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Abstract 
We report a draft genome of the ascomycotal fungal species Pseudopithomyces maydicus 
(isolate name SBW1) obtained using a culture isolate from brewery wastewater. From a 22 
contig assembly, we predict 13502 protein coding gene models, of which 4389 (32.5%) were 
annotated to KEGG Orthology and identify 39 biosynthetic gene clusters. 
 

Announcement 
Pseudopithomyces maydicus is a fungal species within phylum Ascomycota (order 
Pleosporales), previously named Pithomyces maydicus and recently renamed with the 
introduction of genus Pseudopithomyces into family Didymosphaeriaceae (Ariyawansa et al., 
2015). Members of this species have been identified as potential human pathogens, based on 
identification from several clinical specimens (da Cunha et al., 2014), and natural products 
from this species have recently been characterized, some of which hold antimicrobial activity 
(Ningsih et al., 2021). Neither Pseudopithomyces maydicus nor any member of genus 
Pseudopithomyces have a reference or draft genome available, with the most relevant related 
genome sequence data being 11 draft genomes collected from other genera in family 
Didymosphaeriaceae (NCBI Assembly, accessed 2022/03/31).  
 
We report a draft genome of Pseudopithomyces maydicus (isolate name SBW1) obtained 
from a culture isolate from brewery wastewater in Singapore. Genomic characterization of 
microbes isolated from food-processing wastewater can provide foundational data for 
biotechnological applications in the circular economy, such as the production of microbial 
protein (Vethathirri et al. 2021). 
 
We obtained an isolate from brewery wastewater by culturing on solid Yeast Extract–
Peptone–Dextrose (YPD) agar media at 30oC for 2 days. The colony was isolated and 
streaked out on a new YPD plate. Taxonomic classification was made via Sanger sequencing 
of the D1/D2 domain of the large-subunit (28S) ribosomal DNA (NCBI BLASTN webserver 
against the NCBI nr/nt database in megablast mode with top hit annotated to a P. maydicus 
partial 28S sequence, MF919633.1, at 99% identity; see Supplementary Figure 1 for 
alignment; https://blast.ncbi.nlm.nih.gov/Blast.cgi, executed on 06/31/2022). Genomic DNA 
was extracted using liquid nitrogen and mechanical grinding of the fungal culture followed 
by application of the Qiagen DNeasy PowerSoil Pro Kit.  1.5μg of input DNA was subjected 
to shearing (Megaruptor3, Diagenode Inc, Denville, NJ, USA; operated for 20kb target at 
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speed 35) and then 800ng sheared DNA was used to construct a sequencing library using the 
SQK-LSK109 ligation sequencing kit (Oxord Nanopore Technologies Ltd, Oxford, UK), 
barcoded using the EXP-NDB104 native barcoding kit (Oxford Nanopore Technologies; 
barcode 10). Following construction, 200 ng of the library was sequenced on a GridION 
instrument (Oxford Nanopore Technologies; release 21.05.20) for 72 hours. Basecalling was 
performed using Guppy 5.0.13 (Oxford Nanopore Technologies) in SUP mode. 
 
The run generated 233,209 raw reads from the cognate barcode (232,644 reads following the 
application of Porechop version 0.2.4 using default parameters except --discard_middle, -t 
20) (Porechop, 2018), comprising a total of 1.53 Gbp of sequence. Genome assembly was 
performed using Flye version 2.9 (using parameters --nano-hq, -t 44) (Kolmogorov et al., 
2019). A total of 36 contigs were obtained with a total sequence length of 39,781,613 bp.  
 
Based on visualization of per-contig GC content, mean coverage and length, we determined a 
working draft of the genome to be comprised of 22 contigs (mean length 1,792,464 bp, range: 
81,297- 3,886,452 bp), with an N50 of 2,331,148 bp and a total sequence length of 
39,434,212 bp. The mean GC content was 0.5 (range: 0.48-0.51) and mean coverage was 35 
(range: 33-36). (Supplementary Figure 2 and Supplementary Data File 1). One high 
coverage circular contig (37,662 bp; contig 40) was aligned to the mitochondrial genome of 
the closely related species Pseudopithomyces chartarum (97% nucleotide identity with 80% 
query coverage to Genbank KY792993.1; annotated to Pithomyces chartarum, but refer 
Ariyawansa et al., 2015, for discussion of reassignment to genus Pseudopithomyces). The 
remaining 13 contigs held substantially lower mean GC content values than those observed 
from the draft genome. These 13 contigs accounted for 309,739 bp of sequence (mean: 
23,826 bp, median: 8,979 bp, range: 2897-126,848 bp), and were considered to arise from 
potentially mis-assembled telomeric or repeat sequences and/or sequences from intra-plate 
contaminants (Supplementary Figure 2). 
 
