoni, 2021). While there is yet little experimental support for this notion, it is in line with 

findings showing that different brain systems exhibit partially independent operating points (Zhigalov et al., 

2017). 

We hypothesized that individual variability in the operating point(s) of the functional brain systems in the 

critical regime would predict the individual variability in the synchronization levels and LRTCs. Brains have 

been predicted to operate very slightly subcritically to a critical point (Priesemann et al., 2014; Toker et al., 

2022). We postulate here that rather than operating near a critical point, healthy brains operate on the subcritical 

side of an extended critical regime characterized with a diversity of individual operating points. Such an 

operating regime would yield the functional benefits of criticality and prevent the risks that excursions to the 

supercritical side would entail, i.e., runaway surges of excessive synchrony that characterize, e.g., epilepsy 

(Meisel et al., 2015; Monto et al., 2007). 

 If this were the case, the individual levels of inter-areal oscillatory synchronization would be positively 

correlated with LRTCs both across individuals and brain areas. We tested this hypothesis analyzing resting-state 

brain activity recordings of healthy subjects with non-invasive magnetoencephalography (MEG) and of subjects 

with drug-resistant epilepsy with intracranial stereo-electroencephalography (SEEG; Figure 1A). We then 

assessed the presence of LRTCs in the amplitude fluctuations using Detrended Fluctuation Analysis (DFA), 

which estimates the power-law scaling exponent of scale-free signals (Linkenkaer-Hansen et al., 2001). We 

calculated whole-brain pairwise inter-areal synchronization connectomes and derived cortical and individual 

measures of phase synchronization (Figure 1B). We then estimated whether synchronization at the whole-brain 

scale, and at the cortical region level, was correlated with the strength of LRCTs across individuals. We 

compared the results with modelling predictions to establish the position of individual brain dynamics in the 

critical regime.    

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.517800doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.24.517800


 

 

5 

Results 

Kuramoto model  

We first used computational modelling to assess how the correlations of large-scale synchronization and 

LRCTs are determined by the operating point in the critical regime. We modelled local and large-scale neuronal 

oscillatory dynamics with a nested variant (Siebenhühner et al., 2020) of the Kuramoto model (Simola et al., 

2022) with 100 regions containing 500 oscillators each. In this model coupling parameters K and L control the 

intra- and inter-regional, respectively, coupling strengths. The structural connectivity in local (nodal) networks 

is homogenous while the pairwise connectivity strengths between all cortical regions was based on white-matter 

axonal fiber counts estimated with structural diffusion tensor imaging (DTI). The model yielded synchronization 

dynamics both at local and large-scale network levels, which are directly comparable with the empirically 

observable time-series for each cortical parcel and their inter-areal interactions.  

By increasing the within-node coupling, K, inter-areal synchronization estimated with the phase-locking 

value increased monotonically from low levels in the subcritical phase to near-perfect synchronization in the 

supercritical phase, while the DFA scaling exponents peaked around the phase transition, i.e., in the critical 

regime, and fell off sharply to the left and right (Figure 1C). Therefore, DFA exponents were correlated 

positively with synchronization in the subcritical slope of the critical regime and negatively in the supercritical 

slope (Figure 1D). The control parameter K here is conceptually comparable with excitation-inhibition ratio 

(E/I), or “neuronal gain”, which in other models comprise the functional net effects of inhibitory and excitatory 

synaptic, cellular, biophysical, and microcircuit mechanisms at the nodal level (Deco & Kringelbach, 2017). 

Prior research has repeatedly shown that both large-scale synchronization and local LRTCs exhibit 

considerable systematic inter-individual variability (Nikulin & Brismar, 2005; J. M. Palva et al., 2013) that is 

trait-like and partly heritable (Leppäaho et al., 2019; Linkenkaer-Hansen et al., 2007). We posit here that this 

variability is driven by inter-individual differences in the operating point and positioning in the critical regime, 

i.e., in the physiological control parameters regulating brain criticality in vivo. The brains are thought to operate 

in the subcritical side of the critical point (Priesemann et al., 2014). This would give rise to inter-individual 

variability where both synchronization and LRCTs monotonically increase and have mainly a positive linear 

correlation (Figure 1D, top panel). If the population would operate around the critical point, correlation between 

synchronization and LRCTs should exhibit a quadratic correlation with an inverted-U shape (Figure 1D, middle 
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panel), indicated by a negative quadratic coefficient. In supercritical dynamics, possibly a characteristic of an 

epileptic state (Meisel, 2016; Meisel et al., 2015; Monto et al., 2007), the correlations between synchronization 

and LRTCs should again have a linear relationship, but with a negative slope (Figure 1D, bottom panel). 

 

Figure 1. Study schematics.  

