
RECONSTRUCTION OF THREE-DIMENSIONAL TRAJECTORIES OF 
HONEYBEES FLYING IN HIGH-DENSITY AERIAL ENVIRONMENTS  
 
 
Abstract  
 
So far, relatively few studies have investigated the flight of insects moving in experimental 
conditions approximating natural scenes. This is mainly because of the technical difficulties 
involved in detecting and tracking individual insects in three dimensions in outdoor 
scenarios, as well as matching views of corresponding insects in stereo images for trajectory 
reconstruction (the so-called ‘Correspondence Problem’). In this study, we describe the 
methods we have developed to track and unambiguously reconstruct the trajectories and 
body orientations of a large number of bees flying in close proximity in a ‘bee cloud’, using 
just two high-speed video cameras configured as a stereo pair in a semi-outdoor setting. 
Using these methods, two separate bee clouds were filmed and the data were analysed to 
reconstruct the three-dimensional trajectories, including the head and tail positions, of a total 
of 382 bees. This dataset should enable future analysis of the movement characteristics of 
bees flying in a dense environment, as well as uncover potential strategies for mid-air 
collision avoidance. 

 
 
BACKGROUND AND SUMMARY 
 
Relatively little is known about the flight characteristics and strategies employed by freely 
flying insects in an outdoor environment which, in general, is highly dynamic. Studies, 
conducted in indoor laboratory environments, have investigated the flight of honeybees and 
bumblebees through narrow corridors1-5 (see review6), gaps or apertures7-10, and collision 
avoidance and landing behaviour of fruitflies11,12. Yet, only a handful of studies have 
examined the behaviour of honeybees flying freely in a dynamically changing setting13-15 
that approximates the more realistic scenario encountered by a foraging bee. Two primary 
reasons for this are: (a) the challenges of recording data in natural,  uncontrolled scenes16 
and (b) the difficulties associated with customizing the available tracking programs to fit 
one’s study requirements. 

 
Algorithms have been developed for tracking multiple flying insects (mosquitoes17, midges18-
20, honeybees21,22, fruitflies23,24 and birds25-27). Researchers have also developed tracking 
algorithms to reconstruct trajectories of freely flying Drosophila in virtual reality (VR) based 
systems28-30. In a recent study, Pannequin et al 31 used a SpiderCam32 setup, referred to as a 
‘lab on cables’, to track the flight of a single freely flying moth. Most techniques track the 
approximate 3D position of the centre of gravity (CG) of the whole insect from each stereo pair 
by computing the CG of the pixels representing the insect in each camera image20,33-35. In 
practice, however, it is a challenge to track and accurately reconstruct the head and tail 
positions accurately and unambiguously from each pair of video frames, without any markers 
on the insect, especially when multiple insects are being filmed. Most of the studies conducted 
so far suffer from both of the following shortcomings: (a) usage of bulky and costly 
experimental apparatus, setups and methods which cannot be extended to tracking multiple 
flying insects in an outdoor setting23,28,30,31,36-38, and (b) the final digitised data often does not 
provide information on body orientation of the insects (or birds) flying in the group17,18,21,22,29.  
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As a step towards examining complex flight behaviours in a randomly changing quasi-
natural setting, we have created a test scenario in a semi-outdoor environment, consisting of 
a cloud of loitering honeybees flying past one another with the goal of entering their hive, 
whose entrance has been temporarily blocked. We term this test scenario a ‘bee cloud’. Bees 
then fly in the vicinity of the hive entrance, and this scenario offers a valuable opportunity to 
study the behaviour of bees flying in a dense, dynamic aerial environment which could also 
approximate other dynamic scenarios such as dandelion seeds moving in the air.  
 
The study also develops a tracking program that reliably detects, tracks and reconstructs the 
three-dimensional trajectories and the body orientations of a number of bees flying in a ‘bee 
cloud’. The program is capable of successfully dealing with some of the challenges, such as 
occlusions, that are encountered in a multi-object tracking scenario. Furthermore, the problem 
of correspondence matching is solved in a simple way by using just two cameras.  The 
accuracies of two resulting stereomatching algorithms are assessed, compared and validated 
using a ‘ground truth’ control experiment. 
 
In summary, we present a dataset that provides a full characterization of two bee cloud events 
captured in a semi outdoor environment, which can be used to visualize and study the 
movements and flight manoeuvres of a number of bees flying in close proximity. To our 
knowledge, our study is the first of its kind to (a) provide a dataset on bee clouds and (b) 
develop a reliable, error-free stereo-matching procedure to derive accurate three-dimensional 
trajectories of all of the bees flying in the cloud with high spatial and temporal resolution. This 
dataset should enable analysis of the movement characteristics of bees flying in a dense 
environment, and, potentially, strategies for mid-air collision avoidance.  
 
 
METHODS 
 
1) EXPERIMENTAL ARENA 
 
An independent honeybee (Apis mellifera) colony was stationed and maintained on the rooftop 
of our institute’s building. The bee colony was non-captive in nature, which provided 
unconditional access to the bees to forage in the surrounding environment. An image of the 
beehive on the rooftop of the building is shown in Fig. 1a. Three days before data collection, 
three rectangular white corflute sheets, of dimension 1.96 m (w) × 6 m (h), were erected on 
the three sides of the beehive (to its left, right & behind the hive entrance). The floor was 
covered with a sheet of white corflute. This created an arena in the form of a rectangular cuboid 
with white internal faces, against which the bees could be filmed in high contrast. A schematic 
illustration of the structure of the arena and the stereo video cameras is given in Fig. 1b.  
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Figure 1. (a) Image of the beehive on the building’s rooftop. (b) Schematic diagram 
illustrating the structure of the experimental arena and the arrangement of the video 
cameras used in the study. The dashed green lines indicate the optical axis of each camera. 
The boundaries of the arena are shown in purple. (c,d) Stereo images of the arena, captured 
by the two cameras before commencing the experiment. The L-shaped square ruler was used 
to provide a reference x, y axis for calibration purposes.  
  
