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Abstract21

Sesame is an ancient oilseed crop containing many valuable nutritional components. Re-22

cently, the demand for sesame seeds and their products has increased worldwide, making it23

necessary to enhance the development of high-yielding cultivars. One approach to enhance24

genetic gain in breeding programs is genomic selection. However, studies on genomic se-25

lection and genomic prediction in sesame are limited. In this study, we performed genomic26

prediction for agronomic traits using the phenotypes and genotypes of a sesame diversity27

panel grown under Mediterranean climatic conditions over two growing seasons. We aimed28

to assess the accuracy of prediction for nine important agronomic traits in sesame using29

single- and multi-environment analyses. In single-environment analysis, genomic best linear30

unbiased prediction, BayesB, BayesC, and reproducing kernel Hilbert spaces models showed31

no substantial differences. The average prediction accuracy of the nine traits across these32

models ranged from 0.39–0.79 for both growing seasons. In the multi-environment analysis,33

the marker-by-environment interaction model, which decomposed the marker effects into34

components shared across environments and environment-specific deviations, improved the35

prediction accuracies for all traits by 15%–58% compared to the single-environment model,36

particularly when borrowing information from other environments was made possible. Our37

results showed that single-environment analysis produced moderate-to-high genomic predic-38

tion accuracy for agronomic traits in sesame. The multi-environment analysis further en-39

hanced this accuracy by exploiting marker-by-environment interaction. We concluded that40

genomic prediction using multi-environmental trial data could improve efforts for breeding41

cultivars adapted to the semi-arid Mediterranean climate.42
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Introduction43

Sesame (Sesamum indicum L.) is an ancient oilseed crop with an annual global production of44

6.8 million tons (https://www.fao.org/faostat/en/#data/QCL), and there is an increasing45

demand for its consumption because of its valuable nutritional components. Sesame seeds46

are rich in high-quality fatty acids, proteins, minerals, and antioxidants, which have health47

benefits (Wei et al., 2022). The recent availability of sesame genome resources (Berhe et al.,48

2021; Wang et al., 2022) has provided an opportunity for quantitative genetic modeling of49

sesame populations. For example, using these resources, quantitative trait loci mapping50

and genome-wide association analysis in sesame have been conducted for identifying its51

morphological traits (Mei et al., 2017; Sabag et al., 2021), yield components (Zhou et al.,52

2018; Sabag et al., 2021), plant architecture (Teboul et al., 2022), response to biotic (Asekova53

et al., 2021) and abiotic (Li et al., 2018; Dossa et al., 2019) stresses, and seed quality traits54

(Teboul et al., 2020; Cui et al., 2021) to understand the underlying genetic basis. However,55

little is known regarding the ability of genomics to predict genetic or breeding values in56

sesame. Complex traits are influenced by multiple genes, with small effects that are not57

statistically significant. To address this challenge, genomic predictions that simultaneously58

accommodate all available genetic markers in regression models to predict genetic or breeding59

values for capturing marker genetic effects across the whole-genome (Meuwissen et al., 2001)60

are being used. Genetic or breeding values of lines can be incorporated into selection indices61

to make a selection decision in breeding (Smith, 1936; Hazel, 1943).62

Agronomic traits are influenced by genetic by environment interactions (G × E) (Gadri63

et al., 2020). The impact of G × E ranges from changes in the relative ranking of geno-64

types to the genomic prediction accuracy, making breeding decisions challenging. With the65

availability of whole-genome data, the factors of G × E can be reparametrized as functions66

of molecular genetic markers via marker-by-environment interactions (M × E). Recent ef-67

forts have included the use of M × E in whole-genome regression models (Lopez-Cruz et al.,68
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2015; Crossa et al., 2016). These studies showed that modeling M × E could increase the69

prediction accuracy compared with that of models without the M × E term.70

In this study, we used phenotypic and genomic data from a sesame diversity panel71

(SCHUJI panel) that was grown over two years (environments) under Mediterranean climatic72

conditions. This panel was recently used to perform genome-wide association analysis and73

estimate genomic heritability and genomic correlations for various agronomic traits (Sabag74

et al., 2021). Our study aimed to evaluate the utility of genomic prediction in predicting75

sesame traits for both single- and multi-environment analyses.76
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Materials and Methods77

