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Abstract 

Background 

Amongst the major challenges in next-generation sequencing experiments are 

exploratory data analysis, interpreting trends, identifying potential targets/candidates, 

and visualizing the results clearly and intuitively. These hurdles are further heightened 

for researchers who are not experienced in writing computer code, since the majority of 

available analysis tools require programming skills. Even for proficient computational 

biologists, an efficient and replicable system is warranted to generate standardized 

results.    

Results 

We have developed RNAlysis, a modular Python-based analysis software for RNA 

sequencing data. RNAlysis allows users to build customized analysis pipelines suiting 

their specific research questions, going all the way from raw FASTQ files, through 

exploratory data analysis and data visualization, clustering analysis, and gene-set 

enrichment analysis. RNAlysis provides a friendly graphical user interface, allowing 

researchers to analyze data without writing code. We demonstrate the use of RNAlysis 

by analyzing RNA data from different studies using C. elegans nematodes. We note that 

the software is equally applicable to data obtained from any organism. 

Conclusions 
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RNAlysis is suitable for investigating a variety of biological questions, and allows 

researchers to more accurately and reproducibly run comprehensive bioinformatic 

analyses. It functions as a gateway into RNA sequencing analysis for less computer-savvy 

researchers, but can also help experienced bioinformaticians make their analyses more 

robust and efficient, as it offers diverse tools, scalability, automation, and 

standardization between analyses.   

 

Keywords 

RNA sequencing | Clustering analysis | Gene-set enrichment analysis | Data 

visualization | Pipeline 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.25.517851doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517851
http://creativecommons.org/licenses/by-nc-nd/4.0/


Background 

RNA sequencing continues to grow in popularity as an investigative tool for 

biologists. A huge variety of RNA-sequencing analysis methods allow researchers to 

compare gene expression levels between different biological specimens or experimental 

conditions, cluster genes based on their expression patterns, and characterize 

expression changes in genes involved in specific biological functions and pathways.  

Specific tools exist to perform the different tasks described above (see 

Discussion and Supplementary Table 1 for a detailed comparison of available tools). 

However, most analysis tools can only perform a subset of these tasks, and any out-of-

the-ordinary research questions require researchers to write customized analysis 

scripts, which may not be easy to share or replicate. Moreover, many of the existing 

tools require users to be familiar with reading and writing code, making them usable 

only by researchers experienced in computer programming.  

RNAlysis offers a solution to these problems by (1) using a modular approach, 

allowing users to either analyze their data step-by-step, or construct reproducible 

analysis pipelines from individual functions; and (2) providing an intuitive and flexible 

graphical user interface (GUI), allowing users to answer a wide variety of biological 

questions, whether they are general or highly specific, and explore their data 

interactively without writing a single line of code. RNAlysis includes thorough 

documentation and step-by-step guided analyses, to help new users to learn the 
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software quickly and acquire good data analysis practices ( e online, and also availabl

available as Supplementary File 1).  

 

Implementation 

RNAlysis was designed to perform three major tasks: (1) pre-processing and 

exploratory data analysis; (2) finding gene sets of interest through filtering, clustering, 

and set operations; (3) visualizing intersections between gene sets and performing 

enrichment analysis on those sets (Figure 1).  

Input 

RNAlysis can interface with existing tools, such as CutAdapt, kallisto, and 

DESeq2, (Bray et al., 2016; Love et al., 2014; Martin, 2011; Soneson et al., 2015) to 

enable users to run basic adapter-trimming, RNA sequencing quantification, and 

differential expression analysis through a graphical user interface. That is to say, users 

can begin their analysis with RNAlysis with sequencing data at any stage. Alternatively, 

users can load into RNAlysis data tables that were generated elsewhere. RNAlysis has a 

tabbed interface, which allows users to examine and analyze multiple data tables in 

parallel, seamlessly switching between them.  

RNAlysis can accept data from any organism. RNAlysis can analyze gene 

expression matrices (raw or normalized), differential expression tables, or user-defined 

gene sets of interest. Moreover, RNAlysis accepts annotations for user-defined 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.25.517851doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517851
http://creativecommons.org/licenses/by-nc-nd/4.0/


attributes of genes. Since RNAlysis works with tabular data, RNAlysis is applicable to any 

type of data table. 

 

Data validation and pre-processing 

First, RNAlysis allows users to validate their data by summarizing and visualizing 

the data’s patterns and distribution. For instance, users may compare the distribution of 

gene expression between samples through scatter plots and pair plots, examining 

general trends in the data, as well as potential batch effects via clustergram plots and 

PCA projections.  

