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Abstract 
 
1. The study of functional diversity (FD) provides ways to understand phenomena as complex as 

community assembly or the dynamics of biodiversity change under multiple pressures. Different 
frameworks are used to quantify FD, either based on dissimilarity matrices (e.g., Rao entropy, functional 
dendrograms) or multidimensional spaces (e.g. convex hulls, kernel-density hypervolumes). While the 
first does not enable the measurement of FD within a richness/divergence/regularity framework, or 
results in the distortion of the functional space, the latter does not allow for comparisons with 
phylogenetic diversity (PD) measures and can be extremely sensitive to outliers. 

2. We propose the use of neighbor-joining trees (NJ) to represent and quantify functional diversity 
in a way that combines the strengths of current FD frameworks without many of their weaknesses. Our 
proposal is also uniquely suited for studies that compare FD with PD, as both share the use of trees 
(NJ or others) and the same mathematical principles. 

3. We test the ability of this novel framework to represent the initial functional distances between 
species with minimal functional space distortion and sensitivity to outliers. The results using NJ are 
compared with conventional functional dendrograms, convex hulls, and kernel-density hypervolumes 
using both simulated and empirical datasets. 

4. Using NJ we demonstrate that it is possible to combine much of the flexibility provided by 
multidimensional spaces with the simplicity of tree-based representations. Moreover, the method is 
directly comparable with PD measures, and enables quantification of the richness, divergence and 
regularity of the functional space. 
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Introduction 
 
With the advent of new ways of thinking about biodiversity (McGill et al., 2006) and novel sources 

of data (Jarić et al., 2020; Tosa et al., 2021; Tobias et al., 2022), we are experiencing a shift from 
measuring biodiversity based on species identities only (taxonomic diversity, TD), to taking into account 
either species evolutionary relationships (phylogenetic diversity, PD) or similarities in functional traits 
(functional diversity, FD) (Pavoine & Bonsall, 2011). An integrative approach to quantifying biodiversity 
enables not only the comparison of its multiple facets (Pollock et al., 2020), but provides new tools to 
understand phenomena as complex as community assembly or the dynamics of biodiversity change 
under multiple pressures (McGill et al., 2006). 

Both PD and FD can be measured within (alpha diversity) and between samples, sites or time 
steps (beta diversity) (Whittaker, 1960). Diversity can also be measured in terms of richness, divergence 
and regularity (Pavoine & Bonsall, 2011; Tucker et al. 2017; Mammola et al. 2021). For PD, these facets 
are usually quantified using dissimilarity matrices, either directly from the raw dissimilarity (e.g., Rao 
entropy, Botta-Dukat 2005; Hill numbers, Chao et al. 2014) or from phylogenetic trees (Tucker et al., 
2017). For FD, multidimensional approaches reflecting the niche concept by Hutchinson (1957) are 
often used, with multiple advantages (Blonder, 2016; Carvalho & Cardoso, 2020; Mammola & Cardoso, 
2020; Mammola et al., 2021) over tree-based metrics (Petchey & Gaston, 2002, 2006). For example, 
functional trees are usually built using hierarchical clustering methods such as the Unweighted Pair 
Group Method using arithmetic Averages (UPGMA; Michener & Sokal, 1957; Cardoso et al., 2014) or 
single-linkage trees (equivalent to minimum spanning trees; Villeger et al., 2008), and it has been shown 
that, in comparison, hyperdimensional approaches better maintain the original distances between 
species, which eliminates or at least minimises the distortion of the functional space (Maire et al., 2015). 

