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Abstract 

Study of essential genes in disease-causing organisms has wide application in the 

prediction of therapeutic targets and exploring different clinical strategies. Predicting 

gene essentiality for large set of genes in non-model, less explored organisms is 

challenging. Computational methods that use machine learning (ML)-based 

strategies are popularly adopted for essential gene prediction as they provide key 

advantage of considering diverse biological features. Previous works from our group 

have demonstrated two ML-based pipelines for predicting essential genes with high 

accuracy that mitigates the problems of sufficient labeled imbalanced dataset and 

limited labeled datasets of essential genes. Here we present PRESGENE at 

https://presgene.ncl.res.in, a ML-based web server for prediction of essential genes 

in unexplored eukaryotic and prokaryotic organisms. Our algorithms mitigate the 

problems of training dataset imbalance and limited availability of experimentally 

labeled data for essential genes. PRESGENE with its user-friendly web interface and 

high accuracy will prove to be a seamless experience for biologists looking for an 
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accurate essential gene prediction server with limited labeled data for novel 

organisms. 
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1 Introduction 

The minimally essential genes in an organism comprise a set of absolutely necessary 

genes for its survival under any environmental condition(1). The gene essentiality 

information helps prioritize a set of crucial genes and their functional properties which 

may serve as important drug targets against various infectious diseases such as 

Cutaneous and Visceral Leishmaniasis, Tuberculosis, Typhoid, etc. The study of the 

mammalian essential genes also provides evidence for identifying important 

therapeutic targets and biomarkers for the treatment of cancer and other diseases. 

The gene essentiality information of the lesser-studied disease-causing organisms 

helps to identify and annotate these minimally essential genes that contribute to the 

understanding of the pathogen biology. 

Establishing the essentiality for a large set of genes in non-model, less explored 

organisms is challenging, as the experimental standardization of protocols for 

performing genome-wide screens to identify dispensability and sampling for a range 

of experimental conditions is laborious and time-consuming. Hence, computational 

techniques based on homology mapping, constraint-based modeling, and machine 

learning strategies are becoming useful to predict essential genes with high 

accuracy in a small amount of time(2–4).Machine learning (ML)-based methods 

offer the key advantage of considering diverse biological features that influence 

gene essentiality (Table 1).Various data-driven ML-based algorithms have been 

used for the prediction of essential genes, e.g., decision tree(5), random forest(6), 

logistic regression (5,7), ensemble (5), support vector machine (8–11), probabilistic 

Bayesian-based methods (5,7,12), K Nearest neighbor (K-NN) and Weighted KNN 

(WKNN)(13).  A major limitation of the existing ML-based methods (Supplementary 

data, Table S1) is the necessity of large amount of labeled data from experiments 
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and often fails to predict actual essential genes when the labeled data set is 

imbalanced or insufficient. Moreover, the essential gene prediction web servers built 

so far are heavily dependent on homology mapping-based strategy alone, while the 

other biologically relevant features derived from the genome-scale metabolic 

networks that significantly impact gene essentiality under varied environmental 

conditions have not been explored sufficiently. Constraint-based modeling 

strategies, such as Flux Balance Analysis (FBA), employing genome-scale 

reconstructed metabolic networks, are widely used for predicting essential genes by 

performing in-silico knockout of a gene and estimating its corresponding lethality 

(14–16). A limitation of the FBA method is that only a limited number of 

environmental conditions can be considered for a specific biomass equation (or 

objective function) for gene essentiality. 

Towards this, we have previously developed high performance supervised(17) and 

semi-supervised(18) ML-based strategies for essential gene prediction with minimal 

gene essentiality information which have been tested on several model organisms 

(Supplementary data, Table S2). The supervised ML model is built for sufficient 

labeled imbalanced dataset whereas the semi-supervised ML model caters to the 

limited labeled dataset. The pipelines consider various biological features of the 

genes, such as topological network features of both the genome-scale metabolic 

reaction network and the flux-coupled sub-networks, along with the sequence-based 

features that influence the gene essentiality. Consideration of these diverse features 

influencing gene essentiality directly provides insights into the role of a specific 

metabolic reaction catalyzed by a gene, estimating it to be essential.  SVM classifiers 

