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Abstract  41 
Over 150,000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually 42 
over 50,000 individuals will die from CRC, necessitating improvements in screening, 43 
prognostication, disease management, and therapeutic options. Tumor metastasis is the 44 
primary factor related to the risk of recurrence and mortality. Yet, screening for nodal and distant 45 
metastasis is costly, and invasive and incomplete resection may hamper adequate assessment. 46 
Signatures of the tumor-immune microenvironment (TIME) at the primary site can provide 47 
valuable insights into the aggressiveness of the tumor and the effectiveness of various 48 
treatment options. Spatially-resolved transcriptomics technologies offer an unprecedented 49 
characterization of TIME through high multiplexing, yet their scope is constrained by cost. 50 
Meanwhile, it has long been suspected that histological, cytological and macroarchitectural 51 
tissue characteristics correlate well with molecular information (e.g., gene expression). Thus, a 52 
method for predicting transcriptomics data through inference of RNA patterns from whole slide 53 
images (WSI) is a key step in studying metastasis at scale. In this work, we collected and 54 
preprocessed Visium spatial transcriptomics data (17,943 genes at up to 5,000 spots per patient 55 
sampled in a honeycomb pattern) from tissue across four stage-III matched colorectal cancer 56 
patients. We compare and prototype several convolutional, Transformer, and graph 57 
convolutional neural networks to predict spatial RNA patterns under the hypothesis that the 58 
transformer and graph-based approaches better capture relevant spatial tissue architecture. We 59 
further analyzed the model’s ability to recapitulate spatial autocorrelation statistics using SPARK 60 
and SpatialDE. Overall, results indicate that the transformer and graph-based approaches were 61 
unable to outperform the convolutional neural network architecture, though they exhibited 62 
optimal performance for relevant disease-associated genes. Initial findings suggest that different 63 
neural networks that operate on different scales are relevant for capturing distinct disease 64 
pathways (e.g., epithelial to mesenchymal transition). We add further evidence that deep 65 
learning models can accurately predict gene expression in whole slide images and comment on 66 
understudied factors which may increase its external applicability (e.g., tissue context). Our 67 
preliminary work will motivate further investigation of inference for molecular patterns from 68 
whole slide images as metastasis predictors and in other applications.  69 
 70 
Keywords: Spatial transcriptomics, deep learning, graph neural network, transformers, 71 
colorectal cancer, histomorphology  72 
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1. Introduction 73 
Colorectal cancer is the third leading cause of cancer-related death in the United States, and 74 
there are disparities in screening and outcomes between age, race, and gender 1. CRC 75 
incidence is rising among younger adults who are not typically incorporated into screening 76 
programs, illustrating the importance of developing timely and lower-cost prognostication 77 
methods to better assess the tumor’s malignant potential. Currently, the Pathological TNM-78 
staging system (pTNM), which determines staging based on the impact of local invasiveness– 79 
histological stage (T-stage), and metastatic potential– nodal (N-stage) and distant (M-stage) 80 
metastasis, is the most predictive factor for risk of recurrence and prognosis. Metastasis, in 81 
many cases, is challenging to assess at the time of primary tumor resection 2. For instance, 82 
specimen inadequacy often hinders the complete inference of nodal involvement 3. It is thus 83 
crucial to develop orthogonal, less invasive, but equally informative technologies that can shed 84 
light on disease pathology and prognosis. One promising direction is to study the Tumor 85 
Immune Microenvironment (TIME)– the amalgamation of immune cells, chemokines, cytokines, 86 
and other immune modulators, etc. that accrete at the invasive front and inside the tumor at the 87 
primary site 4–6. Recent studies have demonstrated that monocyte/lymphocyte immune infiltrates 88 
and their spatial distribution, density, and relationships play an important role in providing a 89 
coordinated anti-tumoral response. Yet, the full importance of TIME has not been elucidated, as 90 
most clinical studies consider either a few canonical markers at a time (e.g., immunoscore, 91 
which assesses cytotoxicity at the primary site) or only study cell mixtures which lack a single-92 
cell or spatial dimension 7. 93 
 94 
Spatially-resolved transcriptomics (spatial omics), as enabled through technologies such as 10x 95 
Genomics Spatial Transcriptomics (ST, Pleasanton, CA) or Nanostring GeoMX Digital Spatial 96 
Profiling (DSP, Seattle, WA), is an actively growing area of research that provides rich 97 
information about how different areas of tissue interact by analyzing highly multiplexed gene 98 
expression at staggering spatial resolution. These technologies can be configured to study the 99 
distribution, density, and spread of tumor-infiltrating lymphocytes (TILs) as they may relate to 100 
concomitant somatic alterations 8,9. Assay costs are currently exceedingly high, as profiling just 101 
four capture areas can cost tens of thousands of dollars, though costs are being driven 102 
downwards with new advances in chemistry and lower sequencing costs. Thus, sufficiently 103 
powering spatial transcriptomic association studies or extending their generalizability of the 104 
inferences to specific patient subgroups that lie outside of these small cohorts is challenging 105 
due to cost. In comparison, tissue slides stained with hematoxylin and eosin (H&E) to assess 106 
tissue histomorphology are routinely ordered at a very low cost, and there is ample evidence to 107 
suggest that many concurrent molecular alterations coincide with morphological features. Thus, 108 
the prediction of RNA expression using image data across a slide presents an opportunity to 109 
reveal critical prognostic information for patients at a lower cost, which can motivate relevant 110 
downstream analyses. 111 
 112 
Deep learning approaches, which rely on using multi-layer artificial neural networks (ANN), have 113 
proven instrumental for image analyses in the context of digital pathology 10. Of relevance for 114 
this study is the assessment of whole slide images (WSI), digitized tissue slides, from which 115 
machine learning applications can predict the primary site of a metastatic lesion, tumor stage, 116 
and the outcome of immunohistochemical stains. Convolutional neural networks (CNNs), a type 117 
of predictive machine learning model, are powerful tools for extracting dense information from 118 
high-dimensional image data. Prior works have employed these algorithms to extract 119 
morphological features from H&E-stained tissue to complement whole transcriptome analyses. 120 
As WSI can extend to hundreds of thousands of pixels along each spatial dimension, they are 121 
usually broken into subimages to enable efficient computation. Of relevance to our research 122 
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topic, He et al. (2020) used a DenseNet-101 model to regress on co-localized gene expression 123 
levels11, and Levy-Jurgensen et al. (2020) employed an InceptionV3 model to detect 124 
dichotomized gene expression for given patches of tissue12. However, these techniques do not 125 
analyze the potential for integrating spatial context outside the patch-level (i.e., spatially 126 
correlated patches are assumed to be independent and identically distributed), and, therefore 127 
may miss larger macroarchitectural contextual cues of aberrant expression. 128 
 129 
Zeng et al. (2022) and Pang et al. (2021) investigated approaches to integrate broader spatial 130 
context into their gene expression prediction models by using vision transformers and 131 
demonstrated that it is possible to outperform convolutional architectures that make predictions 132 
on individual patches (e.g., ST-Net) 13,14. However, there remain several unknowns, such as 1) 133 
the scale of tissue features relevant for inferring RNA, 2) how well these models preserve global 134 
spatial expression characteristics (e.g., patterns of clustering), 3) whether relevant domain 135 
knowledge can make inferences more informative, and 4) whether these effects depend on the 136 
specific genes under study (i.e., what resolution/architectural context is optimal for specific 137 
genes and what does it say about the tumor biology). Furthermore, many spatial omics studies 138 
attempt to study one slide, where potential endogeneity is introduced by a matter of spatial 139 
distance between collection sites.  140 
 141 
Here, we compared a convolutional neural network and a graph attention network for inferring 142 
spatially co-registered gene expression from WSI. We comment on the role the tissue 143 
macroarchitecture may play in RNA inference as elucidated by changing subimage size and the 144 
use of contextual models. We also assessed performance on a subset of immune-related genes 145 
and how spatial characterization varies across these models/factors and slides. These 146 
explorations will motivate future downstream work to characterize factors pertaining to tumor 147 
nodal/distant metastasis. 148 
 149 

