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Abstract 

 

Quantum refinement (Q|R) of crystallographic or cryo-EM derived structures of 

biomolecules within the Q|R project aims at using ab initio computations instead of 

library-based chemical restraints. An atomic model refinement requires the calculation of 

the gradient of the objective function. While it is not a computational bottleneck in classic 

refinement it is a roadblock if the objective function requires ab initio calculations. A 

solution to this problem adopted in Q|R is to divide the molecular system into manageable 

parts and do computations for these parts rather than using the whole macromolecule. This 

work focuses on the validation and optimization of the automatic divide-and-conquer 

procedure developed within the Q|R project. Also, we propose an atomic gradient error 

score that can be easily examined with common molecular visualization programs. While the 

tool is designed to work within the Q|R setting the error score can be adapted to similar 

fragmentation methods. The gradient testing tool presented here allows a priori 

determination of the computationally efficient strategy given available resources for the 

potentially time-expensive refinement process. The procedure is illustrated using a peptide 

and small protein models considering different quantum mechanical (QM) methodologies 

from Hartree-Fock, including basis set and dispersion corrections, to the modern 

semi-empirical method from the GFN-xTB family. The results obtained provide some general 
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recommendations for the reliable and effective quantum refinement of larger peptides and 

proteins. 

 

1. Introduction  

Accurate and reliable structures of bio-macromolecules at an atomistic level have been 

instrumental in our understanding of biological processes [1, 2, 3], drug design [4] or protein 

engineering [5]. Atomic model refinement provides an efficient route to obtain high-quality 

models of such molecules. Refinement takes an atomic model and improves it to optimally 

match the data that originates from a crystallographic or cryo-EM experiment [6]. However, 

the limited resolution of the experimental data and low data-to-parameter ratio require the 

refinement procedure uses a priori chemical information. This chemical information is 

utilized as stereo-chemical restraints or constraints [7, 8] (such as bond lengths, bond angles, 

torsion angles, and so on) and originates from various sources, such as small molecule 

databases (Cambridge Structural Database (CSD) [9, 10], Crystallography Open Database 

(COD) [11]) or the ultrahigh-resolution protein structures (Conformation Dependent Library 

(CDL) [12, 13, 14]). These restraints are limited to the information available in the databases 

and fail to easily cope with novel chemical moieties such as new drugs [15, 16, 17, 18] or 

unusual local arrangements [19, 20, 21]. Also, they do not account for electrostatic effects 

[19] or local and typically unique to the structure non-covalent interactions such as 

hydrogen bonds, salt bridges, -stacking and more [22, 23]. 

Quantum mechanical (QM) methods have proven to be powerful, predictive tools in 

protein structure research [24, 25, 26, 27, 28, 29]. One of the examples is our newly 

developed quantum-based refinement (Q|R) package [30] that combines QM and 

crystallographic [26] or cryo-EM [27] experimental data. The Q|R software is developed as 

an open-source module of the Phenix package [31]. It does not require any of the static 

library-based parameterized restraints (such as Monomer Library; [32, 33]) using QM 

calculations instead. The existing developments that use quantum mechanical calculations 

as a source of restraints for macromolecular crystallographic refinement employ methods 

based on multiscale QM/molecular mechanics (MM) [34, 35], semi-empirical [3] or 

linear-scaling density functional theory [36]. These tools typically focus on the region of 

particular interest in the macro-molecule (e.g., ligand or ligand-binding pocket) while 

neglecting the rest of the model or treat it with the standard classic approach using 

stereo-chemical restraints. In Q|R based refinements the whole protein structure is treated 

at the QM or semi-empirical (SQM) level, for example, the HF/6-31G level, employing also 

London dispersion (D3) [37] and basis set incompleteness (gCP) corrections [38] or by 

GFN-xTB [39], accounting for the polar environment by means of continuum solvent model 

(CPCM/COSMO [40] or internal xtb generalized born (GB) solvation model).  

QM restraints provide more chemically meaningful bio-macromolecular structures [41]. 

However, the issue of computational scalability in QM methods [42] is one of the main 

obstacles to perform reliable and efficient QM calculations in the quantum-based 

refinement. Although computational algorithms and hardware resources steadily improve, 

this issue remains [43]. 