After setting up the arena walls, we allowed the bees to get accustomed to the new arena for 
the next 3 days. Experiments were commenced from the 4th day onwards. Bees flying in the 
arena were filmed using two synchronized, high-speed cameras (Emergent Vision 
Technologies), positioned as shown in Fig. 1b. Views of the scene from the two cameras are 
given in Fig. 1c and Fig. 1d.   
 
Video recordings were made at a frame rate of 200 fps, at a pixel resolution of 2048×1024. 
The two cameras were separated by a distance of 1.45m horizontally and the cameras were 
mounted on tripods, at a height of approximately 1.5m above the ground. Each camera was 
equipped with a 6mm fixed focal length lens (VS -0618H1).   
 
We calibrated the camera configuration using the Jean-Yves Bouguet camera calibration 
toolbox39 to obtain the intrinsic and extrinsic parameters of the two cameras. After these 
parameters were obtained, we set up a bee cloud.  
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GENERATING A BEE CLOUD 
 
We temporarily blocked the hive entrance with a piece of white rectangular corflute. 
Because of this, the returning foraging bees were unable to enter the hive and loitered in 
front of the hive entrance forming a cloud shaped aggregation, which we term a ‘bee cloud’. 
Camera recordings were commenced about 30 seconds after blocking the hive entrance, by 
which time a sufficiently large number of foragers had returned to the area near the hive 
entrance to form a dense bee cloud. Each filming session lasted for a maximum of about 10 
seconds, after which the hive entrance was reopened to allow the loitering bees to re-enter 
their hive. 
 
The video recordings were usually made around 12 noon, when the foraging activity was 
relatively high. 
 
The two datasets presented in this study are from recordings of 7.9 and 7.0 seconds, 
respectively. The two high resolution bee cloud videos can be accessed from Data Citation 
1.  
 
 
A few points to note are: 
 
1) The hive entrance was not closed for more than 3 minutes continuously, as prolonged 

closure could disturb the bees’ foraging activity and induce them to swarm.  
2) After recording a bee cloud event, an interval of at least 30 minutes was allowed before 

creating a subsequent bee cloud. This interval enabled the returning foragers to re-enter 
the hive, deposit their nectar/pollen, and resume their normal foraging activity. 
 

 
ANALYSIS OF VIDEO DATA 
 
Analysis of the video data commenced with the detection and tracking of the head and tail 
positions of bees, frame by frame, in the video sequences captured by the two cameras. 
Manual digitisation of video data with high frame rates and high spatial resolution is a 
tedious and time-consuming process. Therefore, we developed a semi-automatic tracking 
program for digitising the head and tail locations of individual bee images in the two camera 
views.  The detection and tracking algorithm, and the methods for dealing with various 
complicating contingencies, are described below. 
 
 
2) DETECTION AND TRACKING 
 
The detection and tracking algorithm basically performs the following 5 steps: 
 
1) The raw footage is initially processed to obtain an image of the background of the scene 

by averaging all the frames in the video. The averaging can be performed using ‘ImageJ’ 
(ImageJ - https://imagej.nih.gov/ij/) software, or by a custom-designed Matlab 
(MathWorks-https://au.mathworks.com/products/matlab.html) program. This results in 
an image, for each camera view, that contains only the background, without any bees. 
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2) As a second step, ‘image differencing’ is performed between each video frame and the 
background image, to detect all of the bees in each frame of the video sequence. This is 
done separately for the two video sequences. The image of each bee then appears as a 
dark blob against a grey, featureless background. The video frames are then binarized to 
set all pixels within each bee image to black, and all background pixels to white. Next, 
the boundary of the image of each bee is computed using the ‘bwboundaries’ command 
in Matlab. This command returns the coordinates of all of the pixels that comprise the 
contour of the image of each bee. 

 
3) The boundary contour information is fitted to an ellipse using a customized open source 

program40 which performs a least-squares fit. This program returns the basic properties 
of the fitted ellipse - such as the centre of the ellipse, and the length and orientation of 
the major axis (See Fig. 2). These parameters are used to determine the pixel coordinates 
of the centroid and the head and tail of the bee’s image (The procedure for identifying 
the head and the tail is detailed below).    
 

4) For tracking the image (head and tail coordinates) of a particular bee through the video, 
the user only has click on the bee image in the first frame. The developed program then 
delivers the head and tail coordinates of the selected bee using the logic explained below.  

 
Consider a bee that is moving in the direction indicated by the green arrow in Fig. 2. 
From the images of the bee in two consecutive frames (frame 1 and frame 2, shown as 
fitted ellipses), one can readily infer, through visual inspection, that the head and tail 
positions of the bee in the two frames are (𝐻!, 𝑇!) and (𝐻", 𝑇") respectively, assuming 
that the bee is moving forwards. The logic for automating this identification in software 
is as follows. If the bee is moving forward with its body pointed close to the direction 
of flight, then the distance between the tail of the bee in frame 1 (𝑇!) and the head of the 
same bee in frame 2 (𝐻") will be larger than the distances between all of the head-tail 
combinations: that is,  |𝑇!𝐻"|&&&&&&&&&&&&⃗  > [|𝐻!𝑇"|&&&&&&&&&&&&⃗ ,|𝐻!𝐻"|&&&&&&&&&&&&&⃗ ,	|𝑇!𝑇"|&&&&&&&&&&&⃗ ] (see Fig. 2). This enables 
determination of the approximate flight direction as the direction of the vector 𝑇!𝐻"&&&&&&&&&⃗ . 
Given this flight direction, the head and tail locations in frame 1 are identified as follows. 
We compute the angles 𝜃!	 and 𝜃"  between the flight direction vector 𝑇!𝐻"&&&&&&&&&⃗   and the two 
possible orientations of the body axis, represented by the vectors 𝑇!𝐻!&&&&&&&&&⃗  and 𝐻!𝑇!&&&&&&&&&⃗ , 
respectively (note that 𝜃! + 𝜃" = 180#). The vector associated with the smaller angle is 
taken to indicate the identities of the head and tail, as the body is more likely to be 
pointing toward the direction of movement, rather than in the opposite direction. 
Accordingly, in the example of Fig. 2, 𝐻! and 𝑇! are assigned as indicated by 𝑇!𝐻!&&&&&&&&&⃗ ,  
because  𝜃! < 𝜃". Once   𝐻! and 𝑇! are identified, 𝐻" and 𝑇" in frame 2 are identified by 
selecting the head-tail configuration that is associated with the smaller change in body 
orientation from frame 1 to frame 2: It is very unlikely that the body rotates by more 
than 90° in one interframe interval, given the high frame rate of 200/s. The validity of 
this assumption  and the accuracy of this procedure  are confirmed in the results 
presented later below.   
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Figure 2. Illustration of the principle used to estimate head and tail locations of a bee in the 
first two frames. The bee’s head is shown as the brown circle and the body orientation is shown 
as the black line attached to the head. The head and tail positions of the bee are labelled as 𝐻! 
and 𝑇! for frame 1 and as 𝐻" and 𝑇" for frame 2. The distances |𝐻!𝑇"|&&&&&&&&&&&&⃗ ,	|𝐻!𝐻"|&&&&&&&&&&&&&⃗ ,	|𝑇!𝑇"|&&&&&&&&&&&⃗  and 
|𝑇!𝐻"|&&&&&&&&&&&&⃗ 	are shown as dashed double arrows in red, blue, brown and magenta, respectively. The 
motion vector (𝑇!𝐻"&&&&&&&&&⃗ ) obtained from 𝑇! and 𝐻" is shown as the dashed red arrow. The vectors  
𝑇!𝐻!&&&&&&&&&⃗  and  𝐻!𝑇!&&&&&&&&&⃗  (black arrows) represent the two possible head – tail combinations of the bee 
in frame 1.  

