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Abstract 28 

People tend to view themselves through rose-tinted glasses, as evidenced by preferential recall of 29 

positive personality traits. We asked whether reactivating positive personality traits during sleep 30 

could enhance peoples’ positive self-evaluative memories. After a baseline self-referential 31 

encoding task in which participants endorsed positive and negative traits as self-descriptive, 32 

participants were trained to give timely responses to positive traits in a cue-approach training 33 

(CAT) task. Once participants had entered slow-wave sleep during a subsequent nap, half of the 34 

trained positive traits were unobtrusively re-played to them to promote consolidation (targeted 35 

memory reactivation, TMR). Participants completed free-recall tasks about self-descriptive traits 36 

to measure their self-evaluative memories. Our findings revealed that TMR prioritized the recall 37 

of positive traits that were strongly memorized before sleep, while impairing the recall of 38 

intermediate traits. The results suggest pre-TMR self-evaluative memory strength modulated the 39 

TMR benefits. Sleep EEG analyses revealed that compared with weak/intermediate/control traits, 40 

re-playing strongly memorized traits during sleep elicited greater sigma power changes, which 41 

likely reflect preferential memory reactivation. Our results demonstrate the potential implication 42 

of wakeful cue-approach training and sleep-based memory reactivation in strengthening positive 43 

self-evaluative memories. 44 

Keywords: targeted memory reactivation, sleep, cue-approach training, self-evaluation, 45 

positivity bias 46 

  47 
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Introduction 48 

People view themselves through rose-tinted lenses; when presented with positive and negative 49 

personality traits, people not only tend to endorse positive traits more frequently, they also 50 

preferentially remember positive rather than negative traits1–4. This positive self-evaluative 51 

memory bias5 may safeguard mental wellness, thereby reducing feelings of worthlessness and 52 

depressive symptoms in individuals especially when faced with self-threatening information6. 53 

Despite its importance7, few studies have examined how positive self-evaluative memories can 54 

be enhanced. To expand this seldom-explored area of research, we hypothesized that one 55 

strategy to enhance positive self-evaluative memories is to increase the salience and memory 56 

accessibility of positive traits when people describe themselves. To this end, we tested the 57 

efficacy of two recently developed paradigms to enhance positive self-evaluative memories: (1) a 58 

cued-approach training (CAT8) task that increases stimulus salience via approach motor training, 59 

and (2) sleep-based targeted memory reactivation (TMR9) that promotes memory consolidation 60 

during post-training sleep. 61 

CAT is a behavioral training task used to induce choice and preference changes for given 62 

stimuli in the absence of external reinforcement8,10,11. Specifically, when people are cued to 63 

manually respond to a stimulus (e.g., ‘Go’), they are more likely to prefer and more frequently 64 

choose Go stimuli over NoGo stimuli despite having comparable initial preferences for Go and 65 

NoGo stimuli. Previous research has used CAT to change individuals’ evaluation and choices of 66 

low-level stimuli such as snacks, meaningless fractals, and positive images from the International 67 

Affective Picture System (IAPS)10. However, it remains unknown whether CAT can change 68 

individuals’ evaluation of high-level personality traits. Inspired by CAT research, and to address 69 

this gap, we examined whether prompting participants to respond to positive self-evaluative 70 
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traits (e.g., ‘brilliant’, ‘conscientious’, ‘brave’) could enhance positive self-evaluative memories 71 

and self-evaluation. 72 

Sleep is pivotal in memory consolidation12,13. A plethora of research suggests that post-73 

learning sleep contributes to the stabilization of newly acquired memories, mediated by repeated 74 

memory reactivation particularly during non-rapid eye movement (NREM) sleep 9,13–15. Notably, 75 

memory reactivation not only occurs spontaneously, but can also be initiated via re-playing 76 

memory-related sensory cues to individuals during post-learning NREM sleep. TMR has been 77 

shown to promote memory consolidation for cued memories, as evidenced by improved cued 78 

(versus uncued) memory performance in post-sleep tests 16–22 (see Hu et al.23 for a meta-analysis 79 

on TMR). However, it remains unclear whether TMR can consolidate highly self-referential 80 

memories such as personality traits. The present study aimed to investigate whether TMR could 81 

enhance positive self-evaluative memories via repeatedly reactivating positive-personality traits 82 

during sleep.  83 

While mounting evidence suggests that sleep and TMR promote memory consolidation, 84 

not all memories are equally benefited 18,24,25. A range of factors influence sleep-mediated 85 

memory consolidation and TMR effect, such as pre-TMR memory strength (strong or weak) and 86 

motivational salience (high versus low arousal, reward versus non-reward) 26–29. Relatedly, in 87 

self-evaluation, people tend to have stronger memories of highly self-descriptive traits compared 88 

to less self-descriptive items30,31. Given that highly self-descriptive traits are preferentially 89 

encoded and that they are highly motivationally salient, we hypothesized that TMR benefits 90 

would be more evident among positive traits that were strongly endorsed and better memorized 91 

than traits that were poorly memorized or less likely to be endorsed before TMR.  92 
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We ask whether we could enhance participants’ positive self-evaluative memories via 93 

reactivating CAT-trained, positive trait memories during sleep (see Figure. 1a). In a self-94 

referential encoding task (SRET), participants viewed a series of positive and negative 95 

personality traits and rated the extent to which they could be applied to themselves, ranging from 96 

“extremely inaccurate” to “extremely accurate” (see Figure. 1b). In the subsequent CAT, 97 

participants manually responded to certain positive traits, presented visually on a screen and 98 

aurally through speakers, see Figure. 1c). Our key experimental manipulation happened during 99 

the post-CAT nap phase; during slow-wave sleep, the experimenter re-played half the previous 100 

CAT-trained positive traits to participants to reactivate memories. Upon waking, participants 101 

completed a free-recall task to assess the TMR’s impact on their self-evaluative memories as 102 

well as a probe task to assess its effect on self-evaluative preferences. In addition to assessing 103 

TMR’s immediate effect, we invited participants to come back to the lab one week after to 104 

examine TMR’s potential long-term effects. 105 
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Figure 1 106 

An Overview of Experimental Design and Main Tasks 107 

 108 

Note. (a) Task flow demonstrating the four task phases used following arrival, consent-form 109 

signing, and EEG setup, including baseline tests (phase 1), CAT and post-CAT/pre-TMR tests 110 

(phase 2), sleep-based TMR (phase 3), and post-TMR tests (phase 4). (b) Modified SRET, in 111 

which participants rated how accurately specific traits reflected themselves, followed by a self-112 

evaluative memory free-recall task. (c) Exemplar trial of CAT, in which participants responded 113 

to positive traits presented visually and aurally. (d) Probe test, in which participants were 114 

presented with Go and NoGo trait-word pairings and asked to select the word from the pair that 115 

was most self-descriptive (see Methods section for a full description of the procedure and 116 

experimental tasks). 117 

Results 118 

Behavioral results 119 

We measured the following outcomes related to self-evaluation: (1) self-evaluative memories, 120 

via free-recall of personality trait in the free-recall task; (2) self-evaluative preferences, via 121 
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preference choices among two traits in the probe task; and (3) self-evaluative judgements, via 122 

endorsement judgements and ratings of personality traits in the SRET.  123 

Evidence of Self-Evaluative Positivity Bias at Baseline Session 124 

Consistent with previous research that examined self-evaluation in healthy populations 32, 125 

participants endorsed more positive than negative traits as self-descriptive (t = -11.1 p < 0.001) 126 

and were faster at endorsing positive traits (t = 2.30 p = 0.028).  127 

In the baseline recall task (1st recall), participants recalled more positive than negative 128 

traits, indicating a positive self-evaluative memory bias (t = 8.42, p < 0.001). Participants who 129 

showed a larger positivity bias also reported a lower score from the Beck Depression Inventory-130 