The atomic model refinement requires calculation of an objective function value and its 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.517825doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.24.517825


 

 3 

gradients with respect to refinable parameters (e.g., Cartesian coordinates), where the 

objective function is a weighted sum of stereochemical restraints (classic or quantum) and 

the experimental data term [6]. To address the scalability issue the whole QM gradient can 

be computed by one of the divide-and-conquer methods [29, 44, 45, 46, 47]. Assuming that 

the molecules in the local area of the macro-molecular system are hardly affected by the 

molecules further away, in principle, any large protein can be divided into a group of smaller 

pieces [44, 48]. In the Q|R project we are using our own partitioning scheme [49] where the 

macromolecule is divided into clusters. A fragment contains the cluster and its surrounding 

buffer region. This partitioning algorithm is crystallographic symmetry-aware [50]. Since the 

energies arising from individual clusters cannot be combined into the total energy, the Q|R 

refinement only uses the energy gradients. The QM energy gradients for all atoms from each 

of the fragments are computed with only the gradients from each cluster combined to 

create the total gradient. This procedure has been already successfully applied to improve 

several molecular models by quantum refinement in connection with experimental data 

from X-ray crystallography [49, 50] and cryo-EM [51]. It has been also used in the QM 

optimization of protein structure [51]. The divide-and-conquer procedure can potentially 

introduce and accumulate errors at the dividing boundaries of the clusters due to, for 

example, insufficient size of the buffer region. This problem can be readily alleviated by 

expanding the buffer region which in turn will increase the time of computations (often by a 

large margin). 

Here we continue our series [30, 49, 50, 51] of publications that document the evolution 

and progress of the Q|R project. In what follows we describe how divide-and-conquer 

procedure can be optimized to minimize these errors without substantial increase of the 

computational time, which sets another milestone along the road of the Q|R project. 
 

2. Methods  

2.1 Model selection and preparation 

We use two of the models from the test set of 70 peptide and protein structures 

employed in previous works [52]. The first model (PDB entry 3ftL, 17 residues, 109 atoms, 

1.60 Å resolution) is sufficiently small to allow the detailed analysis of all possible clustering 

schemes as well as an extensive testing of parameters defining fragments for which QM 

computations are performed. 3ftL is an amyloid peptide with highly ordered and packed 

aggregates stabilized by intermolecular contacts spanning across symmetry copies [53]. This 

makes this model a suitable candidate for a validation and analysis of Q|R 

divide-and-conquer procedure. The second model (PDB entry 3q2c, 128 residues, 787 atoms, 

2.50 Å resolution) has been selected as a larger and more complex example with different 

secondary-structure patterns. These models were prepared for test as following. The atomic 

model and reflection data files have been obtained from the RCSB PDB Database [54] and 

then refined using phenix.refine [31, 55] using default settings in order to obtain an optimal 

starting point. The model was next completed by adding hydrogen atoms using the 

qr.finalise [30] tool that is part of the Q|R software suite. The resulting models (3ftL 209 

atoms, 3q2c 1611 atoms) have been used for the gradient analysis using Q|R. Additionally, 
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the similar tests have been performed for the models used previously [51]. 

The crystallographic symmetry-aware divide-and-conquer procedure in Q|R [49, 50] 

includes expansion of the unit cell content in space, which is referred to as super-sphere. The 

super-sphere contains the model in question and residues from symmetry copies that fall 

within a pre-defined distance (RSS) from the model. This symmetry expansion distance (RSS) 

is set to 10 Å by default. Once the super-sphere is obtained, the model is partitioned into 

fragments, where each fragment is composed of one cluster and surrounding buffer region. 

The buffer region is needed to account for covalent and non-covalent interactions and 

should be sufficiently large for accurate QM calculations. If needed, the buffer region can be 

further extended to create a so-called double-buffer by adding another layer of residues, 

interacting with a previously constructed (single-buffer) fragment. It should be noted that 

the RSS distance does not affect division of model into clusters, but only influences the size of 

buffer region. 