2. Material and Methods 150 

 151 
 152 
Figure 1. Overview of tested model architectures: Whole Slide Images are divided into 153 
patches co-localized with the Visium spots and an Inception model is used to predict counts and 154 
dichotomized expression for 1000 genes; Features derived from Inception model are 155 
additionally fine-tuned using graph neural network for inference; inferred expression profiles are 156 
compared to the ground truth through a cluster analysis, spatial autocorrelation tests and 157 
pathway analysis 158 
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2.1. Overview 159 
The primary goal of this work is to predict the gene expression detected by a Visium spot at any 160 
given location on the slide. Our method is as follows (Figure 1): 161 

1. Data Collection: Acquire H&E whole slide images (WSI), and spatially-registered 162 
Visium assayed spatial transcriptomics slides from 4 stage-pT3 matched colorectal 163 
cancer patients at Dartmouth Hitchcock Medical Center, two patients without metastasis, 164 
one with nodal metastasis only and one with both nodal and distant metastasis. 165 

2. Preprocess: Preprocess gene expression and WSI subarrays. 166 
3. Model Development: Configure two modeling approaches: convolutional neural network 167 

and graph attention neural networks, the latter leveraging larger spatial context. These 168 
models will predict both binary (dichotomized expression) and count-based (continuous; 169 
zero-inflated negative binomial) objectives. We also configured additional approaches 170 
(e.g., Transformer) for comparison. 171 

4. Capture surrounding tissue context at different scales: Ablation study over patch 172 
size to determine whether relevant biological information is encoded outside the Visium 173 
collection spot area. 174 

5. Leave one-patient-out cross-validation: Evaluation on held-out slides/patients as a 175 
measure of external applicability. 176 

6. Recover Spatial Biology Inferences: Spatial autocorrelation tests for the capacity of 177 
models to draw similar spatial inferences. 178 

 179 
2.2. Data Collection 180 
 181 
The primary dataset utilized in this study was acquired from four pathologic T Stage-III (pT3) 182 
matched (pTNM system) colorectal cancer patients at Dartmouth Hitchcock Medical Center, 183 
determined through a retrospective review of pathology reports from 2016 to 2019 following IRB 184 
review and approval. These four patients were drawn from a set of 36 patients included in a 185 
prior study 15– half of the patients had concurrent tumor metastasis (slides A1 and B1 had tumor 186 
metastasis; slides C1 and D1 did not have tumor metastasis) and were otherwise matched on 187 
age, sex, tumor grade, tissue size, mismatch repair (MMR) status, and tumor site using iterative 188 
patient resampling with t-tests for continuous variables and fisher’s exact tests for categorical 189 
variables. The four patients were subselected to restrict the tumor site (three in the right colon, 190 
one in the transverse colon), grade (three grade 1, one grade 2), node status (two metastasis 191 
cases with N-1a), and account for differences in sex (50% female within both the non-192 
metastasis and metastasis groups). We restricted the cohort to patients without MMR 193 
deficiencies as determined through immunohistochemistry (IHC) to control for microsatellite 194 
instability status. Tissue blocks were sectioned into 10-micron thick layers, and specific capture 195 
areas that contained various distinct macroarchitectural regions (all containing epithelium, 196 
tumor-invasive front, intratumoral, lymphatics, etc.) were annotated by the practicing pathologist. 197 
A histotechnician carefully extracted / manually cut these capture areas from the tissue, and 198 
slides were sent to the Single Cell Genomics Core in the Center for Quantitative Biology for 199 
simultaneous H&E staining, imaging, and Visium profiling. After a deparaffinization step, spatial 200 
transcriptomics uses spatially-tagged oligo barcodes to 1) register spatial coordinates to 201 
collection spots, bound to the mRNA with a poly(A) tail for 2) reverse transcription into cDNA, 202 
after 3) permeabilization, and 4) sequencing for mRNA profiling. This allows for 203 
unbiased/gridded profiling of up to 5,000 spots (1-10 cells/spot) per 6.5mm by 6.5mm capture 204 
area. 205 
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2.3. Preprocessing 206 
Spatial gene expression profiles contain information for 17,943 genes at almost 5,000 locations 207 
per slide (after filtering out non-tissue– total number of Visium dots: 4950, 4922, 4887, and 4169 208 
per slide), sampled in a honeycomb formation. Each Visium spot covers a circular capture area 209 
with a diameter of 130 pixels at 20x magnification. After sequencing, we used the SpaceRanger 210 
package to preprocess the Visium reads into gene count matrices. 211 
 212 
As whole slide images (WSIs) derived from the Visium capture areas (size of capture area– 6.5 213 
x 6.5 mm) span thousands of pixels along each dimension, we subdivided the image into square 214 
patches centered on the Visium spot. We associated the gene expression of each patch based 215 
on the Visium spot at the center of the patch and ignored expression at other spots contained 216 
within the patch.  217 

2.4. Inference Targets 218 
We used the SpatialDE library to select the top 1000 genes based on their mean fraction of 219 
spatial variance (FSV) across all slides (i.e., selected genes which exhibited the greatest spatial 220 
variation across the four slides). We tested the capacity of our models to recover expression for 221 
all 1000 genes based on dichotomized expression (binary classification) and the original counts 222 
(regression) 16. 223 
 224 
For binary classification, we classify tiles as having a “high” expression for a gene if its individual 225 
expression is greater than the median for that slide, as shown by Levy-Jurgensen et al.. For 226 
binary tasks, we used a weighted binary cross-entropy loss. The loss was independently taken 227 
for positive and negative Visium spots and summed together to account for unbalanced labels. 228 
 229 
We model the gene expression distribution for regression tasks as a negative binomial 230 
distribution with zero inflation. The model predicts the parameters of the distribution (mean !, 231 
dispersion factor ", and inflation of zero count #) and is optimized with negative log-likelihood 232 
loss. The inferred value is equal to the expected value of the negative binomial distribution 233 
(accounting for zero inflation): (1 − #)! + #(0) = (1 − #)!. 234 

