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Abstract

Motivation: Cell function is regulated by gene regulatory networks (GRNs) defined by protein-mediated
interaction between constituent genes. Despite advances in experimental techniques, we can still measure
only a fraction of the processes that govern GRN dynamics. To infer the properties of GRNs using partial
observation, unobserved sequential processes can be replaced with distributed time delays, yielding non-
Markovian models. Inference methods based on the resulting model suffer from the curse of dimensionality.
Results: We develop a simulation-based Bayesian MCMC method for the efficient and accurate inference
of GRN parameters when only some of their products are observed. We illustrate our approach using a
two-step activation model: An activation signal leads to the accumulation of an unobserved regulatory
protein, which triggers the expression of observed fluorescent proteins. With prior information about
observed fluorescent protein synthesis, our method successfully infers the dynamics of the unobserved
regulatory protein. We can estimate the delay and kinetic parameters characterizing target regulation
including transcription, translation, and target searching of an unobserved protein from experimental
measurements of the products of its target gene. Our method is scalable and can be used to analyze
non-Markovian models with hidden components.
Availability: Accompanying code in R is available at https://github.com/Mathbiomed/SimMCMC.
Contact: jaekkim@kaist.ac.kr or kresimir.josic@gmail.com or cbskust@korea.ac.kr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Advances in microscopy allow us to observe the dynamics of gene
regulatory networks (GRNs) in unprecedented detail. Novel statistical
techniques have helped interpret the resulting wealth of data. However,
even the best experimental methods can provide observations of only a
fraction of the components constituting a GRN, and thus offer only partial

information about the dynamics of gene circuits. Statistical methods thus
need to take into account the effect of unobserved processes to correctly
interpret the data, and accurately characterize genetic circuits and their
dynamics.

Recently, inference methods have been proposed based on the
assumption that the unobserved processes are sequential, and thus can
be modeled by introducing a delay (Jiang et al., 2021; Heron et al., 2007;
Calderazzo et al., 2018; Choi et al., 2020; Cortez et al., 2022; Barrio
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et al., 2013; Leier et al., 2014; Gomez et al., 2016; Kim et al., 2022).
The resulting models are non-Markovian, as system dynamics depends
not only on the present, but also past states. This model drastically reduces
the number of parameters and reactions that need to be inferred. However,
this approach can only account for effects of sequential processes such as
transcription and translation, which are modeled as delays in interactions
between the genes in the network (Fig. 1). Thus, it is unclear how to
analyze data and perform inference when the products of some genes in
the circuit are unobserved. For example, in a network of two genes x and
y, where protein X regulates the expression of gene y, present methods
can be applied when counts of both proteins X and Y are known. Often
it is impossible to observe the products of both genes concurrently. Is it
possible to characterize the dynamics of X, if only Y is observed?

Currently available Bayesian Markov chain Monte Carlo (MCMC)
methods for inference of non-Markovian systems are not well suited to
address this question. While these methods are applicable even to systems
with high intrinsic noise (i.e., low copy numbers of molecules) (Choi
et al., 2020) and cell-to-cell heterogeneity (Cortez et al., 2022), they rely
on the assumption that all proteins in a GRN are observed. When some
protein counts are unobserved, extending such methods directly requires
that we characterize reactions involving the unobserved proteins at each
measurement time. The high dimensionality of the resulting system makes
inference challenging, if not impossible.

Here, we present a simulation-based Bayesian method for the inference
of kinetic and delay parameters of a GRN when only the products of some
of the genes in the network are observed. The approach is applicable
generally even if only the most downstream genes, i.e., the final outputs,
of the network are observed. We illustrate the method using a two-
step activation model, where an initial signal activates gene x whose
product protein X is unobserved. Protein X triggers the expression of
gene y and the production of an observed protein Y. By performing an
identifiability analysis, we characterize what information about protein Y
dynamics is needed to obtain accurate and precise information about the
unobserved protein X. We find that the dilution rate and synthesis time
delay of Y need to be known in order to infer the kinetic and time delay
parameters characterizing the dynamics of X. We apply this approach
to a plasmid-borne two-step activation circuit in Escherichia coli (E.
coli) where unobserved AraC protein triggers the expression of yellow
fluorescent protein (YFP). When the dilution rate and the time delay for
the synthesis of the observed protein YFP are separately measured, we
are able to infer the time delay for target regulation by the unobserved
AraC protein (i.e., the delay due to transcription, translation, and target
searching). This finding can play a critical role in synthetic circuit design
because the AraC protein, whose kinetics has yet to be fully characterized,
is a widely used transcriptional activator in synthetic biology. Our study
also illustrates how information from unobserved proteins can be inferred
from the dynamics of observed proteins in GRNs. Our approach is scalable
and provides a tool for characterizing non-Markovian systems from partial
observations.