2.2 Automated testing for accuracy of QM gradient 

Clustered gradient is the gradient for the whole model that is calculated as an 

accumulation of individual gradients arising from each cluster. Therefore, the clustered 

gradient is an approximation to the exact gradient calculated for the whole model. This is 

because surrounding atoms interact with the cluster through covalent and non-covalent 

interactions. Inaccuracies of the clustered gradient arise from the two aspects of making a 

cluster: cutting through covalent bonds (followed by capping of naked atoms at the cut) and 

limiting the non-covalent interactions. Calculation of the clustered gradient (and therefore 

its accuracy) is governed by several parameters, such as (i) RSS distance used to define the 

super-sphere, (ii) maximum allowed number of residues in each cluster, (iii) size of the buffer 

region surrounding each cluster (e.g., single- or double-buffer). The larger the super-sphere 

and the thicker the buffer, the more accurate clustered gradient will be and the more time 

will be required to calculate it. However, the gradient from the whole model and the 

clustered gradient can never match exactly due to numerical errors and errors arising from 

capping. An automated procedure described here aims at obtaining the set of these 

parameters that minimize the errors in the clustered gradient using the least computational 

time possible. For this a new command-line tool was added to the Q|R project named 

qr.gtest. To evaluate the error in the clustered gradient a reference to compare with (e.g., 

the exact gradient) is needed. This reference gradient is calculated only once either from the 

whole super-sphere (if computationally possible) or from the clustered gradient obtained 

with the sufficiently large buffer region (if the molecule is too large to use the whole 

super-sphere). In this work we use the gradient calculated from the super-sphere as the 

reference. 

There are two options available in the qr.gtest. One will proceed with the computation of 

the reference gradient where the model is not divided at all. In that case the QM gradient is 

computed for the whole super-sphere. The second option tests (i) different possibilities of 

the maximum allowed number of residues in each cluster, which define how the model is 

divided; and (ii) the size of the buffer region needed for each cluster. In all cases qr.finalise is 

used to cap atoms to assure correct atomic valences at cutting points. 

In this work we have tested the effect of the super-sphere size on the gradient error by 
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considering the RSS distance between 1 and 30 Å for the computations of QM gradients. 

Additionally, we analyzed the fragment size and composition obtained with single- and 

double-buffer. 

2.3 Analysis and error evaluation for the clustered gradient 

In order to analyze errors in clustered gradient the computation of reference gradient and 

the gradient obtained from divide-and-conquer procedure (clustered gradient) with different 

set of parameters are required. Then QM gradients computed for all clusters are analyzed 

with respect to the reference. Technically this is done by the qr.granalyse (“gradient analyse”) 

tool that automatically collects previously calculated and stored gradients and sorts them 

according to fragment and buffer size, and takes the gradient with the largest buffer (or if 

available from super-sphere) as reference unless manually specified otherwise. For each 

gradient an analysis described in the following is done and a PDB file is written for 

visualization. For each atom i in the model a measure of the atomic-gradient error (here 

referred to as the weighted difference gradient δi) is computed and written into the B-factor 

field of the PDB file. That allows an easy color-shaded visualization of δi using standard 

biomolecular viewers.  

In the error statistic we follow the idea of a regularized error [56], where we consider 

relative errors for large gradient differences and absolute errors for the small ones with the 

goal to bring both at a comparable level. As the regularisation we have chosen to use the 

median over all atomic gradients, instead of an arbitrarily pre-defined value as in [56], 

because the magnitude of the energy gradients is generally unknown. This choice was tested 

by detailed inspection of all gradients and their errors for the 3ftL case confirming that this 

metric follows what could be intuitively considered as small and large errors. 

Firstly, we define the nuclear gradient matrix as 

g = dim(3 ,   N), (1)  

with N being the number of atoms. For each atom i the atomic difference gradient ∆Gi 
is expressed as the sum of the differences of the 3 cartesian component (c=x, y, z) with 
respect to the reference: 

∆Gi= ∑ |g (c ,  i) - g
ref

 (c ,  i)|

x,y,z

c

. (2) 

Finally, the weighted difference gradient δi for atom i is computed as  

δi=100⋅
‖ΔGi‖

Max(||g
ref

(i)||, Median(||g
ref

(N)||)
, (3) 

and the average over all N atoms is 

δ̅=
1

N
∑ δi

N

i=1

. (4) 

Where ||∆ Gi|| is the norm of the difference gradient for the atom i, ||g
ref

(i)|| the norm of 

the reference gradient for the atom i and Median (||  g
ref

 ( N )||) the median of all the reference 

gradient norms. Considering the reference gradient norm allows treating the magnitude of 
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errors for small and large gradients on a more equal footing, while regularization with the 

Median gradient prevents too small gradients in the denominator from skewing the analysis. 

