- Plasma after both SARS-CoV-2 boosted vaccination and COVID-19 potently neutralizes BQ.1.1
 and XBB.1
- 3
- 4 David J Sullivan¹, Massimo Franchini², Jonathon W. Senefeld³, Michael J. Joyner³, Arturo
- 5 Casadevall¹, Daniele Focosi⁴
- 6
- 7 ¹Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD
- 8 21218, USA; <u>dsulliv7@jhmi.edu</u>; <u>acasade1@jhu.edu</u>
- ⁹ ²Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
- 10 massimo.franchini@asst-mantova.it
- ³Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902,
- 12 USA joyner.michael@mayo.edu; senefeld.jonathon@mayo.edu
- ⁴North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy.
- 14 <u>daniele.focosi@gmail.com</u>
- 15
- 16 Keywords: convalescent plasma; SARS-CoV-2; COVID-19; BQ.1.1; XBB; BF.7: virus
- 17 neutralization.
- 18 Abbreviations: VOC: variant of concern; VaxCCP, plasma from both vaccinated and COVID-
- 19 19 convalescent subjects.
- 20 Author contributions: DJS: data extraction, table curation and design, and writing original
- 21 draft; D.F.: conceptualization, data access and verification and manuscript revision; M.F. data
- access and verification and manuscript revision; JWS data access and verification and
- 23 manuscript revision, MJJ and AC manuscript revision.
- 24 Data availability statement: all the data used for this manuscript are available in the
- 25 Supplementary Dataset file.
- 26
- 27 Corresponding author: David Sullivan, 615 N. Wolfe St Rm W4606, Baltimore MD 21205.
- 28 Tel 410 502 2522, fax 410 955 0105. E-mail <u>dsulliv7@jhmi.edu</u>
- 29
- **30 Word counts** : Abstract 230; Text 1952.

31 Abstract

32 The SARS-CoV-2 Omicron variants, dominating in the late 2022 COVID-19 waves, have acquired 33 resistance to most neutralizing anti-Spike monoclonal antibodies authorized so far, and the BO.1.* 34 sublineages, dominant in the western countries, are notably resistant to all authorized monoclonal 35 antibodies. Polyclonal antibodies from individuals both with at least 3 vaccine doses and also recently recovered from Omicron COVID-19 (VaxCCP) could retain neutralizing activity against 36 37 such new Omicron lineages. Here we reviewed BQ.1.1 virus neutralization data from 740 38 individual patient samples from 37 separate cohorts defined by boosted vaccinations with or without recent Omicron COVID-19, as well as infection without vaccination. More than 96% of 39 40 the plasma samples from individuals in the recently (within 6 months) boosted VaxCCP study cohorts neutralized BQ.1.1, XBB.1 and BF.7 with 100% neutralization of WA-1, BA.4/5, BA.4.6 41 42 and BA.2.75. The geometric mean of the geometric mean 50% neutralizing titers (GM(GMT₅₀) 43 were 334, 72 and 204 for BO.1.1, XBB.1 and BF.7, respectively. Compared to VaxCCP, plasma 44 sampled from COVID-19 naïve subjects who also recently within 6 months received at least a third 45 vaccine dose had about half of the $GM(GMT_{50})$ for all viral variants with percent neutralizations 46 of 79%, 52% and 94% for BQ.1.1, XBB.1 and BF.7, respectively. Boosted VaxCCP characterized

47 by either recent vaccine dose or infection event within 6 months represents a robust, variant-

48 resilient, passive immunotherapy against the new Omicron BQ.1.1, XBB.1 and BF.7 variants.

49

50

53	Table of contents	
54	Introduction	. 4
55	Results	. 4
56	Discussion	. 6
57	Search strategy and selection criteria	. 7
58	References	. 9
59	Table 1	11
60	Table 2	13
61	Figure 1	14
62	Figure 2	15
63	Figure 3	16
64	Supplementary Table 1	17
65	Supplementary Table 2	18
66	Supplementary Table 3	21
67	Supplementary Figure 1	23
68	Supplementary Figure 2	24
69	Supplementary Figure 3	25
70		

72 Introduction

73 In immunocompromised (IC) patients both passive immunotherapies and small molecule antivirals 74 are often necessary to treat COVID-19 or eliminate persistently high SARS-CoV-2 viral load. 75 Chronic, persistent viral loads increase both transmission and mutation risk, and prevent administration of the required immunosuppressive/antineoplastic therapies¹. Small molecule 76 77 antivirals have not been formally validated for IC patients, who often have contraindications, and 78 the convergent evolution of the Omicron variant of concern (VOC) has led to inefficacy of all the 79 anti-Spike monoclonal antibodies (mAbs) authorized so far for both treatment or prevention, e.g. in the highly prevalent BQ.1.* sublineages². The other rapidly growing XBB.* and BF.7 80 81 sublineages are also highly resistant to anti-Spike mAbs³. Polyclonal plasma from individuals who are both vaccinated and had COVID-19 (VaxCCP) has more than ten times the antibody levels 82 capable of neutralizing pre-Omicron variants as well as Omicron variants BA.1 through BA.4/5^{4,5}. 83 Polyclonal COVID-19 convalescent plasma (CCP) has thousands of distinct antibody specificities 84 of different isotypes, including many capable of SARS-CoV-2 neutralization. High-titer pre-85 Omicron CCP contains Omicron neutralizing activity despite being collected before variant 86 87 appearance^{4,5}.

88

69 Given that CCP remains a recommended therapy for $IC^{1,6,7}$, we systematically reviewed recent 90 primary research for neutralization results against BQ.1.1 by plasma collected from vaccinated

subjects with or without COVID-19 or after recent Omicron infection alone.