II (BDI) (r = -0.68, p < 0.001; Figure. 2a), replicating the relationship between self-positivity 131 

bias and depressive symptoms33. 132 

Together, via successfully replicating the self-evaluation positivity bias, we confirmed 133 

the validity of using SRET and the trait free-recall task to assess self-evaluation and self-134 

evaluative memories.  135 

Effects of CAT and TMR on Self-Evaluative Memories 136 

Given that we primarily focused on positive self-evaluation and self-evaluative memories, we 137 

presented results on positive traits using (generalized) linear mixed models ((G)LMM) to include 138 

participants and/or traits as random effects during post-CAT, post-TMR, and delay tasks. 139 

 To test the CAT effect (i.e., Go versus NoGo) on the recall of positive self-evaluative 140 

memories while controlling for baseline recall performance, we ran (G)LMM using CAT (Go 141 

versus NoGo) and pre-CAT recall (recalled versus not recalled) as fixed effect, using participant 142 

factor as the random effect to predict post-CAT recall. We analyzed whether a trait was recalled 143 

or not, and if recalled, its recall order (the earlier, the better). Results showed a significant 144 
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interaction between baseline recall (1st recall) and CAT on post-CAT recall order, F (1, 1073.7) 145 

= 4.04, p = 0.045. However, the post-hoc comparison did not reach significance. No other 146 

significant effects were found for recall percentage during the post-CAT recall task, all ps > 0.1. 147 

These results suggest CAT alone might not be capable of changing self-evaluative memories.  148 

Next, we focused on the TMR effect (cued vs. uncued) by examining post-TMR recall 149 

performance (3rd recall), again using recall outcome and recall order. To understand how pre-150 

sleep memory strength might influence TMR effects, we categorized each trait into one of three 151 

conditions (weak, intermediate, and strong) based on recall from the baseline (1st) and post-CAT 152 

(2nd) tasks. A trait would be categorized as weak if it was not recalled in neither baseline and 153 

post-CAT tests, intermediate if it was recalled only once in either baseline or post-CAT tests, and 154 

strong if it was recalled in both tests. Because the categorization of traits depended on the recall 155 

performance of baseline and post-CAT tests, 17 participants were excluded from subsequent 156 

analyses due to lack of traits assigned to one or more memory-strength conditions. This left us 157 

with 18 participants. Given the small sample size, we regarded the following analyses as 158 

exploratory, and the results should be interpreted with caution. The number of traits assigned to 159 

weak, intermediate, and strong conditions are presented in Table 1.  160 

Table 1 161 

Number of traits in each pre-memory strength condition (mean ±SEM). 162 

Cue condition Weak Intermediate Strong 

Go-cued 10.16 ± 0.35 3.00 ± 0.29 1.83 ± 0.22 

Go-uncued 9.88 ± 0.37 3.22 ± 0.34 1.88 ± 0.23 

NoGo 21.61 ± 0.52 4.83 ± 0.40 3.56 ± 0.45 

 163 
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For the binary recall outcome (i.e., recalled or not), we found a significant interaction 164 

effect between TMR and pre-TMR memory strength, 𝜒2(4) = 12.28, p = 0.015. Post-hoc results 165 

showed that cueing intermediate traits impaired their later recall, 𝛽 = -1.15, SE = 0.45, p = 0.027, 166 

but there was no significant cueing effect for strong traits, 𝛽 = 1.34, SE = 0.75, p = 0.17, or weak 167 

traits, 𝛽 = 0.30, SE = 0.37, p = 0.70 (see Figure. 2b). No other significant contrasts were found, 168 

ps > 0.1. 169 

For recalled order, we found a significant interaction between TMR and pre-TMR 170 

memory strength, F (4, 1065.7) = 7.22, p < 0.001. Follow-up analyses showed that TMR cueing 171 

prioritized the recall of strong traits, as evidenced by earlier recall order for Go-cued rather than 172 

Go-uncued traits, 𝛽 = -0.61, SE = 0.20, p < 0.01, and also marginally than NoGo items, 𝛽 = -173 

0.42, SE = 0.18, p = 0.053 (see Figure. 2c). In contrast, for intermediate traits, TMR cueing 174 

rendered the Go-cued traits to be recalled later than Go-uncued traits, 𝛽 = 0.69, SE = 0.16, p < 175 

0.001, while Go-uncued traits were recalled earlier than NoGo traits, 𝛽 = -0.44, SE = 0.14, p < 176 

0.01. No other significant results were found (ps > 0.1). Thus, TMR prioritized the accessibility 177 

of strong traits at the cost of intermediate traits, as evidenced by their recall priority. Regarding 178 

the delay test, while it is worthwhile to examine TMR’s long-term effect in the one-week delay 179 

tests, we were unable to perform the analyses given the number of traits that were recalled in the 180 

delay task was too few.  181 

Lastly, to ensure that pre-TMR memory strength aligned with self-referential processing, 182 

we compared the baseline endorsement rating (obtained from the baseline SRET, see Figure. 1b) 183 

for weak, intermediate, and strong traits. We found that strong and intermediate traits had 184 

significantly higher endorsement ratings (i.e., more self-descriptive) than weak traits (all ps < 185 

0.01), but no difference between intermediate and strong traits (p = 0.596). This suggests pre-186 
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TMR memory strength reflected the extent to which participants would endorse traits as self-187 

descriptive. 188 

Figure 2 189 

The effect of TMR Conditions, Pre-TMR Memory Strength on Post-TMR Recall Performance 190 

 191 

Note. (a) Pearson Correlation Between BDI Scores and Baseline Self-Positivity Bias. Baseline 192 

recall bias was calculated by the number of endorsed and recalled positive words divided by the 193 

number of endorsed words during the baseline recall task. BDI scores were negatively correlated 194 

with baseline recall bias. (b) Recall percentage for positive traits. (c) Recall order (via a log 195 

transformation). Error bars indicate 95% confidence intervals (CIs). 196 

 197 

Effects of CAT and TMR on Self-Evaluation Preferences  198 

We next assessed self-evaluation preferences towards positive traits using the probe task (see 199 

Figure. 1d). On each trial of the probe task, participants were presented with a pair of traits, each 200 

containing one Go trait and one NoGo trait (with Go and NoGo traits matched for baseline 201 

endorsement level) and were asked to select the trait which better described themselves. More 202 

specifically, we followed previous CAT research to sort Go–NoGo (GNG) pairs into low- and 203 

high-rating pairs 8,10. We then used a series of GLMMs to analyze preference changes (see 204 

Methods). Immediately after CAT, participants were more likely to choose Go traits for low-205 

rating GNG pairs (Go choices: 55.7%, SE = 2.2%, Z = 2.60, p = 0.005) but not for high-rating 206 

GNG pairs (mean proportion = 51.5%, SE = 2.3%, Z = 0.66, p = 0.254). The percentage of Go 207 
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trait choices was not significantly different between high- versus low-rating pairs (Z = 1.55, p = 208 