Plant materials, field experiments and genomic data78

The complete dataset included phenotypic and genomic data of 182 sesame genotypes from79

the SCHUJI panel grown over two seasons (2018 and 2020) at the experimental farm of the80

Hebrew University of Jerusalem (Rehovot, Israel) (Sabag et al., 2021). This panel was char-81

acterized by nine agronomic traits: flowering date (FD, in days), height to the first capsule82

(HTFC, in cm), plant height (PH, in cm), reproductive zone (RZ, in cm), reproductive index83

(RI, a ratio), number of branches per plant (NBPP), seed-yield per plant (SYPP, g), seed84

number per plant (SNPP, in gm), and thousand-seed weight (TSW, in gm). The summary85

statistics for these traits are presented in Table S1. The best linear unbiased estimates86

of the genotypes were calculated per year by treating the block effect as random (Sabag87

et al., 2021). Genotyping by sequencing was used to obtain marker information for the 18288

genotypes (Elshire et al., 2011). The quality control step included removing tightly linked89

markers (r2 ≥ 0.99), minor allele frequencies less than 0.05, and heterozygosity rates greater90

than 0.2. The remaining 20,294 single nucleotide polymorphism (SNPs) markers were used91

for subsequent analyses (Sabag et al., 2021).92

Statistical analyses93

Single-environment analysis94

A single-environment analysis was conducted by fitting two kernel-based methods, genomic95

best linear unbiased prediction (GBLUP) (VanRaden, 2008) and reproducing kernel Hilbert96

spaces regression (RKHS) (de los Campos et al., 2010); and two variable selection methods,97

BayesB (Meuwissen et al., 2001) and BayesC (Kizilkaya et al., 2010).98
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The kernel-based methods GBLUP and RKHS were fitted as follows.99

y = 1µ+ Zu + ε, (1)

where y is the vector of phenotypes; 1 is the vector of ones; µ is the overall mean; Z is the

incidence matrix for the random effect; u ∼ N(0,Kσ2
u) is the vector of random genotypes;

and ε ∼ N (0, Iσ2
ε ) is the random residual effect. Here, the kernel matrix K was set to

the genomic relationship matrix (G) and the Gaussian kernel matrix (GK) in GBLUP and

RKHS, respectively; I is the identity matrix; σ2
u is the genetic variance; and σ2

ε is the residual

variance. The genomic relationship matrix captures additive gene action. In contrast, the

Gaussian kernel is equivalent to a space continuous version of the diffusion kernel deployed

on graphs (Morota et al., 2013), which can model additive by additive epistatic gene action

up to an infinite order (Jiang and Reif, 2015). In GBLUP, G = WW′

m
, where W is a centered

and standardized gene content matrix and m is the total number of SNP markers. The

Gaussian kernel between a pair of lines i and i′ with their marker vectors wi and w′i is given

by

GK(wi,wi′) = exp(−θd2ii′)

=
m∏
k=1

exp(−θ(wik − wi′k)2),

where dii′ =
√

(wi1 − wi′1)2 + · · ·+ (wik − wi′k)2 + · · ·+ (wim − wi′m)2 is the Euclidean dis-100

tance and θ is the bandwidth parameter. Here, large θ leads to GK entries closer to 0 (i.e.,101

local kernel), and smaller θ produces entries closer to 1 (i.e., global kernel), controlling the102

magnitude of genetic similarity between lines. The bandwidth parameter was determined103

using kernel averaging or multiple kernel learning (de los Campos et al., 2010) by fitting two104

contrasting kernel matrices with θ = 0.2 and 1.2.105
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The variable selection methods BayesC and BayesB followed106

yi = µ+
m∑
j=1

wijαj + εi, (2)

where yi is the vector of phenotypes for the ith genotype; µ is the overall mean; wij is the

marker covariate at the jth SNP marker coded as 0, 1, or 2; m is the number of SNPs; and

αj is the jthe marker effect. The prior of αj for BayesB was:

αj|π, σ2
αj

=


0 with probability of π

∼ N(0, σ2
αj

) with probability (1− π)

where σ2
αj

is the marker genetic variance for the jth SNP and π is a mixture proportion set107

to 0.99. A Gaussian prior N(0, σ2
ε ) was assigned to the vector of residuals, and a flat prior108

was assigned to µ. The scaled inverse χ2 distribution was assigned to σ2
αj

by setting the109

degrees of freedom equal to 5 and choosing the scale parameter, assuming that the model110

explained 50% of the phenotypic variance. In BayesC, σ2
αj

was replaced with the common111

marker genetic variance σ2
α.112

Multi-environment analysis113

A multi-environment analysis was conducted using the M × E model (Lopez-Cruz et al.,

2015). The core idea of the M × E model is to partition the total marker genetic effects into

the main marker genetic effects across all environments and specific marker effects in each

environment. As a vector of genetic values consists of a linear combination of marker effects,

G × E GBLUP is equivalent to M × E ridge regression BLUP (RR-BLUP). The M × E

RR-BLUP model is expressed as yil = µl +
∑m

k=1wilk(α0k + αlk) + εil, where α0. is the main

effect of the markers stable for all the environments, αl. is the specific effect of the markers

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.26.518043doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.26.518043
http://creativecommons.org/licenses/by-nc-nd/4.0/


unique for each environment, and l is the lth environment. In matrix notation,

y1
y2

 =

1µ1

1µ2

 +

W1

W2

β0 +

W1 0

0 W2


β1

β2

 +

ε1
ε2



where

1µ1

1µ2

 is the vector of grand means;

W1

W2

 is the matrix of centered and stan-114

dardized marker matrix for each environment; β0 ∼ N(0, Iσ2
β0

) is the marker effects among115

environments; the variance component σ2
β0

is common across the environments and borrows116

information among them; β1 ∼ N(0, Iσ2
β1

) and β2 ∼ N(0, Iσ2
β2

) capture the environment117

specific marker effects with their environment specific variances; and ε1 = N(0, Iσ2
ε1

) and118

ε2 = N(0, Iσ2
ε2

) are the heterogeneous residual variances. The extent of variance components119

associated with β0 relative to β1 and β2 suggests the importance of M × E. The grand mean120

was assigned a flat prior. The variance components of markers were drawn from a scaled121

inverse χ2 distribution with degrees of freedom ν = 5 and scale parameter s such that the122

prior means of variance components equal half of the phenotypic variance.123

Additionally, the genomic correlation between the same trait in different environments

was estimated using a bivariate GBLUP model by extending the single-environment variance-

covariance structure to u

ε

 ∼ N

0

0

 ,

Σu ⊗G 0

0 Σε ⊗ I


 ,

where I is an identity matrix and Σu and Σε are genetic and residual variance-covariance124

matrices, respectively. Genomic correlations were derived as
σ2
u∗1u
∗
2√

σ2
u∗1

√
σ2
u∗2

where σ2
u∗1u
∗
2

is the125

additive genetic covariance of the trait between the two environments, and σ2
u∗1

and σ2
u∗2

126

are additive genetic variances of the trait in 2018 and 2020, respectively. The covariance127

matrices, Σu and Σε, were assigned an inverse Wishart prior distribution with W−1(Su, νu)128
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and W−1(Sε, νε), respectively; Su and Sε are the identity matrices; and νu and νε are the129

degrees of freedom. In addition, the phenotypic correlation between the two environments130

was estimated using the sample phenotypic correlation and the variance components obtained131

from the M × E model. The full data set was used to estimate the variance components and132

genetic correlations.133

All the models were implemented in a Bayesian manner. Posterior inferences were based134

on 50,000 Markov chain Monte Carlo samples, 20,000 burn-in, and a thinning rate of 5135

using the BGLR R package following default rules for choices of hyperparameters (Pérez136

and de Los Campos, 2014; Pérez-Rodŕıguez and de Los Campos, 2022).137

Cross-validation scenarios138

For the single-environment analysis, the prediction accuracies of the GBLUP, BayesB, BayesC,139

and RKHS models were evaluated using the repeated random subsampling cross-validation140