The quality of the draft genome was examined using gene-level analysis with BUSCO 
package (v5.3.2; exeuted in genome mode using the lineage dataset for Pleosporales; 
pleosporales_odb10) (Manni et al., 2021). BUSCO identified 5637 complete marker genes 
(of 6641 searched), of which 5610 were complete and single copy, 27 complete and 
duplicated, 231 were fragmented and 733 missing (BUSCO notation: C:84.9% [S:84.5%, 
D:0.4%], F:3.5%, M:11.6%, n:6641). 
 
From the  draft genome, five 18S SSU-rRNA genes were predicted with RNAmmer (Lagesen 
et al., 2007) all of which annotated to order Pleosporales using the SILVA Alignment, 
Classification and Tree Service (ACT) (Pruesse et al., 2012) (Supplementary Data File 2). 
Three 28S LSU-rRNA genes were recovered from the assembly, to which the partial 28S 
sequence obtained above aligned with 99% identity (BLASTN, run with default settings; 
Camacho et al., 2009; alignments provided in Supplementary Data File 3). We note these 
ribosomal gene numbers are less than expected based on recent estimates (Lofgren et al., 
2019) made within ensembles of complete fungal genomes and may be related to limited 
reconstructability of closely related DNA fragments harbouring ribosomal operons. Further 
taxonomic analysis was undertaken using sourmash (Pierce et al., 2019), comparing the draft 
genome against all 9563 fungal genomes downloadable from the NCBI (2022/03/29), with 
the 7 most similar genomes observed to be members of family Didymosphaeriaceae 
(Supplementary Data File 4). Collectively these results are consistent with the original 
taxonomic assignment, within the limits of fungal genome availability for closely related 
fungal groups.  
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To gain some insight into possible chromosomal structures, all assembled contig sequences 
were searched for more than three or more repeat units of exact matches to CCCTAA and 
TTAGGG motifs (Rahnama et al., 2021) using the find function in a text editor to identify 
possible telomeric regions. Of the 22 contigs in the draft genome, 4 contigs have multiple 
repeat units of CCCTAA and 8 contigs have multiple repeat units of TTAGGG at the 5’ and 
3’ end respectively. 3 contigs have both CCCTAA and TTAGGG at the 5’ and 3’ end 
(Supplementary Data File 1) suggesting these sequences may represent distinct 
chromosomes.  
 
An initial catalogue of gene models, predicted using GeneMark-ES (run with --fungus flag 
set) (Ter-Hovhannisyan et al., 2008), was comprised of 13502 protein coding genes, of which 
4389 (32.5%) were annotated to one or more KEGG Orthology identifiers using 
BlastKOALA (Kanehisa et al., 2016; Supplementary Data File 5). A total of 162 tRNA 
encoding genes were predicted using EuFindtRNA search algorithm in tRNAscan-SE 
(version 2.0, running default parameters) (Lowe and Eddy, 1997). 
 
Recently Ningsih et al. (2021) isolated and characterized seven natural product compounds 
from an isolate of P. maydicus isolated from marine bryozoan (genus Schizoporella). To 
identify potentially-related biosynthetic gene clusters, we analysed the recovered genome 
sequence using the biosynthetic gene cluster (BGC) finder antiSMASH6 (Blin et al., 2021). 
In total we identified 39 BGCs, comprised of 19 Type 1 polyketide synthase (T1PKS) 
clusters and 14 non-ribosomal peptide synthetase (NRPS) or NRPS-like clusters, 4 terpene 
encoding clusters and two indole encoding clusters (Supplementary Results). Further 
examination of the relationships between these detected BGCs and the compounds defined by 
Ningsih et al. (2021) may provide insight into the relevant biosynthesis pathways for these 
specalised metabolites, as recently highlighted by Louwen and van der Hooft (2021). 
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