92

93 Results

94 Eight articles were included (Figure 1) which contained virus neutralizations with WA-1, BO.1.1, BA.4/5, BA.4.6, XBB.1 and BF.7, assessed with either live authentic SARS-CoV-2 or SARS-95 CoV-2 pseudovirus neutralization assays and represented data from 652 patients (Supplementary 96 97 Table 1). Qu et al. in the USA reported on Spring and Summer 2022 breakthrough infections with BA.1 and BA.4/5 in two sampled cohorts with predominantly unvaccinated individuals, as well as 98 a third cohort of healthcare workers after a single monovalent booster vaccination in the Fall of 99 100 2021⁸ (Table 1). Zou *et al.* in the USA in the Summer and Fall of 2022 sampled individuals who had already received 3 mRNA BNT162b2 vaccinations with or without previous COVID-19, both 101 before and about 4 weeks after a 4th monovalent or bivalent vaccine booster vaccination⁹. Miller 102 et al. also in the USA sampled both before the 3rd vaccination dose and about 4 weeks after 103 monovalent mRNA vaccination in the Fall of 2021, as well as with the 4th vaccine dose in the 104 Summer or Fall of 2022, with either monovalent or bivalent booster vaccinations in Fall of 2022 105 106 in those with no documented COVID-19¹⁰. Cao et al. in China investigated BO.1.1 neutralizations from plasma of 4 cohorts after 3 doses of CoronaVac (Fall 2021) without COVID-19 or 2-12 weeks 107 after BA.1, BA.2 and BA.5 infection³. Planas et al. in France evaluated GMT₅₀in plasma from 108 109 individuals both 4 and 16 weeks after a third monovalent mRNA vaccine dose in the Fall of 2021 as well as 12 and 32 weeks after vaccine breakthrough BA.1/2 or BA.5 infection¹¹. Davis et al in 110 the USA sampled after the 3rd mRNA vaccine monovalent dose in the Fall of 2021 and also after 111 either a 4th monovalent mRNA dose or a bivalent (wild-type + BA.4/5) vaccine dose in the 112 Summer and Fall of 2022¹². Kurhade et al in the USA also compared GMT₅₀after the 4th 113 monovalent vaccine dose or 3 mRNA doses with the 4th the bivalent dose without COVID-19 and 114 also after bivalent boost with recent COVID-19¹³. Wang *et al* in the USA compared GMT₅₀ after 115 three vaccine doses, the 4th monovalent vaccine dose or 3 mRNA doses with the 4th the bivalent 116

dose without COVID-19, and also after 2-3 vaccine doses and recent BA.2 breakthrough infection 2.4 mPNA vaccine doses and recent BA.4/5 breakthrough infection

- 118 or 3-4 mRNA vaccine doses and recent BA.4/5 breakthrough infection¹⁴.
- 119

120 These diverse cohorts were assembled into 3 groups, 1) plasma after both 2-4 vaccine doses and COVID-19 (VaxCCP); 2) plasma from subjects after administration of 3-4 vaccine doses (i.e. 121 122 boosted), but either self-reported as COVID-19-naïve or anti-nucleocapsid negative; and 3) 123 Omicron infection without vaccination (CCP) as well as participants sampled 6 to 11 months after 124 previous vaccine dose and before the booster vaccination. Boosted VaxCCP neutralized BQ.1.1, XBB.1 and BF.7 with approximately 3 times the dilutional potency of the vaccine-only or 2-6 125 126 times CCP/pre-boost vaccination groups for all viral variants (Table 2 and Figure 2). Importantly, while there was a 20-fold reduction in neutralization by boosted VaxCCP against BO.1.1 compared 127 to WA-1, more than 96% of the boosted VaxCCP samples neutralized BQ.1.1 as well as XBB.1 128 129 and BF.7 (Table 2 and Figure 2c). The single cohort within the boosted VaxCCP group which 130 was at 85% neutralization was sampled late, 8 months after BA.1/2 breakthrough infection¹¹ (Supplementary Table 2 and 3). Except for the GMT (GMT₅₀) against XBB.1 at 72, the other 131 132 viral variant neutralizations were in the same range as pre-Alpha CCP neutralizing WA-1 (i.e., 311)⁴. By comparison the large randomized clinical trial which effectively reduced outpatient 133 COVID-19 progression to hospitalizations had a GMT₅₀ of 80 for WA-1 with pre-Alpha CCP¹⁵. 134 Boosted vaccinations at 3-4 doses without COVID-19, showed GM(GMT₅₀) of 123 for BQ.1.1, 135 with only 6 of 21 cohorts over 90% neutralizations, for 82% overall (i.e. 272 of 344 individuals). 136 Four separate studies⁸,¹³,¹²,¹⁰ characterized BQ.1.1 virus neutralizations with plasma after the new 137 138 bivalent (wild-type + BA.4/5) mRNA vaccine booster in the Fall of 2022, with 88% (103 of 117 139 samples) neutralization activity within 4 weeks of bivalent booster (Supplementary Table 3).

140

Many studies performed virus neutralizations on samples drawn before the 3^{rd} or 4^{th} vaccine dose which were 6 to 11 months after last vaccine dose. The GM(GMT₅₀)'s for BQ.1.1 and BA.2.75 were about 6 times reduced compared to VaxCCP even though the fold reductions were similar (**Figure 3, Table 2**). In agreement with lower GMT₅₀ for neutralizations was the low percent neutralizing BQ.1.1 (60%), XBB.1 (46%), and BF.7 (75%) at 6 to 11 months after vaccination (**Figure 3, Table 2 and Supplementary Table 3**).

147

148 Four studies used the lentiviral pseudovirus assays, with diverse Spike proteins cloned in, while the other four were live virus assays using different cell types (Supplementary Table 1). Notably, 149 Planas *et al* employed the IGROV-1 cell type for better growth of Omicron sublineages¹¹. While 150 151 the single study fold reductions (FR) and percent neutralizations normalize the results between studies, the GMT₅₀ can vary between studies even amongst the live authentic viral neutralization 152 studies (e.g., mNeonGreen[™] reporter assays versus cytopathic effects)^{9,13}. We sorted the live 153 154 authentic viral neutralizations from the pseudoviral neutralizations, plotting also the minimum and 155 maximums (Supplementary Figures 1-3). In general, the live authentic SARS-CoV-2 156 neutralization assays for VaxCCP appeared to have similar antibody neutralization levels, with the single study by Cao et al³ employing lentiviral pseudovirus with lower dilutional titers. In contrast, 157 158 the GMT₅₀ achieved with pseudoviral assays in the boosted vaccinations without COVID-19 159 appeared slightly higher than the ones achieved with authentic virus.