(CV) (Figure 1). Two-thirds of the lines were used as a training set (TRN) and the remaining141

one-third were used as a testing set (TST). We measured the predictive Pearson correlation142

for each repeat, between the observed and predicted values in the TST. The average across143

50 replications was used to derive the prediction accuracy of the model.144

The predictive ability of the multi-year analysis was assessed using three different CV145

scenarios that simulated various prediction challenges in plant breeding (Burgueño et al.,146

2012) (Figure 1). In the first scenario, leave one environment-out CV (CV0), used all the147

lines in one environment to predict the same lines in a new environment. The second sce-148

nario (CV1) predicted the performance of new lines that were not phenotyped in either149

environment. This scenario evaluated whether newly developed lines that had never been150

observed in any of the environments could be predicted from their genetic relationships with151

other lines. In this scenario, the same lines in the same environments were used as TRN,152

whereas the remaining lines were used for TST. The third CV scenario (CV2) posed the153

following challenge: some lines were evaluated in only one environment owing to the sparse154
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field design. In this case, the prediction leveraged both genetic and environmental relation-155

ships. The GBLUP model was used to evaluate CV0, and the performance of the M × E156

RR-BLUP model was benchmarked with that of GBLUP in CV1 and CV2. The repeated157

random subsampling CV was employed for CV1 and CV2.158

Data availability159

The phenotypic and genomic information can be found at https://figshare.com/s/94a222afca9423d0b1aa160

and https://figshare.com/s/a061d548a97237b51a61, respectively.161
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Results162

The sample phenotypic correlations between the environments were all positive, ranging163

from 0.50 (SNPP) to 0.96 (FD) (Table 1). Similarly, variance component-derived phenotypic164

correlations were all positive, ranging from 0.37 (SNPP) to 0.80 (FD) (Table 1). Genomic165

correlation estimates between the environments were all positive, ranging from 0.63 (SNPP)166

to 0.97 (FD) (Table 1).167

Single-environment genomic prediction168

Single-environment prediction accuracies of the nine agronomic traits were evaluated using169

the four whole-genome regression models (Figure 2 and Table S2). Overall, no notable differ-170

ence was observed between the environments and the models. The highest mean prediction171

accuracy was obtained for HTFC (0.77 and 0.78 in 2018 and 2020, respectively, averaged172

across the models), whereas the lowest was for SNPP in 2018 (0.49) and SYPP in 2020173

(0.39). FD, PH, RI, and NBPP showed relatively high prediction accuracies. In particular,174

the prediction accuracies ranged from 0.74 in 2018 to 0.70 in 2020 for FD, 0.68 in 2018 to175

0.67 in 2020 for PH, 0.71 in 2018 to 0.74 in 2020 for RI, and 0.69 in 2018 to 0.62 in 2020176

for NBPP. The prediction accuracy of RZ was slightly lower than that of these traits, with177

0.56 in 2018 and 0.53 in 2020. The three yield-related traits SYPP, SNPP and TSW showed178

moderate prediction accuracies of 0.57 and 0.39, 0.49 and 0.40, and 0.55 and 0.50 for 2018179

and 2020, respectively. The prediction accuracies for 2018 were higher than those for 2020.180

Multi-environment genetic parameter estimation181

Variance component estimates were obtained from the M × E RR-BLUP model using the182

full data set and expressed in terms of proportions (Figure 3). In the two yield-related183

traits, SYPP and SNPP, the M × E components were largest whereas the additive genetic184
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components were the lowest. However, the extent of M × E was lower for FD, HTFC, RI,185

and TSW. Similarly, the estimates of genomic heritability were low for SYPP and SNPP,186

and high for FD, HTPC, RI, and TSW (Table 1). Estimates of genomic correlations between187

the two environments were all moderate to high, ranging from 0.63 (SNPP) to 0.97 (FD)188

(Table 1).189

Multi-environment genomic prediction190

One of the main challenges for the genomic prediction of multi-environmental data was pre-191

dicting the performance of new or observed lines in new or known environments. We used192

multi-environment data to evaluate the genomic prediction accuracies of nine important193

agronomic traits in sesame by accounting for M × E. Our main objective was to investigate194

whether obtaining information from another environment could improve predictions com-195

pared to a single-environment analysis. As we did not observe a difference among GBLUP,196