 
 

The areas of the ellipses fitted to the bee in the first two frames are computed and stored for 
subsequent use, for the purpose of detecting and resolving occlusions. This is described later 
below.  

 
When a bee moves backwards in the first two frames, the estimated head and tail positions 
obtained using the principle explained above would be reversed. When such a scenario arises, 
we simply swap the head-tail positions in the second frame, and run the tracking program as 
before to complete the tracking of that bee.  

 
 

5) To successfully track a selected bee or a batch of bees from the third frame onwards, we 
initially predict the head and tail positions of the selected bee in the third frame by 
performing a simple 2-point linear extrapolation, based on the head and tail positions of 
the selected bee in the first two frames. We then search in the third frame for any bees 
whose centre of gravity (mid-point of the fitted ellipse) is within a radius of 20 pixels 
from the extrapolated head position of the selected bee. If more than one bee image is 
found in the search region, the orientation of the bee image tracked in frames 1 and 2 is 
used to determine the matching bee in frame 3. This selection is based on the reasoning 
that, given the relatively high frame rate of 200/s, bees are not likely to change their 
body orientation substantially between frames. The bee image chosen in frame 3 is 
therefore the one that is associated with the smallest change in the body orientation 
(orientation of the head-tail axis), and this is used to identify the positions of the head 
and tail of the bee’s image in frame 3. This two-layered process of (a) extrapolation and 

!!"!

Flight directionReference vector
"!!"

Frame 1

Frame 2

"!

!!

""

!"

"!!!

"!

!" Vector "!!" defines the 
approximate flight direction

a

c

d

b

# = "!!"

% = !!""
& = !!!"
c= "!""

(maximum 
separation)

'!

'"

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.517808doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.24.517808


(b) matching of body orientation is repeated for each new frame, to track the image of 
each bee sequentially through all the video frames in which it is visible. The head and 
tail co-ordinates of each bee are also tagged with the frame number.  As we shall describe 
later, this enables correspondence matching of the images of each bee in the image 
sequences captured by the two video cameras.    

 
The various scenarios and contingences that are commonly encountered whilst tracking the 
bees in the cloud are described in the following section, along with methods for dealing with 
them.  
 
Miscellaneous scenarios 
 
Occlusions 
 
A common problem that one encounters while tracking multiple bees in video footage is that 
of occlusion. The first step in handling an occlusion is to detect the event. The presence of an 
occlusion can be detected by monitoring the areas of the ellipse-fitted images of two bees that 
are approaching each other. When the image of one bee occludes that of another bee, the 
ellipses representing the two bees will temporarily be replaced by a single, larger blob. We 
assume that an occlusion has occurred when this blob contains at least 20 pixels more than 
each of the individual ellipses.  
 
 
Once the occlusion frames are detected (and there can be several contiguous occlusion frames), 
the head and tail positions of each bee in each of the occlusion frames are estimated by 
extrapolation from their positions in the last two frames prior to the occlusion. (This assumes 
that, during the occlusion, the image of each bee moves at the same velocity as it did just before 
the occlusion). At each frame, the predicted (extrapolated) positions of the head and tail of each 
bee are routinely computed to deal with potential forthcoming occlusions. An occlusion event 
is detected as an abrupt increase in the area of the fitted ellipse. The extrapolation of the head 
and tail positions of the two bees involved in the occlusion is continued, frame by frame, over 
the entire duration of the occlusion. The occlusion is considered complete when the oversized 
ellipse is replaced by two normal-sized ellipses. In this frame, the extrapolated head and tail 
positions of the two bees are compared with the ellipses fitted to the two new, unoccluded 
images that appear after the occlusion, to re-establish the identities of the two bees that reappear 
from the occlusion, as well as their corresponding head and tail positions. The head and tail 
positions of the two bees during the occlusion period are then estimated more precisely by 
linear interpolation, frame by frame, from their positions in the frames immediately before and 
immediately after the occlusion period.  This retrospective linear interpolation provides a better 
estimate of the head and tail positions of the two bee images during the occlusion period, than 
the initial linear extrapolation.  
 