161 Discussion

162 The FDA deemed CCP safe and effective for both immunocompetent and IC COVID-19 163 outpatients^{6,7,16}, and further extended its authorized use in the IC patient population in December 164 2021^{7,16}, at a time when oral antiviral therapy promised a no transfusion outpatient solution and 165 many anti-Spike mAbs were still effective.

166

167 Up until the present, CCP remained a backup bridge for IC patients, durable against the changing 168 variants and as a salvage therapy in seronegative IC patients. With the recent advent of Omicron XBB.* and BQ.1.* defeating the remaining anti-Spike mAbs, boosted VaxCCP, recently collected 169 170 within the last 6 months of either a vaccine dose or SARS-CoV-2 is likely to be the only viable remaining passive antibody therapy in the 2022-23 Winter for IC patients who have failed to make 171 antibodies after vaccination and still require B-cell depleting drugs or immunosuppressive 172 173 therapy. In a literature review of CCP from diverse VOC waves as well as boosted vaccinees and 174 VaxCCP up to BA-1, VaxCCP showed higher neutralization titers against Omicron at levels above 300 dilutional GMT_{50}^4 . 175

176

The accelerated evolution of SARS-CoV-2 VOCs has created the problem that the pharmaceutical 177 development of additional mAbs is not worth the effort and cost given their expected short useful 178 clinical life expectancy, so the anti-Spike mAb pipeline has remained stuck in 2022. High levels 179 180 of antibodies in donor plasma from both boosted vaccinations and COVID-19 convalescent plasma (VaxCCP) neutralize more than 95% of BQ.1.1and BF.7 with XBB.1 at 85%. Recently collected 181 182 plasma within a 6 month window from those boosted vaccinees without prior documented COVID-183 19 had a 20-30% reduction in neutralization percent for BQ.1.1and XBB.1 with 10% reduction for the others and a third of the $GM(GMT_{50})$ neutralizing antibody levels compared to VaxCCP. In 184 those vaccinated with last dose more than 6 months prior to sample collection both the 185 neutralization percent and neutralizing antibody titers fell further compared to the recently boosted 186 VaxCCP group. Four studies (Planas¹¹, Zou⁹, Cao³ and Kurhade¹³) had directly comparative 187 cohorts in the three groups which increases the robustness reduction in neutralizations with the 188 189 vaccine only or more than 6 months to last vaccine or infection event compared to VaxCCP. The 190 main limitation of our systematic review is the small number of studies reporting virus 191 neutralization with BQ.1.1 with most available as pre-preprints without peer-review yet. However, 192 we note that peer-review itself does not change GMT₅₀ or neutralization numbers and the authors 193 of these papers have considerable expertise in the topic.

194

195 Boosted VaxCCP has full potential to replace anti-Spike mAbs for passive antibody therapy of IC 196 patients against recent Omicron sublineages, in the meanwhile polyclonal IgG formulations can be manufactured. VaxCCP qualification in the real-world will likely remain constrained on high-197 198 throughput serology, whose correlation with GMT_{50} is not perfect^{17,18}. Nevertheless, the very high prevalence (96%) of Omicron-neutralizing antibodies and the high GM(GMT₅₀) in recently 199 200 boosted VaxCCP reassure about its potency, and further confirm that exact donor-recipient VOC matching is dispensable. Overall, our findings urge WHO to revise its guidelines and recommend 201 boosted VaxCCP for therapy of COVID-19 in IC patients. 202

- 203
- 204

205 Search strategy and selection criteria

On November 19, 2022 we initially searched PubMed, medRxiv and bioRxiv for manuscripts reporting BQ.1.1 neutralization, using English language as a restriction. Search of bioRxiv with same keywords yielded 15 records of which only 8 contained plasma viral neutralization data. Search of medRxiv produced 3 records which did not have BQ.1.1 neutralizations. PubMed retrieved 3 entries using ("BQ.1.1") and ("neutralization"), one of which was focused on anti-Spike mAb alone² and the other 2 were duplicates from bioRxiv^{8,12}. Articles underwent evaluation for data extraction by two assessors (DS and DF) with disagreements resolved by third assessor

- 213 (AC). Articles lacking plasma BQ.1.1 virus neutralizations were excluded. The process of study
- selection is represented in the PRISMA flow diagram (Figure 1).
- 215

The type of viral assay (live or pseudovirus), time interval to blood sample, GMT₅₀, minimum and maximum neutralizing 50% dilutional titer for WA-1 (pre-Alpha wild-type) and Omicron

sublineages BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB.1 and BF.7 and number out of total that

neutralized Omicron were abstracted from study text, graphs and tables. Two studies (Wang¹⁴ and

220 Qu⁸) reported BQ.1 and those were separate cohorts in addition to BQ.1.1. Prism v. 9.4 (GraphPad

221 Software, San Diego, CA, USA) was used for data analysis. While all manuscripts included

neutralization data against WA-1, BQ.1.1, BA.4/5 and BA.2.75, only a subset of manuscripts

included neutralization data for BA.4.6, XBB.1 and BF.7 which were assembled for relevance to

present circulating variants. Historic early Omicron partial neutralization data on variants like

BA.1 or BA.2 were excluded because of the full set data with BA.4/5 and BA.2.75.

226

Statistical significance between log₁₀ transformed GMT₅₀ was investigated using Tukey's test. The
multiple comparison test was a two-way ANOVA with Alpha 0.05 on log transformed GMT₅₀.
The log normal test was performed on WA-1, BQ.1.1, BA.4/5, BA.4.6, XBB.1 and BF.7 virus
GMT₅₀. Two studies^{10,11} reported the median titer rather than the GMT₅₀. Compiled data abstracted

- from the published studies is available in the supplementary dataset.
- 232
- 233 Funding

This study was supported by the U.S. Department of Defense's Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), in collaboration with the Defense Health Agency (DHA) (contract number: W911QY2090012) (DS), with additional support from Bloomberg Philanthropies, State of Maryland, the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases 3R01AI152078-01S1 (DS, AC), NIH National Center for Advancing Translational Sciences U24TR001609-S3 and UL1TR003098.