Moreover, for all cases where δi is larger than 100 (possible for example if the reference and 

tested gradients are of opposite sign) the final value is set to 100 to mimic the percentage 

and treat different cases on a comparable scale. Here we use a colour scheme with dark blue 

being 0 and 100 being red (in PyMol the command is “spectrum b, minimum=0, 

maximum=100”). 

2.4 QM computations 

The Q|R uses the ASE package [57] to interface with many modern QM computational 

software that can be used to calculate the gradients. In this work, we use TeraChem [42, 58, 

59] and xtb [39] as QM calculators. TeraChem is a program employing Graphics Processing 

Units (GPUs) as a computing architecture for electronic structure calculations, which in turn 

allows efficient QM computations for thousands of atoms [58]. TeraChem calculations were 

performed with the Hartree-Fock (HF) method and the 6-31G basis set, with Grimme’s 

dispersion correction D3 [37] and the appropriate corrections for the basis set 

incompleteness via geometrical counterpoise model (gCP) [38]. The gCP and D3 corrections 

are implemented as part of qr.refine add-ons using standalone gcp [38] and dftd3 [37] 

programs. Moreover, the environmental effects have been described employing the COSMO 

polarizable continuum solvent model [60]. The TeraChem computations have been 

performed on a Tesla K80 graphical card using 4 GPUs for the single QM run. The available 

computational resources consisted of total 48 cores, so that 12 single gradient computations 

can run at the same time.  

The xtb computations were performed with the first-generation method named GFN1-xTB 

with bulk solvent effects treated using the internal generalized born (GB) solvation model. 

The GFN1-xTB calculations were executed on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.10GHz 

CPU with a total of 28 cores or an Intel Core i9-10900X CPU with 3.7 GHz frequency and 20 

cores. 

 

3. Results 

3.1 Sensitivity of the clustered gradient to the super-sphere size and QM 

methods 

We start by comparing gradients computed for the whole model, without any clustering, 

but with increased surroundings, which is defined by the super-sphere Rss. We use gradients 

calculated with the largest super-sphere as the reference. The 3ftL peptide unit cell has only 

209 atoms, but due to the close packing the number of atoms in the super-sphere increases 

rapidly with the Rss distance, at some point reaching as many atoms as in a relatively large 

model (such as 3q2c with 1611 atoms), as illustrated in Fig. 1a. The super-sphere obtained 

with the Rss of 15 Å (7321 atoms for 3ftL and 8288 for 3q2c) is the largest for which the less 

expensive GFN1-xTB computations can be performed with our computer resources, which 

was considered as the reference. The trial gradients were computed with the Rss sampled 
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between 1 and 14 Å. Fig. 1b shows the average gradient error 𝛿̅. Starting from about 7 Å, 

the gradient errors become small and reach the plateau. Fig. 2 shows per-atom δi values for 

the 3ftL model calculated using four different Rss values. Clearly the choice of Rss being 7 Å 

yields accurate gradients for all atoms (Fig. 2d). The Rss of 7 Å is also largest for which more 

expensive HF-gCP-D3 computations can be performed. Fig. 1c shows that 𝛿̅ obtained at 

HF-gCP-D3 level are smaller than GFN1-xTB, albeit at a higher computational cost. 

Considering that the default radius of 10 Å would cause unnecessary computational effort 

due to significantly larger number of atoms (3220) the Rss of 7 Å (1951 atoms) was used in 

subsequent analyses for 3ftL in conjunction with all QM methods. At variance, for 3q2c only 

GFN1-xTB method was considered so the default Rss of 10 Å has been used as 

computationally feasible. 