2 Materials and methods

2.1 Derivation of a likelihood function of kinetic and delay
parameters

We first derive a likelihood function to construct a Bayesian inference
method for estimating kinetic and delay parameters (Choi et al., 2017,
2020; Hong et al., 2022; Cortez et al., 2022). Consider a biochemical
reaction network withu speciesZ1, . . . , Zu and v reactionsR1, . . . , Rv .
Reaction Rk can be represented as

Rk : pk1Z1 + · · ·+ pkuZu → qk1Z1 + · · ·+ qkuZu (1)

X1

X2

X3

X4

X5

Y1

Y2

Transcription Translation Folding Maturation Diffusion

observed

observed

Y1

Y2

Fig. 1. Gene regulatory networks consist of genes whose interactions can be
described with distributed time delays. In such networks, we can often observe the
product (i.e., protein) of only some genes by using fluorescence microscopy (Y1 and
Y2). Protein synthesis consists of multiple steps (transcription, translation, folding,
maturation), and its duration can be described using a distributed time delays (τYi ).
Further delays, τXi , can also be used to describe interactions between unobserved
and observed genes. Such delays take into account protein synthesis, 3D diffusion
inside a cell, and sliding along a strand of DNA to find a promoter region.

where pkj and qkj are the stoichiometric coefficients of species Zj . For
each reaction Rk , the reaction initiation rate, hk(z(t), θk), is a function
of the current state z(t) = (z1(t), . . . , zu(t)) and the associated kinetic
parameters θk , where zj(t) is the number of species Zj at time t. We
assume that each reaction takes a random time to complete. Therefore,
after a reaction is initiated, the system state changes only after a random
delay. This delay follows a distribution ηk fully determined by a vector
of parameters, ∆k . For example, in a GRN, when the synthesis of
a transcriptional activator protein is initiated, a functional protein is
produced after a sequence of steps including transcription, translation,
and maturation (Golding et al., 2005; Kærn et al., 2005). Each of these
steps takes time, and only after all steps are completed can the functional
protein diffuse to its target binding site (Cheng et al., 2017; Elf et al., 2007;
Hammar et al., 2012). Thus, the number of functional activator proteins
increases only when all intermediate steps are completed. If a reaction
is not delayed, then the associated delay distribution is the Dirac delta
measure at time 0.

Schlicht and Winkler, 2008 have proven that a reaction completion
propensity, fk (t, zc, θk,∆k), describes the effective reaction rate of Rk

at time t. This propensity depends on zc, the complete trajectory of all
species from time 0 to the maximum measurement time T . The reaction
completion propensity is a function of the reaction initiation propensity,
h, and the delay distribution, η, and is given by:

fk (t, zc, θk,∆k) =

∫ t

0
hk (z (t− s) , θk) dηk (s). (2)

Intuitively, the completion propensity is an average of past reaction
initiation propensities weighted by the probability that they have occurred
a given time in the past.

We can define the likelihood of the kinetic and delay parameters, θ and
∆, respectively, for the given trajectory zc (Gupta and Rawlings, 2014):

L (zc|θ,∆) =

 M∏
j=1

fkj

(
tj , zc, θkj

,∆kj

)
× exp [−Λ0 (T, zc, θ,∆)] .

(3)

Here the pair (tj , kj ) for j = 1, . . . ,M denotes the completion time
and type of a reaction that completes within the time interval (0, T ]. In
addition,

Λ0 (t, zc, θ,∆) =

v∑
k=1

Λk (t, zc, θk,∆k),

Λk (t, zc, θk,∆k) =

∫ t

0
fk

(
t̂, zc, θk,∆k

)
dt̂.

(4)
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Inferring delays in partially observed networks 3

This is analogous to the likelihood provided by Boys et al. (2008) for a
system without delays.

The trajectories of biochemical species can be measured experimentally
only at discrete time points. Complete reaction histories are thus unknown.
If we measure the trajectories at discrete time points t = 0, . . . , T , and
denote these measurements by z, then according to Choi et al. (2020);
Cortez et al. (2022), an approximate likelihood function, L̂, is given by

L̂ (z|r, θ,∆) =

[
T∏

i=1

v∏
k=1

f̂k(i, z, θk,∆k)
rki

rki!