BayesB, BayesC, and RKHS in the single-environment analysis, multi-environment analysis197

was conducted using the GBLUP or RR-BLUP type of models.198

CV0 scenario: In the CV0 scenario, all lines in one environment were used to predict the199

same lines in a new environment by applying the GBLUP model (Figure 1B). Overall, we200

obtained an improvement in the prediction accuracies of all traits compared to the single-201

environment model (Figure 4). The prediction accuracies were highest for FD and HTFC,202

with 0.93 and 0.92, respectively. For other agronomic traits, the prediction accuracies ranged203

between 0.78 (NBPP) and 0.9 (RI). For yield components, prediction accuracies were 0.63,204

0.55, and 0.74 for SYPP, SNPP, and TSW, respectively.205

CV1 scenario: The CV1 scenario mimicked the situation in which we aimed to predict206

the performance of new lines (Figure 1C). We did not observe a major difference between207

the single-environment and M × E models (Figure 5 and Supplemental Table S3). The208

prediction accuracies from multi-environment analysis were almost equal to or lower than209

those from the single-environment analysis for some traits.210
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CV2 scenario: In this scenario, we evaluated the multi-environment analysis when some211

of the lines were not evaluated in all environments (Figure 1D). Large improvements were212

observed for all traits (Figure 5). The predictive accuracies of CV2 were greater than those of213

CV1 and the single environment GBLUP. For 2018 and 2020, improvements ranged from 17%214

(HTFC) to 48% (TSW) and from 15% (HTFC) to 58% (TSW), respectively. The differences215

in improvements were statistically significant (Table S3). Although the single-environment216

prediction accuracies of the yield-related traits, SYPP and SNPP, were low, using the M217

× E model, the gains achieved were 20% and 45% for 2018 and 20% and 28% for 2020,218

respectively, compared to those obtained from the single-environment analysis.219
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Discussion220

The future of food systems and security relies heavily on accelerating plant breeding (Lenaerts221

et al., 2019). Developing new varieties with high nutritional value and integration of Orphan222

crops such as sesame provide new opportunities to expend the human diet quality and sus-223

tainability (Dawson et al., 2019). Among the modern methods for plant breeding, genomic224

selection has proven effective in terms of genetic gain (Voss-Fels et al., 2019). In this study,225

we evaluated the genomic prediction accuracies of nine agronomic traits in sesame using a226

diversity panel. This was the first critical step taken toward establishing a genomic selection227

program for sesame.228

Performance of single-environment genomic prediction229

Overall, we observed moderate-to-high prediction accuracies for all traits in the single-230

environment analysis (Figure 2). We did not find any significant differences between GBLUP,231

BayesB, BayesC, and RKHS. Variable selection methods, such as BayesB and BayesC, are232

expected to perform better than GBLUP in the presence of large quantitative trait locus233

effects (Daetwyler et al., 2010). Comparable prediction performance between GBLUP and234

variable selection methods supported a previous genome-wide association study reporting235

that only a few significant loci influenced the studied traits using the same sesame panel236

(Sabag et al., 2021). This suggests that agronomic traits in sesame are mostly controlled237

by many small-effect quantitative trait loci rather than by major quantitative trait loci. In238

addition, we found an association between the genomic heritability estimates and prediction239

accuracy. The higher the genomic heritability estimate, the higher the accuracy of genomic240

prediction. For example, FD and HTFC showed high genomic heritability estimates (0.72241

and 0.68, respectively) and high prediction accuracies (0.72 and 0.78 on average, respectively,242

for both environments). Similarly, the yield components SYPP and SNPP had the lowest243
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prediction accuracies in the two environments, as well as the lowest genomic heritability es-244

timates. Numerous factors affect genomic prediction accuracy, such as genetic architecture,245

the quantitative genetic model used, trait heritability, marker density, size of the reference246

population, and the genetic relationship between TRN and TST (Daetwyler et al., 2010).247