0.120).  209 

We next examined the immediate effect of TMR in the post-TMR probe task. We found 210 

no TMR effects (i.e., choice proportion Go-cued > Go-uncued traits) for either low- or high-211 

rating pairs. Participants were more likely to choose Go-cued and Go-uncued traits than NoGo 212 

traits for low-rating pairings: Go-cued: 55.5%, SE = 3.1%, Z = 1.81, p = 0.035; Go-uncued: 213 

56.9%, SE = 3.1%, Z = 2.19, p = 0.014. This effect was not significant for high-rating pairings: 214 

Go-cued: 50.6%, SE = 3.3%, Z = 0.184, p = 0.427; Go-uncued 54.2%, SE = 4.0%, Z = 0.99, p = 215 

0.162. There were no significant differences between high- and low-rating traits for Go-cued (Z 216 

= 1.31, p = 0.190) or Go-uncued items (Z = 0.74, p = 0.462).  217 

After a one-week delay, participants significantly preferred Go-cued over NoGo traits in 218 

high-rating pairings, 56.2%, SE = 2.6%, Z = 2.30, p = 0.01, with a marginally significant effect 219 

in low-rating pairings, 55.3%, SE = 3.2%, Z = 1.61, p = 0.053. The choices of Go-cued traits 220 

were not different between high- versus low-rating pairings (Z = -0.24, p = 0.810). No choice 221 

preferences were found for Go-uncued over NoGo pairings nor between Go-cued and Go-uncued 222 

traits (all ps > 0.2). Together, these results suggest only Go-cued traits (i.e., TMR) showed a 223 

prolonged CAT effect on both high- and low-rating pairs comparably (Figure. 3a).  224 

 225 

Effects of CAT and TMR on Self-Evaluative Judgements  226 

To analyze changes in positive self-evaluations, we ran a GLMM using TMR/CAT conditions 227 

(Go-cued, Go-uncued, and NoGo) and test sessions (pre-, post-TMR, and delay) as fixed effects 228 

to predict binary endorsement. We found no interactions between conditions and test sessions, 229 
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𝜒2(4) = 1.89, p = 0.756, indicating a null effect of CAT and TMR training on self-evaluative 230 

judgements. 231 

Given that reaction times (RT) of choices could also infer preferences34, we next ran a 232 

LMM using TMR/CAT conditions and test sessions to predict RTs. There was a significant 233 

interaction between the initial rating and TMR condition only in the delay session, F (2, 1,644.2) 234 

= 5.06, p < 0.01 (Figure. 3b). Post-hoc comparisons showed a significantly greater negative 235 

correlation for Go-cued rather than Go-uncued positive traits, 𝛽 = -0.10, SE = 0.03, p < 0.01, or 236 

NoGo traits, 𝛽 = -0.07, SE = 0.03, p = 0.034, suggesting higher baseline endorsement levels 237 

would lead to faster RTs during the delay SRET for Go-cued traits. No differences were found 238 

between Go-uncued and NoGo traits, 𝛽 = 0.03, SE = 0.03, p = 0.585. These negative associations 239 

were not found in previous behavioral patterns when only CAT was used (see SOM, Figure. 240 

S11), suggesting TMR uniquely promoted endorsement speed for high self-descriptive traits. 241 

Figure 3 242 

Behavioral Results Across Test Sessions in Free-Recall, Probe and SRET Tasks 243 

 244 
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Note. (a). Probe results across sessions for Go-cued and Go-uncued conditions. Distributions are 245 

shown in combinations of boxplots (left, annotated with medians and quartile ranges) and 246 

smoothed kernel density estimates (right, annotated with error bars indicating standard error of 247 

the mean)35. The dashed line reflects a chance level of 50%. Asterisks above each bar represent 248 

proportions higher than the chance level in a one-tailed generalized linear mixed-model analysis 249 

(log odds = 0; odds ratio = 1). ** p < 0.01, * p < 0.05, + p < 0.1.  250 

(b). Interaction between initial Rating and TMR Condition on predicting reaction times (via a log 251 

transformation) during baseline SRET (left), post-sleep SRET (middle), and one-week delayed 252 

SRET task (right). Solid lines indicate linear regression fit to the trial-averaged data. The shaded 253 

area indicates two-sided parametric 95% CI. 254 

EEG results 255 

Cue-Elicited Sigma Power During TMR Modulated by Pre-Memory Strength 256 

We analyzed cue-elicited electroencephalographic (EEG) responses during the TMR to 257 

investigate the neural mechanisms underlying reactivation of positive traits. Previous research 258 

showed that sleep spindles and spindle-related sigma power (12 to 16 Hz) are among the key 259 

factors driving TMR benefits 36–38. For example, the cue-elicited spindle density and sigma 260 

power 37,39 positively correlated with post-sleep memory retention 40,41. Moreover, research 261 

argues that following cue-elicited sigma power increase, there is a critical refractory period 262 

during which sigma power would decrease 42. Importantly, theoretical accounts proposed that 263 

successful memory reactivation not only depends on the cue-elicited sigma power increase, but 264 

also on the following refractory periods wherein memory is re-processed with minimal 265 

interference 39,42,43.  266 

Here, analyzing the TMR cue-elicited EEG power change at the central electrode (Cz 267 

20,44) revealed two significant positive clusters: the delta–theta–alpha band (0.75 to 11.75 Hz, 268 

0.02 to 1.7 seconds), and the sigma–beta band (12 to 28 Hz, 0.3 to 1.66 seconds, Figure. 4a), and 269 

one negative cluster: sigma band (12 to 17 Hz, 1.9 to 2.44 seconds) during the 0 to 3000 270 

milliseconds post-cue time window (p < 0.001, corrected). These clusters were consistent with 271 

previous findings on cue-elicited modulations during sleep 44. Following previous research, this 272 
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earlier positive cluster might represent sensory processing of the cue, whereas the following 273 

negative cluster corresponded to the refractory period, indicating a cue-specific memory 274 

reactivation process 45. Table 2 presents the sleep staging results and Table 3 presents the mean 275 

number of trials for each -strength condition (i.e., weak, intermediate, strong) for all participants 276 

(N = 35).  277 

Table 2 278 

Sleep parameters (mean ± SEM, in minutes). 279 

Participants Total time Wake N1 N2 N3 REM 

All participants 

(N = 35) 

90.10 

± 

1.19 

10.85 

± 

1.14 

2.88 

± 

0.51 

37.12 

± 

1.50 

28.68 

± 

1.84 

10.58 

± 

1.28 

Participants contain all 

three cue conditions 

(N = 18) 

89.52 

± 

1.33 

11.48 

± 

1.63 

1.96 

± 

0.49 

37.21 

± 

2.18 

30.26 

± 

2.64 

8.62 

± 

1.72 

 280 

Table 3 281 

Number of trials for each memory strength condition during TMR (mean ±SEM).  282 

Participants Weak Intermediate Strong Control 

All participants 

(N = 35) 
149.37 ± 9.16 43.55 ± 4.36 25.33 ± 2.25 13.86 ± 0.81 

Participants 

contained in the 

EEG power 

analyses  

(N = 18) 

150.22 ± 12.21 43.94±5.27 25.39±2.88 14.61±1.04 

 283 

To directly link TMR recall benefits and TMR-elicited EEG activity, we extracted the 284 

averaged power within the identified significant positive and negative clusters of spindle-related 285 

sigma band (12 to 16 Hz) for each participant and compared between pre-TMR memory-strength 286 
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conditions (i.e., weak, intermediate, strong, and control traits) (Figure. 4b–e). Given that both 287 