- 241
- 242 Role of the funding source
- The study sponsors did not contribute to the study design; the collection, analysis, and interpretation of data; manuscript preparation, and the decision to submit the paper for publication.
- 245
- 246 Conflict of interest disclosure
- 247 DJS reports AliquantumRx Founder and Board member with stock options (macrolide for
- 248 malaria), Hemex Health malaria diagnostics consulting and royalties for malaria diagnostic test
- 249 control standards to Alere- all outside of submitted work. AC reports being part of the scientific

- advisory board of SabTherapeutics and has received personal fees from Ortho Diagnostics,
- 251 outside of the submitted work. All other authors report no relevant disclosures.

252

254		
255	Refere	nces
256	1	Senefeld I W <i>et al</i> COVID-19 convalescent plasma for the treatment of
250	1	immunocompromised patients: a systematic review <i>medRviv</i> 2022 2008 2003 22278359
257		doi:10.1101/2022.08.03.22278359 (2022)
259	2	Arora P <i>et al</i> Omicron sublineage BO 1.1 resistance to monoclonal antibodies <i>Lancet</i>
260	2	Infect Dis doi:10.1016/S1473-3099(22)00733-2 (2022)
261	3	Cao Y <i>et al.</i> Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron
262	5	RBD evolution <i>bioRxiv</i> 2022 2009 2015 507787 doi:10.1101/2022.09.15.507787
263		(2022).
264	4	Sullivan, D. J., Franchini, M., Joyner, M. J., Casadevall, A. & Focosi, D. Analysis of
265	•	anti-SARS-CoV-2 Omicron-neutralizing antibody titers in different vaccinated and
266		unvaccinated convalescent plasma sources <i>Nature Communications</i> 13 6478
267		doi:10.1038/s41467-022-33864-v (2022)
268	5	Li M <i>et al</i> Convalescent plasma with a high level of virus-specific antibody effectively
269	U	neutralizes SARS-CoV-2 variants of concern. <i>Blood Adv.</i> 2022.2003.2001.22271662.
270		doi:10.1182/bloodadvances.2022007410 (2022).
271	6	Hinton, D. M. Vol. https://www.fda.gov/media/141477/download (ed FDA) (FDA.
272	0	FDA in brief (https://www.fda.gov/media/141477/download), 2021).
273	7	O'Shaughnessy, J. A. Vol. https://www.fda.gov/media/141477/download (FDA website
274		(https://www.fda.gov/media/141477/download), 2021).
275	8	Ou. P. <i>et al.</i> Distinct Neutralizing Antibody Escape of SARS-CoV-2 Omicron
276		Subvariants BO.1. BO.1.1. BA.4.6. BF.7 and BA.2.75.2. <i>bioRxiv</i> .
277		2022.2010.2019.512891, doi:10.1101/2022.10.19.512891 (2022).
278	9	Zou, J. et al. Improved Neutralization of Omicron BA.4/5, BA.4.6, BA.2.75.2, BO.1.1,
279		and XBB.1 with Bivalent BA.4/5 Vaccine. <i>bioRxiv</i> , 2022.2011.2017.516898,
280		doi:10.1101/2022.11.17.516898 (2022).
281	10	Miller, J. et al. Substantial Neutralization Escape by the SARS-CoV-2 Omicron Variant
282		BQ.1.1. bioRxiv, 2022.2011.2001.514722, doi:10.1101/2022.11.01.514722 (2022).
283	11	Planas, D. et al. Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to
284		neutralizing antibodies. bioRxiv, 2022.2011.2017.516888,
285		doi:10.1101/2022.11.17.516888 (2022).
286	12	Davis-Gardner, M. E. et al. mRNA bivalent booster enhances neutralization against
287		BA.2.75.2 and BQ.1.1. <i>bioRxiv</i> , 2022.2010.2031.514636,
288		doi:10.1101/2022.10.31.514636 (2022).
289	13	Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1, and
290		XBB.1 by 4 doses of parental mRNA vaccine or a BA.5-bivalent booster. <i>bioRxiv</i> ,
291		2022.2010.2031.514580, doi:10.1101/2022.10.31.514580 (2022).
292	14	Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and
293		XBB.1 subvariants. <i>bioRxiv</i> , 2022.2011.2023.517532, doi:10.1101/2022.11.23.517532
294		(2022).
295	15	Sullivan, D. J. et al. Early Outpatient Treatment for Covid-19 with Convalescent Plasma.
296		<i>N Engl J Med</i> , doi:10.1056/NEJMoa2119657 (2022).
297	16	Villa, C. (ed OBRR) (FDA (<u>https://www.fda.gov/media/155159/download</u>), 2021).

- Stone, M. *et al.* Evaluation of Commercially Available High-Throughput SARS-CoV-2
 Serologic Assays for Serosurveillance and Related Applications. *Emerg Infect Dis* 28,
 672-683, doi:10.3201/eid2803.211885 (2022).
- 301 18 Patel, E. U. *et al.* Comparative Performance of Five Commercially Available Serologic
 302 Assays To Detect Antibodies to SARS-CoV-2 and Identify Individuals with High
 303 Neutralizing Titers. *J Clin Microbiol* **59**, doi:10.1128/JCM.02257-20 (2021).

305 Table 1

306 Synopsis of included studies, reporting plasma sources, epoch of sampling, region, time since

307 vaccination/infection to plasma sampling, and sample size. The cohorts were split into three

- 308 groups-1) boosted vaccinations and recent COVID-19 (VaxCCP), 2) boosted vaccines only
- 309 without documented COVID-19 (Vac only) and 3) infection alone or pre-boosted sampling
- 310 before 3rd or 4th vaccine dose (Infection only or pre-boost)