 

3.2 Sensitivity of the clustered gradients to clustering 

Here we analyze how the size and number of clusters affect the clustered gradient error. 

The 3ftL model can be partitioned into clusters using Q|R’s divide-and-conquer method in 

three different ways yielding 6, 3 and 2 clusters as shown in Fig. 3. For larger 3q2c protein 

there are more possibilities, so only some have been considered in this analysis. Fig. 4 shows 

average gradient error with respect to the clustering choice, in conjunction with smaller or 

larger buffer region. We observe that for given QM method and buffering the errors are very 

similar for all clustering choices. 

 

3.3 Sensitivity of the clustered gradients to buffer size 

Here we study how the size of the buffer affects the accuracy of the clustered gradient. 

Clearly, the larger is the buffer the smaller are the errors in the clustered gradient (Fig. 4). 

For example, in case of 3ftL the largest errors resulting from using double versus 

single-buffer are an order of magnitude smaller (1-2 versus 25). However, the larger the 

buffer the longer it takes to calculate those gradients. Therefore, an optimal choice of the 

buffer is important. For that reason we analyse in more detail the atomic gradients obtained 

with different buffers in order to rationalize situations leading to significant local errors. 

Highlighted cases include examples of local errors arising from cutting through covalent and 

non-covalent interactions within the model as well as due to expansion by the 

crystallographic symmetry. 

 

3.3.1 Covalent bonding within unit cell 

The 3ftL peptide is composed of two symmetrical loops, each loop consisting of seven 

residues. In all clustering procedures, each of the A and B chains is cut at the N atom on 

Threonine (residue number 6), so the gradient error on these atoms has been analyzed in 

more detail.  

When cutting the model into two clusters (Fig. 3), this N atom in chain B shows a 

negligible gradient error of 1.3 (Fig. 5a) but this error is 18.2 in the same atom in chain A (Fig. 
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5b). This can be explained by differences in the buffer region. In case of single-buffer, for the 

chain A only one residue is added after the cutting point (Fig. 5b), while for the chain B there 

are two residues past the cut (Fig. 5a). In the case of double-buffer both chains have at least 

three additional residues after the cutting point (Fig. 5c, d), which reduces the error from 

18.2 and 1.3 (single-buffer) to 0.2 and 0.1. 

 

3.3.2 Non-covalent interaction within unit cell 

For the 3q2c the largest gradient errors appear on the oxygen and carbon atoms of the 

Valine residue 22 in chain A, with δi of 92.8 and 56.0, respectively (see Fig. 6a). This oxygen 

atom is involved into the hydrogen bond O···H-N with the Isoleucine 62 in chain A from the 

buffer region. In turn, this Isoleucine residue is truncated in the single-buffer and capped 

with a hydrogen atom. Using the double-buffer adds residues prior and past Isoleucine 62 

(Fig. 6b), creating a six-residues chain and reducing the gradient error down to 0.8 and 3.3 

on O and C, correspondingly. 

 

3.3.3 Interactions with symmetry copies  

For the 3ftL model the largest errors in the clustered gradient were observed for H atoms 

involved in hydrogen bonding with symmetry copies. Namely, the hydrogen bonds D-H···A 

where either the hydrogen donor (D) or acceptor (A) belong to buffer region.  

An example is the hydroxy groups in Tyrosine residue 7 in both chains that interact with 

symmetry copies (Fig. 7). Using the single-buffer results in errors around 11 and 23 on OH 

and HH in both chains, correspondingly, even though the directly interacting residues 

(Glycine 3 -- proton acceptor and Asparagine 5 -- proton donor) are present. Using the 

double-buffer includes more surroundings and that reduces these errors down to almost 

zero.  
 

3.4 Accuracy of clustered gradient for larger proteins 

The gradient error analysis has been also performed for protein models with up to 7000 

atoms (PDB codes: 3j63, 3a5x and chain C of 5fn5) that have shown significantly improved 

geometry metrics after quantum refinement in our recent study [51]. All gradients have 

been computed with the GFN1-xTB model and single-buffer, as employed in the Q|R #3 

paper [51]. For the 3j63 and 5fn5 both super-sphere and double-buffer have been 

considered as reference, and only latter for the largest 3a5x. In all cases minimal gradient 

errors have been achieved with average and maximum δi below 1 and 10, respectively. 
 