performances have previously been observed to be affected by imbalanced training 

datasets and use of correlated or redundant features. Our supervised ML model(17) 

that functions in the developed web server pipeline as “Strategy 1” mitigates these 
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shortcomings by using a SVM-based classification method which generates large 

number (1000 datasets) of balanced training sets ensuring that each gene is 

sampled at least once. In addition, the algorithm is also unique in its implementation 

of a Recursive Feature Elimination technique (SVM-RFE) that selects the most 

contributing genotype and phenotype features. As a result, our supervised ML 

strategy outperforms the existing supervised models for essential gene classification 

by predicting individual essential genes. Along with this, due to the incorporation of 

reaction-gene combinations, it is able to predict the associated metabolic reaction for 

the gene that is predicted to be essential. However, for cases of limited labeled data, 

ML strategy 1 performs poorly. Thus, for organisms with highly limited essentiality 

information, our integrative semi-supervised ML model(18) is incorporated in the web 

server pipeline as “Strategy 2”. The dearth of essentiality information is overcome by 

using a dimension reduction technique, Kamada-Kawai algorithm through LapSVM 

classifier that generates a distinguishing pattern between essential and non-essential 

genes by projection of high dimensional data onto a 2D circular layout. This results in 

highly accurate prediction accuracy (p <0.01) and thus significantly performs well for 

all organisms(18). The most distinctive feature of this semi-supervised model is that it 

can predict with as minimal as 1% labeled data with a statistically significant 

accuracy. In this strategy, an additional score SSMSS is developed for the first time, 

that measures the best model performance which also signifies a corresponding high 

auROC value. Here, we present a one-stop integrative web server platform 

PRESGENE at https://presgene.ncl.res.in for essential gene prediction in both 

prokaryotes and eukaryotes. PRESGENE is an online essential gene prediction 

server that hosts our previously published ML strategies(17,18) with a noteworthy 

capability of utilizing 289 biological features. This web server provides the user with 

two powerful ML-based prediction strategies that work accurately for essential gene 
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prediction in the cases with ample as well as highly limited essential gene 

information.The user-friendly Graphical User Interface (GUI) of PRESGENE specially 

benefits biologists with limited knowledge of programming to implement ML-based 

prediction of essential genes in lesser studied organisms with limited experimental 

labeled data.  

 

2 PRESGENE: Importance and Necessity 

The gene essentiality information helps prioritize a set of crucial genes and their 

functional properties which may serve as important drug targets against various 

infectious diseases such as Cutaneous and Visceral Leishmaniasis, Tuberculosis, 

Typhoid, etc. The study of the mammalian essential genes also provides evidence for 

identifying important therapeutic targets and biomarkers for the treatment of cancer 

and other diseases. For example, in breast and ovarian cancer, homozygous BRCA 

1 and BRCA 2 genes loss of function prompt the cancer cell to become dependent 

on poly ADP-ribose polymerase (PARP). This knowledge is exploited to treat ovarian 

cancer with PARP inhibitor – Olaparib(19). From the evolutionary standpoint, a 

distinct correlation between gene essentiality and its impact on conservation is 

suggested in a class or family of organisms. For instance, in Escherichia coli, roughly 

33% of essential genes are non-essential in Bacillus subtilis (20). On the other hand, 

the study of essential genes has also been exploited in the synthetic reconstruction 

of the organism and in Food microbiology and industrial bioprocessing, where the 

essential genes and their functions in plants, animals, and microorganisms are used 

to produce food, biofuel, and biocatalyst at a large scale(21,22).  
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The essentiality of a gene varies from organism to organism, depending on the 

complexities of the cellular structure. To address the differences in the cellular 

complexities, different types of experimental protocols need to be designed(23,24). 

However, these techniques work well with model organisms for which a 

standardized protocol for gene essentiality identification is available. 