Moreover, RNAlysis allows users to pre-process their data by normalizing it 

through one of various methods (such as Median of Ratios, Relative Log Ratio, Trimmed 

Mean of M-values, and more) (Anders and Huber, 2010; Bullard et al., 2010; Love et al., 

2014; Maza et al., 2013; Robinson and Oshlack, 2010), filtering out lowly-expressed 

genes, and eliminating rows with missing data from their tables.  

Data filtering and clustering 

After data pre-processing, users can further filter their data tables according to a 

broad array of parameters, depending on the nature of their data and biological 

questions. These filtering functions can be applied in particular orders and combinations 

to suit the user’s specific needs. These functions include, among many others, filtering 

by statistical significance or the direction and magnitude of fold change, filtering 
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genomic features by their type, performing set operations between different data tables 

and gene sets (for instance - intersections, differences, majority vote intersections, etc.) 

between tables, etc.  

One of the powerful features of RNAlysis is the ability to easily extract gene lists 

ifrom set operations applied to the user’s tables and gene sets, and use these lists in 

downstream analyses. This can be done either by applying a pre-defined set operation 

(like intersection or difference), or hand-picking subsets of interest through an 

interactive graphical platform.  

Finally, RNAlysis allows users to cluster genes based on the similarity of their 

expression patterns. RNAlysis supports an extensive selection of clustering algorithms, 

including distance-based clustering (K-Means, K-Medoids, Hierarchical clustering), 

density-based clustering (HDBSCAN) (McInnes et al., 2017), and ensemble-based 

clustering (a modified version of the CLICOM algorithm) (Mimaroglu and Yagci, 2012).  

Moreover, RNAlysis provides users with a wide array of distance metrics for 

clustering analysis. This includes the implementation of distance metrics that were 

specially developed for biological applications such as time-course gene expression data 

(Son and Baek, 2008), and distance metrics that were empirically found to best suit 

transcriptomics analysis (Jaskowiak et al., 2014).  

Modularity and building customized pipelines 

Filtered data tables can be saved or loaded at any stage during the analysis. The 

operations performed on the data, as well as their order, will automatically be reflected 
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in the output files' names. Additionally, any operation applied to the data can be 

undone with a single click, and RNAlysis displays the history of commands applied to 

each table in the order they were applied.  

As mentioned earlier, users can ‘bundle’ any of the functions RNAlysis offers into 

distinct Pipelines, which can then be applied in the same order and with the same 

parameters to any number of similar data tables. This helps users to save time and avoid 

mistakes and inconsistencies when analyzing a large number of datasets. Pipelines can 

also be exported and shared with other researchers, who can then use these Pipelines 

on any machine that installed RNAlysis. This feature makes analysis pipelines easier to 

report and share, increasing the reproducibility and transparency of bioinformatic 

results.  

Enrichment analysis 

After applying the aforementioned analyses to summarize data tables down to 

gene sets of interest, users can carry out enrichment analysis for those gene sets via the 

Enrichment window. Gene set enrichment analysis is a collection of methods for 

identifying classes of genes, biological processes, or pathways, that are over- or under-

represented in a gene set of interest (Subramanian et al., 2005). Enrichment analysis is 

very popular in the context of RNA sequencing analysis, since it allows researchers to 

associate a differentially-expressed gene set with underlying biological functions 

(Ashburner et al., 2000; Kanehisa and Goto, 2000).  
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RNAlysis supports multiple approaches and statistical methods for enrichment 

analysis, including classic gene-set enrichment analysis, permutation tests (Phipson and 

Smyth, 2010), background-free enrichment analysis (Eden et al., 2007; Wagner, 2017), 

and enrichment for ordinal or continuous variables.  

RNAlysis can automatically retrieve enrichment analysis annotations of all major 

model organisms from widely accepted databases such as Gene Ontology categories 

and KEGG pathways (Carbon et al., 2021; Kanehisa et al., 2022). However, unlike most 

other analysis pipelines, RNAlysis also accepts annotations for user-defined attributes 

and groups (see Supplementary Table 1). This allows users to tailor their analyses to 

their specific needs and biological questions.  

Documentation and accessibility 

While RNAlysis can be operated entirely within a graphical interface, all the 

functions and features RNAlysis offers can also be imported and used in standard 

Python scripts, allowing users with coding experience to further automate and 

customize their bioinformatic analyses.  