]

× exp
(
−Λ̂0 (T, z, θ,∆)

)
× χ(z|r),

(5)

where r = (r1, . . . , rv) is a vector of reaction counts completing
within each of the time intervals, i.e., rk = (rk1, . . . , rkT ) and rki
is the count of reaction of type k that completes within the time interval
(i − 1, i]. Note that χ(z|r) is the indicator function that is one if the
trajectory of species matches the reaction counts and zero otherwise (see
Supplementary Methods for details). In Eq. (5), f̂k is an approximate
reaction completion propensity computed by linearly interpolating the
exact completion propensity (Eq. (2)) using:

f̂k (i, z, θk,∆k) =

i−1∑
m=0

∫ m+1

m

∫ t

t−1
[(s+ 1− t)hk (z (i−m) , θk)

+ (t− s)hk (z (i−m+ 1) , θk)] dηk (s) dt,

(6)

and Λ̂0 is defined analogously to Λ0 with f̂k replacing fk in Eq. (4).
Since the approximate likelihood given in Eq. (5) takes into account

the number of reactions completed between discrete time points, it
corresponds to the τ -leaping approach (Gillespie, 2001). The exact
likelihood in Eq. (3) corresponds to the exact stochastic simulation
algorithm (SSA) for a system with delays (Cai, 2007).

2.2 Derivation of a likelihood function given noisy
observations of a subset of species

In GRNs, we cannot measure the activity of all components directly.
However, we can measure the activity of fluorescent reporter proteins (Fig.
1). These measurements are often contaminated by observational noise,
which we assume is characterized by the vector of noise parameters σ. We
derive a likelihood function for these noisy observations, assuming that
only some protein counts are observed.

Letx andy be the trajectories of the unobserved and observed species,
respectively, in a biochemical reaction network with delays so that z =

(x,y). We let yobs be the vector of noisy observations of species y at
discrete time points t = 0, . . . , T . We assume that yobs is obtained by
adding i.i.d. noises from a Gaussian distribution to each observation in y.
The joint likelihood function of the unknown kinetic and delay parameters
and reaction counts is then given by

L̂(yobs|r, θ,∆, σ) =
∑
x,y

L(yobs|x,y, σ)× L̂ (x,y|r, θ,∆) (7)

= L(yobs|x̄(r), ȳ(r), σ)× L̂ (x̄(r), ȳ(r)|r, θ,∆)

(8)

= L(yobs|ȳ(r), σ)× L̂ (x̄(r), ȳ(r)|r, θ,∆) .

(9)

The sum overy in Eq. (7) can be reduced to a single term in Eq. (8) because
the vector of reaction counts, r, uniquely determines the trajectory in the
indicator function in Eq. (5), χ(x,y|r). Thus, the other terms in the

sum vanish, and we denote the trajectories of unobserved and observed
species without noise matching the vector of reaction counts by x̄(r) and
ȳ(r), respectively. Furthermore, Eq. (8) simplifies to Eq. (9) as the noisy
observations depend only on the trajectory of the observed species, y(r),
and are thus conditionally independent of x(r). On the right-hand side of
Eq. (9), the first factor is the likelihood function of the noisy observation of
the given trajectory at discrete time points, yobs, while the second factor
is the approximate likelihood function given in Eq. (5). Based on this
approximate joint likelihood, we developed a Bayesian MCMC algorithm
for a delayed reaction system with noisy measurements of the observed
components.

2.3 Simulation-based MCMC for discrete noisy observation
from a gene regulatory network with time delays

Sampling from the conditional posterior distribution of the parameters
characterizing the unobserved processes requires protein counts as input.
However, because we cannot measure all protein counts directly, we have
to generate samples of the unobserved protein counts as well. As we
explain below, the random walk approach used previously for this purpose
suffers from the curse of dimensionality (Boys et al., 2008; Choi et al.,
2020; Cortez et al., 2022). To circumvent this problem, we use stochastic
simulations to generate samples of the unobserved protein counts. We
describe the general idea behind our approach in this section. We provide
details and the example of the two-activation model in the Supplementary
Methods.

Using Bayes’ theorem, we can obtain the joint posterior distribution
of the model parameters, (θ,∆), and the number of reactions, r, given
the noisy measurements of the observed species, yobs, by multiplying the
priors and the joint likelihood of the unknowns (Eq. (9)):

π(r, θ,∆|yobs, σ) ∝ π(r)π(θ)π(∆)× L̂(yobs|r, θ,∆, σ).

When we generate samples from this joint posterior distribution, the
dimension of the sampling distribution increases with the number of
parameters and measurements. To generate samples in high dimensions,
we exploit the Gibbs sampling approach and decompose each sampling
step in the high dimensional space into separate low dimensional sampling
steps. We use the Metropolis-Hastings (MH) -within-Gibbs sampler
method to sample from each conditional posterior.