Various biological features of the genes, such as topological network features of both 

the genome-scale metabolic reaction network and the flux-coupled sub-networks, 

along with the sequence-based features influence the gene essentiality. The 

commonly used topological network features, such as centrality measures highlight 

the biological significance of an enzyme in a network(25). Generally, a central and 

highly connected enzyme in biological networks is often essential as it represents an 

important hub within the network(26). If this hub node is blocked, then the whole 

pathway might be disrupted. Flux coupling network provides insights into the reaction 

subsets that are either coupled with each other via flux or represent a set of block 

reactions, given specific environmental exchange constraints(27,28). Consideration 

of these diverse features influencing gene essentiality directly provides insights into 

the role of a specific metabolic reaction catalyzed by a gene, deeming it to be 

essential. 

 

3 Methods 

3.1 Prediction Algorithms: Supervised and semi-supervised ML models 

The web server provides the user with two ML strategies to choose from for their 

model data training and the essential gene prediction. Depending upon the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.25.517801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517801
http://creativecommons.org/licenses/by-nc-nd/4.0/


availability of the labeled data for the query organism, the server is embedded with 

two ML algorithms: 

3.1.1 ML strategy 1 

ML strategy 1 is developed to annotate and predict gene essentiality information for 

less studied organisms, where the experimentally known and labeled dataset is 

sufficient (≥30%) but imbalanced(17). This supervised ML strategy was trained for 

prokaryotes on Escherichia coli K12 MG1655 metabolic graph since most of the 

experimental data is available and the essentiality of almost all genes has been 

previously tested in varied environmental conditions. The training dataset for other 

two prokaryotes, Brevundimonas subvibriodes ATCC 15264 and Helicobacter pylori 

26695 was obtained from DEG (Database of Essential Genes) v13.3(29) where 

experimentally labeled dataset was available. The classes considered for 

classification by the algorithm were ‘Essential’ with label ‘E’ for essential genes and 

‘Non-essential’ with label ‘N’ for non-essential genes. 

The brief steps followed in the prediction algorithm are as follows: 

3.1.1.1 Dataset preparation and Feature curation 

The gold-standard training dataset was generated using metabolic genes from 

genome-scale metabolic reconstruction of model organism e.g. Escherichia coli. 

However, it is to be noted here that it is also possible to use other organisms to 

generate training dataset for which sufficient labeled data is available. Further, 

reaction-gene combinations (Ra-Gb) were created for network reconstruction. The 

total training dataset finally consisted of 4094 metabolic reaction-gene pairs. This 

was followed by extraction of sequence-based, gene expression-based and 

metabolic networks and flux-coupled network-based features that were assembled 
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for each reaction-gene combination (Table 1). For obtaining higher classification 

performance, for the first time, our strategy has included network topological features 

from Flux Coupling Analysis(FCA)-based subnetworks that account for the inherent 

limitation of environmental dependence in calculation of flux distributions.  FCA was 

performed on the iJO1366 network using F2C2 tool v0.95b(28). The training dataset 

was further balanced to avoid bias towards a particular class.  

Table 1 List of Features and the software packages used for feature calculation. 

Feature 

Types 
Features name 

Abbreviation 

of features 

name 

# of 

feature

s 

Software 

Packages 

Programming 

Languages 

Topological analysis of reactions and flux-coupled sub-networks 

Reaction 

Network 

Degree Centrality   TF_RN_DC 

8 

The COBRA 

Toolbox to 

generate the 

reaction network 

from Genome 

scale metabolic 

network (.mat) 

 

"igraph" for 

network 

analysis(42) 

MATLAB, 

R, Perl 

Eigenvector 

Centrality  
TF_RN_EC 

Eccentricity TF_RN_ET 

 Hub Score  TF_RN_HS 

Authority Score  TF_RN_AS 

Page Rank  TF_RN_PR 

Betweenness 

Centrality 
TF_RN_BC 

 Number of triangle  TF_RN_NT 
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Flux 

Coupled 

Network 

Degree Centrality   TF_FC_DC 

8 

F2C2 tool 

v0.95b (Flux 

Couple Analysis) 

 

"igraph" for 

network 

analysis(42) 