A. Schematic of recording with magnetoencephalography (MEG) and stereo-encephalography (SEEG). MEG sensor data 

(top left) was source-reconstructed to recover resting brain activity from 400 cortical parcels grouped according to 

functional connectivity (FC) systems (bottom left). Intracranial SEEG electrodes close to cortical grey matter from non-

epileptic contacts were used and mapped to the same cortical parcellations as MEG (sample subject on top right, network 

contact coverage on bottom). B. MEG parcels and SEEG contact signals were filtered to obtain narrow-band amplitudes 

and phase time series (left) which were used to compute long-range temporal correlations (LRTCs) with Detrended 

Fluctuation Analysis (DFA; top right) and phase synchronization between brain areas. C. A computational Kuramoto model 

of critical synchronization dynamics visualizing the inter-dependence of synchronization and LRTCs measures shows that 

inter-areal synchronization increases monotonically with coupling (control parameter K), whereas LRTCs peak at the 

critical point. D. The relationship between synchronization and LRTCs increases linearly in the subcritical regime (top), 

quadratically around the critical point (middle), and decreases linearly in supercritical regime (bottom). E. Grand-average 

GS in MEG and SEEG data as a function of frequency. F. Same as in E. for DFA exponents. Shaded areas represent the 95% 

bootstrapped confidence intervals.  
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Group averages of synchronization and LRTCs.  

To assess oscillatory brain dynamics at the whole-brain level, we computed pairwise phase 

synchronization for all narrow-band frequencies between 400 cortical parcels (Schaefer et al., 2018) from 

source-reconstructed MEG data (192 sessions from 52 healthy participants) and between all non-epileptogenic 

contact-pairs of SEEG data (57 epileptic subjects, 1 session each). To estimate phase synchronization, we used 

the Phase Locking Value (PLV) for SEEG and the weighted Phase Lag Index (wPLI) (Vinck et al., 2011) for 

MEG source-data because PLV in MEG is inflated by artefactual zero-phase lagged synchronization (see 

Materials and Methods). Graph strength (GS) (Bullmore & Sporns, 2009), defined as the mean connectivity, 

was used to assess the individual level of global synchronization.  

In MEG (N = 192 sessions from 52 subjects), the grand-averaged GS peaked at the alpha frequency band 

(8–14 Hz), while in SEEG (N = 57 patients, 1 session each), GS peaked slightly lower at theta-alpha (5–10 Hz; 

Figure 1E) in line with previous studies showing a shift from alpha to theta in SEEG (Arnulfo et al., 2020; 

Siebenhühner et al., 2020; Wang, 2021). We next assessed the presence of LRTCs in the narrow-band oscillation 

amplitude envelopes by estimating the scaling exponent with DFA (Hardstone et al., 2012). We obtained 

individual mean values also for DFA exponents (mean DFA) by averaging across parcels for MEG and contacts 

for SEEG data for each session. In MEG, the group-averaged mean DFA showed a well-delineated alpha band 

peak as seen in GS above and a broader gamma band peak (50–100 Hz). In SEEG, group-averaged mean DFA 

peaked in the theta-alpha band (5–10 Hz) as well as in delta band (2–4 Hz) and exhibited a monotonic near-

linear increase in gamma frequencies (Figure 1F).  

 

Synchronization and LRTC exponents are positively correlated across individuals. 

To study whether interindividual variability could be explained by the brain criticality hypothesis, we 

investigated whether GS and DFA values would be correlated and co-vary across subjects. In MEG, the 

correlations between GS and mean DFA were significant in all frequencies above 4 Hz (Pearson correlation test, 

FDR-corrected, pFDR < 0.01 for 4–5 Hz and pFDR < 10-7 for the higher frequencies, reaching pFDR < 10-25 at 7 Hz; 

Figure 2A). In SEEG, the correlations between GS and mean DFA were weaker than in MEG in higher 

frequencies, but significant in theta-alpha (Pearson correlation test, 4–13 Hz, pFDR < 0.01 for 4 and 10 Hz) and 
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“ripple” high gamma (>165 Hz) bands (Pearson correlation test, pperm < 0.05, Figure 2B). We then also computed 

correlations between GS and DFA values also within the canonical frequency bands that had been confirmed 

using Louvain clustering (Supplementary Figure 1) and observed significant linear positive correlations in all 

frequencies in MEG and in theta (, 4−7 Hz), alpha (8−12 Hz) and beta (, 15−29 Hz) in SEEG (Supplementary 

Figure 2). We further confirmed that results did not depend on metrics using PLV GS for MEG and wPLI for 

SEEG (Supplementary Figure 3). As predicted by our modeling results, the positive correlations between GS 

and mean DFA indicate that brain dynamics operate on the subcritical side of a critical regime.  

 

  

Figure 2. Correlations between global synchronization GS and LRTCs.  

A. Correlation of individual set’s GS and mean DFA values (Pearson correlation test) for MEG data. Shading shows the 95% 

confidence intervals and gray areas the 2.5-97.5th percentiles of the surrogate coefficients distribution. The asterisks 

indicate pFDR < 0.01 after FDR correction; the black line at the top indicates pFDR < 10-7. B. Same as in A. but for SEEG. 