3.5 Timings 

Among reliable divide-and-conquer schemes the choice of preferred one for 

computationally extensive refinement can be done based on the time required to compute 

single complete gradient. For that there are two limiting factors: (i) the size of the largest 

fragment (Nfrag 

Max) which defines the most time consuming QM computation; (ii) the total 
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number of atoms in all fragments (Nfrag 

Tot ) which defines the total CPU or GPU time needed to 

compute all gradients. We note that gradients for all fragments need to be computed in 

order to construct total clustered gradient. So, if all QM computations can run in parallel the 

size of largest fragment is the bottleneck factor, and division to larger number of smaller 

clusters is preferred. Second possibility is that all computations are run in serial. In that case 

division to smaller number of larger clusters, with smaller Nfrag 

Tot  can be preferred. However, 

in practice most common can be the third situation, that is number of clusters being larger 

than number of jobs which can be run in parallel. In this latter case, it might be cumbersome 

to decide ad hoc an optimal computational set-up, due to vast possibility of tunable 

parameters (clustering scheme as well as how many jobs (J) shall be run in parallel on how 

many cores (C) given the total number (M) of the latter (either CPU or GPU, M=J x C). These 

three situations are illustrated for 3ftL and 3q2c in Table 1 showing the timings required to 

compute a single gradient using HF-gCP-D3 (TeraChem) or GFN1-xTB (xtb).  

 
Table 1. Number of atoms in clusters and fragments for 3ftL and 3q2c from different clustering choices along 

with the time needed to compute single complete gradient from TeraChem (HF-gCP-D3) or xtb (GFN1-xTB).  

  Single-buffer Double-buffer 

Clust N
clust 

Max

 
N

frag 

Max

 
N

frag 

Tot

 
TTC Txtb N

frag 

Max N
frag 

Tot  TTC Txtb 

3ftL 

6 50 563 2231 771 297 1560 6050 4975 1029 

3 103 744 1564 1109 198 1630 3687 5167 943 

2 106 787 1480 1161 204 1678 3203 5470 977 

3q2c 

42 89 566 10405  740 1532 34092  5189 

29 157 629 8209  575 1601 24933  4388 

24 175 715 7345  518 1703 23024  4272 

18 203 734 6501  453 1703 18821  4007 

N
clust 

Max  : Number of atoms in largest cluster. 

N
frag 

Max : Number of atoms in largest fragment. 

N
frag 

Tot  : Total number of atoms in all fragments. 

TTC : The computational time for gradient from TeraChem (TC) in seconds. 

Txtb : The computational time for gradient from xtb in seconds. 

 

For 3ftL the cluster size ranges from 3 (a single water molecule) to 106 atoms (one 

complete chain), with fragment sizes varying from 127 to 787 atoms for a single-buffer and 

532 to 1678 atoms for a double-buffer. This clearly indicates a notably higher computational 

cost for the latter. First situation is indicated by TeraChem computations, i.e. our GPU 

resources allowed computing gradients for all fragments at once using HF-D3-gCP, so in 

practice the total timing was determined by Nfrag 

Max. In the present case six clusters with the 

smallest possible fragments was the most effective scenario for both single- and 

double-buffer. Second situation is illustrated by GFN1-xTB computations (set to run 

sequentially) where two/three clusters is more favorable because the total number of atoms 

(Nfrag 

Tot ) is reduced by about 30% compared to six clusters.  
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For 3q2c we consider only four possible clustering scenarios with the smallest number of 

clusters being 18. These computations were executed on the architecture with 20 cores, and 

we arbitrarily chosen to run 4 single gradient computations each one performed using 5 

CPUs. This mimics the third situation: number of separate gradient calculations which run at 

a time is smaller than the total number of clusters. Therefore, computations are performed 

both in parallel and sequentially, which for this test-case leads to optimal situation with 18 

clusters for both single- and double-buffer. 

In more general terms the gtest procedure allows testing of realistic timings to find the 

most optimal for the specific model and computer resources. As during the course of a 

refinement many gradients will need to be calculated, the effort put into testing the timing 

of different clustering approaches will pay off in the long run. 