2.5. Modeling Approaches 235 
First, we compare the performance of the following models using the dichotomized labels and 236 
continuous regression objectives. For these models, we sought to establish whether increasing 237 
the spatial receptive field by varying the patch size (ablation study) and training graph attention 238 
networks (GATs) positively impacted our capacity to predict spatial gene expression. All models 239 
featured an output layer, which simultaneously predicted the expression of all selected genes 240 
(Figure 1). Details of these approaches can be found below: 241 
 242 
2.5.1. Local Patch Prediction Model: We initialized our model using InceptionV3 weights 243 
(Szegedy et al., 2015) 17. InceptionV3 was chosen because it has demonstrated high 244 
performance in gene imputation studies by Levy-Jurgensen et al. These models are trained for 245 
25 epochs with a learning rate of 0.0001 and a batch size of 32. The patch size labeled 246 
Inception models they were configured to make predictions on (i.e., amount of incorporated 247 
surrounding information): Inception-256 (256 pixels), Inception-512 (512 pixels), and 248 
Inception-768 (768 pixels) (model suffix indicates patch size). 249 
 250 
2.5.2. Contextualized Patch Prediction Models: The Visium spots lie on a hexagonal array, each 251 
of which can be treated as a node in a graph, each connected to other Visium spots within 150 252 
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pixels. After training the InceptionV3 models from our local patch classification experiments, we 253 
extracted patch image embeddings (e.g., n-dimensional descriptive vector) for each Visium spot 254 
from the penultimate layer of the trained Inception-256 model. We test a graph attention network 255 
(GAT) to see how iterative message-passing can improve model performance. We also 256 
compared these results to that obtained using a Vision Transformer (ViT) 18(p16). GAT models 257 
were labeled by the number of graph attention layers used to make predictions (i.e., the amount 258 
of incorporated surrounding information; the number of layers dictates the size of the 259 
neighborhood; eight attention heads per layer): GAT-1 (1 layer), GAT-2 (2 layers), and GAT-4 260 
(4 layers) (model suffix indicates the number of layers). ViT models were labeled by the size of 261 
the patch used to form contextual embeddings: ViT-224 (224-pixel patch sizes) and ViT-384 262 
(384-pixel patch sizes). 263 

2.5.3. Data Augmentation during training and hyperparameters: To improve the robustness of 264 
the model results to new tissue contexts, we transformed patch images by shifting and scaling 265 
the pixel intensities by the mean and variance of ImageNet Then, we applied color jitter and 266 
random rotations; between -15 and 15 degrees. Random horizontal and vertical flips also 267 
augment patches if they are not used in the GAT. Through a coarse hyperparameter search, 268 
learning rates were set to 1e-4, and models were trained for 25 epochs. Batch sizes for the 269 
Inception model were set to 32, save for the regression models for patch sizes 512 and 768, 270 
where batch sizes were set to 16 and 8, respectively. 271 
 272 
2.6. Comparison of Model Performance 273 
 274 
To compare model and patch-size performances, we performed leave-one-slide-out cross-275 
validation (CV), where three of the four slides were used for training/validation, and the final 276 
slide was used for testing. This scheme was repeated four times to report on test performance 277 
across all four slides in an unbiased manner using macro-averaged (across slides) median 278 
(across genes) area under the receiver operating curve (AUROC) and Average Precision (AP) 279 
statistics for the binary outcome and correlation coefficients (e.g., Spearman) to compare true 280 
versus predicted counts. Non-parametric bootstrapping was used to assess statistical 281 
significance through the calculation of a 95% confidence interval. During cross-validation, we 282 
use the same set of InceptionV3 embeddings to train the contextual models (i.e., GAT) that 283 
corresponded to the same cross-validation fold. We acknowledge that these statistics could also 284 
vary by models, patch size, and slides, so we plotted scatters of test AUCs of each gene to 285 
compare these factors in a pairwise manner (e.g., for slide 1, comparing Inception to GAT, or 286 
patch size 256 to 768) to draw additional inferences on suitable modeling approaches for a 287 
subset of genes. Identifying a subset of genes that obtained optimal performance for one 288 
approach versus another was as important as comparing overall performance. These 289 
performance differences could suggest relevant tissue features at different scales. For instance, 290 
the GAT could extract features from the larger macroarchitecture, indicating its relevance for a 291 
gene that does not predict well from InceptionV3. 292 
 293 
2.7. Model Interpretation through Pathway Analysis and Gene Embeddings 294 
 295 
Due to fundamental limitations in tissue biology, it is unrealistic to expect that every gene can be 296 
predicted from tissue histology. We sought to establish which types of genes could be inferred 297 
from histology through pathway analysis. Using the Elsevier Pathways database available 298 
through the Enrichr package, we performed a pathway analysis of the top 250 genes ranked by 299 
AUROC averaged across the CV folds 19. Enrichr reports overrepresented pathways using a 300 
modified fisher’s exact test. Detected pathways were filtered based on tissue specificity (i.e., 301 
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could reasonably be involved with the colon). To determine whether different pathways could be 302 
inferred from different tissue contexts, pathway analysis results were compared across models. 303 

We also sought to assess how well the predicted gene expression profiles recapitulated 304 
relationships/clustering between the Visium spots. This was accomplished through the 305 
comparison of Uniform Manifold Approximation and Projection (UMAP) embeddings for the 306 
ground truth and predicted expression profiles (on held-out slides) using InceptionV3 and GAT 307 
20. Ground truth and predicted gene expression profiles were projected to a lower dimensional 308 
space using AlignedUMAP to preserve the orientation/alignment between the ground truth and 309 
predicted expression profiles (i.e., positioning of Visium spots across projections is relatively 310 
preserved) to enable comparison between the approaches. Visium spots corresponding to the 311 
ground truth UMAP projections were clustered using Hierarchical density-based clustering 312 
(HDBSCAN) 21. HDBSCAN also identified outlier Visium spots removed from the cluster 313 
analysis and scatterplots for all three datasets (ground truth, InceptionV3, GAT). Mapper, a 314 
Topological Data Analysis method, was used to provide topological summaries of the 315 
embeddings by reducing the number of points based on overlap and connectivity 22–24. Mapper 316 
embedding plots for InceptionV3 and GAT were colored using the cluster information from the 317 
ground truth expression to qualitatively assess topological consistency (i.e., were relationships 318 
between Visium spots preserved). This procedure was repeated across the held-out test slides. 319 