Study	Vaccine and COVID-19 history at sample time	Group	Time period of plasma sampling	Geograp hv	Sampling time mean or median (min-max)	Sample numbe r
Study		Group	Spring	iij	5-7 weeks post hosp	
Cao ³	3xCorVac+BA.1 inf	VaxCCP	2022	China	admit (42 weeks avg)	50
			Summer		3-11 weeks post hosp	
Cao ³	3xCorVac +BA.2 inf	VaxCCP	2022	China	admit (8 weeks mean)	39
			Summer/F		2-11 weeks (mean 5	
Cao ³	3xCorVac +BA.5 inf	VaxCCP	all 2022	China	weeks)	36
			Summer/F			
Zou ⁹	4xBNT162b2+BTI	VaxCCP	all 2022	USA	4 week post dose	20
	mRNAvacx3+		Spring/Fall		32 weeks post BTI	
Planas ¹¹	BA.1/2 inf	VaxCCP	2022	France	BA.1/2	13
	2-3xmRNAvac+		Spring/Fall		2-23 weeks (mean 6 wk	
Wang ¹⁴	BA.2 BTI	VaxCCP	2022	USA	(3over 90 days))	14
	3-4xmRNAvac+		Summer/F		2-8 weeks (mean 4	
Wang ¹⁴	BA.4/5 BTI	VaxCCP	all 2022	USA	weeks)	20
	3xmRNAvac+bivalen				4 weeks post with	
Kurhade ¹³	t+BTI	VaxCCP	Fall 2022	USA	infection history	23
_	3xBNT162b2+bivale		Summer/F			
Zou ⁹	nt+BTI	VaxCCP	all 2022	USA	4 week post dose	19
	3xmRNAvac+		Spring/Fall		12 weeks post BTI	
Planas ¹¹	BA.1/2 inf	VaxCCP	2022	France	BA.1/2	16
	3xmRNAvac+ BA.5					
Planas ¹¹	inf	VaxCCP	Fall 2022	France	8 weeks post BTI BA.5	15
Davis ¹²	3xmRNAvac	Vac only	Fall 2021	USA	1-4 weeks post boost	12
		Vac only	Summer			
Kurhade ¹³	4xmRNAvac		2022	USA	4-12 weeks	25
Cao ³	3xCorVac	Vac only	Fall 2021	China	4 weeks	40
- 0		Vac only	Summer/F			• •
Zou ⁹	4xBNT162b2		all 2022	USA	4 weeks post dose	20
- 11		Vac only	Winter	_		1.0
Planas	3xmRNAvac		2021/2022	France	16 weeks post 3rd dose	10
Wang ¹⁴	0 D.L.		T 11 0001		2-12 weeks (mean 5	
XXX 14	3xmRNAvac	Vac only	Fall 2021	USA	weeks)	14
Wang ¹⁴	3xmRNAvac+monov	X 7 1	Summer/F			10
XX 14	alent	Vac only	all 2022	USA	3-4 weeks	19
Wang	3xmRNAvac+bivalen	X 7 1	Summer/F		2.4	21
		Vac only	all 2022	USA	3-4 weeks	21
D12	3XmRINAvac+monov	vac only	Summer/F	LICA	10, 15,	12
Davis ¹²		Vl	all 2022	USA	10-15 weeks post boost	12
Kurhada ¹³	5xmRINAvac+bivalen	vac only	Eall 2022	LICA	4 weeks post	20
Kumade	l 2.umDNA.uaa hiualan	Vacanty	Fall 2022	USA	4 weeks post	29
Davia ¹²		vac only		LISA	2-0 weeks post booster (8	12
Ou ⁸	i 3vmPNAvoo	Vac only	all 2022 Fall 2021	USA	2 13 weeks	12
Qu	2xDNT162h2+Live1-	Vac only	Fall 2021	USA	2-13 WCCKS	1.5
7011 ⁹	JADINI 10202⊤01Vale	vac only	all 2022	LISA	A week post dose	18
Zou	m	Vac only	Fall/Winter	USA		10
Planas ¹¹	3xmRNAvac	v ac only	2021	France	4 weeks post 3rd dose	18
Miller ¹⁰	3xBNT162b2	Vac only	Fall 2021	LISA	2-4 weeks	16
winner	JADINI 10202	vac omy	1 all 2021	USA	L-T WUUND	10

	3xmRNA+	Vac only	Spring/Fall			
Miller ¹⁰	monovalent	_	2022	USA	2-9 weeks	18
Miller ¹⁰	3xmRNA +bivalent	Vac only	Fall 2022	USA	2-3 weeks	15
			Summer			
Qu ⁸	BA.4/5 inf (17-unvac)	Inf only	2022	USA	not stated	20
	Hosp BA.1 (6-					
	unvac;5-		Spring		1 week post	
Qu ⁸	2xmRNAvac)	Inf only	2022	USA	hospitalization	15
		preboost				
		with			preboost with BNT162b	
_		BNT162	Summer/F		(6-11 months post last	
Zou ⁹	3xBNT162b2+BTI	b	all 2022	USA	dose)	20
		preboost				
0		with	Summer/F		preboost with bivalent (6-	
Zou ⁹	3xBNT162b2 +BTI	bivalent	all 2022	USA	11 months post last dose)	19
		preboost				
_ 0		with	Summer/F		preboost with bivalent (6-	
Zou ⁹	3xBNT162b2	bivalent	all 2022	USA	11 months post last dose)	18
		preboost				
		with	a		preboost with BNT162b	
7 9	2 DUT 1 (01 2	BNT162	Summer/F	LIC A	(6-11 months post last	20
Zou ³	3xBN1162b2	b	all 2022	USA	dose)	20
		preboost				
		with			1	
NC11 10	2 DUT 1 (01 2	BNT162	E 11 2021	TIC A	preboost (6-11 months	16
Miller	2XBN116262	D	Fall 2021	USA	post last dose)	16
		preboost				
MC1110	2DNI 4	With	E-11 2022	LICA	preboost with bivalent (6-	15
Miller	3XMKINA	bivalent	Fall 2022	USA	11 months post last dose)	15
		preboost				
		with	Spring/Ec11		(6.11 months nost last	
Millor ¹⁰	2mmDNA	monoval	Spring/Fall	LISA	doso)	19
IVIIIICI	JAHIMA	CIII	2022	USA	uuse)	10