 

3.5. Optimize time and gradient error  

Increasing the buffer region clearly leads to improved atomic gradients. For 3q2c 

significantly lower δi are obtained for the double-buffer, with the all-atoms average and 

maximum of 3.2 and 28.1, respectively. For the single-buffer environment most of the 

atomic gradients also show small errors, but outliers with δi over 30 are present in half of 

the clusters, and over 50 in two clusters, leading to the δi averaged over all atoms equal to 

5.9.  

This shows that the extension of the buffer region for specific clusters represents a 

promising and cost-effective strategy to deal with well-localized outliers, avoiding an 

unnecessary buffer extension in well-behaved parts. Automatic gradient errors analysis 

allows implementing an adaptive “mixed” buffer strategy, into the qr.refine. The procedure 

starts from the computation of atomic δi, which indicate if there are any clusters for which 

single-buffer environment is not sufficient. If that is the case, the buffer region is extended 

only for the specific clusters. This way the total number of atoms for which QM 

computations are required is reduced compared to the double-buffering applied to the 

whole model, saving computational resources. The number of atoms in all fragments 

obtained with different buffering strategies, relevant timings and maximum and average δi 

are reported for 3q2c in the Table 2. Considering a conservative maximum δi of 30 as the 

threshold, the total number of atoms in all fragments doubles with respect to single-buffer, 

but is still 30% smaller than for the full double-buffer. For the δi threshold of 50 there is an 

increase of atoms by 40% with respect to single, and decrease by 50% with respect to 

double-buffer, respectively. Corresponding computational time increases with respect to 

single-buffer by 5 to 2.5 times for Max>30 and Max>50 respectively, but is still about halved 

compared to double-buffer, without introducing outliers. As more experience is gained with 

other systems, the threshold can be fine-tuned in the future. 

 
Table 2 The number of atoms in fragments from different divide-and-conquer schemes for 3q2c along with the 

time needed to compute single complete gradient from GFN1-xTB restraints. 

Buffer 
Max number of atoms 

in fragments 

Total number of atoms 

in all fragments 
Time (s) Average δi Max δi 

Single 734 6501 453 5.9 92.8 
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Double 1703 18821 4007 3.2 28.1 

Mixed (Max>50) 1703 9104 1112 5.5 45.1 

Mixed (Max>30) 1703 13076 2393 4.1 27.8 

 

Another possibility for reducing gradient errors is extending buffer for specific cluster by 

expanding single-buffer with the smallest possible number of residues. Fig. 9 shows δi on 

atoms involved in hydrogen bonds with buffer region, where 3q2c Val22 acts as a proton 

donor (N-H···O) or acceptor (C=O···H-N). The latter correspond to the largest gradient errors 

for single-buffer as discussed in section 3.2.2. By adding into buffer just one residue (Pro61) 

large errors on oxygen and carbon atoms are reduced from δi of 92.8 and 56.0, respectively 

to about 25 on both atoms (Fig. 9a). However, at the same time errors on nitrogen and 

hydrogen from adjacent hydrogen bond increase with respect to single-buffer case, from 8.5 

and 12.2 to 29.7 and 61.7, respectively. So, another unbalanced environment is created. The 

latter problem is resolved by adding one residue after Ile62 (Fig. 9b), which reduces errors 

below 20 on all N, H, C and O of Val22. Overall, a balanced description requires symmetric 

buffering – one (Fig. 9b), or two (Fig. 9d) residues added on both sides of Ile62, while 

asymmetric situations (Fig. 9a, c) show larger errors. This analysis indicates that definition of 

reduced, yet smaller buffer region might be a non-trivial task. 

 

Conclusions 

Herein we analyze the robustness of the QM nuclear gradient from the 

divide-and-conquer procedure employed during quantum refinement in the Q|R project. 

Moreover, we present new parts of the Q|R code called gtest and granalyze that help to 

automate assessment of the gradient quality. 