Significant p-values that do not survive FDR but are above the surrogate 97.5th percentile are marked by X. C. Partial 

quadratic correlations of GS and mean DFA (See Methods) for MEG data as in A; black line at the top is pFDR < 10-3; asterisks 

are pFDR < 0.01. D. Same as in C for SEEG. E. Scatterplot of GS and mean DFA values at 7 Hz with each dot representing a 

session. Solid lines represent linear (green) and quadratic (yellow) fits, with the faint dotted side lines showing the 95% 

prediction bounds. F. Same as in E. for SEEG. G.H. Same as in E. and F. for 10 Hz.   
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Our modeling results further implied that a system situated in the vicinity of the critical transition would 

be evidenced by quadratic correlations in addition to linear ones (see Figure 1D). We thus estimated also 

quadratic trends and their direction with partialed-out linear influences between GS and mean DFA, using the 

R2 regression statistic multiplied with the sign of the quadratic coefficient. At the critical point, the quadratic 

coefficient should be negative, denoting a peak, i.e., a concave curve with an inverted-U shape. Significant 

correlations with a negative quadratic coefficient between GS and mean DFA were indeed observed in MEG 

data in alpha (8–12 Hz, peak frequency at 10 Hz with pFDR < 10-6), beta (17–30 Hz) and high-gamma (>135 Hz; 

Figure 2C) bands. In SEEG data, on the other hand, there were no significant quadratic correlations between GS 

and mean DFA in any of the frequencies (Figure 2D). We then plotted the correlation of GS and mean DFA 

values across subjects for the frequencies with the highest correlations, observing predominantly linear 

relationships with an additional quadratic component in MEG (Figure 2E-H). Quadratic correlations between 

GS and DFA values were not found in the canonical frequency bands (Supplementary Figure 2), but were 

reproduced in MEG using PLV instead of wPLI (Supplementary Figure 3).   

As both synchronization and LRTCs have been shown to be trait-like phenomena, we further investigated 

whether their correlations would exhibit high retest reliability as required by a trait-like phenomenon. Using the 

Gauge Repeatability method (Burdick et al., 2005) we confirmed that both individual GS and DFA values 

(Supplementary Figure 4A-C) and their correlations (Supplementary Figure 4D-E) had significant retest 

reliability and capacity.  

 

Synchronization and LRTC exponents are correlated across brain regions.  

To get insight into the anatomy of these correlations, we estimated the correlation of synchronization and 

DFA exponents across subjects separately for each parcel by estimating a mean nodal synchronization using 

Node Strength (NS; with MEG parcels or SEEG contacts being the nodes) and its correlations with the DFA 

exponents of the node within the canonical frequency bands. In order to be able to compare results between 

MEG and SEEG, SEEG data were collapsed into the same atlas of 400 parcels (Schaefer et al., 2018) that was 

used for MEG. Positive linear correlations between NS and DFA exponents were significant in most frequencies 

but strongest in the alpha and gamma bands within all functional subsystems in MEG data (Figure 3A, 

Supplementary Figure 5A). In SEEG, significant positive linear correlations were observed in the delta and alpha 
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frequency bands, while negative correlations were present in low and high gamma bands, but again positive in 

ripple-high gamma frequencies (Figure 3B, Supplementary Figure 5B). In MEG, linear correlations were 

widespread throughout the cortex, highest in dorsal areas (Figure 3C). In SEEG, positive linear correlations in 

theta and alpha bands were strongest and lateral temporal and parietal regions belonging to the Default Mode 

(DM) network where most contacts were located, and also found in the prefrontal cortex (PFC, Figure 3D).  

 

 

 

Figure 3. Correlations of local synchronization NS and LRTC exponents.  

A. Correlation of NS and mean DFA values estimated for each parcel (Pearson correlation test) in MEG data for left and 

right hemisphere (LH and RH) averaged over canonical frequency bands. The blue line on the left shows the mean 

correlation across significant parcels for each band. B. Same as in A. for SEEG. C. Cortical topographies of the correlation 

between MEG NS and DFA for theta and alpha frequency bands. D. Same as in C. for SEEG. E-H. Same as above for partial 

quadratic correlation. Frequency bands: δ 2-4 Hz; θ 4-8 Hz; α 9-12 Hz; β 15-29 Hz; lγ 40-65 Hz; hγ 77-135 Hz; rγ 165-225 

Hz. Parcels networks: Vis: Visual; DA: Dorsal Attention; SM: Somatomotor; SV: Saliency/Ventral Attention; DMN: Default 

Mode Network; Lim: Limbic; FP: Frontoparietal/Control.  
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Negative quadratic correlations (again obtained after regressing out the linear trend) were observed from 

alpha to gamma bands in MEG (Figure 3E, Supplementary Figure 5C) and with lower power in the theta and 

alpha band in SEEG data (Figure 3F, Supplementary Figure 5D). Negative quadratic coefficients in MEG 

indicated that the quadratic trends were again all concave (opening down, peaking with a parabolic maximum) 

and hence indicated brain dynamics being located close to the critical point.  