2.8. Recapitulating Spatial Biology through Spatial Autocorrelation Tests 320 
In addition to tissue clustering, spatial variation is often used as a proxy for explaining the 321 
diversity of cellular lineages interacting across the tissue slide. While this factor alone is not an 322 
exhaustive assessment of spatial biology, this served as a target for our preliminary assessment 323 
(an exhaustive exploration of spatial analyses is out-of-scope of this work, although it is a future 324 
direction). After performing cross-validation, we sought to investigate the ability of our 325 
algorithms to recapitulate known spatially variable genes on each of the held-out slides from the 326 
cross-validation folds. We used two libraries to determine spatially variable (SV) genes: 327 
SpatialDE and SPARK-X 25. Gene expression counts were summed to create a total count 328 
matrix. Genes with low overall expression across the slide (i.e., below a threshold of 30% slide 329 
coverage) were removed. The data was then transformed to a normal distribution (by Anscombe 330 
transform) to account for the negative binomial distribution of the gene expression. Since 331 
SpatialDE’s computation time increases cubically with each additional expression patch, we 332 
reduced the resolution of the Visium data through 2x2 median pooling (i.e., taking median 333 
expression for specific genes from 2x2 neighborhoods). The reduced memory requirements 334 
allowed us to perform further histo-molecular assessments on the images, including clustering 335 
based on spatial variability. 336 
 337 
Using SpatialDE, we extracted the Fraction of Spatial Variance (FSV) and p-values for each 338 
gene from the ground truth set. In addition, we used SpatialDE’s Automatic Expression 339 
Histology (AEH) to identify 5 groups of genes that were co-expressed spatially from the ground 340 
truth data. Separately, we ran SPARK/SPARK-X on the 1000 genes from each held-out 341 
validation slide, reporting projection and adjusted P-value (Bonferroni-corrected) statistics. We 342 
separately ran this procedure for the ground truth expression and predicted expression profiles. 343 
As an indication of performance, we expected p-values derived for the projection covariance 344 
function for both the inferred and original expression data to correlate well with each other for 345 
each slide. This was accomplished using the Fisher’s exact test after dichotomizing spatial 346 
autocorrelation statistics into “high autocorrelation” (low p-value) and “low autocorrelation” (high 347 
p-value) and similar dichotomization for statistics extracted from the inferred expression. 348 
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Thresholds for dichotomization were chosen to maximize the magnitudes of the Fisher’s exact 349 
test statistics. Dichotomized spatial autocorrelation was cross-tabulated across the genes to 350 
report odds ratios with p-values. An odds ratio and corresponding confidence interval of more 351 
than one (i.e., statistically significant) would suggest the ability of the model to recapitulate 352 
spatial autocorrelation from the slide. Separately, we sought to assess whether genes that were 353 
predicted with high accuracy (AUC) were spatially autocorrelated using a similar methodology 354 
(i.e., comparing dichotomized spatial autocorrelation on the ground truth expression with 355 
dichotomized AUC for each modeling approach). We also compared model accuracies between 356 
AEH groups of co-expressed genes identified from SpatialDE using Kruskal-Wallis ANOVA 357 
statistical tests. Similar to the AUC comparison, we performed comparisons across models, 358 
patch sizes, and slides. It should be noted that these analyses were done on the top 1000 359 
spatially variable genes; dichotomized autocorrelation is for this reference group. For the 360 
original and inferred expression, genes which exhibited spatial autocorrelation which differed 361 
between patients with and without metastasis were selected for a pathway analysis using the 362 
MSigDB Hallmarks gene sets via the Enrichr software. 363 
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3. Results 364 

 365 
Figure 2: Model Performance Comparison: A) Boxenplots which depict the distribution of 366 
AUC values for predicting dichotomized expression across all 1000 filtered genes; B) Scatter 367 
plot of genes representing individual cross-validated AUC values for GAT-4 versus Inception-368 
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768; while overall Inception outperforms GAT, there are several genes from which GAT 369 
outperformed Inception 370 

3.1. Model Comparison 371 
First, we assessed the ability of the Inception model to predict gene expression without 372 
considering the surrounding tissue macroarchitecture. Across the whole transcriptome, we 373 
noted moderately strong concordance between the predicted and actual expression across the 374 
held-out slide folds.  375 
 376 
3.1.1. Impact of patch size to leverage surrounding spatial context: Importantly, the model 377 
achieved optimal performance by increasing access to the surrounding macroarchitecture by 378 
increasing the patch size.  379 
 380 
3.1.2. Impact of model architecture to leverage surrounding spatial context: After optimizing 381 
model architectures, the Inceptionv3 model appeared to outperform the GAT and Transformer 382 
approaches for the whole transcriptome assessment. This was true for both classification and 383 
regression modeling objectives. The GAT-1 model outperformed the GAT-4 model, which 384 
incorporated more of the surrounding tissue context, for the classification task, though GAT-4 385 
outperformed GAT-1 for regression and demonstrated a similar capacity to predict count 386 
outcomes as Inception-512 (Figure 2; Table 1). A breakdown of these model performances for 387 
individual held-out validation slides can be found in the appendix (Supplementary Table 1; 388 
Supplementary Figures 1-2). 389 
 390 
3.1.3. GAT outperforms Inception on a subset of genes: While overall, Inception outperformed 391 
GAT, it is important to recognize that there are many genes for which GAT achieves superior 392 
performance (Figure 2B; Table 2; Supplementary Figure 1). This was different than 393 
comparing multiple Inception models with different patch sizes, where clearly Inception-768 394 
outperformed Inception-256 on nearly all relevant genes (a scatter plot of the specific gene-level 395 
AUC for specific genes for patch size 256 compared to 768 can be found in Supplementary 396 
Figure 2). As different models demonstrate exemplary performance on different subsets of 397 
genes, the combined accuracy (AUC) across the genes (i.e., selecting top performing model for 398 
each gene based on CV-AUC) is 0.798 (95% CI [0.795-0.802]); the combined AP score is 0.67 399 
(95% CI [0.659-0.677]) (Figure 2) (Top Overall Model).  400 
 401 
 402 
Table 1. Comparison of model performance for predicting dichotomized and log-403 
transformed expression for genes across the whole transcriptome. These statistics are 404 
created by taking the median of each performance statistic across all genes, averaged across 405 
held-out slides. 406 
  Classification Regression 
Model AUROC AP Spearman Pearson R 
Inception-256 0.769±0.004 0.587±0.011 0.439±0.011 0.466±0.014 
Inception-512 0.782±0.005 0.61±0.013 0.456±0.011 0.496±0.013 
Inception-768 0.79±0.006 0.621±0.012 0.479±0.011 0.538±0.013 
GAT-1 0.746±0.003 0.528±0.014 0.302±0.009 0.309±0.009 
GAT-2 0.676±0.002 0.444±0.01 0.409±0.01 0.446±0.01 
GAT-4 0.703±0.004 0.459±0.012 0.406±0.01 0.428±0.011 
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ViT-224 0.757±0.005 0.573±0.012 0.432±0.011 0.458±0.013 
ViT-384 0.762±0.004 0.57±0.012 0.442±0.012 0.473±0.014 