312 Table 2

313 GM(GMT₅₀) of plasma from three different sources against recent Omicron sublineages.

(50) 1						0	-
Neutralization virus	WA-1	BQ.1.1	BA.4/5	BA.4.6	BA.2.75	XBB.1	BF.7
Post COVID-19/vaccine							
(study cohorts)	11	13	11	6	9	8	4
GM(GMT ₅₀)	6561*	334	1005	352	303	72	204
Fold reduction from WA-1	ref	20	7	19	22	91	32
Samples tested	265	265	265	106	231	96	148
Samples neutralizing	265	167**	264	106**	230	82	146
Percent neutralizing	100	96	100	100	100	85	99
Boosted vaccine (study							
cohorts)	17	21	17	7	14	7	7
$GM(GMT_{50})$	4350	123	362	123	107	47	357
Fold reduction from WA-1	ref	35	12	35	41	93	12
Samples tested	314	344	314	136	261	147	158
Samples neutralizing	314	272	295	126	231	76	149
Percent neutralizing	100	79	94	93	89	52	94
Infection only or preboosted							
vaccine (study cohorts)	9	11	9	6	9	4	5
GM(GMT ₅₀)	1022	48	101	117	57	22	110
Fold reduction from WA-1	ref	21	10	9	18	47	9
Samples tested	161	197	161	113	162	78	84
Samples neutralizing	159	123	123	85	104	36	63
Percent neutralizing	99	62	76	75	64	46	75

*Pre-Alpha CCP from 27 different studies had a GM(GMT₅₀) of 311 from 707 samples with 315

315 or 45% neutralizing omicron BA.1⁴.

316 ** percent neutralizations after CoronaVac and Omicron COVID-19 in the paper by Cao et al

317 could not be retrieved from the manuscript. 174 samples from the 6 other cohorts were used for 318 percent neutralization.

319

321 Figure 1

322 PRISMA flowchart for the current study. Number of records identified from various sources,

- 323 excluded by manual screening, found eligible and included according to subgroup analyses.
- 324
- 325

327 Figure 2

328 Neutralizing GMT (GMT₅₀) against WA-1, BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB, BF.7. A) post boosted

329 vaccinations and COVID-19 and B) boosted vaccinated plasma without COVID-19. Geometric standard

deviation for error bars, fold reduction (FR) below data, and number of studies above x-axis. Geomeans

331 statistically significant in difference by multiple comparison in Tukey's test are indicated. C) The percent

of total samples within a study which neutralized Omicron BQ.1.1 graphed in increasing percentages on

left y axis with the total number of samples tested on the right y axis.

336 Figure 3

337 Geometric mean neutralizing titers (GMT₅₀) against WA-1, BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB, BF.7

A) plasma Omicron infection alone or pre-boosted-6 to 11 months after last vaccine dose sampled in 2021

or 2022. Geometric standard deviation for error bars, fold reduction (FR) above data, and number of studies

above x-axis. GM(GMT₅₀) statistically significant in difference by multiple comparison in Tukey's test are
 indicated. B). The percent of total samples within a study which neutralized Omicron BQ.1.1 graphed in

increasing percentages on left y-axis with the total number of samples tested on the right y-axis.

Supplementary Table 1 Virus neutralization assays.

			Replication-	neutralization
Reference	Assay	Virus	competent cells	threshold
Qu ⁸	Pseudovirus	Lentiviral pseudovirus	HEK293T-ACE-2	80
Miller ¹⁰	Pseudovirus	Lentiviral pseudovirus	HEK293T-ACE-2	20
Cao ³	Pseudovirus	VSV pseudovirus	HEK293T-ACE-2	20
Wang ¹⁴	Pseudovirus	VSV pseudovirus	VeroE6-	100
Davis ¹²	Live virus	Live authentic SARS-CoV-2	VeroE6-TMPRSS2	20
		mNeonGreen reporter USA-		
Kurhade ¹³	Live virus	WA1/2020 SARS-CoV-2	Vero E6-TMPRSS2	20
			IGROV-1 or Vero	
Planas ¹¹	Live virus	Live authentic SARS-CoV-2	E6-TMPRSS2	30
		mNeonGreen reporter USA-		
Zou ⁹	Live virus	WA1/2020 SARS-CoV-2	Vero E6-TMPRSS2	20

350 Supplementary Table 2

351 GMT₅₀ of different plasma sources against BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB.1 and BF.7 and fold-reductions (FR) compared to

352 WA-1.

	Vaccine and COVID-										BA.2.7	FR		FR		
	19 history at sample			WA-1	BQ.1.1	FR	BA.4/5	FR	BA.4.6	FR	5	BA.2.7	XBB.1	XB	BF.7	FR
papers	time	Group	#	GMT ₅₀	GMT ₅₀	BQ.1.1	GMT ₅₀	BA.4/5	GMT ₅₀	BA.4.6	GMT ₅₀	5	GMT ₅₀	В	GMT ₅₀	BF.7
Cao ³	3xCorVac+BA.1 BTI	VaxCCP	50	1557	27	58	107	15	23	68	197	8	23	68	70	22
	3xCorVac +BA.2															
Cao ³	BTI	VaxCCP	39	1245	40	31	175	7	22	57	217	6	23	54	97	13
	3xCorVac +BA.5															
Cao ³	BTI	VaxCCP	36	1136	77	15	508	2	27	42	145	8	27	42	208	5
Zou ⁹	4xBNT162b2+BTI	VaxCCP	20	5120	132	39	629	8	587	9	265	19	99	52		
	3xmRNAvac+															
Planas ¹¹	BA.1/2 BTI	VaxCCP	13	8000	200	40	400	20	500	16	200	40				
Wang ¹⁴	2-3xmRNAvac+															
	BA.2 BTI	VaxCCP	14	24970	849	29	3727	7					186	134		
Wang ¹⁴	2-3xmRNAvac+															
	BA.2 BTIBQ.1	VaxCCP	14		1250	20										
Wang ¹⁴	3-4xmRNAvac+															
	BA.4/5 BTI	VaxCCP	20	20507	671	31	5541	4					214	96		
Wang ¹⁴	3-4xmRNAvac+															
	BA.4/5 BTIBQ.1	VaxCCP	20		1644	12										
	3xmRNAvac+bivalen															
Kurhade ¹³	t+BTI	VaxCCP	23	5776	267	22	1558	4	744	8	367	16	103	56	1223	5
	3xBNT162b2+bivale															
Zou ⁹	nt+BTI	VaxCCP	19	4847	444	11	1377	4	1564	3	326	15	131	37		
	3xmRNAvac+															
Planas ¹¹	BA.1/2 BTI	VaxCCP	16	25000	700	36	1000	25	2000	13	600	42				
	3xmRNAvac+ BA.5															
Planas ¹¹	BTI	VaxCCP	15	30000	3000	10	10000	3	9000	3	900	33				
Davis ¹²	3xmRNAvac	Vac only	12	758	19	40	50	15			23	33				
Kurhade ¹³	4xmRNAvac	Vac only	25	1533	22	70	95	16	62	25	26	59	15	102	69	22
Cao ³	3xCorVac	Vac only	40	652	24	27	72	9	21	31	90	7	20	33	45	14
Zou ⁹	4xBNT162b2	Vac only	20	1325	26	51	89	15	92	14	37	36	17	78		
Planas ¹¹	3xmRNAvac	Vac only	10	1500	40	38	60	25	60	25	10	150				
Wang ¹⁴	3xmRNAvac	Vac only	14	7687	139	55	628	12					108	71		
Wang ¹⁴	3xmRNAvacBQ.1	Vac only	14		208	37										
Wang ¹⁴	3xmRNAvac+monov															
	alent	Vac only	19	21182	261	81	1540	14					137	155		
Wang ¹⁴	3xmRNAvac+monov															
_	alentBQ.1	Vac only	19		496	43										