TMR-elicited sigma power and the refractory period are important for memory reactivation, and 288 

these two sigma activity are often inversely correlated, we quantified the cueing-induced sigma 289 

activity as the difference between the earlier positive (0.58 to 1.64 seconds) and later negative 290 

sigma cluster (1.9 to 2.42 seconds). Specifically, we subtracted the negative cluster from the 291 

positive cluster, with higher values indicating stronger sigma- power changes and therefore 292 

memory reactivation.  293 

We ran a LMM using pre-TMR memory strength (i.e., weak, intermediate, strong, 294 

control) as fixed effects, and by participant and trait as random effects, to predict post-cue sigma 295 

power changes (12 to 16 Hz) for each trait word. The included participants were the same as in 296 

post-TMR recall analysis (N = 18). We found a significant main effect of pre-memory-strength 297 

condition, F (3, 21.85) = 4.84, p = 0.01. Pairwise comparisons showed that strong traits elicited 298 

significantly larger sigma power changes than the other three conditions (p < 0.001, p = 0.067, p 299 

= 0.057, compared with weak, intermediate, control, respectively, see Figure. 4f), while no 300 

differences were found among other conditions, all ps > 0.08. This result might indicate 301 

preferential reactivation and reprocessing for strongly encoded traits during sleep.  302 

Next, when separately testing sigma power in the early positive and late negative cluster, 303 

we only found a main effect of pre-memory strength on the negative cluster (F (3, 9.7) = 4.96, p 304 

= 0.024) but not the positive cluster (F (3, 6.1) = 1.82, p = 0.243). Post-hoc comparison showed 305 

that strong traits had been associated with the lowest sigma power as compared to weak and 306 

intermediate traits (all ps <0.05), but no difference from the control trait word (p = 0.1). These 307 

results indicate that the difference of post-cue sigma power changes among weak, intermediate, 308 
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strong, and control traits were most likely driven by the differences of the later negative sigma 309 

cluster.  310 

Finally, no significant main effect of pre-memory strength was found when predicting 311 

post-cue delta (0.5 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 12 Hz), or beta (16 to 25 Hz) band 312 

power increases (all ps > 0.068). 313 

 314 

Figure 4 315 

Time-frequency Representations Following Cue Presentation 316 

 317 

Note. (a) Time-frequency power spectrum averaging all traits played during sleep at channel Cz 318 

(Z transformed). Time zero indicates the onset of spoken traits. (b–e) Time-frequency power 319 

spectrum for specific trait-word types. (f) Predicted values of sigma power differences (the 320 

positive minus the negative cluster at sigma band, 12 to 16 Hz). Black outlines indicate the same 321 

cluster for all pre-TMR memory-strength type traits. 322 

 323 

Relationship Between Sigma Power Change and Self-Evaluation  324 
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To explore the relationship between TMR-elicited sigma activity and post-TMR self-evaluative 325 

memories and self-evaluations, we ran a series of LMM analyses using averaged sigma power 326 

changes for each trait as the fixed effect, and by participant and/or trait as random effects to 327 

predict self-evaluation memories (i.e., recall task), self-evaluation preferences (i.e., probe task), 328 

and self-evaluation endorsement (i.e., SRET task).  329 

When predicting post-TMR recall order, we found a negative association F (1, 244.5) = 330 

5.4, p = 0.021, such that greater sigma power changes correlated with earlier recall (degree of 331 

association = -0.02). Although there was a trend toward greater post-cue sigma power change 332 

predicted higher post-TMR recall percentage, the association did not reach statistical significance 333 

(𝜒2(1) = 3.05, p = 0.081). Next, regarding post-TMR self-evaluation preferences (i.e., binary 334 

choice from Go versus NoGo pairs in the probe task), we found that higher sigma power changes 335 

positively predicted Go choice, F (1, 422.03) = 4.84, p = 0.028. Finally, when predicting self-336 

referential endorsement, we did not find any associations between sigma power changes and 337 

endorsement proportion nor endorsement speed after TMR. No predictions were found for the 338 

above models in the one-week delay session (all ps > 0.2). Therefore, while sigma-band power 339 

changes might index self-evaluative memory reactivation as evidenced by recall, it remains 340 

unclear whether they bear relationships with self-evaluation preference changes (Figure. 3a) and 341 

self-referential endorsement speed (Figure. 3b).  342 

Discussion 343 

We asked whether we could enhance ones’ positive self-evaluative memories via wakeful cue-344 

approach training (CAT) and sleep-based targeted memory reactivation (TMR). Extending prior 345 

CAT research, CAT reliably induced preferences for trained self-evaluative positive-traits 346 

(behavioral replications are reported in SOM). Following CAT, we reactivated a subset of 347 
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previously trained positive-traits during participants’ NREM sleep to enhance their memory 348 

accessibility. Results showed that TMR prioritized the retention of strong self-evaluative trait-349 

word memories while weakening the retention of intermediate trait-word memories in the short 350 

term. In terms of its possible long-term benefits, participants preferred Go-cued traits as self-351 

descriptive over NoGo traits, and were faster to endorse Go-cued traits when they were highly 352 

endorsed at the baseline assessment. We also found that re-playing spoken traits to participants 353 

during their sleep enhanced spindle-related sigma power change difference for strongly encoded 354 

traits than for other cue or control traits, which might indicate memory reactivation for highly 355 

self-referential traits.  356 

Behaviorally, when assessing CAT and TMR benefits on self-evaluative memories, 357 

participants who were presented with all three types of personality traits (i.e., strong, 358 

intermediate, weak) during sleep consistently showed earlier recall order for strong traits during 359 

the post-TMR free-recall task. This finding indicates that when cueing is performed during sleep, 360 

it enhances the accessibility of traits that were strongly memorized before sleep. Contrary to our 361 

findings in SOM where we found a CAT effect on enhancing recall order for intermediate-type 362 

traits after a one-week delay, TMR weakened intermediate-type traits immediately after cueing, 363 

indicating that the memory benefits for strong traits came at the expense of intermediate traits. 364 

Surprisingly, we did not find any behavioral evidence to support TMR benefits for weak traits. 365 

Note that previous TMR and sleep memory research often reports that weak memories are 366 

preferentially consolidated 16,18,24,46; such a discrepancy could be due to the materials used. 367 