Trees and hyperdimensional representations however require the use of different methods with 
non-comparable mathematical properties (Mammola et al., 2021). This way, when comparing 
phylogenetic and functional diversity, it is impossible to know if any differences observed in index values 
between samples (e.g., richness) are due to inherent differences of the studied systems or due to the 
use of different algorithms. Using dissimilarity matrices or trees is the only option to compare PD and 
FD. As many studies use phylogenetic trees, and many regularity and beta diversity partitioning metrics 
are exclusively calculated using functional tree representations, the use of trees is often preferred for 
PD/FD comparisons (Cardoso et al., 2014). 
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Phylogenetic tree reconstruction has seen major advances in recent decades due to the 
development of ever more complex and efficient algorithms for the representation of evolutionary 
relationships (Nguyen et al., 2015; Minh et al., 2020). Among the most used, the Neighbor-Joining (NJ) 
method reconstructs (phylogenetic) trees from evolutionary distance data (Saitou & Nei, 1987). The 
algorithm for constructing NJ trees connects the terminals based on their overall similarity, and 
continues to be widely used as it is known to be both efficient and computationally fast. It has a much 
better performance for reconstructing distance-based trees than UPGMA (Saitou & Nei, 1987). Even if 
other methods can outperform it under different evolutionary scenarios (e.g., Rannala & Yang, 1996), 
NJ trees are still widely used for preliminary similarity clustering at the species level. As an example, 
the Taxon ID tree tool in BOLD (Ratnasingham & Hebert, 2007) employs NJ under the Kimura two-
parameter (K2P; Kimura, 1980) distance metric. At the species level, NJ performs best when the 
mutational rate heterogeneity among the terminals is low, and typically resolves a well-sampled input 
distance matrix consistently (e.g., Atteson, 1997). The tree topology is also correct if each entry in the 
distance matrix differs from the true distance by less than half of the shortest branch length in the tree 
(Mihaescu et al., 2009). As both NJ and UPGMA lack an optimality criterion defining the best tree, an 
analysis returns only one optimal topology. Finally, all diversity measures calculated using trees 
constructed using alternative methods can also be calculated using NJ trees with no changes required, 
this way allowing comparison of, for example, phylogenetic trees constructed using Bayesian methods 
with functional NJ trees. 

In this work, we propose and test NJ trees as a way to quantify richness, divergence and regularity 
of FD without the functional space distortion typical of functional dendrograms built using hierarchical 
clustering. We propose a new framework to quantify different dimensions of FD using trees constructed 
with the Neighbor-Joining algorithm, although the same measures can be applied to trees constructed 
with any algorithm, from hierarchical clustering to maximum parsimony or maximum likelihood, thus 
enabling straightforward comparisons of FD with PD. We provide functions for all methods in the R 
package BAT (Cardoso et al., 2015). 

 
 
Materials and methods 
 
Building NJ trees requires a distance matrix between pairs of taxa. In the construction of 

phylogenetic trees using NJ, the principle of parsimony is used. The algorithm builds a non-ultrametric 
tree, in a way that the branching patterns and branch lengths are optimised to minimise the amount of 
change needed to connect all species along the tree (Saitou & Nei, 1987). Hence, the total length of 
the tree, equivalent to a measure of phylogenetic richness, is also minimised (Fig. 1). Here we propose 
to use the same principle to build functional trees depicting distances between species (function 
BAT::tree.build). For taxonomic diversity, a star-like tree could be used, with all pairwise distances being 
equal to one, this way guaranteeing comparability for TD, PD and FD. 

 

 
 
Fig. 1. Top-left: NJ tree representing evolutionary or functional distances (edges, in black) 

connecting four hypothetical species A to D (nodes, in blue). A:B = 1; A:C = A:D = 7; B:C = B:D = 6; 
C:D = 4. Top-centre and top-right: the same tree for two communities with species A, B and C, and A, 
B and D respectively. In the middle we represent the calculation of different metrics for community 1. 
At the bottom, different metrics for species A within community 1 (see main text). 
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In the context of FD, the same algorithm is used but replacing phylogenetic distance with functional 

distance between the species. Similar to the concept of hierarchical clustering or minimum spanning 
trees (which are in effect equivalent to hierarchical clustering with single linkage; Gower & Ross, 1969), 
NJ trees are much more flexible due to two characteristics. First, they do not explicitly build ultrametric 
trees as in UPGMA and related methods. Second, as NJ resolves nodes dichotomously, intermediate 
nodes are introduced in the tree, not forcing species to be in such nodes, as with minimum spanning 
trees. Such flexibility results in cophenetic distances much closer to the initial distances, decreasing the 
known limitations of hierarchical clustering that distorts this relation (Maire et al., 2015). 