Tracking bees flying toward the camera’s optical axis 
 
There are instances when a bee moves in such a way as to directly approach the camera, or fly 
away from it, by moving toward the nodal point of the camera’s lens, or away from it. Under 
such conditions, the image of the approaching bee will resemble a small circular dot, rather 
than an ellipse. This situation is assumed to prevail if the ratio of the major to the minor axis 
of the fitted ellipse is lower than 1.10 but greater than 0.9. In such frames, the centre of the 
ellipse is taken to represent both the head and the tail positions of the bee’s image. 
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Bees appearing and disappearing from the cameras’ fields of view 
 
When the hive entrance is blocked, the bees which were about to enter the hive will loiter in 
the vicinity of the hive entrance. After 1 or 2 seconds, some of these bees might choose to leave 
the arena for a while and come back again to check if they can enter the hive. At the same time, 
some new returning foraging bees will enter the arena for the first time and will realise that the 
hive entrance is blocked. So, they will join the cloud and loiter in the arena for some time 
before leaving the arena. This cyclic process continues until the hive is reopened. So, there will 
be a continuous flow of incoming and outgoing foraging bees while the bee cloud data is being 
recorded.  
 
The following procedure is used to record and keep track of the identities bees as they enter 
and leave the volume of space that is covered by the stereo cameras. The bees that are visible 
in the first frame of the video from each camera are assigned a unique identification number. 
These bees are tracked until they leave the arena. Each bee entering the arena during the 
recording period is assigned a new identification number. (Note that we cannot distinguish 
between new bees and bees that re-enter the arena: each entering bee is assigned a fresh ID 
number). 
 
3) STEREO MATCHING TECHNIQUES  
 
To  obtain  3D reconstructions of the flight trajectories of the freely flying bees, the 2D tracks 
of individual bees in one camera view have to be matched to the corresponding 2D tracks of 
the bees in the other camera view. It is therefore crucially important to match the identities of 
corresponding bees in the two images, in order to obtain correct results. This problem, known 
as the ‘correspondence problem’ is one of the major challenges in matching stereo images. 
 
 
We have used two stereo matching techniques - the minimum perpendicular distance method 
(MPD), and minimum reprojection error method (MRPE), to identify matching bee images in 
the two camera views. The details of the two methods are discussed below.   
 
(a) Minimum perpendicular distance method 
 
The minimum perpendicular distance method was first used in a 3D particle tracking 
velocimetry algorithm41 as an intermediate step for solving the problem of correspondence 
matching. Later, this basic idea was modified and applied to solve the stereo matching problem 
in a study involving midge swarms18 and bird flocking events (jawdacks and rooks)42 using 
three cameras. Here, we use this technique to solve the ‘correspondence problem’ with just two 
cameras. The concepts and steps involved in implementing this algorithm are discussed below. 
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Figure 3. Schematic illustration of the concept behind the minimum perpendicular distance 
method showing the shortest distances – ‘Δd11’ and ‘Δd12’, when a matched or a mismatched 
pair of images are stereo-matched. C1 and C2 denote the nodal points of Camera 1 and 
Camera 2, respectively. The image positions 𝑚!! and 𝑚!" are those of a correctly matched 
pair of images of a bee at location M1. This results in a relatively small perpendicular 
distance	Δd11, as shown by the vertical dashed green line. On the other hand, a pair of 
mismatched images (such as 𝑚!! in Camera 1 of the bee at M1, and 𝑚"" in Camera 2 of a 
different bee at location 𝑀") result in a larger perpendicular distance Δd12, as shown by the 
dashed red vertical line.  
 
 
Consider a bee at a location M1 in 3D space, which is imaged at points m11 and m12 in the 
image planes of cameras 1 & 2, respectively, as shown in Fig. 3. (The points correspond to the 
centroids of the ellipses fitted to each image.) We construct a back-projected ray vector 
𝑉!!&&&&&⃗ 	which emanates from the nodal point of Camera 1 (c1) and passes through the point m11 in 
the camera’s image plane . Similarly, we construct a back-projected ray vector 𝑉!"&&&&&⃗  which 
emanates from the nodal point of Camera 2 (c2) and passes through the point m12 in its image 
plane. If the images at m11 and m12 are from the same bee, the back-projected vectors 𝑉!!&&&&&⃗  and 
𝑉!"&&&&&⃗      should intersect at a location in 3D space (say, M1). However, due to the presence of 
noise and imperfect camera calibration, the vectors will not intersect: they will be separated by 
a small perpendicular distance ∆d11, as shown in Fig. 3.  If the images in Cameras 1 and 2 are 
from different bees, as depicted by m11 and m12, the perpendicular distance ∆d12 between the 
two back-projected rays will, in general, be greater than ∆d11. Correct correspondence can 
therefore be achieved by determining, for a given bee image in Camera 1, the bee image in 
Camera 2 that produces the lowest perpendicular distance between the back-projected rays. 
This is the ‘Minimum Perpendicular Distance’ method that we use to solve the ‘correspondence 
problem’. To implement this method, we need to compute the perpendicular distance between 
the back-projected rays from Cameras 1 and 2. This procedure is described below.  
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The perpendicular distance, in 3D, between any two ray vectors can be computed as follows: 
We define 𝑛!&&&&⃗   and 𝑛"&&&&⃗ 		to be unit vectors representing the directions of the back-projected 
vectors 𝑉!!&&&&&⃗  and 𝑉!"&&&&&⃗ ,  respectively (see Fig. S1, Supplementary File 3). These can be readily 
computed, because V!!&&&&&&⃗  and 𝑉!"&&&&&⃗  are known. (In fact, 𝑛!&&&&⃗  and 𝑛"&&&&⃗  do not need to be unit vectors: 
they can be of any length, and their lengths need not be equal). The direction of the unit 
perpendicular distance vector 𝑝	is then given by the cross product of 𝑛! and 𝑛": 
 

�⃗� = !!"""""⃗ ×!""""""⃗
|!!"""""⃗ ×!""""""⃗ |

 
 
𝐶1	and 𝐶2	are arbitrary points on the back projected vectors 𝑉!!&&&&&⃗  and 𝑉!"&&&&&⃗ , respectively. Here, 
we have chosen  𝐶1	and 𝐶2 to be the nodal points of Cameras 1 and 2, respectively.  
 