Whereas prior research has mostly focused on self-irrelevant materials, such as images and 368 

words, we examined self-evaluative memories. Particularly, participants were less likely to 369 

endorse weak traits as self-descriptive and were unable to recall them in either of the pre-sleep 370 
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tests. The significantly low level of endorsement might make weak traits less salient and further 371 

prevent them from being consolidated. Note, the definitions of, and testing protocols for, 372 

memory strengths also differ across studies, making direct between-study comparisons difficult, 373 

if not impossible 47. Hence, previous findings that showed weak memories were preferentially 374 

consolidated during sleep may not generalize to self-evaluative memories. By contrast, we 375 

postulate that for reactivating traits during sleep, strongly encoded, highly self-relevant 376 

memories might be better preserved given their higher salience.  377 

In examining how TMR-related neural activity influenced subsequent self-evaluative 378 

memory recall, we found that spoken traits induced a transient spindle-related sigma power 379 

increase shortly after the cue onset, as well as a late power decrease around 2–3 seconds after cue 380 

presentation. Although previous TMR studies have reported a positive link between the transient 381 

post-cue sigma power increase and promoted memory 48,49, our findings did not reveal such an 382 

association. Instead, when we closely examined post-cue sigma power, the difference between 383 

the early positive and late negative sigma cluster (which we defined as sigma power change), as 384 

well as the negative cluster, proved statistically significant among different cues. Importantly, 385 

trait adjectives that were strongly memorized prior to sleep elicited greater spindle-related sigma 386 

power change than other traits (albeit marginally greater than control and intermediate traits), 387 

indicating a preferential memory reactivation for strong traits 50. This result also suggests that 388 

early sensory processing and a late refractory period following a spoken trait word are necessary 389 

for its successful memory reactivation 45. Additionally, in this study we had unbalanced trial 390 

numbers for the cueing traits that were assigned to the three memory conditions; future studies 391 

could include more traits and trials to examine the replicability of cueing-induced spindle 392 

activity for weak, intermediate, or strong self-evaluative memories. Nevertheless, the present 393 
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findings extend prior research on vocabulary reactivation, indicating that the sleeping brain not 394 

only processes newly acquired vocabularies or semantic words 17,51, but also self-evaluative trait 395 

memories. 396 

 In addition to self-evaluative memories, we also assessed participants’ self-evaluation 397 

preferences in the binary-probe task. We found that after CAT, participants were more likely to 398 

choose Go versus NoGo traits as self-descriptive. This result extends prior CAT research 10, 399 

demonstrating that CAT is effective for influencing change in not only food choices but also 400 

self-evaluations. We subsequently examined whether reactivating positive traits during sleep 401 

could further influence participants’ self-evaluations. Immediately after sleep, TMR cueing did 402 

not shift participants’ preference choices toward Go-cued than Go-uncued traits, although 403 

participants preferred both Go-cued and Go-uncued traits over NoGo traits (i.e., the CAT effect). 404 

In other words, the TMR did not further improve CAT effects in self-evaluation preferences. 405 

Notably, TMR benefits may emerge over a longer term one week later: participants were more 406 

likely to choose Go-cued than NoGo traits as self-descriptive, although the differences between 407 

CAT-cued and CAT-uncued traits did not reach significance. These results suggest TMR may 408 

preserve the CAT effect (Go-cued > NoGo) in the binary-preference choice task after a long-409 

term delay. However, no clear associations were identified between TMR induced EEG power 410 

changes and choice preference in the delay session. This might indicate that long-term preference 411 

change was not driven by sigma power change difference.  412 

When assessing participants’ binary endorsement change using SRET, we did not find 413 

significant main effects of CAT or TMR. We postulated that, because the endorsement 414 

proportion of positive traits was already high (i.e., > 80%), such a ceiling would leave little space 415 

for CAT or TMR to increase participants’ positive trait endorsement. In addition to endorsement 416 
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judgement, reaction times (RT) of a certain choice could also infer preferences 34. By examining 417 

the association between endorsement ratings and RT across different memory-strength 418 

conditions, we found a stronger negative association for Go-cued rather than Go-uncued traits 419 

after a one-week delay, which suggests cueing strongly-endorsed traits during sleep leads to the 420 

faster endorsement in the long term. Thus, TMR selectively promoted endorsement speed for 421 

initially high-endorsed traits. Note, we also failed to observe any associations between cue-422 

elicited EEG power changes and endorsement proportion or speed. This could be due to the 423 

ceiling effect reported in SRET (> 80% endorsement rates for positive traits), which may prevent 424 

us from detecting the possible TMR benefits on endorsements. To better understand memory 425 

reactivation and positive self-endorsement changes, future studies could carefully match the 426 

number of endorsed traits and not-endorsed traits prior to TMR. 427 

Limitations shall be discussed. First, because our study only included self-relevant traits, 428 

to which extent the observed effects are self-specific remain an open question. For example, can 429 

CAT and TMR be used to increase people’s endorsements for traits that are considered as 430 

relevant to other people? Can the impact of pre-sleep memory strength on TMR effects be found 431 

for non-personality, neutral words? Second, due to the limited amount of time participants spent 432 

in REM sleep during nap, our current dataset did not allow for further testing of the role of REM 433 

sleep in consolidating self-evaluative memories. Given that REM sleep plays an important role in 434 

emotional memory and vocabulary learning 52,53, future research shall test the role of REM-435 

related processing in self-evaluative memories.  436 

To summarize, we show that reactivating positive personality traits during NREM sleep 437 

impacts the consolidation of self-evaluative memories as a function of pre-sleep memory 438 

strength. TMR prioritized recall of strong self-evaluative memories, which also elicited enhanced 439 
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sigma power during sleep. In contrast, intermediate self-evaluative memories were weakened, 440 

and no change was identified for weak self-evaluative memories. After one week, TMR not only 441 

preserved preferences for cued traits, but also facilitated endorsement of traits when they were 442 

highly endorsed at baseline, prior to CAT and TMR manipulations. These findings highlight the 443 

importance of internal (i.e., baseline endorsement of traits) and external factors (e.g., training, 444 

sleep, self-evaluative tasks) in generating the joint effect of CAT and TMR on self-evaluation. 445 

The present study contributes to the understanding of self-evaluative memories via cognitive 446 

training and sleep-based memory-reactivation paradigms. If positive self-evaluations and 447 

memories can be enhanced, future research can test whether this approach can help people with 448 

low self-evaluations and self-doubts.  449 

Methods 450 

Participants 451 

Our final sample included 35 participants with valid behavioral and EEG data (8 males, Mage ± 452 

SD = 20.83 ± 2.20 years), which is comparable to recent TMR studies (e.g., Schechtman et al. 453 

2021). 10 participants were excluded prior to this due to insufficient slow-wave sleep (SWS), 454 

and thus very few numbers of cues were played (< 2 rounds). To facilitate sleep in the lab, we 455 

asked participants to wake up one hour earlier than their usual waking time and to avoid 456 

consuming caffeinated drinks on the day prior to – and of – the experiment. Participants were 457 

pre-screened regarding any current or history of sleep, psychiatric, or neurological disorders and 458 

had normal or corrected-to-normal vision. Participants received monetary compensation for their 459 

participation (250 RMB, or roughly 38 USD) and gave written consent prior to the experiment. 460 
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The study was approved by the Human Research Ethics Committee of the University of Hong 461 

Kong.  462 

Materials  463 

All experimental procedures were implemented in E-Prime® 3.0 (Psychology Software Tools, 464 

Inc., Sharpsburg, Pennsylvania, USA). We selected 60 positive personality trait adjectives (e.g., 465 

‘clever’) and 60 negative personality trait adjectives (e.g., ‘lazy’; see SOM for the complete list 466 

of personality traits). Each trait word was presented verbally for a duration of 400 to 600 467 

milliseconds. In addition, we intermixed a novel adjective that was only played during TMR with 468 

the other cue words as a control. 469 

Experimental Tasks 470 

Task Overview  471 

Participants attended two lab sessions, scheduled approximately one week apart (Figure. 1a). In 472 

the first session, participants arrived to the lab at approximately 12:00 pm (exact arrival times 473 

ranged between 11:30 am to12:30 pm), where they read and signed consent forms and were set 474 

up with EEGs. Subsequently, a series of four task phases began in which participants completed 475 

a number of tests, beginning with baseline tests in the first phase, followed by CAT and post-476 