RNAlysis includes extensive documentation to guide new and returning users. A 

User Guide offers a bird’s eye view of the modules and features of RNAlysis, along with 

video demonstrations, usage examples, and recommended practices. The remainder of 

the documentation provides a complete reference of the functions and features 

available in RNAlysis, where users can look up specific entries to get a more thorough 

review of their theoretical background, use cases, and optional parameters.  
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The project is available as an open-source,  public GitHub repository. A multitude 

of test cases are also provided within the package, which are executed automatically 

every time the source code is updated, ensuring that data analysis with RNAlysis 

remains consistent and reliable.  

RNAlysis is powered by various open-source projects (Harris et al., 2020; Heyer 

et al., 1999; Hunter, 2007; Lam et al., 2015; Lex et al., 2014; Mckinney, 2010; Pedregosa 

et al., 2011; Seabold and Perktold, 2010; Son and Baek, 2008; Virtanen et al., 2020; 

Waskom, 2021) which are installed automatically and used when needed.  
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Results 

We examined the ability of RNAlysis to facilitate analyses of multiple different 

publicly available datasets (Davis et al., 2022; Dodd et al., 2018; Finger et al., 2019; 

Schreiner et al., 2019). First, we analyzed time-series gene expression data, using 

clustering analysis to group genes based on their expression pattern. Then, we 

demonstrated the analysis of multiple RNA sequencing datasets from raw FASTQ files 

and showing the applications of analysis Pipelines and set operations between datasets. 

A step-by-step tutorial of these analyses is available in the online RNAlysis 

documentation (also available as Supplementary File 1).  

Analysis #1: Exploring gene expression patterns across the development of 

Caenorhabditis elegans 

In the first analysis, we examined a dataset describing average gene expression 

under different developmental stages of Caenorhabditis elegans nematodes, derived 

from the control samples of many publicly available RNA sequencing experiments (Davis 

et al., 2022).  

Exploratory data analysis revealed that the different developmental stages show 

the highest correlations with contiguous developmental stages (Figure 2A), and PCA  

uncovered a semi-circular pattern, with over 75% of the data’s variance explained by the 

first two principal components (Figure 2B). Interestingly, the first Principal Component 

appears to arrange the samples by their relative germline content, with embryos and 

adult nematodes on one end, L1-L3 larvae on the other end, and L4 larvae in between. 
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The second Principal Component appears to arrange the samples by their 

developmental stage, with embryos appearing at the top of the graph and adults at the 

bottom.  

Next, we extracted clustering results at three different resolutions by using 

exemplars from three different classes of clustering algorithms: a distance-based 

algorithm (K-Medoids) (Supplementary Figure 1), a density-based algorithm (HDBSCAN) 

(Supplementary Figure 2), and an ensemble-based algorithm (CLICOM) (Figure 3). While 

one of the most challenging aspects of RNA sequencing clustering analysis is the 

requirement to specify in advance the number of clusters, RNAlysis provides unbiased 

clustering methods that can either estimate a good number of clusters to detect, or 

require no such input at all – instead specifying the smallest cluster size that would be of 

interest to the user.  

While the data examined here only contains a single sample for each 

experimental condition, RNAlysis is well suited for clustering analysis of replicate data, 

since it's able to cluster each batch of replicates separately and combine the results of 

those batches, resulting in more accurate and robust clustering results (Sloutsky et al.).  

Finally, we plotted the expression level of specific genes of interest under the 

different developmental stages (Figure 4A) and performed GO enrichment on one of the 

clusters we previously detected, revealing a strong enrichment for neuropeptide 

signaling pathways (Figure 4B).  
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Analysis #2: Measuring the effect of stress on the expression of small RNA factors  

In the second analysis we demonstrate here, we analyzed three datasets that 

examined the effects of three different stress conditions (osmotic stress, heat shock, 

and starvation) on gene expression (Dodd et al., 2018; Finger et al., 2019; Schreiner et 

al., 2019). This is a replication of a previously published analysis (Houri-Zeevi et al., 

2021) done with an earlier version of RNAlysis (version 1.3.5, 2019), where the purpose 

was to examine the effects of stress exposure on the expression of small RNA factors. 

This analysis shows how RNAlysis facilitates intuitively answering highly specific 

biological questions.  

We started the analysis with raw FASTQ files, applying adapter trimming, 

transcript expression quantification, and differential expression analysis to the three 

datasets, all executed through the RNAlysis graphic interface.  