In SEEG, quadratic correlations were characterized by both negative and positive coefficients, the latter 

especially in beta and gamma frequency bands. Negative quadratic correlations in MEG were widespread in 

frequencies above alpha, strongest in posterior regions in alpha and in somatomotor network in the beta band 

(Figure 3G). In SEEG, significant correlations were sparser, with a strong negative quadratic correlation in 

DMN parietal parcels in the theta band (Figure 3H, other bands in Supplementary Figure 1). These results were 

reproduced also using individual wavelet frequencies (Supplementary Figure 6) and had significant retest 

reliability (Supplementary Figure 4F-I).  

Negative correlations in contacts within the Epileptogenic Zone (EZ)  

The results thus far showed that healthy brain dynamics are predominantly characterized by linear positive 

correlation between synchrony and DFA with a quadratic trend, which is in line with the notion of human brains 

operating on the subcritical side of an extended critical regime. Epilepsy has been associated with excessive 

excitation, hyper-synchrony (Arnulfo, Hirvonen, et al., 2015; Parish et al., 2004), and altered DFA exponents 

(Auno et al., 2021; Meisel et al., 2015; Poil et al., 2012). Hence, we predicted that contacts in the EZ (Figure 

4A) should be associated with supercritical dynamics, in contrast to healthy brain activity operating in the 

subcritical regime, comparatively visible in the non-epileptogenic (non-EZ) contacts in the previous analyses.  

We thus investigated correlations between synchrony and LRTCs for EZ contacts in SEEG. As 

hypothesized, the correlations between subjects’ GS and mean DFA were negative and significant at 4 Hz and 

45–55 Hz for EZ contacts (pperm < 0.05, Figure 4B). Similarly, negative coefficients were also seen at the parcel-

level correlations of NS and DFA exponents (Figure 4C), with significant correlations in alpha in left temporal 

and cingulate areas of the DMN, with the beta band also showing negative correlations in the right temporal 

cortex, in which many EZ electrodes were located. The difference in mean correlation values between non-EZ 

and EZ was significant between 3 and 10 Hz (peaking at 4 Hz with pperm < 10-7, Figure 4D) and at 165 Hz (pperm 

< 0.05, Figure 4D).  
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Figure 4. Correlations of synchronization and LRTCs for epileptic zone (EZ) SEEG contacts.  

A. Cortical distribution of EZ contacts across the functional system parcellation of the Schaefer atlas. B. Linear correlation 

between GS and mean DFA, with non-EZ correlations in blue (same as in Figure 2B) and EZ correlations in red, with shaded 

errorbar areas representing 95% confidence intervals. Color-coded asterisks at the top indicate pFDR < 0.01 and blue and 

red Xs at the top and bottom indicate pperm < 0.05. C. Linear correlation of NS and mean DFA for OZ contacts a. D. 

Difference correlation coefficients between non-EZ and EZ contacts tested against a surrogate difference distribution 

obtained with case-resampling permutations. E. Same as in B, but with intermediate steps gradually increasing the 

percentage of EZ contacts and decreasing that of non-EZ ones, showing the progressive emergence of pathological 

dynamics. F. Scatterplot of GS and mean DFA values at 7 Hz each dot representing data for one subject. The dashed lines 

represent the intermediate steps same as in B. G. Same as in E. for partial quadratic correlations.  

 

We then repeated the group-level correlations in three intermediate steps in which we increased the 

number of EZ contacts and decreased the number of non-EZ contacts to show the gradual change from positive 

to negative linear coefficients as an index of the emergence of pathological dynamics. We observed a gradual 

shift from positive to negative linear correlations in the theta and alpha bands (Figure 4E). This trajectory was 

also observed in the single frequency scatterplots of GS and mean DFA with linear fits gradually crossing over 

to the negatives (Figure 4F). Partial quadratic correlations (with the linear component regressed out) displayed 

significant negative quadratic correlations in the intermediate steps, peaking at the beta frequency band (with 
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pperm < 10-4 for 15 Hz of the 25-75% condition), and positive quadratic correlations in EZ-only contacts in single 

frequencies in the alpha (11–12 Hz), beta (20 Hz) and ripple-high gamma bands (225 Hz, all at pperm < 0.05, 

Figure 4G). 

Discussion 

The emergence of power-law inter-areal and temporal correlations (Chialvo, 2010) in brain activity has been 

proposed to be attributable to brain criticality and thus regulated by its underlying physiological control 

parameters. Both synchronization and LRTCs in oscillatory amplitude emerge at the critical point both in 

modelling (Botcharova et al., 2014; Gray & Robinson, 2007; Larremore et al., 2011; Levina et al., 2014; 

Martinello et al., 2017; Moretti & Muñoz, 2013, in vivo (Fontenele et al., 2019), and in vitro (Heiney et al., 

2021) studies.   