CAT/pre-TMR tests in the second phase, sleep-based TMR in the third phase, and post-TMR 477 

tests in the fourth phase. In the preliminary baseline phase, participants completed computer-478 

based personality questionnaires, serving as a cover story for the personality trait words 479 

(hereafter, traits) presented to them in the following SRET. During the SRET, participants rated 480 

the extent to which specific traits described themselves. Participants then completed a self-481 

evaluative memory free-recall test. In the second phase, participants manually responded to 482 

positive traits (i.e., Go traits), prompted by visual and aural cues presented on screen and from a 483 
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nearby loudspeaker (CAT). Participants then completed a free-recall test and a probe test, in 484 

which they were presented with Go and NoGo trait word pairs and asked to select the trait word 485 

that was more self-descriptive. In the third phase, half of the positive traits were aurally re-486 

played to sleeping participants during slow-wave sleep (SWS). Then, in the fourth phase, 487 

participants completed the same free-recall test, probe test, and SRET. In the second lab visit (~ 488 

7 days later), participants completed the same free-recall test, probe test and SRET as previously 489 

completed in the final phase of the first visit to examine the possible long-term TMR effects. 490 

Thus, they completed four self-evaluative memory free-recall tests (baseline, post-CAT, post-491 

TMR, delay), three SRETs (baseline, post-TMR, delay), and three probe tasks (post-CAT, post- 492 

TMR, delay).  493 

Baseline 494 

Participants completed preliminary computer-based personality questionnaires, including the 495 

Rosenberg Self-Esteem Scale (RSES54), Narcissistic Personality Inventory (NPI55) , Big Five 496 

Inventory (BFI56), Beck Depression Inventory-II (BDI-II57), State-Trait Anxiety Inventory (STAI 497 

state and STAI trait 58), and Barratt Impulsiveness Scale (BIS-1159). This served as a cover story 498 

to promote the reliability of the personality trait adjectives that would be presented to them in the 499 

following self-referential encoding task (SRET). Descriptions of questionnaire scores are 500 

presented in Table S2. 501 

In SRET (see Figure. 1b), a cross symbol was presented on a computer screen at the 502 

beginning of each trial for 0.5 seconds, followed by the presentation of the sentence ‘I think this 503 

word is applicable to me’ in the center of the screen for another 0.5 seconds. After 1.2 to 1.4 504 

seconds, participants were presented with a random word, given visually in written form and 505 

aurally from a speaker, from a selection of120 adjectives for 0.8 seconds. After, participants 506 
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were shown a blank screen for another 0.8 seconds and then were prompted to select if a trait 507 

word applied to them within 2.5 seconds by moving the mouse cursor continuously. The spatial 508 

location of ‘Yes’ and ‘No’ responses were counterbalanced (upper left/upper right or upper 509 

right/upper left). Following a ‘Yes’ response, participants were asked to rate the extent to which 510 

a trait word applied to them on a scale ranging from “slightly accurate” to “extremely accurate”; 511 

following a ‘No’ response, participants were asked to rate the extent to which a trait word did not 512 

apply to them on a scale ranging from “slightly inaccurate” to “extremely inaccurate”.  513 

Within the three minutes that followed, participants were asked to complete a self-514 

evaluative free-recall task. Unlike previous recall tasks where participants must write down as 515 

many traits as possible, here, participants were asked to recall only the traits they had been 516 

presented with and endorsed during the previous SRET, typing each recalled word on a computer 517 

one at a time. Therefore, performance during this version of the recall task reflected self-518 

evaluative memories.  519 

CAT and Post-CAT Tests 520 

Following baseline assessments, participants completed a CAT task, followed by a 5-minute 521 

working memory task for distraction purposes. In the CAT (see Figure. 1c), we ranked all 60 522 

positive traits from 1 (least accurate) to 60 (most accurate) based on the methods of Schonberg et 523 

al. (2014) and the SRET endorsement ratings. During CAT, 30 traits (across the entire list of trait 524 

adjectives) were paired with a visual Go cue that required participants to press a button as 525 

quickly as possible before the current trial’s offset. The Go traits were presented aurally (< 0.8 526 

seconds) and visually (1.2 seconds), followed by Go cues. We used an adaptive response 527 

window to keep participants attentive to Go cues. Specifically, initial Go cues were presented 528 

with a GSD (the delay between trait-word onset and Go-cue onset) of approximately 0.9 seconds. 529 
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If the participants successfully pressed a button before the offset of the trial, the GSD was 530 

increased by 17 milliseconds to increase task difficulty. If participants failed to make a button 531 

press before the offset of the trial, the GSD was reduced by 50 milliseconds to reduce task 532 

difficulty. Participants then completed a 3-minute post-CAT self-evaluative memory-recall task, 533 

as used in the baseline assessment.  534 

Next, participants completed a post-CAT probe task so we could assess CAT effects. In the 535 

probe task (see Figure. 1d), a fixation cross appeared in the center of the screen for 1 second at 536 

the beginning of each trial. Following this, participants viewed two traits that were presented 537 

side-by-side and were instructed to select the trait word that best described them within 4 538 

seconds. We excluded trials where response times exceeded 5 seconds, allowing a short window 539 

of time to account for potential delays caused by using the mouse. Participants confirmed their 540 

selection by clicking a push button, lasting for 0.5 seconds, which appeared under their chosen 541 

trait word. If participants took longer than 4 seconds to respond, they received a prompt in the 542 

confirmation phase to remind them to respond as quickly as possible. To balance the positions of 543 

Go and NoGo traits, we carried out a total of two blocks. The positions of the Go/NoGo traits per 544 

pair were randomly assigned to the upper-left/right or upper-right/left sides of the monitor in the 545 

first block. In the second block, each pair’s left/right positions were swapped accordingly. 546 

Nap Targeted Memory Reactivation (TMR) 547 

Participants took a 90-minute nap in a quiet, darkened sleep chamber. Background white noise 548 

(at ~ 38 dB) was played to participants throughout the duration of the nap via a loudspeaker 549 

placed near the bed. We used EEG recording devices to monitor participants’ brain and 550 

physiological activities continuously while they napped. Once they entered SWS, we presented 551 

spoken, positive traits (the same spoken traits presented during the SRET and CAT tasks) at 552 
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approximately 40 dB. Note, we set the volume of white noise to approximately 38 dB to ensure 553 

that the spoken traits (played at ~ 40 dB) could be heard above it, yet on a subtle level to avoid 554 

arousing participants from their nap.  555 

Each spoken trait lasted no longer than 1 second, with an interstimulus interval of 5 556 

seconds and an additional randomized interval of 0 to 1 second. Half of the positive Go traits 557 

were played during the TMR (i.e., 15 traits in total; see the previous section on CAT/TMR trait 558 

word-groupings for more details about trait selection). Additionally, we included a neutral trait 559 

word to the playlist, lasting a duration of 600 milliseconds, intermixed into each play cycle. 560 

Presenting the neutral trait word enabled us to monitor participants’ brain activity specific to 561 

cued-memory reactivation versus nonspecific auditory processing of semantic stimulation. The 562 

minimal number of repetitions of a sequence (i.e., 16 traits) was 3.  563 

Specifically, spoken traits were played to participants until they showed sustained SWS 564 

(i.e., SWS lasting at least 2 minutes). We then played the novel control spoken traits three times 565 

at the beginning of the TMR to ensure that the auditory stimulation did not wake participants. 566 