Next, we examined the distribution of differentially expressed genes under each 

condition with a Volcano Plot (Figure 5A) and extracted from each differential 

expression table the lists of significantly up-regulated and down-regulated genes. This 

step was automated by building and applying a Pipeline, allowing us to analyze all three 

tables in the exact same manner, with the click of a button.  

Following these filtering steps, we examined the intersection of the up- and 

down-regulated genes between the different stress conditions (Figure 5B) and extracted 

the list of genes that are significantly up/down-regulated under all stress conditions. We 

then created an appropriate background set for enrichment analysis by calculating the 
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union gene lists of all genes which are sufficiently expressed under at least one stress 

condition.   

Finally, we ran enrichment analysis on the stress-downregulated genes, 

measuring whether they are significantly enriched for a user-defined list of epigenetic-

related genes (Figure 5C). We found the stress-downregulated genes to be significantly 

enriched for epigenetic-related genes, as previously shown (Houri-Zeevi et al., 2021). 

Enrichment for user-defined attributes is a feature unique to RNAlysis, allowing users to 

answer highly specific biological questions. This means that the users are not limited to 

widely available datasets, but can directly analyze any gene sets and attributes of 

interest without the need to write any code.  

 

Discussion 

RNAlysis offers researchers a robust, scalable, and easy-to-use tool to analyze 

RNA sequencing data. RNAlysis was designed not only to be intuitive and approachable 

for new users, but also to provide a high degree of efficiency, control, and robustness to 

experienced bioinformaticians.  

Other useful software tools for the analysis of RNA sequencing data exist (see 

Supplementary Table 1). For example, Galaxy (Afgan et al., 2018) is a web-based 

scientific analysis platform for the analysis of biological data. Galaxy offers many shared 

features with RNAlysis, including integration of existing analysis tools, extensive 

documentation, and the ability to filter, sort, and intersect data tables. However, 
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contrary to Galaxy, RNAlysis aims to simplify commonly used actions, such as filtering 

and set operations, by providing users with dozens of ready-made filtering functions 

relevant to RNA sequencing data, and supporting set operations on an arbitrary number 

of datasets with an intuitive, point-and-click interface. Moreover, RNAlysis offers 

analysis methods that are particularly useful to RNA sequencing data, such as advanced 

clustering methods, and enrichment analysis for user-defined attributes.  

Tools such as ARPIR (Spinozzi et al., 2020) and NetSeekR (Srivastava et al., 2022), 

can take users all the way from the alignment of reads and differential expression 

analysis through GO enrichment and other tertiary analyses such as gene network 

analysis. Other tools like ideal (Marini et al., 2020), PIVOT (Zhu et al., 2018), and 

DEBrowser (Kucukural et al., 2019)  provide users with a graphical interface to perform 

differential expression analysis and enrichment analysis.  

While these tools allow less experienced bioinformaticians to perform basic 

transcriptomic analysis, they are limited in their capability to filter datasets, perform set 

operations between datasets, use more sophisticated clustering algorithms, or 

automate and streamline data analysis with pipelines. In contrast to these tools, 

RNAlysis is highly modular and customizable, allowing users to tailor their analyses to 

their biological questions through advanced data filtering, intersecting multiple 

datasets, and a high degree of control over analysis parameters at every stage of the 

process. Moreover, many of these tools cannot analyze RNA sequencing experiments 

from start to finish, since they do not support pre-processing, alignment, or 

quantification utilities of FASTQ files.  
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Conclusion 

RNAlysis offers a modular toolbox for RNA sequencing data analysis, with the 

unique combination of an intuitive graphical interface and highly customizable analysis 

workflows, setting it apart from most other RNA sequencing analysis tools.  

We believe that the ability to build customized and reproducible analysis 

pipelines, combined with the user-friendly interface, will allow researchers to easily gain 

novel biological insights from RNA sequencing data.  
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RNA-Seq: RNA sequencing 

MRN: Median ratio normalization 

TMM: Trimmed Mean of M-values 

RLE: Relative Log Expression 

WT: Wild type 

KEGG: Kyoto Encyclopedia of Genes and Genomes 
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Project name: RNAlysis  

Project home page: https://github.com/GuyTeichman/RNAlysis 

Operating system(s): Platform independent 

Programming language: Python 3 

Other requirements: Python 3.7.9 or higher, GraphViz 3.0 or higher (optional), kallisto 

0.44.0 or higher (optional), R 4.1.0 or higher (optional), Microsoft C++ Build Tools 14.0 

or higher (optional, on Windows computers only) 

License: MIT 
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Figure Legends 

Figure 1: The workflow of RNAlysis 

Top section: a typical analysis with RNAlysis can start at any stage from raw/trimmed 

FASTQ files, through more processed data tables such as count matrices, differential 

expression tables, or any form of tabular data.  