However, there is a considerable variability in the mean strength of synchronization networks and in the mean 

LRTCs (J. M. Palva et al., 2013; Simola et al., 2017; Smit et al., 2011; Wiesman et al., 2022; Zhigalov et al., 

2017).  Yet, neither the relationship between synchronization and LRTCs, nor the reasons causing the large 

inter-individual variability, are well understood. As oscillatory synchronization is a fundamental property of 

brain networks, critical for information processing and cognition, and relevant for multiple brain disorders (Fries, 

2015; Hahn et al., 2019; S. Palva & Palva, 2012, 2018; Siegel et al., 2012; Thut et al., 2012), understanding the 

underpinnings of individual levels of synchronization is of high importance.  

 

Here, we tested whether large inter-individual variability in both synchronization dynamics and oscillation 

LRTCs would be explained by the individual’s position in the critical regime, i.e., by the individual operating 

point. We took advantage of the large inter-individual variability and the differential dependence of these 

measures from the critical point. We show here that inter-areal synchronization is positively correlated with the 

scaling exponents of LRTCs in neuronal oscillations together with a small but significant quadratic trend. The 

positive correlation suggests that most subjects operate in the subcritical side of an extended critical regime, 

while the observation of a significant quadratic relationship suggests that some subjects operate around the peak 

of this regime, i.e., very near the critical tipping point.  
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Our results demonstrate that individual variability in synchronization levels and in LRCTs are linked through a 

relationship predicted by the framework of brain criticality. These findings are in line with the framework where 

critical-like dynamics emerge across a “stretched” or extended critical regime, also known as the Griffiths phase 

(Moretti & Muñoz, 2013; Ódor & de Simoni, 2021), as opposed to criticality being constrained to a singular 

point in the space of control parameter. To the best of our knowledge, these findings thus constitute the first 

empirical evidence towards the discovery of Griffith’s-phase-like dynamics in the brains in vivo. Moreover, 

these results suggest that human brains do not exactly operate in a ‘subcritical’ regime (Priesemann et al., 2014; 

Wilting & Priesemann, 2019) near the critical point, but rather within an extended critical regime even if on its 

subcritical side. This distinction is fundamental because only the critical regime enables the emergence of power-

law spatiotemporal structures and the numerous functional benefits that the brains may gain by operating with 

critical-like dynamics.  

 

As both connectivity and LRTCs are test-retest reliable (Candelaria-Cook et al., 2022; Nikulin & Brismar, 2004; 

Wiesman et al., 2022), heritable (Leppäaho et al., 2019; Linkenkaer-Hansen et al., 2007; Nikulin & Brismar, 

2005), and influenced by genetic polymorphisms (Simola et al., 2022), we postulate that the individual’s position 

in the critical regime is a phenotypic trait that predicts individuals’ brain dynamics and behaviors. We postulate 

that individual variability in critical dynamics could underlie variability in cognitive abilities and personality 

traits (J. M. Palva et al., 2013) given that operating at critical dynamics is thought to maximize the dynamic 

range of the system, sensitivity to external and internal perturbations, transmission, storage, and computational 

capacity (Beggs et al., 2007; Chialvo, 2010; Larremore et al., 2011; S. Palva & Palva, 2018; Shew et al., 2011; 

Toker et al., 2022). 

 

In contrast to healthy brain activity, epilepsy has been associated with excessive excitation leading to aberrant 

pathological brain dynamics (Arnulfo, Hirvonen, et al., 2015; Bartolomei et al., 2013; Parish et al., 2004) and 

episodes of abnormal hyper-synchronous activity (Monto et al., 2007). Since brain criticality is primarily thought 

to be controlled by the finely balanced E/I ratio, where excessive excitation leads to super-critical dynamics 

(Plenz & Thiagarajan, 2007; Poil et al., 2012; Shew et al., 2009; Toker et al., 2022), we investigated whether 

epilepsy would be characterized by dynamics in the supercritical regime. This would be marked by negative 
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correlations between synchronization and DFA exponents (see Fig. 1). We found that the EZ contacts were 

indeed associated with a shift towards negative correlations between synchronization and LRTCs. This 

constitutes new empirical evidence for epilepsy being associated with supercritical brain dynamics (Meisel, 

2016; Meisel et al., 2015) that may be the underlying cause for hyper-synchronous activity and predisposition 

of these brain networks to generate epileptic seizures.   