 
Then, as shown in the derivation in Fig. S1, the perpendicular distance 𝑃 is given by the 
projection of 𝐶"𝐶!&&&&&&&&&⃗  on �⃗�, which is obtained from the magnitude of their dot product: 
 

𝑃 = ∆d11 = | (𝐶2&&&&⃗ − 	𝐶1&&&&⃗ ) . 𝑝| = =(𝐶2&&&&⃗ − 	𝐶1&&&&⃗ ). 𝑛1
%%%%%⃗ ×𝑛2%%%%%⃗
'𝑛1%%%%%⃗ ×𝑛2%%%%%⃗ '

= 
 
Our perpendicular distance-based stereo-matching algorithm processes the image sequences 
from the two cameras as follows: 
 

1) The 2D trajectories of the images of the bees captured in the video from Camera 1 are 
considered to be the reference tracks. The algorithm compares each reference track 
from Camera 1 with each of the tracks in the video from Camera 2. 
 

2) Before considering a 2D track from Camera 2 for further processing, the program 
checks if this track has video frames that overlap with the frames of the reference bee’s 
2D track. If there are no overlapping frames, it means that the tracks in the two cameras 
did not overlap at all in time, which implies that the two tracks in question arose from 
different bees.  This is the first step in the procedure for eliminating mismatched tracks 
in Camera 2.   

 
3) Next, the algorithm performs a comparison between each 2D reference track from 

Camera 1, and all of the surviving 2D tracks from Camera 2. For each coinciding frame 
between a reference track in Camera 1 and all of the surviving tracks in Camera 2, we 
compute the perpendicular distance between the ray vectors emanating from Camera 1 
and Camera 2. For example, consider a comparison of the first frame of reference track 
#1 from Camera 1with 80 different surviving tracks, in the corresponding frame from 
Camera 2. This comparison will provide 80 perpendicular distance values for this 
frame. We repeat this step for each of the   overlapping frames, and compute a mean 
perpendicular distance for each of the 80 candidate tracks in Camera 2. This yields a 
total of 80 mean perpendicular distances. Three valuable inferences can be drawn from 
this array of 80 mean perpendicular distances: (a) We consider the value of the 
minimum mean perpendicular distance. If this value is lower than 10 mm, then the 
corresponding track in Camera 2 is the one that matches the reference track #1 from 
Camera 1. (b) If the first and second lowest mean perpendicular distances (arising from 
two candidate tracks in Camera 2) are both less than 10 mm, and if the difference 



between them is less than 6 mm, then the two well matching tracks arise from the same 
bee appearing twice in Camera 2’s field of view, during different time windows.  In 
this case, we treat the mean perpendicular distance values obtained for the two 
candidate tracks as originating from the same bee, and we use the average of these two 
values to represent the appropriate mean perpendicular distance for that particular 
combination of tracks. (c) If the value of the mean perpendicular distance is greater 
than 10 mm for all of the 80 candidate tracks, then the bee corresponding to reference 
track #1 from Camera1 was never in the field of view of Camera 2. This enables the 
identification of the bee track in the video from Camera 2 that best matches the track 
of reference track #1 as well as the exclusion of bees that are in the field of view of 
Camera 1, but are not visible in Camera 2. [Note that the criterion distance (10 mm) is 
selected and fine-tuned by the user, based on the density of bees in the cloud]. 
 

4) On completion of steps (1-3) we have, from the 80 tracks in Camera 2, the candidate 
track that provides the best stereo match for reference track #1 from Camera 1. This 
candidate track in Camera 2 is taken to be the one that was produced by the bee that 
generated reference track #1 in Camera 1. That is, these two tracks are labelled as 
constituting a stereo pair generated by bee #1. 

 
5) This procedure is now repeated by treating each of the remaining tracks in Camera 1, 

in turn, as the reference bee, and finding its corresponding stereo-matched track in 
Camera 2. We note that, with each successive reference track that is considered, the 
number of Camera 2 tracks for comparison decreases by one, because of the 
progressively increasing number of tracks that have already been stereo-paired. 

 
 
b) Minimum reprojection error method 
 
Another approach for solving the stereo correspondence problem is to use Matlab’s 
‘triangulate’ command43. The ‘triangulate’ function, in general, returns the 3D location of a 
matching/non-matching pair of 2D image points from any two stereo images. But it does not 
tell us whether it has triangulated a correct pair of image points or not. However, we can infer 
this information by looking at the reprojection error (RPE) parameter returned by the 
‘triangulate’ function in Matlab.  
 
Basically, the reprojection error in each camera’s image plane is the distance (in image pixels) 
between the centroid of the image of a bee, and the centroid of a back-projected image of the 
3D position of the bee, as estimated by Matlab’s stereo algorithm. Matlab delivers the  value 
of the reprojection error registered in the two camera images.  
 
In general, the RPE is low when the images in the two cameras are matched (i.e. when they 
correspond to the same bee) and high when the images are not matched (i.e. when they 
correspond to different bees).  We use a RPE threshold of 10 pixels: images in the two cameras 
are considered to belong to the same bee if their RPE is less than or equal to 10 pixels, and to 
different bees if their RPE is greater than 10 pixels.  This error threshold was selected after 
inspecting the RPE values for a large number of arbitrarily paired bee images. 
 
The procedure for discovering matching pairs of trajectories in the two camera images is the 
same as that described for the minimum perpendicular distance method, except that in this case 
the minimum perpendicular distance criterion is replaced by the minimum reprojection error 



criterion. For any given reference bee image in Camera 1, if the mean RPEs for all of the 80 
candidate bee images in Camera 2 are greater than 10 pixels, then we conclude that there is no 
corresponding bee image in Camera 2. And if the mean RPEs for any two bee image pairs are 
lower than 6 pixels, we assume that they both represent matching image pairs of the same bee, 
and that this bee has entered the field of view of Camera 2 twice. 
 
To our knowledge, none of the previous stereo tracking studies24,35,42,44 have evaluated the 
accuracy of their stereo-matching algorithms. We conducted a control experiment to assess the 
accuracy of the two stereo-matching techniques described above. This control experiment is 
described in the following section. 
 
c)  3D Reconstruction of bee trajectories 
 

When a reference bee is correctly stereomatched with its counterpart in Camera 2, then the 
unique ID number of that particular reference bee is saved. This process is repeated for each 
reference bee, to find all of the stereomatched pairs in the data. Using the obtained unique ID 
numbers, for each stereo-matched pair of bee image trajectories the respective 2D head and tail 
positions (in image coordinates) are passed to a triangulation routine which generates the 3D 
head and tail trajectories of that particular bee. This procedure is repeated for all of the matched 
image tracks to obtain the 3D head and tail locations of each bee in every frame and to 
reconstruct 3D trajectory of each bee.  
 