Middle section: data tables can be filtered, normalized, and transformed with a wide 

variety of filtering functions, allowing users to clean up their data, fine-tune their 

analysis to their biological questions, or prepare the data for downstream analysis. 

RNAlysis also provides users with a broad assortment of customizable clustering 

methods, to help recognize genes with similar expression patterns, and visualization 

methods to aid in data exploration. All of these functions can be arranged into 

customized Pipelines that can be applied to multiple tables in one click, or exported 

and shared with others.  

Bottom section: Once users have focused their data tables into gene sets of interest, 

or imported such gene sets from another source, they can use RNAlysis to visualize 

the intersection between different gene sets, extract lists of genes from any set 

operations applied to their gene sets and data tables, and perform enrichment 

analysis for their gene sets, using either public datasets such as GO and KEGG or 

customized, user-defined enrichment attributes.  
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Figure 2: Exploratory data analysis reveals patterns in time-series gene expression 

data  

(A) Principal Component Analysis projection of the time series data. Depicted are 

the first two principal components, explaining >75% of the variance in the 

data. Data was power-transformed and regularized before the analysis.  

(B) Pair-plot, depicting the pairwise Spearman correlation between each pair of 

samples, and a histogram of normalized gene expression in each sample. Each 

dot represents the log of normalized expression of a single gene.  
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Figure 3: Clustering analysis of time-series gene expression data  

(A) Clustering analysis of the data using modified CLICOM clustering, using five 

underlying clustering setups, evidence threshold of 50%, and a minimal cluster 

size of 75 (Mimaroglu and Yagci, 2012). Clusters are sorted by their size. Each 

graph depicts the power-transformed and regularized expression of all genes 

in the cluster, with the center lines denoting the clusters’ means and standard 

deviations across developmental stages of C. elegans nematodes. 

(B) PCA projection of the power-transformed and regularized gene expression 

data. Each dot represents a gene. The points are colored according to the 

cluster they belong in the CLICOM clustering result depicted in (C) above.  
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Figure 4:  Gene expression plots and enrichment analysis of time-series gene 

expression data 

(A) Normalized gene expression values of the normalized time series data for two 

sample genes oma-1 (WBGene00003664) and skn-1 (WBGene00004804).  

(B) GO enrichment ontology graph, depicting enrichment results for cluster #9 

(Figure 3). The graph depicts the hierarchical relationship between the GO 

terms. Each GO term was colored according to its log2 Fold Enrichment score 

if it was statistically significant (q-value ≤ 0.05).  
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Figure 5: Analysis of stress-induced gene expression changes 

(A) Volcano plot depicting differential expression results, comparing worms that 

experienced starvation to worms that grew under normal conditions. Each dot 

represents a gene. Differentially expressed genes with log2 fold change ≥ 1 

were painted in red, and differentially expressed genes with log2 fold change ≤ 

-1 were painted in blue.  

(B) A proportional Venn Diagram depicting the intersection between genes that 

are significantly downregulated under heat shock, osmotic stress, or 

starvation, compared to their matching control samples.  

(C) Log2 X-fold enrichment score for a curated list of epigenetic genes, in the set 

of genes significantly downregulated under all stress conditions. The p-value 

for enrichment was calculated using 10,000 random gene sets identical in size 

to the tested group. *** indicates p-value ≤ 0.001.  
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Supplementary Figure 1:  

K-Medoids Clustering analysis of time-series gene expression data  

Clustering analysis of the data using K-Medoids clustering, after selecting an 

appropriate number of clusters (K=11) using the Gap Statistic method (Tibshirani et 

al.). Clusters are sorted by their size. Each graph depicts the power-transformed and 

regularized expression of all genes in the cluster, with the center lines denoting the 

clusters’ Medoids and standard deviations across developmental stages of C. elegans 

nematodes.  

 

Supplementary Figure 2:  

HDBSCAN Clustering analysis of time-series gene expression data  

Clustering analysis of the data using HDBSCAN clustering, with a minimal cluster size 

of 75 (McInnes et al., 2017). Clusters are sorted by their size. Each graph depicts the 

power-transformed and regularized expression of all genes in the cluster, with the 

center lines denoting the clusters’ means and standard deviations across 

developmental stages of C. elegans nematodes.  
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