MATLAB, 

R, Perl 

Eigenvector 

Centrality  
TF_FC_EC 

Eccentricity TF_FC_ET 

 Hub Score  TF_FC_HS 

Authority Score  TF_FC_AS 

Page Rank  TF_FC_PR 

Betweenness 

Centrality 
TF_FC_BC 

 Number of triangle  TF_FC_NT 

Features derived from the coding nucleotide sequences 

Derived 

features 

Nucleotide content NS_DF_NC 4 
In house Perl 

script 
Perl 

Effective Number of 

Codons 
NS_DF_ENC 1 

EMBOSS 

package version 

6.6.0-1(43) 

Perl 

Codon Adaptation 

Index 
NS_DF_CAI 1 

EMBOSS 

package version 

6.6.0-1(43) 

Perl 

Information-

theoretic 

features 

Mutual Information 

(MI) 
NS_ITF_MI 16 

in house Perl 

script 
Perl 

Conditional Mutual 

Information (CMI)  
NS_ITF_CMI 64 

in house Perl 

script 
Perl 
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3.1.1.2 Feature selection 

SVM-RFE (Recursive Feature Elimination)(30) technique is implemented for 

selection of the most contributing genotype and phenotype features using WEKA 

version 3.8(31). Best set feature identification is performed through top ‘n’ feature 

combination using Sequential minimal optimization(SMO)(32) followed by 10-fold 

cross validation and auROC. The details of the Best Feature Combination technique 

(BFC) for best feature set selection can be referred to in our previous publication(17). 

Features derived from protein sequences 

Derived 

features 

Frequencies of the 

twenty amino acids 
PS_DF_FA 20 

EMBOSS 

package version 

6.6.0-1(43) 

Perl 

Protein length PS_DF_PL 1 

EMBOSS 

package version 

6.6.0-1(43) 

Perl  

Paralogy based 

features (Paralogy 

score) 

PS_DF_PS 6 
BLAST [version 

2.2.26] 
Perl 

Information-

theoretic 

features 

Fourier sine 

coefficient 
PS_ITF_FSC 70 

in house Perl 

script. 
Perl 

Fourier cosine 

coefficient 
PS_ITF_FCC 80 

in house Perl 

script. 
Perl 

Average Kidera 

Factor 
PS_ITF_AKF 10 

in house Perl 

script. 
Perl 
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3.1.1.3 Parameter optimization, performance metrics and model testing 

Best model was identified by globally optimal hyperplane fit. A 10 fold-cross validation 

on 10000 datasets was performed by tuning SMO penalty parameter (C) and the one 

giving highest average auROC was selected for best feature combination. The model 

performance is evaluated using a weighted metric (Eq 1) with respect to the model’s 

classification of both class instances E and N.  

Let M be the total set of performance metrics. 

M = {TPR, FPR, precision, recall, F-measure, MCC, auROC} 

   Weighted Metrici =    (Mip× PI) + (Min  ×NI)  (Eq 1) 

 

Here, PI is the number of positive instances, and NI is the number of negative 

instances. Mip is the performance metric for the positive class, Min is the performance 

metric for the negative class, where i∈ M(17). 

3.1.2 ML strategy 2 

ML strategy 2 is developed for the prediction of gene essentiality where the 

experimentally known and the labeled dataset is limited (≥1%) for model training(18). 

A graph based semi-supervised learning method Laplacian SVM is implemented, 

which is based on a manifold regularization framework(33).  

3.1.2.1 Training dataset preparation 

The two types of features as described above: topological features and sequence-

based features were calculated on 12 organisms for training the semi-supervised 

model (Table 1).Details regarding calculation of these features can be referred to in 

Nandi et al. for details(18). In order to achieve model consistency, two types of 

PI + NI 
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datasets were prepared. The first type consists of 80% data points of limited labeled 

data for training and 20% for blind testing. The labeled data point percent is 

significantly varied (i% labeled from 100- i%) through randomized selection for 

diverse training, ensuring equal probability of Essential and Non-essential labels. In 

the second type, essentially for organisms where overall gene essentiality 

information is close to null, the whole data set (100%) is used for training 

purposes(18). 