When calculating FD, the distances between species can be Euclidean if all traits are continuous, 
and traits should generally be standardised (e.g., z-score) to ensure the weight of each is similar 
(BAT::standard). As categorical or ordinal traits are commonly available, the Gower distance is often 
used (Pavoine et al., 2009; BAT::gower), and it is possible to weight traits if some are considered more 
important with regard to how species interact with their environment, including other species. As traits 
are often correlated, one might want to eliminate putative relations by first performing a PCoA and using 
the resulting orthogonal axes as the new traits. 

For all analyses one should always use the same phylogenetic or functional tree depicting the 
relationships between all species, to guarantee comparability of results. Phylogenetic or functional 
richness is the sum of lengths of edges connecting all species in a community (Faith, 1992; Petchey & 
Gaston, 2002, 2006; BAT::alpha). For the communities in Fig. 1 richness would be Community 1 = 
Community 2 = 7. Species-level measures can be calculated in different ways. Originality of a species 
is measured as its average distance to all other species in a community (Pavoine et al., 2005; 
BAT::originality). In the example, for Community 1 the originality would be A = 4, B = 3.5 and C = 6.5. 
Uniqueness of a species is measured as its distance to the single closest species in the community 
(Mouillot et al., 2013; BAT::uniqueness). In Community 1 it would be A = 1, B = 1, and C = 6. The 
contribution of a species to richness or alpha diversity is the length of branches unique to it, plus the 
proportional length of shared branches connecting it to the root of the tree (Isaac et al., 2007; 
BAT::contribution). As NJ trees are unrooted, they can be rooted at the species with minimum originality, 
which is the one closer to the centre of the NJ tree. In Community 1, contribution would be A = 1, B = 
0, and C = 6. This option for rooting is however mostly arbitrary, and alternatives could be explored in 
the future. 

The second dimension of phylogenetic or functional alpha diversity is divergence (Mammola et al., 
2021). It can be calculated as the average dissimilarity between any two species or individuals randomly 
chosen in a community (BAT::dispersion). If abundance data are used, dispersion is the quadratic 
entropy of Rao (1982), otherwise it is the phylogenetic dispersion measure of Webb et al. (2002). In the 
example of Fig. 1, if all species abundances are 1, dispersion would be Community 1 = Community 2 = 
4.667. 

The third dimension of phylogenetic or functional alpha diversity is regularity (Mammola et al., 
2021). It represents the evenness in the abundances and distances between connected species in a 
community (BAT::evenness). It can be calculated, among others, based on the index of Camargo 
(1993). In the example of Fig. 1, if all species abundances are 1, evenness would be Community 1 = 
Community 2 = 0.754. 

Finally, beta diversity represents the dissimilarity between two communities (BAT::beta; measured 
using either Jaccard or Soerensen dissimilarity) and can be partitioned into the two processes 
contributing to it, replacement and loss or gain of species leading to differences in richness (Carvalho 
et al., 2012), evolutionary history, or functional traits (Cardoso et al., 2014). In the example, comparing 
communities 1 and 2, βtotal = βrepl = 0.444, and βrich = 0. 

 
Comparing frameworks using simulated scenarios 
 
We simulated trees using a birth-death model, with both birth (speciation) and death (extinction) 

parameters drawn from a uniform distribution (0, 1) while keeping the death parameter lower than the 
birth parameter. For each lineage simulated in the birth-death process, we also simultaneously 
simulated a trait value as a function of branch length. The traits were simulated using either: 1) a 
Brownian motion process (whereby the trait value at time t+1 is independent of its value at time t, 
resulting in an increase of trait variance through time); or 2) an Ornstein-Uhlenbeck process (whereby 
the trait value at time t+1 is independent of its value at time t but constrained by an overall parameter 
alpha effectively reducing the increase of trait variance through time). For each tree simulation, we 
chose the trait process randomly between both processes described above. We ran the birth-death and 
trait simulations until reaching 100 co-occurring species. For each simulation, we then discarded the 
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extinct species resulting in trees with 100 tips with 1 trait value each. We ran the birth-death and trait 
simulations using the R package dads (Guillerme, 2022). 