 

In SEEG, in the nominally healthy “non-EZ” contacts outside of the epileptogenic zone, there were no quadratic 

correlations indicative of dynamics near the critical tipping point. This could be caused by a push-pull 

mechanism where the brain compensates for increased excitability and super-critical dynamics via an excess of 

inhibition, which then drives the healthy brain regions in epileptics towards sub-criticality, or by antiepileptic 

drugs. Synchronization and LRTCs are aberrant also in multiple brain other diseases (Ajramj et al., 2017; Auno 

et al., 2021; Bajo et al., 2012; Bartolomei et al., 2013; Bruining et al., 2020; Linkenkaer-Hansen et al., 2005; 

Meisel et al., 2015; Monto et al., 2007; Parish et al., 2004; Pusil et al., 2019; Smit et al., 2011; Uhlhaas et al., 

2006). Taken that brain criticality is primarily thought to be controlled by the E/I ratio, where an imbalance of 

E/I or connectivity leads to sub- or super-critical dynamics being modulated by polymorphism in 

neuromodulatory genes (Plenz & Thiagarajan, 2007; Poil et al., 2012; Shew et al., 2009, 2011; Simola et al., 

2022) and that pathological human brain activity is associated with changes in brain E/I balance (Bajo et al., 

2012; Pusil et al., 2019; Uhlhaas et al., 2006), pathological synchronization dynamics (hypo- or 

hyperconnectivity) could emerge via modulations of brain critical dynamics.  

 

Conclusions 

Our results demonstrate that variability in synchronization levels is regulated by the individual position along 

an extended critical regime so that healthy brain areas operate in its subcritical and epileptogenic areas in the 

supercritical side. 
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Materials & Methods 

Modeling 

A nested Kuramoto model (Siebenhühner et al., 2020) was used to simulate coupled neuronal populations 

dynamics with LRTCs and to investigate observable correlations between synchronization and DFA exponents. 

We adapted a two-layer nested model consisting of 100 regions/nodes, each containing a conventional Kuramoto 

population of oscillators (N = 500). The oscillators’ phases were averaged to derive a nodes’ time series, whose 

absolute values were then taken to obtain the Kuramoto order parameter, corresponding to their amplitude. 

Pairwise connection weights were proportional to structural connectivity values obtained by MRI diffusion-

tensor imaging and averaged to the Schaefer atlas with 100 parcels (Schaefer et al., 2018). Thus, we were able 

to model both local interactions in smaller regions (corresponding to cortical MEG parcels or SEEG contacts), 

and their large-scale synchronization (corresponding to inter-areal connectivity across the whole brain). This 

model contained two control parameters, K as the strength of internal phase coupling within regions, and L as 

the strength of inter-regional coupling. We estimated LRTCs of regions’ time series using DFA, and 

synchronization between regions using the PLV (see below).  

Acquisition of MEG and MRI Data 

We recorded MEG data from 52 healthy participants (age: 31 ± 9.2, 27 male) during a 10-minute eyes-open 

resting-state session with a Vectorview/Triux (Elekta-Neuromag/MEGIN, Helsinki, Finland) 306-channel 

system (204 planar gradiometers and 102 magnetometers) at the Bio-Mag Laboratory, HUS Medical Imaging 

Center, Helsinki. Overall, 192 sessions of MEG data were obtained, with participants contributing on average 

3.7 ± 4 sessions each. Participants were instructed to focus on a cross on the center of the screen in front of them. 

Bipolar horizontal and vertical electrooculography (EOG) were recorded for the detection of ocular artifacts. 

MEG and EOG were recorded at 1 kHz sampling rate. For each participant, T1-weighted anatomical MRI scans 

(MP-RAGE) at a resolution of 1 × 1 × 1 mm with a 1.5-Tesla MRI scanner (Siemens, Munich, Germany) were 

obtained at Helsinki University Central Hospital for head models and cortical surface reconstruction. The study 

protocol for MEG and MRI data was approved by the Coordinating Ethical Committee of Helsinki University 

Central Hospital (ID 290/13/03/2013), written informed consent was obtained from each participant prior to the 

experiment, and all research was carried out according to the Declaration of Helsinki. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.517800doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.24.517800


 

 

17 

Cortical parcellation and source model 

Volumetric segmentation of MRI data, flattening, cortical parcellation, and neuroanatomical labeling with the 

400-parcel Schaefer atlas (Schaefer et al., 2018) was carried out with the FreeSurfer software (Fischl, 2012). 

The MNE software (Gramfort et al., 2014) was then used to create cortically constrained source models, for 

MEG–MRI colocalization, and for the preparation of the forward and inverse operators. The source models had 

dipole orientations fixed to pial-surface normals and a 5-mm interdipole separation throughout the cortex, which 

yielded around 5000-8000 source vertices per hemisphere. 

MEG data preprocessing and filtering 

Temporal signal space separation (tSSS)  (Taula & Simola J, 2006) in the Maxfilter software (Elekta-Neuromag) 

was used to suppress extracranial noise from MEG sensors and to interpolate bad channels. We used independent 

components analysis adapted from the Fieldtrip toolbox (Oostenveld et al., 2011) to extract and identify 

components that were correlated with ocular artifacts (identified using the EOG signal), heartbeat artifacts 

(identified using the magnetometer signal as a reference), or muscle artifacts.  