3.1.2.2 Feature selection and dimensionality reduction 

The chance of redundant features occurring is high due to the unknown contribution 

of the 289 features in the dataset. Thus, an unsupervised feature selection method 

based on the space filling concept is being applied(34). This method selects the 

features based on a coverage measure. This measure estimates the spatial 

distribution of the data points in a hypercube, thus ensuring uniform distribution of the 

points in a regular grid in the data space. This method does not require prior 

information of the output variable. Further, to reduce dimensionality, a K-Nearest 

Neighbour (KNN) based force-directed layout algorithm Kamada-Kawai(35) using 

“dimred” package in R(36). This algorithm clusters data points by minimizing the total 

energy. This is followed by application of the semi-supervised classifier Laplacian 

SVM using “RSSL” package in R(37).  

3.1.2.3 Performance testing and Best Model selection 

It was admissible that the previously used performance metrics e.g. TPR, MCC, FPR 

would not be significantly applicable in a scenario of limited labeled data. Hence, a 

new measure called Semi-Supervised Model Selection score (SSMSS) has been 

proposed for the selection of the best model(18). The equation for calculation of 

SSMSS score is as follows: 
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SSMSSk=1 to 64= min{CorrectionPredictionk
GT_LR, MCCk

PR_LR, SIkLR}    (Eq 2) 

∀MCCk
PR_LR ≥ 0, SIkPR≥ 0, SIkLR≥ 0 

SSMSSbest= max{SSMSSk=1, SSMSSk=2,...............,SSMSSk=64} 

(PR: Pseudo Reference, LR: Laplacian Reference, SI: Silhouette Index, GT: Ground Truth) 

 

Where k is the kth model among 64 total models generated with a particular 

parametric combination and SSMSSbest (Eq 2) calculates the best scoring model(18) . 

The model was further validated on the twelve organisms with well-annotated genes 

essentiality information that was obtained from the OGEE database(38). 

3.2 Features Calculation for ML Strategy 1 and ML Strategy 2 

Broadly two types of features are calculated for the training and annotation of the 

essential genes, viz, the network topological features and the sequenced-based 

features (Supplementary data, Figure S1).The topological features of the reaction 

network and flux-coupled sub-network are derived from the genome-scale metabolic 

network of the organism. On the other hand, the sequence-based features were 

calculated and integrated for each reaction-gene pair based on the Gene-Protein-

Reaction (GPR) rule. Integration of the diverse set of features gives insights into the 

specific role of the gene in the metabolic network. A total of 289 features for each 

reaction-gene pair can be computed to generate training and test dataset using the 

PRESGENE webserver. Table 1 enlists the Features and the background software 

packages and programming languages used for the automation of feature calculation 

in the PRESGENE webserver. A brief description of each of these features used for 

the gene essentiality prediction has been discussed in our previous work(18).  
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Figure 1 (A) Workflow for PRESGENE web server (B) Snapshot of Home page 

of PRESGENE web server (C) Visualization of the outcome of the Machine 

Learning strategy 2. Essential, non-essential, and Unlabeled reaction gene pairs 

are colored Red, Green, and Gray respectively. The learning curve for the best-

trained model by LapSVM is colored with blue. The left circle represents the original 

data set with labeled data points. The middle circle shows the training data set with 

the learning curve, and the Right circle represents the prediction labeled with the 

learning curve. 
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4 Web server architecture and Implementation 

The proposed webserver has three processes, i.e., Training dataset Preparation, 

Model training, and Prediction. The workflow of the PRESGENE web server is 

elucidated in Figure 1A. 

4.1 Data input and training dataset preparation 

Five input files are required for the training dataset preparation: (i) fasta file 

containing the coding nucleotide sequences of the genes of the organism, (ii) the 

ribosomal fasta file, (iii) fasta file containing the protein sequences, (iv) the genome-

scale reconstructed metabolic network in (*.mat) format and (v) available gene 

essentiality information (i.e., labeled data) from experiments for building the ML 

model. The server provides 14 sample organisms, including 9 prokaryotes and 5 

Eukaryotes (Supplementary Data, Table S2). The fasta files of the coding 

nucleotide sequences, the ribosomal fasta file, and fasta files containing the protein 

sequences can be generally obtained from the NCBI(39)  and the ENSEMBLE(40)  

databases. In addition, the Genome-Scale Reconstructed Metabolic Networks are 

available throughout the literature and the BIGG database(41). The experimental 

data for the gene essentiality information can be obtained from the OGEE(38), 

DEG(29)  databases, and various experimental studies reported in the literature. 