For each of the two evolutionary processes, we simulated 1, 2, 4, or 8 orthogonal (i.e., 
uncorrelated) traits, 10 runs per trait number combination, totaling 40 runs per process. For each of 
these 40 runs the simulation created a functional tree for 100 extant species. For each run, we then 
sampled 10 communities with an increasing number of species (10, 20, …, 100 species), reaching a 
final sample size of 800 (2 processes * 4 sets of number of traits * 10 runs * 10 communities). 

For each community, we first estimated the correlation between functional richness, divergence, 
and regularity calculated with NJ trees, checking whether the three metrics were able to capture distinct 
facets of FD (which is achieved when correlation is low; Mouchet et al., 2010). Next, we used the BAT 
R package to estimate and compare functional richness, divergence, and regularity with NJ trees, 
UPGMA trees, and kernel-density n-dimensional hypervolumes. We used Spearman’s correlation to 
compare the frameworks. 

 
Functional space quality and sensitivity to outliers 
 
When building a functional space, a crucial aspect is to assess its quality, i.e., the extent to which 

the functional space is an accurate representation of the initial trait values. In order to achieve this goal, 
for each pair of species i and j, we compared the initial dissimilarity distance (d ij) with the distance in 
the functional space (hij) obtained by NJ, UPGMA and PCoA (multidimensional space) methods. For 
the NJ and UPGMA trees, hij corresponded to the cophenetic distance between species i and j. As for 
PCoA, we calculated the Euclidean distance between the coordinates of species i and j in the space 
defined by the PCoA axes. We then calculated the quality of the representation of the functional spaces 
using the same three frameworks (NJ, UPGMA and PCoA) using the functions BAT::tree.quality and 
BAT::hyper.quality (the latter being used for any representation using hyperspaces, i.e., convex hulls 
or kernel-density hypervolumes). Both these functions calculate the inverse of mean squared deviation 
between initial and cophenetic distances (Maire et al., 2015) after standardisation of all values between 
0 and 1 for simplicity of interpretation and comparability of trees and multidimensional spaces. 

The quality of the functional spaces was evaluated in 10 simulations for each combination of 
number of species per community (from 10 to 100 species), number of traits per species (one, two, four 
and eight) and evolutionary processes used to generate the traits (BM and OU). For PCoA we did not 
assess the quality for single traits. It is worth noting that the maximum number of PCoA axes that can 
be extracted from a matrix of N continuous traits is N. Hence, the quality of the functional space is 1 
when using N axes. Therefore, we only used the simulated datasets with eight traits to assess the 
quality of the functional spaces built by PCoA. 

We used linear mixed models to estimate the effect of the different methods (fixed effects) in the 
quality of the functional space. The number of species per community, the number of traits per species 
and the evolutionary process used to generate the traits were introduced in the models as random 
effects. Because the quality of the functional space ranges between 0 and 1, with true 1s but no true 0s 
included in the response, we transformed all 1s by subtracting 0.0001 and then ran the models following 
a beta distribution. Mixed models were performed using the glmmTMB (Mollie et al., 2017) package, 
and model validation was performed by checking heterocedasticity, posterior predictive checking, and 
normality of random effects and residuals using the performance (Lüdecke et al., 2021) package in R 
(R Core Team, 2021). 

Finally, the sensitivity to outliers was also compared by deleting the species with higher uniqueness 
in each community and calculating the percentage of change in the values of richness before and after 
deletion. For the multidimensional space, we calculated differences in richness for kernel-density 
hypervolumes. 