 
4) CONTROL EXPERIMENT 
 
The control experiment used the same camera system, but a different arena.  The experiment 
used twelve balls, of different sizes and colours, which were individually identifiable in each 
camera by visual inspection. A 1.96m x 1.56m sheet of white corflute was laid on the ground. 
The positions and orientations of the two cameras were arranged to ensure that each camera’s 
field of view fully covered the corflute sheet. The 12 balls were dropped from a height on the 
corflute sheet and were filmed by the two video cameras at 25 frames/sec as they bounced. The 
white background of the corflute sheet provided a high-contrast background against which the 
individual balls could be detected and identified accurately. Therefore, it was possible to match 
the corresponding images of each ball in the two camera images manually, with 100% 
accuracy, frame by frame. This process of manual matching provided the ground truth 
information, against which the two automated stereo-matching methods described above could 
be compared. Before recording the data, the usual stereo camera calibration procedure was 
performed to obtain the intrinsic and extrinsic parameters of the two cameras. 

 
  

Next, a few random image pairs were extracted from the captured video data. One such image 
pair is shown in Fig. 4, which depicts 10 of the 12 balls used in the experiment. The centre of 
mass (CoM) of each ball in the scene was manually digitised using the ‘ImageJ’ tool, to obtain 
its pixel coordinates in the 2D image. The corresponding images of each ball in the two views 
were matched manually, as each ball could be unambiguously identified in the two images, 
based on its colour and size. This manual matching provided the ground truth for the control 
experiment, which was used to validate and compare from the accuracy of the two automated 
stereomatching algorithms.  As per our usual convention, the ball images in Camera 1 were 
considered as reference images, and the two stereomatching algorithms were run to select the 
corresponding images in Camera 2, for each reference ball in Camera 1. 



 

 
 
Figure 4. A stereo-pair captured by the camera system during the control experiment. The 
manually matched images of each ball in the two images are indicated by the numbers.  This 
particular image pair contains only 10 of the 12 balls used in the experiment, as the other two 
balls had left the fields of view of both cameras by then.  
 
 
 
TECHNICAL VALIDATION 
 
 
1) VALIDATING 2D TRAJECTORIES 
 
As we do not have any ground truth information on the 3D trajectories of the bees flying in the 
cloud, it was not possible to perform a direct quantitative evaluation of the accuracy of the 
trajectories generated by our algorithms. However, the developed algorithms can be used to 
identify and eliminate various tracking errors and mismatches. It is also possible to validate the 
algorithms by using known parameters such as the body length and the expected turning rates 
of honeybees, as we show below. 
 
 
(a) Body orientation and length  

 
The orientation of the bee’s body, as obtained from the computed estimates of the 3D positions 
of the head and the tail, can be used to test the validity of the 3D reconstructions of the bees’ 
trajectories. Given the high video frame rate (200/s), one would not expect the orientation of 
the bee’s body to change substantially between successive frames. A large change in the 
computed orientation between frames would occur only if (a) the head and tail positions of a 
bee’s image have been erroneously swapped, or (b) if the images in the two frames do not 
represent the same bee, due misidentification. Fig. 5a shows the magnitude of the maximum 
change in body orientation (Δ𝜃), between successive frames for each bee. It is clear that the 
(Δ𝜃)  values are consistently low, with the mean being 8.0 deg, and 90% of the values being 
lower than 6.2 deg. This confirms that there has been no misregistration of orientation, or 
misidentification of bees in the process of reconstructing the 3D trajectories, thus proving one 
form of validation.  
 
Another way to check the validity of the reconstructed trajectories is to examine the lengths of 
the bodies of the bees, from the computed 3D positions of the head and the tail. The mean body 
length, averaged over all bees, is 13.6 mm ± 1.32 mm (SD), (see Fig. 5b), which agrees very 
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well with the known average body length of around 12-15 mm45 for the honeybee (Apis 
mellifera). 
 

 
 
Figure 5. (a) Maximum absolute value of the frame-to-frame change in the body orientation of 
each bee. (b) Mean body length of each bee, averaged over its entire flight trajectory.  
 
 
(b) Manual validation  
 
Once a bee was tracked, we plotted its 2D head and tail positions, and body orientations, over 
its entire flight. We performed a high-level check to see if the tracked 2D trajectory resembled 
the original flight path of the bee by visually comparing the tracked 2D trajectory with the 
flight path of the bee in the raw footage. We also checked for any visually obvious abnormal 
changes in the direction of flight of each bee’s 2D trajectory. The 2D trajectories were then 
overlaid on their respective camera views to verify that the tracked head and tail positions 
matched the corresponding bee images in each camera view. Two such video excerpts where 
the generated 2D trajectories are overlaid on the respective camera views are given in 
Supplementary File 1.  
 
While reconstructing the 3D trajectories of the bees, we noticed that the trajectory would 
occasionally go outside the boundaries of the arena. One possible reason for this erroneous 3D 
track is misidentification of the bee (i.e., an identity swap) in one of the camera views. This 
can occur particularly when there is an image of another bee near the image of the tracked bee, 
which is also flying in approximately the same direction. Fortunately, our matching algorithms 
provide a means for detecting such identity swaps. When the tracking of a bee in one of the 
camera views is abruptly switched to a different (incorrect) bee, this shows up as an abrupt and 
large increase in the MPD and the MRPE. Apart from obtaining a high value of MPD and 
MRPE, at times, one might also observe a sharp discontinuity in the reconstructed 3D 
trajectory, possibly taking it outside the arena boundary.  
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2) RESULTS OF THE STEREO-MATCHING TECHNIQUES, AND OF THEIR 
APPLICATION AS A TRAJECTORY VALIDATING PROCEDURE  

 
In this section, we first show the results obtained from the two stereo-matching programs 

when they are applied to the 2D trajectories of the bees obtained from the two camera views. 
We also describe how we verify the validity of the results. Finally, we describe the results of 
the control experiment for evaluating the accuracy of the stereo-matching techniques 
developed and used in this study.  