For example, given the small sample size of the sesame diversity panel (Sabag et al., 2021),248

increasing the number of lines could improve the predictive performance of lowly heritable249

traits, such as yield components (e.g., SYPP and SNPP).250

Multi-environment analysis to enhance genomic predic-251

tion252

Understanding genotype-by-environment interactions are among the main challenges for253

plant breeding (Cooper and DeLacy, 1994; Mathews et al., 2008). The M × E model de-254

composes the marker effect into the marker main effect, which borrows information from the255

other environment, and the marker-specific effect for each environment (Lopez-Cruz et al.,256

2015). No notable improvement from the M × E model was observed for CV1 when predict-257

ing the performance of new lines that were not observed in any environment. This agreed258

with previous reports of no strong evidence of gain in prediction for the CV1 scenario using259

the M × E model compared to single-environment analysis (Burgueño et al., 2012; Lopez-260

Cruz et al., 2015; Crossa et al., 2016). In this scenario, no information was borrowed from the261

other environment. In such a case, integrating environmental covariates into the prediction262

model may be an alternative strategy for improving the prediction accuracy (Jarqúın et al.,263

2014).264

Many lines are often evaluated simultaneously for multiple environments in plant breeding265

programs (Lorenz, 2013). This leads to unbalanced field experimental designs (Lado et al.,266

2016), in which not all lines are present in all environments. We simulated this scenario using267

CV2 to investigate whether capturing environmental information improved the prediction268
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accuracies of agronomic traits in sesame. In general, considerable improvement in prediction269

accuracies were observed with the M × E model compared to those of GBLUP for all traits270

in all environments. Our results concurred with those of previous studies (Lopez-Cruz et al.,271

2015; Crossa et al., 2016; Cuevas et al., 2016; Bandeira e Sousa et al., 2017; Cuevas et al.,272

2018), suggesting that the M × E model borrowed environmental information across envi-273

ronments and improved prediction accuracies (Lopez-Cruz et al., 2015). In particular, the M274

× E model performed well when the sample phenotypic correlations between environments275

were positive (Lopez-Cruz et al., 2015). This is because the covariance between any two276

environments is linearly related to the proportion of the genetic variance, explained by the277

marker main effect in the M × E model, causing the phenotypic correlation between the two278

environments to be positive or zero in our data. The pairs of phenotypic correlations between279

the environments were positive for all the agronomic traits. The mean (standard deviation)280

of the sample phenotypic correlation between the environments was 0.79 (0.16) (Table 1).281

This led to a correlation between the sample- and the ratio of variance component-based282

phenotypic correlations of 0.95. The positive sample phenotypic correlation between the two283

environments might be a critical factor in explaining why the M × E model outperformed284

the single-environment GBLUP model in CV2. In addition, the largest gain in prediction285

in CV0 compared to that in the single-environment analysis was achieved for traits with a286

large extent of M × E components (SNPP and SYPP) (Table 1 and Figure 4). This finding287

indicated that when G × E is present, the M × E model can improve prediction accuracy.288

Although we employed the M × E model, which only captured additive genetic effects, the289

extension of G × E GBLUP to RKHS has been reported to outperform G × E GBLUP290

in maize and wheat grain yield, especially when many environments were analyzed (Cuevas291

et al., 2016).292
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The future of genomic prediction in a sesame breeding293

Crop rotation is critical for sustainable agricultural production systems (Li et al., 2019), and294

the introduction of new crops, such as sesame, can be used for this purpose. Although sesame295

is primarily cultivated in developing countries with relatively low yields (Dossa et al., 2017),296

its demand for consumption is increasing. Accelerated breeding efforts are necessary to meet297

this growing demand. In this study, we performed genomic prediction for nine important298

agronomic traits in sesame using single- and multi-environment analyses for the first time. As299

genomic prediction is an essential first step toward the implementation of genomic selection in300

breeding programs, we examined the potential of using genomic prediction to enhance genetic301

gain in sesame while accounting for M × E. Additional improvements in yield components302

may be achieved using a multi-trait model along with secondary traits evaluated in this303

study or applying high-throughput phenotyping during the growing season (Morota et al.,304