We started presenting the spoken traits to participants when they exhibited no more signs of 567 

arousal or changes in NREM sleep stage. If participants awoke, we stopped playing the cues and 568 

waited for them to re-enter SWS before repeating the above procedures. TMR was terminated 569 

immediately after 30 minutes except when SWS was not observed, or EEG recordings indicated 570 

micro-arousal or full awakening. If we observed no sign of SWS after 40 minutes, we started 571 

presenting the spoken traits to participants when they entered the N2 stage of sleep. We woke 572 

participants when their EEG recordings indicated that they had entered the N1 or N2 sleep stage 573 

(after around 90 minutes). After waking, participants were given a break of approximately 5 574 

minutes to reduce the effects of sleep inertia. 575 
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Post-TMR Tests 576 

Participants completed the free-recall task, probe task, and SRET task. Here, the SRET was 577 

similar to the baseline SRET except participants only made a ‘Yes’/‘No’ binary response. 578 

One-Week Delayed Tests 579 

Participants returned to the lab around one week later to complete the delayed tests. They 580 

completed the following tasks in order: (1) a 3-minute self-evaluative memory-recall task; (2) a 581 

probe task; (3) a SRET ‘Yes’/‘No’ self-evaluative task; and (4) post-experiment questionnaires. 582 

Unless otherwise stated, the tasks were identical to the ones used in the behavioral study in 583 

SOM. Participants were not informed of the tasks involved during the entire experiment. After 584 

the visit, participants were debriefed and paid.  585 

Details of the Stimuli used in the CAT, Probe, and TMR Tasks. For the selection of 586 

Go and NoGo traits with matched ratings during the probe task, we sorted all ratings from lowest 587 

(1) to highest (60), then grouped Go and NoGo traits as follows: one Go and one NoGo item 588 

from the same rank for matched Go and NoGo trait word pairings, generating 30 pairs in total. 589 

Using the same sorting strategy as before, we grouped each pair into low- and high-rating pairs 590 

based on the order (see Figure. S12a for details of how Go/NoGo traits were assigned and 591 

counterbalanced across participants). We used this pairing strategy to obtain similar initial 592 

endorsement ratings between Go and NoGo traits. We also paired one low-value Go item from 593 

ranks 5 to 24 with one high-value NoGo item from ranks 37 to 56 (see Figure. S12b) and one 594 

low-value NoGo item from ranks 5 to 24 with one high-value NoGo item from ranks 37 to 56 595 

(see Figure. S12c); additionally, we paired one low-value Go item with one high-value Go item 596 

(see Figure. S12d) and one low-value NoGo item with one high-value Go item (see Figure. 597 
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S12e), but these pairings served as controls to rule out mere exposure effects and were therefore 598 

not analyzed.  599 

Finally, we assigned Go traits to Go-cued and Go-uncued categories, following the same 600 

order per participant (see Figure. S12 for the selection and grouping of positive traits during the 601 

CAT, probe, and TMR).  602 

EEG Data Acquisition 603 

Continuous EEGs were recorded using a 63-channel customized cap with passive Ag/AgCl 604 

electrodes via a BrainAmp amplifier with 1000 Hz sampling rate (Brain Products, Gilching, 605 

Germany). Electrodes were positioned according to the International 10–10 system. The ground 606 

electrode was located at AFz, with FCz as the on-line reference electrode. The impedances were 607 

kept below 20 kΩ. We placed one electro-oculography (EOG) electrode under participants’ left 608 

eyes and bipolar electromyography (EMG) electrodes on their chins to monitor eye movements 609 

and muscle activity during sleep.  610 

Behavioral Data Analysis 611 

Statistical analyses were carried out using R (Version 4.2.1.60). Behavioral analysis methods 612 

were like those used in the behavioral experiments in SOM, except the TMR factor was added 613 

where applicable. We performed (G)LMMs to analyze the CAT- and TMR-induced behavioral 614 

changes. 615 

For statistical significance testing, we used Type III Analysis of Variance with the 616 

Satterthwaite approximation method for the LMM, and Type III Wald Chi-Square tests for the 617 

GLMM. We followed up significant effects with post-hoc comparisons in emmeans 61 to derive 618 
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the estimated marginal means from each model. Unless otherwise stated, we used the FDR 619 

method to adjust for multiple comparisons to control for false-positive results.  620 

Behavioral Replication Analysis in the Baseline Session 621 

To test whether we replicated the classic pattern of valence-dependent memory bias, we ran two 622 

paired t tests with valence as the independent variable, endorsement proportion (via SRET), and 623 

processing bias score (via free-recall task and the number of positive/negative traits words that 624 

were recalled and endorsed divided by number of traits endorsed) as the dependent variable, 625 

respectively. Next, we ran a Pearson correlation test to examine the relationship between BDI 626 

scores (depressive symptoms) and the self-evaluative memory bias from the recall task at 627 

baseline session. The self-evaluative memory bias was defined as the difference between the 628 

positive and negative processing score, with a higher score indicating a larger self-positive 629 

processing bias. 630 

Self-Evaluative Memories in the Free-Recall Task 631 

To better depict memory changes across multiple times, we took preceding recall performance 632 

into account in the (G)LMMs. Specifically, when analyzing post-CAT recall performance, we 633 

added the baseline recall (‘Yes’/‘No’) as a fixed effect. When analyzing post-TMR recall 634 

performance, we grouped traits into weak, intermediate, and strong categories depending on 635 

baseline and post-CAT recall tasks. We defined weak-condition traits as traits that were not 636 

recalled at all in both baseline and post-CAT tests, intermediate-condition traits as traits that 637 

were only recalled once in either baseline or post-CAT tests, and strong-condition traits as traits 638 

that were recalled in both baseline and post-CAT tests. Only participants with all three types of 639 

traits for cued and uncued conditions were included in our analysis.  640 
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Next, we performed the following four (G)LMMs across post-CAT and post-TMR for three 641 

outcome variables: (1) recall or not recall; and (2) recall order. These were as follows: 642 

(1) Recall (binary, ‘Yes’ or ‘No’):  643 

The GLMM for the immediate post-CAT recall task was defined as:  644 

Post-CAT_Yes/No ~ 1 + CAT Condition × Baseline recall + (1+CAT|Subject ID) + 645 

(1|Trait ID).  646 

The GLMM for the post-TMR recall task was defined as:  647 

Post-TMR_Yes/No ~ 1 + TMR Condition × Memory Strength + (1+TMR|Subject ID) + 648 

(1|Trait ID).  649 

(2) Recall order of recalled traits:  650 

Note, we removed the random factor for participant because the model encountered a singular 651 

fitting issue due to the limited number of traits per CAT/TMR condition. The LMM for the for 652 

post-CAT recall task was defined as: 653 

Post-CAT_Recall Order ~ 1 + CAT Condition × Baseline Recall + (1|Trait ID). 654 

The LMM for the post-TMR recall task was defined as:  655 

Post-TMR_Recall Order ~ 1 + TMR Condition × Memory Strength + (1|Trait ID).  656 

Evaluation Preference in the Probe Task 657 

Following previous CAT research, we ran GLMMs separately for low- and high-rating subsets 658 

across three test sessions (i.e., post-CAT, post-TMR, and delay) on binary choice outcome in the 659 

probe task. To investigate the effect of TMR on binary choices during post-TMR and delay, we 660 

separated trait-word pairs into Go-cued and Go-uncued categories after the nap TMR and tested 661 

them by adding a TMR condition (i.e., Go-cued versus Go-uncued) as the fixed effect. 662 