 407 
Table 2: Top 10 performing genes for Inception-768, Inception-256 and GAT-4, ranked 408 
by AUC 409 

Top-10 Inception Top-10 GAT 

Name Inception-768 Inception-256 GAT Name Inception-768 Inception-256 GAT 

KRT8 0.889 0.850 0.491 TRIP12 0.753 0.745 0.829 

S100AA10 0.884 0.846 0.714 PGM3 0.749 0.740 0.829 

CDH1 0.880 0.848 0.510 TMEM238 0.855 0.825 0.825 

RNF43 0.879 0.847 0.556 SYNM 0.700 0.674 0.823 

KRT18 0.877 0.838 0.723 SMAP1 0.771 0.757 0.822 

S100A6 0.875 0.842 0.606 SERPINE1 0.594 0.581 0.821 

RAB25 0.873 0.844 0.545 LSM4 0.844 0.818 0.820 

AXIN2 0.873 0.844 0.610 GRIPAP1 0.766 0.752 0.818 

EPCAM 0.873 0.834 0.491 TSPO 0.822 0.796 0.818 

TNS4 0.871 0.841 0.801 HLA-DRA 0.612 0.618 0.816 

 410 

 411 
 412 
Figure 3. Comparison of log-scaled heatmaps of the ground truth gene expression (top) 413 
and output probabilities for above-median expression from the dichotomized classifiers: 414 
A-C) Inception-768 classifier’s predictions, generating heatmaps for A) RAB25, B) TNS4, and 415 
C) AXIN2 genes; all predictions from the held-out test set. The corresponding median AUROCs 416 
for these genes were 0.873, 0.871, and 0.873. D) AXIN2 imputation on slide B1 with GAT. E) 417 
AXIN2 imputation on slide D1 with GAT.  418 
 419 
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3.2. Pathway Analysis 420 
 421 
The top-performing genes by AUROC for both types of models were also highly related to tumor 422 
aggression and migration. For instance, CDH1, heavily implicated with tumor suppression, 423 
achieved AUROC of 0.880 26. RAB25 (Figure 3A), which can serve as a tumor suppressor or 424 
oncogene depending on the context, obtained an AUROC of 0.879. TNS4 has been heavily 425 
implicated for multiple prognostic outcomes following surgery and was predicted with an AUC of 426 
0.871 27. AXIN2 (Figure 3C-E), which inhibits the Wnt signaling pathway and serves to regulate 427 
immune cell infiltration 28, was detected with an AUROC of 0.873. The pathway analysis 428 
corroborated these findings and was highly relevant for metastasis formation. For instance, 429 
genes associated with cancer metastasis, cell motility and proliferation, glycolysis, and the 430 
epithelium to mesenchymal transition were identified by both models. Interestingly, the GAT 431 
model was able to identify genes related to anti-EGFR therapy resistance in colorectal cancer 432 
(Supplementary Table 2). 433 
 434 

Inferred Spatial Expression is Topologically Consistent with Ground Truth 435 
 436 

 437 
Figure 4: UMAP Embeddings of True and Predicted Gene Expression for slides A) A1, B) 438 
B1 and C) D1; embedding plots are summarized using Mapper, which flexibly clusters the 439 
expression data with overlapping clusters containing multiple Visium spots; Mapper nodes are 440 
sized by the number of associated spots and colored by the dominant cluster in the set of node-441 
associated spots with cluster assignments determined using HDBSCAN; outliers were filtered 442 
from these embedding plots and the cluster assignments plotted over the WSI on the right 443 
 444 
Visual inspection of mapper diagrams of clustered UMAP embeddings illustrates topological 445 
consistency (i.e., preserve relationships) between the predicted expression and the ground truth 446 
(Figure 4). Qualitatively, the gene expression embeddings produced from Inception appear to 447 
be more closely aligned with the ground truth embedding plots across the tissue types (e.g., 448 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.24.517856doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.24.517856


 

 

Figure 4 A, C, where clusters are placed in the approximately same area for Ground Truth and 449 
Inception in the Mapper diagrams). 450 
 451 

3.3. Spatial Autocorrelation 452 
We also compared the capabilities of each modeling approach for their ability to recapitulate 453 
slide-level spatial autocorrelation parameters. Results indicate a large significant positive 454 
association between predicted and actual spatial autocorrelation for both Inception and GAT 455 
approaches. For half of the held-out slides, GAT demonstrated a larger effect estimate than 456 
Inception (Table 3).  457 
 458 
Separately, results indicate that highly spatially autocorrelated genes, as determined using the 459 
actual gene expression, were predicted with higher accuracy using Inception and GAT versus 460 
genes, which lacked spatial variation (Table 3). These models varied in their ability to associate 461 
spatial variation with model accuracy. For Inception, there was a large statistically significant 462 
effect (Figure 5), while spatial variation was not as associated with accuracy for the GAT– i.e., 463 
there was a statistically significant association for the first two slides and no statistically 464 
significant effect for the final two. For the Inception model, groups of genes that tended to be co-465 
expressed, as determined through the AEH analysis on the raw expression data, were found to 466 
have widely different accuracies (Table 3; Supplementary Figures 3-5). Similar to the spatial 467 
variation analysis, GAT model accuracy did not vary substantially between AEH groups 468 
determined from the raw expression data. 469 
 470 
Using the ground truth, Inception, and GAT results, we identified the set of genes, which 471 
exhibited different spatial variation for primary sites with (A1, B1) and without metastasis (C1, 472 
D1) based on the dichotomized thresholds. Through a pathway analysis (gene set testing of 473 
Cancer Hallmark genes), genes that were differently autocorrelated were related to the epithelial 474 
to mesenchymal transition (Supplementary Table 3). 475 
 476 
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 477 
Figure 5. Boxenplots illustrating the predictive accuracy of Inceptionv3 (AUC, y-axis) 478 
across genes, separated by whether highly significant spatial variation was reported 479 
(blue versus orange, x-axis); gathered from validation slides held-out of the training/validation 480 
set. The positive association demonstrates higher accuracy for genes with significant spatial 481 
variability (i.e., not distributed randomly); these genes were more accurately predicted by our 482 
RNA inference model. A-D) correspond to slides A1-D1, respectively 483 
 484 
 485 
Table 3: Statistical testing results from spatial autocorrelation analysis, comparing: A) 486 
Spatial autocorrelation from raw expression (high/low) with inferred spatial autocorrelation from 487 
predicted expression values (high/low); B) Spatial autocorrelation from raw expression 488 
(low/high) with model AUC (high/low); C) Whether model accuracy changed depending on the 489 
AEH group; A) and B) were determined through Fisher’s exact tests while C) utilized Kruskal-490 
Wallis ANOVA testing 491  