2022).305

Conclusions306

Currently, genetic research on sesame is limited to quantitative trait locus mapping (Teboul307

et al., 2020) or genome-wide association studies (Berhe et al., 2021; Sabag et al., 2021).308

In this study, we evaluated the usefulness of whole-genome prediction models in predicting309

important agronomic traits in sesame. Overall, we obtained moderate-to-high genomic pre-310

diction accuracies. Prediction performance was further enhanced by accounting for M × E.311

Given the reduced cost of genotyping and the availability of high-quality genomic resources312

for sesame, we conclude that genomic prediction has the potential to facilitate sesame breed-313

ing by transforming the prediction gain into selection decisions in Mediterranean climatic314

conditions.315
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Tables446

Trait h2 rg ry r′y
FD 0.72 0.97 0.96 0.80

HTFC 0.68 0.94 0.95 0.77
PH 0.57 0.82 0.83 0.66
RZ 0.62 0.87 0.82 0.71
RI 0.68 0.92 0.93 0.75

NBPP 0.55 0.83 0.78 0.65
SYPP 0.38 0.76 0.58 0.47
SNPP 0.29 0.63 0.50 0.37
TSW 0.70 0.87 0.80 0.77

Table 1: Genomic heritability estimates of the nine agronomic sesame traits (h2), genetic
correlations (rg), sample phenotypic correlations (ry), and variance-components derived phe-
notypic correlations (r′y) between the two environment using the marker-by-environment in-
teraction model. Flowering date (FD), height to the first capsule (HTFC), plant height (PH),
reproductive zone (RZ), reproductive index (RI), number of branches per plant (NBPP),
seed-yield per plant (SYPP), seeds number per plant (SNPP), and thousand-seed weight
(TSW).
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Figures447

Figure 1: Single- and multi-environment genomic prediction cross-validation scenarios. A:
Single-environment analysis, B: All the lines in one environment were used to predict the
same lines in a new environment (CV0), C: Performance of new lines that are not phenotyped
in any environment was predicted through the genetic relationship with other lines (CV1),
and D: Predict lines that were evaluated in only one environment through the genetic and
environmental relationships (CV2).
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Figure 2: Single-environment prediction accuracies of the nine agronomic sesame traits
in 2018 (A) and 2020 (B) growing seasons using genomic best linear unbiased prediction
(GBLUP), BayesB, BayesC, and reproducing kernel Hilbert spaces regression (RKHS). Flow-
ering date (FD), height to the first capsule (HTFC), plant height (PH), reproductive zone
(RZ), reproductive index (RI), number of branches per plant (NBPP), seed-yield per plant
(SYPP), seeds number per plant (SNPP), and thousand-seed weight (TSW).
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Figure 3: Proportion of the main genetic variance, environment-specific variance, and resid-
ual variance components for each trait obtained from the marker-by-environment interaction
model. Flowering date (FD), height to the first capsule (HTFC), plant height (PH), repro-
ductive zone (RZ), reproductive index (RI), number of branches per plant (NBPP), seed-yield
per plant (SYPP), seeds number per plant (SNPP), and thousand-seed weight (TSW).
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Figure 4: Multi-environment genomic prediction accuracies of the nine agronomic sesame
traits using the best linear unbiased prediction model when all the lines in one environment
were used to predict the same lines in a new environment (CV0). Flowering date (FD), height
to the first capsule (HTFC), plant height (PH), reproductive zone (RZ), reproductive index
(RI), number of branches per plant (NBPP), seed-yield per plant (SYPP), seeds number per
plant (SNPP), and thousand-seed weight (TSW).
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Figure 5: Comparison of prediction accuracies in single- and multi-environment models for
predicting new lines that are not phenotyped in any environment (CV1) and predicting lines
that were evaluated in only one environment (CV2) in 2018 (A) and 2020 (B) growing seasons.
Flowering date (FD), height to the first capsule (HTFC), plant height (PH), reproductive
zone (RZ), reproductive index (RI), number of branches per plant (NBPP), seed-yield per
plant (SYPP), seeds number per plant (SNPP), and thousand-seed weight (TSW).
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