The procedure was showcased for the 3ftL peptide and 3q2c protein where errors in 

energy gradients were analysed with respect to super-sphere size, clusters of different sizes 

and increasing buffer regions, by comparing to a reference gradient obtained from a 

super-sphere calculation with large Rss. We introduced an error metric that allows to 

pin-point errors in the gradient to specific atoms or groups that then can be checked for 

missing interaction with, e.g. symmetry-copies or near-by residues, due to an insufficient 

buffer region. To simplify the analysis for the user the tool writes PDBs files with color coding 

to allow an intuitive visual inspection. 

Different QM methods show a similar sensitivity to the clustering parameters, with overall 

gradient errors for using HF-gCP-D3/6-31G, being smaller than for the semi-empirical 

quantum methods GFN1-xTB.  

Moreover, we showed that by applying the double-buffer procedure essentially error-free 

gradients can be obtained for the case when the super-sphere calculation is computationally 

prohibitive. 

The presented granalyze procedure is an effective tool by which diverse 

divide-and-conquer schemes, varying by number of residues in the cluster or the applied 

buffer region can be easily tested, the most computationally efficient setup chosen and their 

errors analyzed. This allows also implementing new strategies for the efficient choice of 

adaptive buffer region during quantum refinement, avoiding unnecessary environment 
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expansion for the parts of molecular model with already error-free gradient. Finally, both 

automatic partitioning scheme and gradient analysis tools from Q|R can be employed to 

define divide-and-conquer strategies for other QM computations of bio-macromolecules, 

beyond the quantum refinement. 

All the tools developed within the Q|R project are available at 

https://github.com/qrefine/qrefine. 

Gradient error analysis results and related data are available at: 

https://github.com/qrefine/QR4-Gtest. 
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Fig. 1. Super-sphere at different Rss (a) Number of atoms for 3ftL and 3q2c (the Rss range up to 12 Å is zoomed 

in the inset). Average atomic gradient error (𝛿̅) with respect to super-sphere Rss of (b) 15 Å for 3ftL and 3q2c 

computed at the GFN1-xTB level and (c) 7 Å for 3ftL computed at the HF-D3-gCP and GFN1-xTB levels. 
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Fig. 2. 3ftL model colored by the atomic gradient errors for super-sphere with different Rss (1 Å, 3 Å, 5 Å, 7 Å): (a, 

b, c, d) with respect to the reference with Rss=15 Å computed at the GFN1-xTB level. 
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Fig. 3 Three possible partitioning (clustering) of the 3ftL model 
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Fig. 4. Average atomic gradient error for different clustering and buffers (a) for 3ftL computed at the HF-gCP-D3 

and GFN1-xTB levels. (b) for 3q2c computed at the GFN1-xTB level. 
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Fig. 5 The 3ftL model divided into two clusters, showing fragments including single-buffer (a, b) and 

double-buffer (c, d). The clusters (colored by atomic δi values as computed at HF-gCP- D3 level) include two 

border-line nitrogen atoms. All atoms from buffer region are shown in grey, among them the residues directly 

behind the N atom in the chain are highlighted (grey ball and stick). The δi on both nitrogen atoms are reported 

in insets. 
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Fig. 6. The 3q2c model, with non-covalent bonding inside unit cell, showing the δi on C and O atoms of residue 

Val 22 in chain A using (a) single- and (b) double-buffer. 
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Fig. 7 The interaction with symmetry copies for 3ftL model around H atom of TYR7. Different buffer 

environments for two clusters case (chain A a, b and chain B c, d): single-buffer (a, c) and double-buffer (b, d). 

All atoms in clusters are coloured by atomic δi values while the residues from buffer region are shown in grey. 

The enlarged circle in the middle highlights the hydrogen bonds formed with the atoms from the buffer. The 

boxes at the bottom zoom on O and H atoms from TYR7 and report their weighted difference gradient δi 

values. 
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Fig. 8. Atomic gradient errors for 3q2c protein: atomic δi in single- (a) and double- (b) buffer environments; 

average and maximum δi for each cluster (c). 
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Fig. 9 The 3q2c model, δi on C, O, N and H atoms of residue Val 22 in chain A for buffer cases between single- 

and double- buffer (reported in Fig. 6a and 6b, respectively). Possibilities consider adding one-by-one residues 

to the amino acid backbone in the fragment.  
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