Recover Spatial 
Autocorrelation 

Spatial Autocorrelation 
vs AUC 

AEH group 
vs AUC 

Slide Model OR P-Value OR P-Value P-Value 
A1 Inception 722.27 6.55e-65 0.01 4.05e-99 1.78e-39 
B1 40.09 1.30e-34 0.01 8.29e-85 3.93e-162 
C1 68.82 1.25e-16 0.07 1.05e-57 2.00e-119 
D1 92.18 1.30e-20 0.02 5.41e-96 2.46e-166 
A1 GAT 101.64 1.46e-61 0.45 2.02e-05 9.52e-02 
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B1 51.12 1.16e-24 0.58 0.01 1.37e-01 
C1 24.80 3.10e-06 0.93 0.66 8.54e-01 
D1 99.15 5.06e-22 0.99 1.00 6.68e-01 

 492 

4. Discussion 493 
 494 
Assessment of Colon cancer tumor recurrence risk depends on the ability to assess lymph node 495 
status. For cases where lymph nodes are unable to be completely assessed, leveraging 496 
information found in the tumor immune microenvironment at the primary resection site 497 
presents a viable alternative. Yet most technologies to assess the primary site lack a spatial 498 
component (e.g., bulk expression), which does not enable a comprehensive characterization of 499 
the tissue. Spatial transcriptomic technologies enable high multiplexing at incredible spatial 500 
resolution. Due to both fiscal and sampling (i.e., placement of capture area) constraints, 501 
findings are not likely to be clinically actionable or reproducible through a low-cost test. 502 
Inferring a spatial digital biomarker from a routine histological slide (WSI) has the potential to 503 
enable high-throughput tissue characterization for the creation of nascent decision-making aids 504 
which can complement existing specimen findings. In this study, we explored the potential for 505 
deep learning models to predict spatial gene expression from formalin-fixed specimens, the 506 
ability to recapitulate well known spatial findings, and comment on the degree to which spatial 507 
information at higher-order contexts (i.e., macroarchitecture) plays a role in modeling spatial 508 
expression. 509 
 510 
We add further evidence that deep learning models can accurately predict gene expression in 511 
whole slide images. Furthermore, we demonstrate that increasing the receptive field can 512 
improve the performance of certain subsets of genes. Interestingly, although InceptionV3 513 
outperformed other modeling approaches overall, this did not apply to all genes. We noted that 514 
certain genes were predicted more effectively at local spatial resolutions (Inception) while 515 
others benefited from considering a broader architectural context (GAT). For instance, we 516 
noticed that COL6A1 and COL6A2 were consistently predicted better by the GAT model as 517 
compared to Inceptionv3 29–31. COL6A1 is a crucial component of collagen secretion, 518 
extracellular matrix maintenance, and mesenchymal phenotype promotion. While both models 519 
demonstrated the capacity to recapitulate well-known cancer markers, it was clear that certain 520 
genes can be better predicted by considering receptive field size and choosing a model that 521 
best incorporates this spatial information.  522 
 523 
Spatial autocorrelation was recapitulated for these slides from the deep learning model 524 
predictions. We noticed that increases in modeling accuracy were associated with spatial gene 525 
expression variation. Genes that were differentially autocorrelated between metastatic and non-526 
metastatic tumors corroborated with well-established oncogenic pathways. This supports our 527 
overarching modeling approach to characterize spatial heterogeneity. As some genes were 528 
better predicted using the broader spatial architecture, it would make sense to decide which 529 
modeling approach to utilize on a gene-by-gene basis and whether the local versus spatial 530 
context is preferred. This allows for the selection of optimal modeling approaches in a gene-531 
specific manner to extend the broad applicability of our framework across all disease-relevant 532 
genes. 533 
 534 
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Importantly, the techniques featured in this work will prove useful for inferring gene expression 535 
on slides from external cohorts. This is necessary due to the prohibitive costs of spatial 536 
transcriptomics. If validated properly on a slightly larger set of slides while carefully controlling 537 
for potential confounders (e.g., site, MMR status, etc.), these methods may overcome sources 538 
of patient-specific batch effects to allow the report of less biased effect estimates for large-539 
scale cohort studies. Validation efforts on these held-out slides can feature validation 540 
assessments such as Spark-X and SpatialDE to ensure spatial heterogeneity from the inferred 541 
expression data is similar to the initial internal validation cohort. To this end, we achieved 542 
remarkable performance for the ability to predict spatial heterogeneity, which will potentially 543 
help power future studies elucidating spatial transcriptomic predictors of colon metastasis. 544 
 545 
Our results did not support the hypotheses that, overall, spatial gene expression estimation 546 
would benefit from message-passing between patch locations via transformer models and 547 
graph convolutional networks. However, these neural networks outperform local patch 548 
prediction across a large set of genes, suggesting the relevance of these methods for genes 549 
which leverage the spatial context. For GAT, underperforming genes can potentially be 550 
explained by the fact that graph convolutional networks tend to smoothen features (Li et al., 551 
2018), which may weaken the model’s predictions if the gene expression data is not as smooth. 552 
While these findings could alternatively suggest that neighboring patches may not be as 553 
correlated as suspected, this may only hold true for a subset of genes. Increasing graph 554 
convolution layers may result in optimal performance for genes, which rely on higher-order 555 
dependencies between tissue regions; however, such genes may be outnumbered by genes 556 
better suited for the Inception approach. 557 
 558 
There were a few study limitations of note. Our validation scheme featured the use of held-out 559 
slides. Generally, as two cases had tumor metastasis, whereas the other two did not have 560 
concurrent metastasis, we believed held-out slides would have similar heterogeneity in 561 
expression and morphology as the training/validation slides. Indeed, it is possible that tissue 562 
expression/morphology existed outside of this range, differentially impacting the 563 
GAT/transformer models designed to capture long-range spatial dependencies. As we had 564 
manually selected capture areas, we did not expect slides to have exactly matching/analogous 565 
architectural features; thus, the GAT/transformer model could have been unable to generalize 566 
as it aims to integrate this higher-level information. There were four whole slide images for both 567 
training and cross-validation, and while these provided over ten thousand patches in the training 568 
set when taken individually, they provided limited opportunities for models to learn diverse 569 
global contexts that transformer models would have benefitted from. These challenges could 570 
have been ameliorated by pretraining the GAT/Transformer on a variety of colorectal cancer 571 
tissue contexts, which does not explicitly require spatial omics data. We also acknowledge the 572 
impact of evolving workflows for spatial resolution of transcriptomics information. Many 573 
workflows rely on the prediction of tissue features from fresh or fresh frozen tissue. We utilized 574 
formalin-fixed paraffin-embedded (FFPE) tissue slides. Only recently have deparaffinization and 575 
assay workflows been developed for FFPE. As many of these specimen processing workflows 576 
are still under development, manual staining and imaging could have both introduced batch 577 
effects and impacted tissue quality. For instance, while a plethora of data preprocessing 578 
workflows offer capabilities to combat batch effects through normalization, a robust 579 
comparison of preprocessing workflows was outside of the study scope. Our group is keen to 580 
adopt future iterations of the FFPE workflows. We expect that protocol updates for the FFPE 581 
workflow and data collection will provide major improvements in specimen processing, data 582 
quality, and resolution, improving prediction models. Enlarging the capture area and evaluating 583 
complementary molecular assays (e.g., spatial proteomics) will improve the resolution and 584 
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scope of our findings. Although this work does not explicitly assess the tumor immune 585 
microenvironment, the methodology explored here can help facilitate spatial analyses and will 586 
be used to motivate future clinical findings. Future work will clearly demarcate these regions 587 
(e.g., intratumoral, invasive margin, away from the tumor) for a more granular analysis that is 588 
well-adjusted for potential confounders. 589 
 590 
 591 
5. Conclusions 592 
Tumor metastasis is heavily tied to poor prognostic outcomes and risk of recurrence. 593 
Assessment of key niches at the primary site (e.g., tumor immune microenvironment) may 594 
reveal histomorphological or biological factors relating to nodal involvement or distant 595 
metastasis. In this work, we investigated the potential to infer spatially resolved transcriptomics 596 
from the tissue histology of colorectal cancer patients through several sophisticated neural 597 
network approaches. Our findings indicate that neural networks can be effectively employed in 598 
this capacity and that selection of a neural network model could be informed by its relevance to 599 
a molecular pathway resolved from histological features at different scales. Findings reaffirm 600 
the role of the epithelial-to-mesenchymal transition as an important metastasis-related process. 601 
In the future, with additional algorithmic fine-tuning, data curation, and standardization, there 602 
are opportunities to generalize these findings to perform large-scale spatial molecular 603 
assessments. 604 
 605 
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Appendix 715 
 716 
Supplementary Table 1. Comparison of model performance for predicting 717 
dichotomized and log-transformed expression for genes across the whole 718 
transcriptome. These statistics are created by taking the median across all genes, 719 
reported for each held-out slide. 720 
 721 