Wang ¹⁴	3xmRNAvac+bivalen															
C	t	Vac only	21	13736	337	41	1688	8					162	85		
Wang ¹⁴	3xmRNAvac+bivalen															
c	tBQ.1	Vac only	21		568	24										
	3xmRNAvac+monov															
Davis ¹²	alent	Vac only	12	1812	53	34	142	13			65	28				
	3xmRNAvac+bivalen															
Kurhade ¹³	t	Vac only	29	3620	73	50	298	12	183	20	98	37	35	103	305	12
	3xmRNAvac+bivalen															
Davis ¹²	t	Vac only	12	2312	112	21	576	4			201	12				
Qu ⁸	3xmRNAvacBQ.1	Vac only	15		140	19										
Qu ⁸	3xmRNAvac	Vac only	15	2616	114	23	300	9	246	11	589	4			238	11
	3xBNT162b2+bivale															
Zou ⁹	nt	Vac only	18	2237	143	16	518	4	524	4	117	19	55	41		
Planas ¹¹	3xmRNAvac	Vac only	18	6000	200	30	300	20	300	20	60	100				
Miller ¹⁰	3xBNT162b2	Vac only	16	45695	261	175	887	52			387	118			595	77
	3xmRNA+	J	_		-			-								
Miller ¹⁰	monovalent	Vac only	18	21507	406	53	2829	8			745	29			2276	9
Miller ¹⁰	3xmRNA +bivalent	Vac only	15	40515	508	80	3693	11			883	46			2399	17
	BA.4/5 inf (17-	5														
Ou ⁸	unvac)	Inf only	20	707	66	11	190	4	180	4	210	3			162	4
Ou ⁸	BA.4/5 inf (17-	j					- / *					-				
X	unvac)BO.1	Inf only	20		68	10										
Ou ⁸	Hosp BA.1 (6-	j														
X	unvac:5-															
	2xmRNAvac)	Inf only	15	720	145	5	263	3	205	4	186	4			227	3
	Hosp BA.1 (6-		-		-	-		-								
	unvac:5-															
Ou ⁸	2xmRNAvac)BQ.1	Inf only	15		135	5										
		reboost														
		with														
Zou ⁹	3xBNT162b2+BTI	BNT162b	20	2516	60	42	226	11	283	9	126	20	55	46		
		preboost			1				1				1			
		with									1					
Zou ⁹	3xBNT162b2 +BTI	bivalent	19	1377	74	19	207	7	282	5	62	22	27	51		
		preboost														
		with														
Zou ⁹	3xBNT162b2	bivalent	18	226	11	21	20	11	24	9	14	16	12	19		
		Preboost							1				1			
		with														
Zou ⁹	3xBNT162b2	BNT162b	20	303	17	18	30	10	36	8	18	17	13	23		
		Preboost														
		with														
Miller ¹⁰	2xBNT162b2	BNT162b	16	484	20	24	20	24			20	24			20	24

	10		preboost with													•
	Miller ¹⁰	3xmRNA	bivalent	15	3633	45	81	211	17			33	110		131	28
	Miller ¹⁰	3xmRNA	with monovalent	18	5731	49	117	184	31			117	49		168	34
353	1,11101			10	0,01	.,	11,	101	01	1	1	11,	.,		100	51
354																
355																
356																
357																
358																
359																
360																
361																
362																
363																
364																
365																
366																
367																
368																
369																
370																
3/1																
272 272																
27/																
374																
376																
377																
378																
379																

Supplementary Table 3 Neutralizing activity numbers (#) by study cohort.