 
Comparing frameworks using empirical data 
 
The study of avian functional diversity has recently gained momentum due to the release of the 

AVONET database, which provides a complete set of data for eight continuous morphological traits for 
all the world’s extant bird species (Tobias et al., 2022). Dozens of papers have been published using 
this data source in just a few months (e.g., Weeks et al., 2022), including several focusing on islands 
(e.g., Matthews et al., 2022; Soares et al., 2022). An often mentioned issue when studying the functional 
diversity of birds is the so-called “kiwi problem”. In short, kiwis (Apterygidae: Apteryx spp.) differ 
substantially from other birds regarding their morphology (e.g., for wing length, in AVONET, the kiwis 
have values roughly 267 times smaller than the species with the next smallest wing length) and thus all 
five species are always (extreme) outliers in functional diversity analyses. As such, there can be large 
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differences in (functional) richness depending on whether they are included when building the functional 
space or not (e.g., Matthews et al., 2022; see also Fig. 1 in Pigot et al., 2020). These differences reflect 
the sensitivity to outliers of multidimensional representations such as convex hulls and kernel-density 
hypervolumes. 

To test the sensitivity to outliers of UPGMA, NJ, convex hulls and kernel-density n-dimensional 
hypervolumes, we took the five kiwi species and then randomly selected 100 bird species from the 
global species pool, making sure to include one representative from each order. For these 105 species, 
we sourced data on eight continuous traits (total beak length from the tip to the skull, beak length to the 
nares, beak width and depth at the nares, wing length, secondary length, tail length, and tarsus length) 
from AVONET (Tobias et al., 2022). Traits were log-transformed and scaled to mean = 0, sd = 1. We 
then built the UPGMA and NJ trees from these data after calculating Euclidean distances between 
species. For both convex hulls and kernel hypervolumes we selected the first five axes of a PCA that 
summed to 99% explained variance to avoid the use of correlated variables. Functional richness was 
calculated with the BAT::alpha, BAT::hull.alpha and BAT::kernel.alpha functions. We then re-calculated 
functional richness after removing the kiwis from the community and quantified the percent loss. In 
addition, we quantified the tree and hyperspace qualities as above. 

 
 
Results 
 
In regard to the simulations, the correlation was low for all trait combinations, except for richness 

versus regularity which attained values around 0.7 or above (Fig. 2). Richness and regularity were also 
sensitive to the number of species (r > 0.6 for all trait combinations), as expected, at least for richness. 
We found a very high convergence among the estimations based on NJ and UPGMA trees, irrespective 
of the number of traits and the facets of FD (Fig. 3). Correlations were lower between NJ and 
hypervolumes, especially for the divergence and regularity components, but also for the richness 
component in high dimensions (eight traits). 

 

 
 
Fig. 2. Pairwise Spearman's correlations among estimations of functional richness, divergence, 

and regularity based on NJ trees. Density plots on the diagonal display the distribution of values. 
Bivariate scatter plots are displayed below the diagonal and the correlation values above the diagonal. 
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Fig. 3. Pairwise Spearman's correlations among estimations of functional richness (A, B), 

divergence (C, D), and regularity (E, F) with NJ trees, UPGMA trees, and kernel-density n-dimensional 
hypervolumes. For each panel plot, density plots on the diagonal display the distribution of values. 
Bivariate scatter plots are displayed below the diagonal and the correlation values above the diagonal. 

 
The quality of the simulated functional spaces obtained by the NJ method was superior to those 

constructed by UPGMA, for all the combinations of number of species per community (from 10 to 100 
species), number of traits per species (one, two, four and eight) and evolutionary processes used to 
generate the traits (BM and OU) (Appendix S1). It is worth mentioning that the quality of the functional 
spaces constructed by NJ for communities with only one trait was always 1. Results of the mixed model 
analysis confirmed that NJ performance, in terms of functional space quality, was significantly better 
than UPGMA (Table 1). 