MEG source localization 

We computed noise covariance matrices (NCMs) using the preprocessed MEG data time series filtered with 

finite-impulse-response (FIR) filters at 151–249 Hz, averaged across 10 s time-windows. NCMs were used for 

creating one inverse operator per session with the MNE software and the dSPM method with regularization 

parameter λ = 0.11 (Gramfort et al., 2014). We then estimated “vertex fidelity” to obtain fidelity-weighted 

inverse operators that reduce the effects of spurious connections resulting from source leakage, and collapsed 

the inverse-transformed source time series into parcel time series in a manner that maximizes the source-

reconstruction accuracy as in (Korhonen et al., 2014; Rouhinen et al., 2020; Siebenhühner et al., 2020). For each 

parcel pair (edge) we also computed “cross-parcel phase-locking” of the reconstructed simulated time-series, 

reflecting cross-parcel signal mixing, and excluded parcels and edges with low fidelity and high cross-parcel 

phase-locking, using individual thresholds to retain for each subject the top 90% parcels by fidelity and the 

bottom 95% of edges by cross-parcel mixing (14.9 ± 0.2% of parcels and 14.1 ± 0.1% of edges rejected on 

average per set).  
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Acquisition of SEEG Data 

We recorded stereo-EEG neuronal signals from 68 drug-resistant focal epileptic patients (age: 30 ± 9.4, 38 male) 

during the clinical assessment of the epileptogenic focus before its surgical ablation at the “Claudio Munari” 

Epilepsy Surgery Centre in the Niguarda Ca’ Granda Hospital, Milan. Intracranial monopolar (with contacts 

sharing the reference to a single white-matter contact) local-field potentials were acquired from brain tissue with 

platinum–iridium multi-lead electrodes. Between 8 to 15 contacts, each 2 mm long, 0.8 mm thick and with an 

inter-contact border-to-border distance of 1.5 mm (DIXI medical, Besancon, France), were present in each 

penetrating shaft, with the amounts of electrodes and their anatomical positions varying according to surgical 

requirements (Cardinale et al., 2013). Each subject had 17 ± 3 (range 9-23) shafts with a total of 153 ± 20 

electrode contacts on average. The electrode positions were localized after implantation using CT scans and the 

SEEGA automatic contact localization. Structural MRIs were recorded before implantation and colocalized with 

postimplant CT scans using rigid-body coregistration (Arnulfo, Narizzano, et al., 2015). Individual patients’ 

contacts were assigned to parcels of the Schaefer atlas (Schaefer et al., 2018). We acquired an average of 10 min 

of uninterrupted spontaneous resting-state activity with eyes closed with a 192-channel SEEG amplifier system 

(Nihon-Kohden Neurofax EEG-1100) at a sampling rate of 1 kHz. Patients gave written informed consent for 

participation in research studies and for publication of results pertaining to their data. The ethical committee of 

the Niguarda Hospital, Milan, approved this study (ID 939) which was performed according to the Declaration 

of Helsinki. 

Filtering and preprocessing of SEEG data 

Defective contacts that demonstrated non-physiological activity (1.3 ± 1.2, range 0–10) were excluded from 

analyses, and 3 subjects in which more than 50% of contacts were defective were discarded from further analyses. 

We referenced SEEG electrodes in grey matter to the closest contacts in white matter (Arnulfo et al., 2014) 

which yields signals with more accurate phase estimates. Time series were FIR-filtered with a cutoff at 440 Hz 

and notch FIR filter was used for removing 50 Hz line noise and its harmonics. Temporal windows of 500 ms 

containing mean activity above 5+ SD in > 10% of cortical contacts and at least 25% of the narrow-band 

frequencies were rejected as potentially epileptogenic.  
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In clinical literature, epileptogenic zone is defined as the “minimum amount of cortex that need to be removed 

to produce seizure freedom”, while the seizure propagation network is defined as “the set of regions that 

participate in the propagation of epileptic activity during seizure onset”. 

In this work, the epileptogenic zone and seizure propagation networks were identified by clinical expert analyses 

of the clinical data and quantitative diagnostic imaging data including SEEG traces, which were confirmed later 

by another expert (Cossu et al., 2015).  

Most of the analyses presented in this work included only contacts from non-epileptic cortical regions, except 

for the Epileptic Contacts Correlations below, for which cleaning was performed as described above. Rejection 

of ictal activity, interictal events, and artefacts was also performed as before in order to avoid introducing 

obviously hypersynchronized dynamics (Arnulfo et al., 2020) and biasing the criticality assessment (Wang et 

al., 2022). Subjects who had more than half of their contacts in these areas (8 subjects) were additionally 

excluded from the normal correlations, as were contacts with more than 5% of segments containing epileptic 

events. For healthy contact analyses, we thus included data from 57 subjects, with a total of 4453 non-EZ 

contacts (average per subject 78 ± 19, range 41-124).  