 
As described in the ‘Methods’ section we compute, for each reference bee in Camera 1, the 

minimum mean perpendicular distance (MMPD) for each of the bee trajectories in Camera 2 
to obtain a set of mean perpendicular distances (MPDs).  The number of MPDs obtained will 
vary from one reference bee to the next, because this will depend on the number of frame 
synchronised bees that are present in Camera 2. The pair that yields the lowest MPD (i.e. the 
MMPD) is considered to represent the matching pair. The results are shown in Fig. 6, which 
presents the results obtained for bees 1-100 (Fig. 6a) and for bees 101-200 (Fig. 6b), in each of 
which the image sequences of 100 bees were matched. The MMPD value obtained for each 
reference bee is shown as a blue dot, and the flanking blue bars represent the standard deviation 
of the perpendicular distance (PD) measured across all of the frames in which this bee was 
present in both camera views. The overall mean value of the MMPD, averaged across all the 
reference bees, was found to be 2.06 mm. The second-lowest MPD values are shown in green, 
with the green dots and vertical lines representing the mean and standard deviation of the PD 
values. The overall mean value of the second lowest MPD, averaged across all the reference 
bees, was found to be 57.84 mm, which is significantly greater than the lowest MPD  
(p =1.84	 × 10!"#, one sided t-test). The magenta dots show the averages of the MPD values 
(the third-lowest value to the highest value) for the remaining bees, and the flanking bars show 
the standard deviations of these values. It is clear that the MPD values obtained for the 
remaining bees are substantially (and significantly) higher than that obtained for the bee which 
generates the lowest MMPD, which is the matching bee (p = 3.01	 × 10!$%&, one sided t-test ).  
For each reference bee, the corresponding matching bee always yields a MMPD that is lower 
than 10 mm. For all non-matching bees, the MMPD is considerably greater than 10 mm. These 
observations confirm the high reliability with which the MMPD algorithm selects correctly 
matching bees in the two camera views. 

 
 

 
 



 
 
Figure 6. The Mean Perpendicular Distances (MPDs) computed for the first set of 100 
reference bees (bees # 1-100) (a), and for a second set of 100 reference bees (bees # 101-200) 
(b). Details in text.  
 
Fig. 7 shows an analysis similar to that in Fig. 6 but compares the reprojection errors (RPEs), 
rather than the perpendicular distances, for the same 200 reference bees.  The lowest mean RPE 
(blue dots), averaged across all reference bees, was 3.44 pixels. The second lowest mean RPE 
(green dots), averaged across all reference bees, is 31.35 pixels, which is significantly greater 
than the lowest mean reprojection error (blue dots) (p = 5.40	 × 10!&', one sided t-test). The 
magenta dots show the averages of the RPE values (the third-lowest value to the highest value) 
for the remaining bees, and the flanking bars show the standard deviations of these values. It 
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is clear that the RPE values obtained for the remaining bees are substantially (and significantly) 
higher than that obtained for the bee which generates the lowest RPE, which is the matching 
bee (p = 8.68	 × 10!$$(, one sided t-test).  For each reference bee, the corresponding matching 
bee always yields a mean RPE that is lower than 10 pixels. For all non-matching bees, the mean 
RPE is considerably greater than 10 pixels. These observations demonstrate the good accuracy 
with which the RPE algorithm selects matching bees in the two camera views. However, as we 
shall show below, the MMPD algorithm is slightly more reliable than the MRPE algorithm, on 
several counts. 

 
Figure 7. Mean Reprojection Error (MRPEs) computed for the first set of 100 reference bees 
(bees # 1-100) (a), and for a second set of 100 reference bees (bees # 101-200) (b). The red 
dots represent instances in which the MMRPE yields the incorrect match, but the MMPD yields 
the correct match. The other symbols have the same meanings as in Fig. 6.  Details in text. 
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Firstly, we compared the accuracies of the two algorithms in selecting matching image pairs 
by examining the best-matching pair and the second best-matching pair. In some instances both 
algorithms yielded two pairs that met the respective matching criteria (MMPD < 9 mm, and 
MMRPE < 7 pixels), but the pair selected by the MMPD algorithm was different from the pair 
selected by the MMRPE algorithm. These instances were rare – they occurred only in reference 
bees 5, 8, 28, 49 and 172, and are indicated by the red dots in Fig. 7. For these instances we 
inspected the videos from the two cameras  visually to determine the correctly matching  pair, 
by examining  (a) the similarity of the direction of movement of the images of the candidate 
bees in the two camera views; (b) synchronised turning of the bee images in the two camera 
views46; and (c) similarities in the points where the candidate bees in the two views  appeared 
to move outside the arena boundary. We found that, in all five instances, the MMPD algorithm 
determined the correct matching pair, while the MMRPE method selected the wrong pair. Thus, 
the MMPD method is 100% accurate in selecting the correctly matching pair for all of the 
reference bees. The MMRPE method is nearly as accurate, displaying an error rate of 5 in 200 
examples, or 2.5%.  
 
With both methods, the accuracy improves with the duration of the trajectory (the number of 
frames), because mismatches occur only in a small percentage of the frames. Matching errors 
are more likely to occur with short trajectories (e.g. bee # 5,8) because mismatches in even a 
small number of frames would have a significant effect on the computed overall MMPD and 
MMPRE. Nevertheless, even with the shorter trajectories, we find that the MMPD method 
consistently yields the correct matches.   
 
As mentioned earlier, the stereo-matching algorithm can be used to detect erroneous identity 
(ID) swaps that occur during the tracking process. This could happen, for example, when a 
tracked bee abruptly disappears from the field of view of one camera, and its subsequent track 
is replaced by that of a neighbouring bee that remains in the field of view. In order to 
demonstrate the ability of the algorithm to detect such errors, we created 2D trajectories of bees 
with their identities deliberately swapped with other bees. We did this by creating a trajectory 
in which the 2D head and tail positions of a particular reference bee were used up to the halfway 
point in its flight. Beyond this point, the 2D head and tail coordinates of a different bee (which 
was also flying at the same time in the arena), were appended to the trajectory of the reference 
bee previously considered. This is one way of emulating an accidental identity swap scenario 
for testing purposes. The usual procedure of minimum distance and reprojection error-based 
stereo-matching techniques were then applied to these manipulated trajectories. The results 
from the two stereo-matching techniques for five correct and five ID swapped trajectories are 
shown in Table 1. 
 