 
Table 1. Summary of a mixed model for the quality of functional space, where we included method 

(NJ and UPGMA) as a fixed parameter predictor (Fixed) and allowed the intercept to vary (Random) 
across number of traits per species within blocks of number of species per community, and across 
evolutionary processes. Significant estimates are in bold. 

  

Effect Predictor Estimate Std. error Statistic 

Fixed     

 (Intercept) 3.687 0.413 8.933 

 UPGMA −2.393 0.043 −55.257 

Random     
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Evolutionary processes sd__(Intercept) 0.523   

Number of traits: Number of species sd__(Intercept) 0   

Number of traits sd__(Intercept) 0.357   

 
The quality of the functional spaces built using the NJ method was similar to that obtained with four 

dimensions (half the maximum number of axes) using PCoA. The performance of NJ was higher than 
multidimensional spaces with two or three dimensions, but lower than multidimensional spaces with 
more than four dimensions (Table 2). A degree of caution is required when interpreting the mixed 
models results. Specifically, the variance estimates associated with the evolutionary processes 
(variable with 2 levels) and the number of traits (variable with 4 levels) should be regarded cautiously, 
due to the small number of levels involved.. Nevertheless, it must be emphasised that the main purpose 
of fitting the model was to compare the performance of methods in terms of functional space quality 
and not the effects of evolutionary processes and the number of traits per se. 

 
Table 2. Summary of the mixed model for the quality of functional space, where we included 

method (NJ and from two to eight dimensions corresponding to the axes provided by a PCoA) as a fixed 
parameter predictor (Fixed) and allowed the intercept to vary (Random) across the number of species 
per community and evolutionary processes. Significant estimates in bold. 

 

Effect Predictor Estimate Std. error Statistic 

Fixed     

 (Intercept) 3.467 0.235 14.739 

 PCoA-2 axes −1.495 0.042 −35.941 

 PCoA-3 axes −0.618 0.046 −13.436 

 PCoA-4 axes 0.163 0.053 3.067 

 PCoA-5 axes 0.918 0.063 14.652 

 PCoA-6 axes 1.607 0.072 22.298 

 PCoA-7 axes 1.607 0.072 22.298 

 PCoA-8 axes 2.729 0.082 33.253 

Random     

Number of species sd__(Intercept) 0.121   

Evolutionary process sd__(Intercept) 0.324   

 
Regarding the sensitivity to outliers, NJ and UPGMA were found to be similar for all simulations 

regardless of the number of traits (Appendix S2). In contrast, hypervolumes were more sensitive, with 
higher differences between initial and final richness values after excluding the most unique species in 
each community for most scenarios. 

In regard to the empirical test focused on the “kiwi problem”, the quality of the functional space for 
birds using NJ was 0.994, compared with 0.953 for UPGMA and 0.996 for two PCA axes (>0.999 for 
three or more axes). The exclusion of kiwis from the community, i.e., decreasing ~5% of the species 
richness, led to a decrease in functional richness of 10 and 14% for UPGMA and NJ respectively. In 
contrast, functional richness as measured using convex hulls was reduced by 73% and using kernel 
density hypervolumes by 42% (Fig. 4). 
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Fig. 4. NJ functional tree with the edge leading to the five kiwi species highlighted by the silhouette, 

and the multidimensional space of studied birds with (grey) and without (blue) kiwis included. Five axes 
were selected for analyses, adding to 99% of explained variance. Note that, when excluding the kiwis, 
it is not just the space they occupy that is lost, but the space representing the remaining 100 species 
also “shrinks”, as the average distance between species decreases. For convex hulls the difference is 
even higher, as all the empty intervening space is also lost. Kiwi silhouette by Ferran Sayol. 