    Classification Regression 
Model Slide AUROC AP Spearman R Pearson R 

Inception-256 Overall 0.768 0.603 0.444 0.477 
A1 0.78 0.675 0.494 0.511 
B1 0.834 0.796 0.612 0.605 
C1 0.625 0.432 0.214 0.301 
D1 0.831 0.51 0.454 0.491 

Inception-512 Overall 0.781 0.63 0.461 0.498 
A1 0.79 0.688 0.515 0.537 
B1 0.856 0.816 0.639 0.647 
C1 0.629 0.459 0.22 0.299 
D1 0.847 0.555 0.469 0.51 

Inception-768 Overall 0.787 0.639 0.486 0.54 
A1 0.802 0.705 0.551 0.578 
B1 0.864 0.823 0.671 0.655 
C1 0.636 0.474 0.239 0.4 
D1 0.845 0.553 0.481 0.525 

GAT-1 Overall 0.743 0.539 0.413 0.43 
A1 0.785 0.669 0.364 0.376 
B1 0.811 0.73 0.603 0.582 
C1 0.606 0.409 0.239 0.335 
D1 0.77 0.349 0.444 0.428 

GAT-2 Overall 0.677 0.444 0.407 0.45 
A1 0.769 0.645 0.511 0.545 
B1 0.772 0.612 0.574 0.568 
C1 0.589 0.333 0.146 0.265 
D1 0.578 0.184 0.421 0.428 

GAT-4 Overall 0.702 0.462 0.453 0.499 
A1 0.679 0.571 0.517 0.551 
B1 0.764 0.614 0.622 0.643 
C1 0.604 0.379 0.228 0.356 
D1 0.759 0.283 0.445 0.454 

GAT-4-AXIN2 Overall 0.702 0.462 0.545 0.578 
A1 0.679 0.57 0.511 0.446 
B1 0.764 0.614 0.745 0.771 
C1 0.604 0.379 0.286 0.46 
D1 0.759 0.283 0.637 0.633 

GAT-4-CDH1 Overall 0.800 0.707 0.546 0.571 
A1 0.826 0.747 0.468 0.478 
B1 0.858 0.791 0.753 0.741 
C1 0.648 0.462 0.31 0.425 
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D1 0.867 0.827 0.652 0.64 
GAT-1-ZINB Overall n/a n/a 0.393 0.408 

A1 n/a n/a 0.441 0.429 
B1 n/a n/a 0.551 0.562 
C1 n/a n/a 0.15 0.19 
D1 n/a n/a 0.429 0.449 

GAT-4-ZINB Overall n/a n/a 0.41 0.432 
A1 n/a n/a 0.485 0.542 
B1 n/a n/a 0.602 0.621 
C1 n/a n/a 0.128 0.2 
D1 n/a n/a 0.426 0.364 

ViT-224 Overall 0.756 0.583 0.436 0.454 
A1 0.768 0.644 0.511 0.506 
B1 0.826 0.762 0.601 0.567 
C1 0.604 0.413 0.177 0.255 
D1 0.827 0.513 0.455 0.487 

ViT-384 Overall 0.765 0.601 0.446 0.468 
A1 0.794 0.678 0.513 0.521 
B1 0.836 0.788 0.612 0.583 
C1 0.606 0.406 0.213 0.307 
D1 0.823 0.530 0.446 0.462 

 722 

 723 
Supplementary Figure 1: Scatterplot depicting gene-specific AUCs for GAT and 724 
Inception-768 for slides: A) A1; B) B1; C) C1; D) D1 725 
 726 
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 727 
Supplementary Figure 2: Scatterplot depicting gene-specific AUCs for Inception-256 728 
and Inception-768 for slides: A) A1; B) B1; C) C1; D) D1, E) Overall 729 
 730 
 731 
Supplementary Table 2: Enrichr pathway results for genes found to be accurately 732 
predicted from the tissue histology via the Inception and GAT approaches; pathways 733 
were filtered based on tissue specificity 734 

 Inception  GAT 

Term Overlap Adjusted P-
value Term Overlap Adjusted 

P-value 
EPCAM in Cancer Cell Motility 

and Proliferation 9/36 2.79e-07 Proteins with Altered Expression in 
Cancer Metastases 9/106 1.22e-03 

Proteins with Altered Expression 
in Cancer Metastases 11/106 2.82e-05 Desmosome Assembly 4/18 4.56e-03 

Epithelial Cell in the Saliva 
Formation 5/13 7.15e-05 Corneodesmosomes in Atopic 

Dermatitis 4/19 5.15e-03 

Androgens in Sebocyte 
Maturation 8/65 1.69e-04 Proteins with Altered Expression in 

Cancer Metabolic Reprogramming 7/85 5.50e-03 

Proteins Involved in Ulcerative 
Colitis 11/141 1.69e-04 WNT in Epithelial to Mesenchymal 

Transition in Cancer 5/43 8.09e-03 

Desmosome Assembly 5/18 1.70e-04 Metabolic Effects of Oncogenes and 
Tumor Suppressor in Cancer Cells 6/68 8.09e-03 

Corneodesmosomes in Atopic 
Dermatitis 5/19 2.03e-04 Proteins Involved in Myocardial 