4.2 PRESGENE web interface and Functionality  

The web interface of PRESGENE is designed in such a way that users can easily 

interact and navigate through the interactive web pages. The "Homepage" of the 

webserver contains all the necessary tabs like "About PRESGENE", "Tutorial", 
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"Download Sample Organism", "ML Strategy", etc. The webserver homepage also 

provides a detailed description of the proposed machine learning strategy 1 (ML 

Strategy 1) and machine learning strategy 2 (ML Strategy 2) for essential gene 

prediction (Figure 1B). Users can perform analysis with a new dataset by providing 

the required input files for the calculation of the features based on their choice. 

Alternatively, the PRESGENE server also has a provision for the prediction of 

essential genes from a user-uploaded training dataset containing their own feature 

table. Model training can be performed using our two strategies (ML Strategy 1 and 

2) depending on the availability of the labeled data.  

The server provides the users with three channels or ways for predicting the 

essential genes via the PRESGENE server (Supplementary Data, Figure S2A). The 

Channel I provides the option to the user to test the pipelines on 14 sample model 

organisms, including both prokaryotes and eukaryotes. The user can choose to vary 

the percentage of labeled data to be used for the prediction of the essential genes. 

The results produced for these model organisms through the server can be directly 

incorporated by the users in their own study for prediction of drug targets or other 

applications. Other than these 14 sample organisms, the prediction of essential 

genes for a new organism using the PRESGENE server can be implemented in four 

simple steps. This option has been provided in the Channel II. To prepare the training 

dataset, the user needs to provide the name of the organism and five input files. The 

input files containing the GSRMN (Genome-Scale Reconstructed Metabolic Network) 

in (*.mat) format, fasta files of nucleotide sequence, ribosomal sequence, protein 

sequence, and the labeled dataset (.csv format) can be uploaded through the "Input 

File" navigation tab (Supplementary Data, Figure S2B). It is to be noted that all input 

files should maintain a uniform nomenclature for the genes. Detailed formats of these 
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required input files have been explained in the Tutorial provided under the Tutorial 

tab. 

Channels I and II then direct the user to the Dataset Preparation (Feature Matrix 

Calculation) tab to calculate and predict essential genes using the ML1 or ML2 

strategies. The "Dataset Preparation (Feature Matrix Calculation)" tab allows the user 

to choose the set of biological features that the user wishes to consider for the gene 

essentiality prediction (Supplementary Data, Figure S1). However, it is recommended 

to consider all 289 biological features for higher accuracy and better prediction of 

essential genes. Through Channel III, the server additionally provides the user with 

an option to incorporate and test the influence of other biological features (apart from 

the existing 289), calculated and provided to the server in the form of a user defined 

Feature Matrix. This matrix forms the training dataset of the pipeline and should 

include the various features as columns and the reaction-gene combinations 

(samples) of the metabolic network as rows. The last column of the matrix should 

contain the gene essentiality information as E (Essential), N (Non-Essential), or UD 

(Undefined) as target variables. Channel III will directly take the user to the Training 

and Prediction tab of the ML pipeline. 
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Figure 2 Training and Prediction tab for visualizing the prediction outcome. The 

ML Strategy pipeline Result Tab “Model Training and Prediction” displaying model 

Training performance Metrics such as TPR, FPR, Precision and the predicted 

essential genes list as the final result output. 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.25.517801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517801
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.3 Training and Prediction 

Based on the availability of the experimentally labeled data, the user can then train 

the model using either ML Strategy 1 (if labeled data ≥30% of the total dataset) or ML 

Strategy 2 (if labeled data ≥1% of the total dataset). The performance metrics of the 

model are displayed on the "Training & Prediction" tab (Figure 2). In addition to the 

supervised performance metrics such as TPR (True Positive Rate), FPR (False 

Positive Rate), Precision, Recall, F-measure, the area under the receiver operating 

characteristic curve (auROC), accuracy, and MCC (Matthew's correlation coefficient) 

in ML Strategy 1, PRESGENE offers a novel scoring technique SSMSS (Semi-

supervised Model Selection Score), for the section of the best model using ML 

Strategy 2 where the calculation of the supervised metrics is difficult. Additionally, 

PRESGENE allows the user to vary the feature set and recalculate the feature matrix 

to observe the variations in the prediction accuracy and the role of different features 

on gene essentiality prediction.   