 
 
Discussion 
 
The study of functional diversity is a burgeoning research area in ecology and evolution, with 

numerous methodological developments during the last couple of decades (Mammola et al., 2021; De 
Bello et al., 2021; Palacio et al., 2022). In contrast to the study of taxonomic or phylogenetic diversity, 
where the methodological approaches to quantify diversity are relatively established, there is still much 
discussion around how to best represent and measure FD across its dimensions, namely richness, 
divergence and regularity. Raw data, different tree representations, or representations based on 
multidimensional spaces, all have their strengths and weaknesses (Mammola et al., 2021). Here we 
propose a novel approach to measuring FD that combines many of the advantages of these different 
approaches, while minimising the disadvantages. 
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Statistical properties 
 
Our results indicate that the NJ method is more accurate than UPGMA (and similar methods such 

as minimum spanning trees) in representing the functional space occupied by a given community, i.e., 
the quality of the trait space. It is on par with multidimensional representations with up to four dimensions 
in simulated scenarios that cover a large variety of real-world situations. Given the “curse of 
dimensionality” (Bellman, 1957) of the hyperspace – the mathematical and computational difficulty of 
dealing with many dimensions simultaneously, and the implicit negative relationship between the 
number of dimensions and the volume of the hyperspace – a decrease in correlation between NJ trees 
and hypervolumes with increasing number of dimensions is expected. In general, NJ will be as accurate 
as hypervolumes in many situations and will present only small differences otherwise.  

Multidimensional representations are known to have difficulties dealing with outliers, with 
substantially unique observations having disproportional effects on the quantification of FD. In the 
empirical example illustrating the “kiwi problem” (Fig. 4), excluding the kiwis from the hypervolume 
construction does not just result in the loss of the space they occupy, but the space representing the 
remaining 100 species also “shrinks”, as the average distance between species decreases. . For the 
very commonly used convex hulls, the loss is even more severe, as it includes all the intervening 
functional space (i.e., the space between the kiwis and all other birds where the convex hull extends 
out) that is in fact not occupied by any real bird species. NJ trees can circumvent the “kiwi problem” by 
generating a representation that is less sensitive to the large functional differences between kiwis and 
the remaining birds, but that is of higher quality than UPGMA trees. 

 
Comparing different facets of diversity 
 
As with UPGMA and other tree methods, taxonomic diversity can be represented as a star-like NJ 

tree, and in fact the construction of a NJ tree starts with a starlike tree. This means that TD and FD are 
comparable using the same methods, although for TD they are usually simplified for speed and ease of 
use. 

Crucially, we demonstrate that hyperspatial representations are not comparable with tree 
representations that are often used for quantifying PD. As seen in Fig. 2, even for the same data, trees 
and hypervolume values of richness, divergence or regularity have little to no correlation. This implies 
that, if one uses phylogenetic trees to measure PD and hypervolumes to measure FD, any differences 
in patterns will be due to both differences in community composition and the mathematical properties 
of the indices, with no possibility to disentangle these two effects. We should note that trees used for 
quantifying PD can be used with any method, including NJ, Bayesian or any other that results in a tree 
(ultrametric or not, dated or undated). The mathematics will be similar and hence comparability is 
warranted. 

 
Ease of use 
 
As with other tree representations, NJ works directly with distances between species. The choice 

of distance is critical, although Gower’s distance is often preferred as it allows for  the use of continuous, 
ordinal, binary and categorical variables (Pavoine et al., 2009). When only continuous variables are 
used, as in our empirical example, Euclidean distances are generally preferred. In any case, this 
decision is almost always simpler to make than the ones involved in the use of multidimensional 
methods, which include the number of axes to use, which method to use for estimating the kernel 
density, and the many parameters that can influence the results in substantial ways when building more 
complex representations. 

The use of certain distance measures, such as Gower’s distance, allow for missing trait values, 
with no need for imputation. In addition, some of the methods for building NJ trees allow for missing 
distances between pairs of species (Criscuolo & Gascuel, 2008). The flexibility provided in both these 
steps, calculating distances and building trees, will help circumvent the many gaps that most trait 
databases have, particularly for taxa less well studied than birds (e.g., Pekar et al. 2022; Shirey et al. 
2022). 