 
Reference bee # 

Trajectories with ID swaps Trajectories without ID swaps 
Lowest MPD 
(mm) 

Lowest MRPE 
(pixels) 

Lowest MPD 
(mm) 

Lowest MRPE 
(pixels) 

7 326.6 69.7 2.1 4.2 
50 47.1 24.3 0.9 1.6 
30 72.4 21.0 0.6 2.2 
32 135.8 65.4 4.1 6.6 
12 256.3 147.7 2.2 1.3 

Table 1. Lowest mean minimum distance and lowest mean RPE values obtained from 5 
reference bees, when their trajectories contained (left) or did not contain (right) deliberately 
introduced ID swap errors.  
 



It is evident from this table that the lowest MPD and MRE values are considerably larger when 
ID swaps are introduced into the reference trajectories, than when they are not. Therefore, the 
two stereo-matching algorithms are capable of reliably detecting when the 2D trajectory of a 
particular bee in the video sequence from Camera 1 is erroneously swapped, midstream, with 
the 2D trajectory of another bee.  
 
In addition to the validation procedures discussed above, we performed a control experiment 
to assess the accuracy of the two stereo-matching techniques. The details of the control 
experiment are given in the Methods Section, and the results are discussed below. 
 
A random image pair was selected from the video footage of the control experiment. The 2D 
coordinates of each ball were digitised (manually) in the two camera views in a particular order 
for better visualisation of the results. The balls in the two views were digitised in the following 
sequence: (1) orange-violet basketball, (2) red-blue basketball, (3) pink-red ball, (4) blue 
football, (5) yellow football, (6) small red ball, (7) small blue ball, (8) small green ball, (9) 
small yellow ball, (10) small pink ball, (11) small light pink ball, and (12) yellow plastic ball. 
It was possible to visually match images of corresponding balls in the two images manually 
with 100% accuracy, as each ball could be uniquely identified from its colour and size. This 
provided the ground truth for assessing the accuracies with which the MPD and MRPE 
algorithms selected the correctly matched image pairs. 
 
Fig. 8a shows the results obtained by applying the PD and RPE algorithms in a randomly 
selected (time-synchronized) pair of camera images. The numbers in the pairing matrix show 
the computed PD and RPE values for each visible candidate pair. It is clear that both the PD 
and the RPE values are lowest for the correctly matched pairs, highlighted by the maroon cells 
along the diagonal of the pairing matrix. This demonstrates that both algorithms are capable of 
selecting all of the correctly matched image pairs - except in those cases in which a ball is not 
present in one (or both) camera images, as signified by the ‘NA’ symbols. 
 
Fig. 8b shows the results obtained from another randomly selected image pair. Again, both 
algorithms are able to match all visible pairs with 100% accuracy. This control experiment 
provides another validation of the two matching algorithms developed and examined in this 
study. 
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Figure 8. Results of the control experiment, showing a comparison of the perpendicular 
distance (PD) and the reprojection error (RPE) values computed from two randomly selected 
image pairs (a, b), for all possible candidate ball pairs. The PD and RPE values are shown in 
blue and black, respectively. The lowest PD and RPE values are obtained for the correctly 
matched pairs, as shown by the cells highlighted in maroon, which lie along the diagonal of 
the pairing matrix. NA implies that the particular ball was not available in that camera view.  
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The flight trajectories of 15 different bees that were visible the first 300 frames of bee cloud 
data 1 are shown in Fig. 9. It should be noted that there were as many as 13 other bees flying 
in the same time window, but all of the bees were not included in the plot to ensure clear 
visualization of the individual trajectories. In total, there are 382 individual 3D bee trajectories 
in the two bee cloud datasets, comprising 121544 head and tail positions (dataset-1: 70771 
head & tail positions, dataset-2: 50773 head and tail positions). The Supplementary File 2 
(movie S3 & S4) shows the trajectories of all bees flying in the two sets of bee cloud data that 
were filmed, digitised and analysed in this study. 
 

 
Figure 9. 3D reconstructed trajectories of 15 different bees that were imaged during the first 
1.5 seconds (300 frames) of the recorded bee cloud data 1. The flight path of each bee is shown 
in a different colour. The starting point of each trajectory is indicated by a hollow circle and 
end point by an asterisk. The head position and body orientation of each bee are shown as a 
red dot and a black line, respectively, at 10 frame intervals.  
 
 
 
 
 
 
 



DATA RECORDS 
 
The dataset (Data Citation 1) consists of head and tail positions of bees filmed in two different 
bee cloud events. The first and second bee cloud data were recorded for 7.9 & 7 seconds, 
respectively. The head and tail positions of each bee across the frame sequences are provided 
in separate text (.txt) files. The first column is the unique ID number of each reference bee. The 
second column specifies the frame number in the video sequence. The third, fourth and fifth 
columns in each file provide the x, y and z coordinates of the head (or tail) in mm with respect 
to the coordinate system of the arena. The sixth column contains a flag variable (‘H’ or ‘T’), 
which indicates whether the x, y and z coordinates represent the head or the tail position of the 
bee. Finally, the seventh column indicates whether the data in the file correspond to the first or 
the second bee cloud.  
 
 
We have named each file according to the format ‘CLOUD_EVENT_*_BEE_#_HEAD_POS.txt’ 
and ‘CLOUD_EVENT_*_ BEE_#_TAIL_POS.txt’, where ‘#’ is the unique ID number of each 
bee in the data and ‘*’ is the bee cloud event number. Thus, the file name also identifies whether 
it carries data on head positions or tail positions.   
 
 
Code availability 
 
The code for tracking and stereomatching is available at https://github.com/mahadeesh/Bee-
tracking-and-stereomatching-files. 
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