	<u> </u>															
				WA- 1 neutr		RO 1 1	ΡA	BA 4/5		BA 4.6		BA 2 75	VP	VRR 1		BF.7 neutra
	Vaccine and COVID-19		WA-	izing	BO 1	neutral.	4/5	neutral.	BA 4	neutral-	BA 2 7	neutral-	R 1	neutral.	BF 7	izing
	history at sample time	Group	1 #	#	1#	izing #	#	izing #	6#	izing #	5 #	izing #	#	izing #	#	#
Cao ³	3xCorVac+BA.1 BTI	VaxCCP	50	50		8	50	50	-	8	50	50			50	49
Cao ³	3xCorVac +BA.2 BTI	VaxCCP	39	39			39	39			39	39			39	38
Cao ³	3xCorVac +BA.5 BTI	VaxCCP	36	36			36	36			36	36			36	36
Zou ⁹	4xBNT162b2+BTI	VaxCCP	20	20	20	20	20	20	20	20	20	20	20	19		
Planas ¹¹	3xmRNAvac+ BA.1/2 BTI	VaxCCP	13	13	13	11	13	12	13	13	13	11				
Wang ¹⁴	2-3xmRNAvac+ BA.2 BTI	VaxCCP	14	14	14	13	14	14					14	8		
Wang ¹⁴	2-3xmRNAvac+ BA.2 BTI- -BQ.1	VaxCCP			14	13										
Wang ¹⁴	3-4xmRNAvac+ BA.4/5 BTI	VaxCCP	20	20	20	18	20	20					20	14		
Wang ¹⁴	3-4xmRNAvac+ BA.4/5 BTIBQ.1	VaxCCP			20	20										
Kurhade ¹³	3xmRNAvac+bivalent+BTI	VaxCCP	23	23	23	22	23	23	23	23	23	23	23	22	23	23
Zou ⁹	3xBNT162b2+bivalent+BTI	VaxCCP	19	19	19	19	19	19	19	19	19	20	19	19		
Planas ¹¹	3xmRNAvac+ BA.1/2 BTI	VaxCCP	16	16	16	16	16	16	16	16	16	16				
Planas ¹¹	3xmRNAvac+ BA.5 BTI	VaxCCP	15	15	15	15	15	15	15	15	15	15				
Davis ¹²	3xmRNAvac	Vac only	12	12	12	6	12	11			12	9				
Kurhade ¹³	4xmRNAvac	Vac only	25	25	25	15	25	23	25	22	25	17	25	8	25	21
Cao ³	3xCorVac	Vac only	40	40			40	39			40	40			40	37
Zou ⁹	4xBNT162b2	Vac only	20	20	20	15	20	8	20	19	20	19	20	10		
Planas ¹¹	3xmRNAvac	Vac only	10	10	10	6	10	7	10	5	10	3				
Wang ¹⁴	3xmRNAvac	Vac only	14	14	14	5	14	14					14	3		
Wang ¹⁴	3xmRNAvacBQ.1	Vac only			14	6										
Wang ¹⁴	3xmRNAvac+monovalent	Vac only	19	19	19	15	19	19					19	8		
Wang ¹⁴	3xmRNAvac+monovalent BQ.1	Vac only			19	16										
Wang ¹⁴	3xmRNAvac+bivalent	Vac only	21	21	21	16	21	21					21	9		
Wang ¹⁴	3xmRNAvac+bivalent															
_	BQ.1	Vac only			21	18										
Davis ¹²	3xmRNAvac+monovalent	Vac only	12	12	12	9	12	12			12	10				
Kurhade ¹³	3xmRNAvac+bivalent	Vac only	29	29	29	26	29	29	29	28	29	28	29	20	29	28
Davis ¹²	3xmRNAvac+bivalent	Vac only	12	12	12	10	12	12			12	11				
Qu ⁸	3xmRNAvacBQ.1	Vac only			15	14										
Qu ⁸	3xmRNAvac	Vac only	15	15	15	12	15	15	15	15	15	14			15	14

Zou ⁹	3xBNT162b2+bivalent	Vac only	18	18	19	18	18	18	19	19	19	18	19	18		
Planas ¹¹	3xmRNAvac	Vac only	18	18	18	16	18	18	18	18	18	13				
Miller ¹⁰	3xBNT162b2	Vac only	16	16	16	16	16	16			16	16			16	16
Miller ¹⁰	3xmRNA+ monovalent	Vac only	18	18	18	18	18	18			18	18			18	18
Miller ¹⁰	3xmRNA +bivalent	Vac only	15	15	15	15	15	15			15	15			15	15
Qu ⁸	BA.4/5 inf (17-unvac)	Inf only	20	20	20	12	20	15	20	14	20	15			20	14
Qu ⁸	BA.4/5 inf (17-unvac)															
	BQ.1	Inf only			20	11										
Qu ⁸	Hosp BA.1 (6-unvac;5-															
	2xmRNAvac)	Inf only	15	14	15	13	15	11	15	12	15	8			15	14
	Hosp BA.1 (6-unvac;5-															
Qu ⁸	2xmRNAvac)BQ.1	Inf only			15	14										
		reboost														
2		with														
Zou ⁹	3xBNT162b2+BTI	BNT162b	20	20	20	16	20	19	20	19	20	17	20	17		
		preboost														
- 0		with														
Zou ⁹	3xBNT162b2+BT1	bivalent	19	19	19	16	19	19	19	19	19	17	19	12		
		preboost														
7 9	2 DUT1(212	with	1.0				1.0					_				
Zou	3xBN116262	bivalent	18	18	19	1	18	9	19	9	19	5	19	2		
		Preboost														
7 9	2 DUT1(212	With	20	10	20	6	20	10	20	10	20	0	20	-		
Zou	3XBN116262	BIN11620	20	19	20	6	20	12	20	12	20	8	20	5		
		Preboost														
Millor ¹⁰	$2 \times DNT162b2$	WIIII DNT162h	16	16	16	(16	5			16	7			16	4
winter	2XBIN110202	DIN11020	10	10	10	0	10	3	+		10	/			10	4
		preboost														
Miller ¹⁰	3vmRNA	bivalent	15	15	15	12	15	15			15	0			15	14
IVIIIICI	JAIIIXINA	proboost	15	15	15	15	15	15	+		15	9		-	15	14
		with														
Miller ¹⁰	3xmRNA	monovalent	18	18	18	15	18	18			18	18			18	17
1011101		monovatont	10	1 10	10	1.2	10	10	1	1	10	10	1	1	10	1/

383 Supplementary Figure 1

Plasma GMT₅₀ from post boosted vaccinations and COVID-19 sorted by study cohort with live virus
assays on the left and pseudovirus on right, with individual sample minimum and maximum
dilution titer also shown. A) WA-1; B) BQ.1.1; C) BA.2.75; D) BA.4/5.

388 389

390 Supplementary Figure 2

Plasma GMT₅₀ from boosted vaccinations only without COVID-19 sorted by study cohort with live virus assays on the left and pseudovirus on right with with individual sample minimum and

maximum dilution titer also shown. A) WA-1; B) BQ.1.1; C) BA.2.75; and D) BA.4/5.

396 397

- 398
- 399

400 Supplementary Figure 3

Plasma GMT₅₀ from Omicron infection alone and also pre-boosted in 2021 or 2022 6 to 11 months
after last vaccine dose sampled sorted by study cohort with live virus assays on the left and
pseudovirus on right with minimum and maximum dilution titer also shown. A) WA-1; B) BQ.1.1;
C) BA.2.75; and D) BA.4/5.