The results along with the calculated feature table generated for the prediction of the 

essential genes, using the PRESGENE server, can be downloaded in .csv format by 

the user from the "Download File" tab. The results will be available for 15 days in the 

server and during this period it can be retrieved anytime from the Download Result 

tab using the JOB ID. A detailed Tutorial has been provided for the benefit of the 

users. 

4.4 Prediction efficacy and performance 

The performance of PRESGENE was assessed based on the training and prediction 

accuracy as well as the universality of the proposed supervised model strategy, ML 

Strategy 1. A comparative performance testing of ML Strategy 1 with a previously 
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established model proposed by Hwang et al.(8) was carried out. The Hwang et al. 

strategy uses sequential minimal optimization (SMO)(32)  algorithm and a linear 

kernel-based SVM, whereas our model implements SVM-RFE (Recursive Feature 

Elimination) technique.  The curated dataset of model organisms from our study as 

well as the dataset used in Hwang et al. study was used for the performance testing. 

The comparison was quantified by performance measure metrics (i.e. Precision, 

Recall, F-measure and MCC) (Table 2). In terms of the training accuracy, our model 

shows significantly improved classification performance as can be observed from 

Table 1 with an improved MCC and F-measure values for both Hwang et al. dataset 

as well as our curated dataset. For example, our strategy produced a F-measure of 

0.826, a significant increase from the F-measure of 0.784 by Hwang’s strategy. In the 

case of Strategy 2, the improved semi-supervised ML-based algorithm, 1% labeled 

data of the twelve organisms was used. To compare the performance of our classifier 

with existing classifiers, different supervised classifiers like Random forest (RF), 

Naive Bayes (NB), Logistic regression (LR) and decision tree (DT) were used for 

testing (Figure 3). Our Laplacian SVM based classifier was found to outperform all 

other methods significantly. The semi-supervised strategy in the server has 

performed with equal accuracy in the case organisms Leishmania donovani and 

Leishmania major, which has been demonstrated previously in details as a case 

study(18). 
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Table 2  Performance testing of ML Strategy 1(17) i.e., supervised strategy by 

comparison with Hwang et al. study(8). 

 

Performance 
metric 

PRESGENE dataset(17) Hwang et.al.(8) dataset (Known)  

Hwang 
strategy(8) 

PRESGENEML 
Strategy 1(17) 

Hwang 
strategy(8) 

PRESGENEML 
Strategy 1(17) 

MCC 0.740 0.814 0.593 0.675 

F-Measure 0.874 0.906 0.784 0.826 

Recall 0.903 0.906 0.745 0.78 

Precision 0.846 0.907 0.828 0.877 

a Performance measure as reported in Hwang et al.(8) 

 

4.5 Case Study to assess Performance efficacy 

The server hosts a total of 14 model organisms for which the ML models are trained 

with 1% labeled data. The prediction performance is assessed by SSMSS score as 

well as the semi-supervised metrics (i.e., TPR, FPR, F-measure, MCC, auROC, and 

accuracy)(18). For example, the outcome of the ML strategy 2 for prokaryotic model 

organism Escherichia coli and eukaryotic model organism Saccharomyces cerevisiae 

can be visualized as three circles (Figure 1C). The first circle represents the circular 

projection of the whole data set in 2-D with gene essentiality information from the 

experiment. The second circle shows the training data set with 1% labelled & 99% 
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unlabeled data. The third circle shows the predicted gene essentiality label from the 

best-trained model and the LapSVM curve based on SSMSS scoring for the best 

trained model. It is observed that the ML strategy 2 model performed well for both 

organisms (similar circular patterns from experiment and prediction). Similarly, for the 

same case study organisms Escherichia coli and Saccharomyces cerevisiae, the 

comparison of performances of our PRESGENE ML Strategy 1 and ML Strategy 2 

with other supervised methods (as mentioned in section 4.4) are observed to be 

significantly higher, with ML Strategy 2 achieving an Accuracy value of 0.899 for 

Escherichia coli and 0.921 for Saccharomyces cerevisiae (Figure 3). 