Specifically: 663 
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(1) We ran a GLMM with the choice (‘Yes’ or ‘No’) as the dependent variable and participants 664 

as the random effect to evaluate the CAT effect on self-evaluative judgment change. The 665 

simplest GLMM was defined as:  666 

Choice ~ 1 + (1|Subject ID). 667 

(2) Next, we added high- versus low-rating Go-NoGo (GNG) pairs as a fixed effect and 668 

participants as the random effects to explore the difference in probe across low- versus high-669 

rating traits. This line of GLMMs were defined as:  670 

Choice ~ 1 + High Low + (1|SubjectID). 671 

(3)  We ran the GLMM with the TMR as a fixed effect to test the TMR benefits. This GLMM 672 

was defined as:  673 

Choice ~ 1 + TMR + (1|SubjectID). 674 

Note, we applied a one-sided test for the simplest GLMMs but a two-sided test for the other 675 

comparisons to be consistent with CAT literature. 676 

Self-Evaluative Judgments in the SRET 677 

To analyze the changes in positive self-evaluative judgments, we ran a GLMM for the positive 678 

traits only. The model is specified as: 679 

 Choice ~ 1 + Session × TMR + (1+TMR |Subject ID) + (1|Trait ID). 680 

Finally, to examine potential associations between initial rating strength, TMR, and RTs 681 

of ‘Yes’ answers, we analyzed trial-level RTs using a linear mixed model with initial rating, 682 

TMR condition as the fixed effect, and participant as the random effect, separately across post-683 

CAT, post-TMR, and delay. Since participants’ responses could change between test sessions, 684 

the relationship between initial rating strength and RT was examined separately for each test 685 

session. Note, due to the limited trait numbers assigned to each memory-strength condition (i.e., 686 
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weak, intermediate, strong), we removed the random slope for participant and random effect for 687 

trait IDs in the (G)LMMs to avoid a singular fitting problem.  688 

The LMM was defined as:  689 

Log RT ~ 1 + TMR × Initial rating + (1 |Subject ID). 690 

Unless otherwise stated, all tests were two-sided, with alpha level set at .05.  691 

EEG Data Analysis 692 

EEG Data Pre-Processing  693 

EEG data were pre-processed using custom-written scripts and the MATLAB Toolbox EEGLAB 694 

62. First, nap EEG data were down-sampled to 250 Hz, notch-filtered at 50 Hz, and then re-695 

referenced to the averaged mastoids. Second, EEG data were band-pass filtered at 0.1 to 40 Hz. 696 

While EOG and EMG data were used for sleep staging, these data were not used in the time-697 

frequency analysis and phase analysis.  698 

Offline Sleep Stage Scoring  699 

In sleep offline analyses, we scored sleep stages (N1, N2, SWS, and rapid-eye-movement 700 

(REM)) based on EEG (Channel Cz), EOG, and EMG patterns, using algorithms implemented in 701 

the YASA open-source Python Toolbox 63.  702 

Time-Frequency Power Analysis  703 

Before analyzing cue-elicited time-frequency power change, the cue-elicited EEG data were 704 

epoched into -4 to 6 second segments, relative to the onset of each cued trait word. This long 705 

epoch ensured that we had enough edge artifact-free segments for each clean epoch to assess 706 

TMR benefits ( -1 to 3 seconds). Epochs with artefact were visually inspected and removed. 707 

Time-frequency decomposition was performed in the Fieldtrip open-source MATLAB toolbox 708 

64. We used 3 to 15 cycles in a step of 0.25 Hz Morlet wavelet and baseline corrected using z-709 
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transformation of all trials from -1000 to -100 milliseconds relative to the cue onset. Following 710 

previous TMR studies 20,65, we selected data from channel Cz for further analyses. The calculated 711 

time-frequency decompositions were then down-sampled to 50 Hz.  712 

To identify significant cue-elicited EEG activity, we conducted non-parametric 713 

permutation tests to test the significance of cue-elicited power changes. We used a cluster-based 714 

permutation test to find the common region across all participants in the time-frequency domain 715 

66. Specifically, time frequency representations were shuffled within each participant 1000 times. 716 

The shuffled data were used to identify null distribution effects. Then we established temporally- 717 

and spectrally adjacent significant clusters (threshold p at 0.001). Next, we calculated the sum of 718 

t-values for each identified cluster in the original and permutated data. If no t-values reached 719 

significance in the permutations, the cluster was classified as 0. We then calculated the rank of 720 

cluster t-values in the distribution of random data. The cluster was marked as significant if an 721 

absolutely higher t-value was found in less than 0.1% of the random permutations.  722 

Note, traits were grouped into three conditions based on baseline recall and post-CAT 723 

recall (i.e., weak, intermediate, strong). We then performed a linear mixed model with the four 724 

conditions as the fixed effect and by participant and trait word as random effects to predict the 725 

identified post-cue power change on single trait word level, including (1) the post-cue sigma 726 

power change differences between the positive and negative cluster (12 to 16 Hz), (2) delta-727 

theta-alpha (0.5 to 4 Hz, 4 to 8 Hz, and 8 to 12 Hz) and beta (16 to 25 Hz) power changes. We 728 

used a boxplot method to detect potential outliers on the item level prior to performing statistical 729 

analysis for each power band, respectively. No multiple comparison corrections were applied 730 

during post-hoc tests due to a prior hypothesis that Go-cued traits would elicit greater power 731 
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change than control traits. To match the findings observed in the post-TMR recall task, we ran 732 

this analysis on the same 18 participants. The model was defined as: 733 

Sigma power change difference ~ 1 + Condition + (1|Subject ID) + (1|Trait ID).  734 

To explore the potential difference of positive and negative post-cue sigma power, we ran the 735 

LMM on these two clusters separately. The model was defined as:  736 

Positive cluster/Negative cluster ~ 1 + Condition + (1|Subject ID) + (1|Trait ID).  737 

Brain-Behavior Association Analysis 738 

To explore participants’ EEG activity and behavioral performance after TMR, we also ran 739 

several (G)LMMs using post-cue sigma power difference (i.e., difference between the positive 740 

and negative cluster in sigma band, 12 to 16 Hz) as the fixed effect and by participant and/or trait 741 

word as random effects. We ran this analysis on behavioral measurements obtained from the 742 

post-TMR recall task, probe task, and SRET during post-TMR and delay sessions, respectively. 743 
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We removed the by-participant or trait-word random effect if the model encountered a singular 744 

fitting issue.  745 

In the free-recall task, the models were defined as: 746 

(1) Recall outcome (Yes/No) ~ 1 + Sigma power change difference + (1|Subject ID) + 747 

(1|Trait ID).  748 

(2) Recall Order (Logged) ~ 1 + Sigma power change difference + (1|Trait ID). 749 

In the probe task, the model was defined as: 750 

Choice (Yes/No) ~ 1 + Sigma power change difference + (1|Subject ID) + (1|Trait ID).   751 

In the SRET task, the models were defined as： 752 

(1) Choice (Yes/No) ~ 1 + Sigma power change difference + (1|Subject ID) + (1|Trait 753 

ID).  754 

(2) Reaction times (Logged) ~ 1 + Sigma power change difference + (1|Subject ID) + 755 

(1|Trait ID). 756 

Data and code availability 757 

The data and analytical code supporting the study’s findings are available at the Open Science 758 

Framework repository: https://osf.io/h2967/?view_only=1b259a176db245b4b9ef0e1b64ca74f9.  759 
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