The construction of NJ trees is extremely fast, orders of magnitude faster than hypervolumes, 
which can be an advantage for large datasets or simulations or null models requiring many repeated 
calculations. In addition, it is possible to at least visually estimate to a close approximation many of the 
metrics derived from tree-like representations (e.g., richness), a task that is much harder for 
multidimensional representations. This helps avoid errors in data input and/or coding, as many major 
errors will be obvious through inspection of the tree plot. 
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Caveats 
 
The main caveat of using NJ is the lack of apparent connection between trees and the intuitive 

representation of the Hutchinsonian niche (Mammola et al., 2021). It is intuitive to imagine the functional 
space occupied by a group of species as a multidimensional concept depicting its many functional 
dimensions. Conversely, the connections between species in a tree are not natural in the sense that 
they do not represent real connections in the community, only the closest path between them in the 
tree. 

A second caveat is a potential lower flexibility than probabilistic hypervolumes to consider the 
abundances of species in the different metrics. The trait space is largely homogeneous in the way it is 
occupied, although abundances could theoretically be represented by the density of connections in 
parts of the tree. In addition, if intraspecific data are available, one can build trees using individuals 
instead of species, by-passing this issue. Intraspecific trait data are increasingly seen as being crucial 
to understanding how organisms interact (Tautenhahn et al., 2019; He et al., 2021; Wong & Carmona, 
2021). Given that intraspecific trait data are not always available at the community level, one 
workaround is to simulate intraspecific variability from compound measures such as the standard 
deviation of a given trait, which could approximate the kernel-density approach using trees. 

 
 
Conclusions 
 
In this study, we have proposed a novel approach to representing functional space and calculating 

FD that enables the quantification of its different dimensions in ways that combine the strengths of 
previously proposed FD frameworks. Extensive research on the properties of phylogenetic trees has 
been undertaken, and, using the NJ framework presented here, in the future these advances can be 
used to study different properties of ecological systems using functional trees (e.g., Ning et al., 2020). 
The mathematics underpinning NJ are already extensively developed, and thus the use of NJ trees 
opens up the possibility of testing new hypotheses for FD in the same way as has been done for PD. 
By combining ease and speed of use, low distortion of functional space, low sensitivity to outliers, and 
comparability with PD measures, the use of NJ seems a promising approach for the future. More 
broadly, there are other methods available for building trees that are not considered here, but that could 
also provide new and advantageous ways to represent functional diversity (e.g., Wheeler, 2021). As 
such, we would argue that further exploration and testing of alternatives to the commonly used 
functional tree construction approaches (e.g., UPGMA) will likely prove rewarding in the study of 
functional diversity going forward. 
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APPENDIX S1  

 

Fig. S1.1. Comparison of the quality of the functional spaces obtained by NJ and UPGMA 

methods across different sets of simulations. Boxplots show the distribution of the functional 

space quality in 10 simulations for each combination of number of species per community 

(from 10 to 100 species), number of traits per species (1, 2, 4 and 8) and evolutionary 

processes used to generate the traits (BM and OU). 
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Fig. S1.2. Quality of the multidimensional functional spaces (from two to eight dimensions) 

corresponding to the axes provided by a PCOA. Boxplots show the distribution of the 

functional space quality in 10 simulations with different number of species per community 

(from 10 to 100 species), using 8 traits generated with two evolutionary processes (BM and 

OU). 
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APPENDIX S2  

 

Fig. S2.1. Sensitivity to outliers of NJ, UPGMA and kernel-density hypervolumes methods 

across different sets of simulations. Sensitivity is expressed as the percentage of change in 

the values of richness, before and after deleting the species with higher uniqueness (outlier) 

in each community. Boxplots show the distribution of sensitivity values in 10 simulations for 

each combination of number of species per community (from 10 to 100 species), number of 

traits per species (1, 2, 4 and 8) and evolutionary processes used to generate the traits (BM 

and OU). Note that for sets with only one trait only NJ and UPGMA were calculated. 
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