 

Figure 3 Comparison of the predictive performance of the ML strategies of 

PRESGENE with other supervised methods. Comparison of the performance of 

ML Strategy 1 and ML Strategy 2 used by PRESGENE with other available 

supervised classifiers i.e., Decision Tree (DT), Logistic regression (LR), Naive Bayes 

(NB), Random Forest (RF) based on 1% labeled data for the two case study 

organisms, prokaryote: Escherichia coli and eukaryote: Saccharomyces cerevisiae. 

The X-axis represents the different types of performance metrics for machine 

learning strategies; Y-axis represents the value of performance metrics. 
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4.6 User Interface Design 

Bootstrap 4 framework has been used for designing the front end of the server. The 

programming languages MATLAB, Perl, R, and PHP have been used to write code 

for the automation of feature calculation and deployment of the machine learning 

pipelines (ML Strategy 1 and ML Strategy 2) for the essential gene prediction. The 

present configuration of the PRESGENE server is Intel(R) Xeon(R) CPU E5-2680 @ 

2.70GHz with 32 CPUs and 128 GB RAM. This allows maximum four to five users to 

use the PRESGENE web service simultaneously. In future, the hardware 

configuration of the server can be upgraded to accommodate a greater number of 

users simultaneously. 

A key limitation of the server lies in the fact that both the ML strategies fail to execute 

if the genome-scale reconstructed metabolic network of the organism and a minimum 

of 1% labeled dataset are not available. For time being, one can give the 

reconstructed metabolic network in MAT-file (.mat) format to make it comprehensive 

for the web-server to process it further. Further, we are working to incorporate 

additional data formats of genome-scale models so that one will be able to use 

automated GSMs from a different source in the near future.  

 

5 Conclusion and Impact of PRESGENE 

In this paper we explained in detail the architecture of PRESGENE web server that 

implements our previously introduced ML strategies (17, 18) for essential gene 
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prediction. This web server is intended to be used by biologists for prediction of 

essential genes in novel prokaryotic and eukaryotic organisms which can influence 

better characterization of novel organisms. 

The main impact of our web server lies in its ability to seamlessly classify essential 

and non-essential genes implementing our supervised and semi supervised ML 

algorithms for organisms with extremely limited essential gene information, such as 

in cases of up to only 1% labeled data from the organism’s genome. Further, the 

algorithm uses a vastly diverse set of features (stems from FBA sub network, 

metabolic gene-reaction pair), which has previously not been implemented that 

improves the prediction accuracy manifold in organisms with least known essentiality 

data. The supervised ML strategy mitigates the inherent problems with unbalanced 

training datasets, feature bias with its unique implementation of SVM-RFE technique 

with higher classification performance and has the ability to capture a minimal set of 

essential genes that contribute to essentiality. On the other hand, the semi-

supervised ML Strategy excels in its performance for prediction on highly limited 

essentiality information for unknown organisms by combining LapSVM classifier for 

training along with Kamada-Kawai dimension reduction technique and also presents 

a prediction accuracy monitoring score SSMSS for the proposed technique. These 

high performance prediction algorithms benefit a wide variety of users. Additional 

advantages of using our web server include: 1) One can implement our ML strategies 

on the 14 model organisms for which the entire required data is provided within the 

server; 2) One can use the server for their organism of interest with option to choose 

either of the ML strategy based on the availability of labeled data; 3) One can easily 

explore from a plethora of features (currently available, 289) for training set 

preparation and can also customize the feature matrix; 4) A detailed tutorial guides 

the user step-by-step process for a seamless use of web server with just click-based 
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operation and thus can be used by any biologists with limited or no knowledge of 

computational methods. 

Hence, PRESGENE will be invaluable to experimental and computational biologists 

by providing a well-validated and standardized platform to annotate gene essentiality 

of less-explored organisms with minimal information on labeled data. The essential 

genes predicted using the platform have broad applicability and will help identify 

novel therapeutic targets against disease-causing organisms for antibiotic and 

vaccine development. 
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