Ischemia 11/252 1.18e-02 

Proteins Involved in Colorectal 
Neoplasms 9/99 2.35e-04 Desmosome Dysfunction in 

Cardiomyocyte 3/12 1.26e-02 

WNT in Epithelial to 
Mesenchymal Transition in 

Cancer 
6/43 5.66e-04 RAGE/AGER and S100 Proteins in 

Cardiovascular Injury 4/30 1.56e-02 

Acinar Cells in the Saliva 
Formation 4/13 5.66e-04 Desmosomes Role in Dilated 

Cardiomyopathy 3/15 2.31e-02 

Epithelial to Mesenchymal 
Transition in Cancer: Overview 8/90 5.85e-04 Epithelial to Mesenchymal 

Transition in Cancer: Overview 6/90 2.58e-02 

Metastatic Colorectal Cancer 9/121 7.01e-04 Proteins Involved in Atherosclerosis 9/200 2.58e-02 
Proteins with Altered Expression 

in Cancer Metabolic 
Reprogramming 

7/85 2.43e-03 Cetuximab Resistance in Colorectal 
Cancer 5/64 3.05e-02 

Telogen Maintenance in 
Androgenic Alopecia 4/23 4.15e-03 Proteins Involved in Colorectal 

Neoplasms 6/99 3.41e-02 

Cancer Cells Inhibit Adipocyte 
Differentiation 4/27 6.43e-03 Glycolysis Activation in Cancer 

(Warburg Effect) 4/40 3.41e-02 

TGFB Family in Epithelial to 
Mesenchymal Transition in 

Cancer 
6/80 8.55e-03 
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Fatty Acid Synthase (FASN) 
Signaling 3/16 1.52e-02  

WNT Signaling Activation by 
Blocking of Tumor Suppressors 4/36 1.57e-02  

HPV Infection and Cancer 5/65 1.80e-02  
Androgens in Adipocyte 

Activation 3/18 1.80e-02  

Glycolysis Activation in Cancer 
(Warburg Effect) 4/40 1.97e-02  

Metabolic Effects of Oncogenes 
and Tumor Suppressor in Cancer 

Cells 
5/68 1.98e-02 

 

Proteins Involved in HPV 
Infection 3/19 1.98e-02  

CDH1 Down regulation Promotes 
Cancer Cell Migration and 

Metastases 
4/44 2.45e-02 

 

Androgen Deficiency in Male 
Obesity 3/24 3.31e-02  

Sialophorin -> 
CTNNB/MYC/TP53 Signaling 3/25 3.60e-02  

mRNA Degradation 3/26 3.91e-02  
WNT Canonical Signaling 

Activation in Cancer 3/27 4.16e-02  

Proteins Involved in Arterial 
Hypertension 9/255 4.30e-02  

Hyaluronic Acid, CD44 and 
HMMR in Cancer Cell Invasion 

and Survival 
4/56 4.35e-02 

 

Estrogen Deficiency in Female 
Obesity 2/9 4.35e-02  

Adipocyte Hypertrophy and 
Hyperplasia 3/29 4.50e-02  

Proteins Involved in 
Hepatocellular Carcinoma 6/130 4.74e-02  

Adherens Junction Assembly 
(Cadherins) 3/30 4.83e-02  

Proteins with Altered Expression 
in Cancer-Associated Sustaining 

of Proliferative Signaling 
7/175 5.00e-02 
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 738 
Supplementary Figure 3: Boxenplots illustrating the predictive accuracy of Inceptionv3 739 
(AUC, y-axis) across genes, separated by the genes’ Automatic Expression Histology 740 
groups (colors, x-axis); gathered from validation slides held-out of the 741 
training/validation set. Different groups were assigned for each slide. A-D) correspond 742 
to slides A1-D1 respectively 743 
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Supplementary Figure 4: Spatial expression patterns for select AEH groups for slides: 745 
A) A1; B) B1; genes from the first featured AEH group for each slide were predicted with 746 
low accuracy; genes from the final two AEH groups were predicted with high accuracy 747 
 748 

 749 
Supplementary Figure 5: Spatial expression patterns for select AEH groups for slides: 750 
A) C1; B) D1; genes from the first featured AEH group for each slide were predicted with 751 
low accuracy; genes from the final two AEH groups were predicted with high accuracy 752 
 753 
Supplementary Table 3: Genes differentially spatially autocorrelated between 754 
METS/No-METS 755 

Ground Truth 

Randomly Selected 
Genes 

Pathways Overlap Adj. P-
Value 

STXBP3 Epithelial Mesenchymal 
Transition 

17/200 2.53e-09 

IMPAD1 Coagulation 11/138 0.000006432 

ING1 TGF-beta Signaling 11/200 0.002024 

YY1AP1 Myogenesis 11/200 0.0001214 

IGFBP4 Apical Junction 10/200 0.0001214 

ACO1 Hypoxia 5/54 0.0005478 

ID3 Cholesterol Homeostasis 6/144 0.02979 

PTAR1 UV Response Dn 7/199 0.02582 

SYNM UV Response Up 7/200 0.0286 

SPRY2 IL-2/STAT5 Signaling 7/200 0.02582 

RABL3 Estrogen Response Late 6/158 0.02582 

N4BP2L2 p53 Pathway 4/74 0.02582 

Inception 
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Randomly Selected 
Genes 

Pathways Overlap Adj. P-
Value 

DPYSL3 Epithelial Mesenchymal 
Transition 

9/200 3.41e-13 

CALD1 TGF-beta Signaling 3/138 0.004267 

G0S2 Coagulation 3/200 0.001833 

IGHG1 TNF-alpha Signaling via NF-
kB 

2/54 0.003624 

LIMS2 Angiogenesis 2/200 0.05432 

COL6A2 Xenobiotic Metabolism 2/200 0.02452 

C1S Hypoxia 2/200 0.02452 

SERPINF1 Myogenesis 2/200 0.02452 

FOSB Complement 2/200 0.02452 

SORBS1 Inflammatory Response 1/36 0.02452 

WIPF1 IL-6/JAK/STAT3 Signaling 1/87 0.1169 

PCOLCE Interferon Alpha Response 1/97 0.119 

GAT 

Randomly Selected 
Genes 

Pathways Overlap Adj. P-
Value 

ACTA2 Epithelial Mesenchymal 
Transition 

18/200 1.85e-27 

COL5A2 Angiogenesis 4/36 0.000002955 

COL3A1 Myogenesis 5/200 0.00009592 

COL12A1 Glycolysis 3/200 0.01585 

GREM1 Apical Junction 3/200 0.01585 

CDH11 Hedgehog Signaling 2/138 0.1196 

SPARCL1 Apical Surface 2/144 0.1321 

CRYAB Coagulation 2/200 0.06564 

POSTN UV Response Dn 2/200 0.06564 

TPM2 TGF-beta Signaling 1/36 0.1475 

DES Hypoxia 1/44 0.09354 

DCN Adipogenesis 1/54 0.09354 
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