For the Epileptic Contacts Correlations, we used the contacts defined as being epileptogenic – i.e., contacts that 

were located within the EZ or were part of the seizure propagation network. Subjects discarded for having too 

many EZ contacts were included in this analysis, whereas subjects who had < 11 epileptogenic contacts were 

excluded. Thus, both analyses had 57 subjects, with 49 common to both non-EZ and EZ analyses, 8 only 

included in non-EZ, and 8 only included in EZ analysis. The total number of EZ contacts was 1725 (average per 

subject 30 ± 17.5, range 11-79). 
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Analysis of inter-areal synchronization 

Both cleaned MEG and SEEG data were filtered into complex-valued narrowband time series using Morlet 

wavelets (m = 5 width) with logarithmically increasing center frequencies ranging from 2 to 225 Hz. We 

estimated inter-areal functional interactions for each contact and parcel pair, but excluding the edges of adjacent 

contact pairs with distance < 2 cm, for each frequency and for each session, using both the Phase-Locking Value 

(PLV) (Lachaux et al., 1999) and the weighted Phase Lag Index (wPLI) (Vinck et al., 2011) which, unlike PLV, 

is insensitive to zero-phase lagged synchronization caused by source-mixing in MEG. 

Detrended Fluctuation Analysis   

We used Detrended Fluctuation Analysis (DFA) (Linkenkaer-Hansen et al., 2001) to estimate monofractal 

scaling exponents of neuronal LRTCs that typically vary between 0.5 and 1  

(Linkenkaer-Hansen et al., 2001, 2005; Meisel et al., 2015; Monto et al., 2007; Nikulin & Brismar, 2004, 2005). 

DFA was carried out in the Fourier domain (Nolte et al., 2019) with a Gaussian weight function used for 

detrending and using 25 log-linear windows from 5 s − 56 s. The fluctuations were fitted with a robust linear 

regression with a bisquare weight function to obtain the DFA exponents, all with negligible fit error. DFA 

exponents were computed for all contacts of all SEEG subjects and all parcels of all MEG sets, and for each 

narrow-band frequency. 

Average connectivity and criticality metrics 

To assess the general level of synchrony of each node (contacts in SEEG and reconstructed sources in MEG), 

we used graph theory (Bullmore & Sporns, 2009). Node Strength (NS) of pairwise connectomes was obtained 

for each node by averaging the strength of edges, that is the mean synchronization of that node with all the other 

nodes. For each participant, all the cortical NS values were then averaged again to estimate the Graph Strength 

(GS) for each frequency and DFA scaling exponents of all nodes to acquire a mean DFA. We then removed 

outliers > 3 SD from the median. As inter-day variability was non-neglectable for violations of independence 

(Supplementary Figure 4; also see Candelaria-Cook et al., 2022; Wiesman et al., 2022), multiple recording 

sessions from the same subjects were treated as individual data points.  
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Correlation of GS and mean DFA 

Pearson’s linear correlation analysis was used to estimate correlation between subjects/sets’ GS and mean DFA 

values for each frequency. To obtain surrogate distribution of correlation cofficients, the order of the dependent 

variables was shuffled 1000 times. Multiple hypothesis testing was corrected with the Benjamini-Hochberg 

method, by pooling together both connectivity metrics and all frequencies. We also estimated correlations 

between GS and mean DFA with a partial-quadratic model, i.e., a purely quadratic correlation where the linear 

trend in the dependent variables was partialed out. To test whether the relationship between synchrony and 

criticality was concave and not convex (peaks rather than dipping, with the concave inverted-U curve opening 

down), in addition to obtaining the R2 statistic, the coefficient of the quadratic term was multiplied with the sign 

(note that the y-axis is reversed in the main text subject correlations figure panels, so that the negative values 

indicating concave correlations are on top).  

Correlation NS and mean DFA 

We next calculated linear and partial-quadratic correlations across subjects for each cortical parcel and frequency. 

In MEG data, every local NS value of the 400-parcel Schaefer atlas was correlated with the corresponding parcel 

DFA exponent across sets, with outlier rejection, surrogate calculation, and FDR correction (this time including 

also the 400 parcels) same as above. In SEEG data, contacts from all subjects were pooled to parcels of the 100-

parcel Schaefer atlas, and the correlations between parcel NS values and DFA exponents were computed for all 

parcels containing at least 5 electrodes (after outlier rejection, resulting in 77/100 parcels). Linear and partial-

quadratic correlations were then computed for these parcels in the same way as described for the subject level. 

For visualization purposes, we grouped frequencies in data-driven bands, individuated as the optimal community 

structure determined by the Louvain method (Blondel et al., 2008) of the self-similarity frequency-by-frequency 

matrix of the linear parcel correlations (delta, δ: 2−3 Hz; theta, θ: 4−7 Hz; alpha, α: 9−12 Hz; beta, β: 15−29 Hz; 

low-gamma lγ 40−65 Hz; high-gamma, hγ: 77−135 Hz; ripple-gamma, rγ: 165−225 Hz; Supplementary Figure 

5). Results were similar for single frequencies not grouped into bands (Suppl.Figure 6) and if statistics were 

averaged into bands after correlations instead of before.  
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