Although we divided each high dimensional sampling step into iterative
low dimensional sampling steps, there are other practical challenges to
implementing the block updating method we have used previously (Boys
et al., 2008; Choi et al., 2020; Cortez et al., 2022). First, because the block
updating method is based on the MH algorithm, we need to tune too many
hyperparameters (i.e., the variances of proposal distributions). Second,
even if we tuned all proposal distributions, the MCMC algorithm converges
slowly because all reaction counts are updated independently, while the
reaction counts on subsequent time intervals are strongly correlated. Thus,
using the random walk chain for each reaction count can significantly
reduce the acceptance probability of proposed samples, leading to slow
convergence of the proposed MCMC algorithm.

To address these problems, we utilize an algorithm that generates
proposal reaction counts based on simulations of the biochemical reaction
network in Eq. (1) (Wilkinson, 2018). Simulating the model directly
obviates the need for parameter tuning and captures correlations between
the reaction counts on subsequent time intervals. For simulations we chose
τ -leaping (Gillespie, 2001) because it corresponds to the approximate
likelihood in Eq. (9) and it is computationally more efficient than the exact
delayed SSA (Cai, 2007).

The resulting MCMC procedure can be described as follows (Fig. 2),
with the superscript (j) denoting samples at the j-th MCMC iteration step:
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Fig. 2. An illustration of the simulation-based MCMC method to estimate the posterior distribution of the kinetic (θ) and delay parameters (∆) of a GRN with unobserved,
X, and observed, Y , components. (Proposal) At the j-th MCMC iteration, for given parameter samples, θ(j) and ∆(j), we simulate a stochastic model with time delays
and propose candidates for the reaction counts in the model (i.e., r∗1 , . . . , r

∗
v ), which uniquely determine the trajectories for X and Y (i.e., x∗ and y∗). (Acceptance) The

proposed reaction counts and trajectories are more likely to be accepted if y∗ is closer to the observation yobs than the previous sample y(j) (see text and Materials and
methods for details). If the proposed reaction counts and trajectories are not accepted, those from the previous iteration are kept as the current samples. The updated
reaction counts and trajectories are referred to as r

(j+1)
1 , . . . , r

(j+1)
v , x(j+1), and y(j+1). (Sampling) For given updated reaction counts, we sample the kinetic and

delay parameters from their full conditional posterior distribution p(θ,∆|r(j+1)
1 , . . . , r

(j+1)
v ) using MH-within-Gibbs sampling approach.. These steps are repeated until

a convergence criterion is met.

1. Initialize the kinetic and delay parameters (θ(0),∆(0)) and reaction
counts r(0).

2. By performing the stochastic simulation for given (θ(j),∆(j)),
propose new trajectoriesx∗ andy∗ and the underlying reaction counts
r∗.

3. Accept the proposed reaction counts and corresponding trajectories
(r∗,x∗,y∗) based on the MH acceptance probability of ρ(r∗, r(j))
where

ρ(r∗, r(j)) = min

{
π(r∗)

π(r(j))
×

L(yobs|y∗)

L(yobs|y(j))
, 1

}
. (10)

4. Sample the kinetic and delay parameters (θ(j+1),∆(j+1)) from their
full conditional posterior distribution for the given reaction counts
r(j+1) using an MH-within-Gibbs sampling approach.

5. Repeat Steps 2–4 until a convergence criterion is met.

The acceptance probability in Eq. (10) can be viewed as the conventional
MH acceptance probability when a sample from a proposal distribution
is replaced with a sample generated by a stochastic simulation. We
provide the derivation of the acceptance probability, ρ(r∗, r(j)), and the
explicit form of conditional posterior distributions of the kinetic and delay
parameters in Step 4, π(θ,∆|r(j+1)), in the Supplementary Methods.

3 Results

3.1 Kinetic and delay parameters can be accurately
estimated as long as unidentifiable parameters are
known.

We first applied our inference algorithm to synthetic data obtained from
simulations of a two-step activation model (Fig. 3a) to test if our method
can accurately estimate the kinetic and delay parameters of a GRN. In the
generative model, the production of the unobserved protein X is initiated
at rate of AX and the protein activates the production of the observed
protein Y. Transcription of Y is initiated at a rate that is modeled by a
Michaelis-Menten function, after a regulation delay τX . Protein Y takes
a random time to mature, and hence each molecule becomes observable
after a time delay, τY . Proteins X and Y are diluted at the same rate B

due to cell growth. When trying to infer all parameters in this model, we
encountered identifiability issues. However, we show that we can obtain
accurate and precise parameters estimates when some of the unidentifiable
parameters are known.

To test our inference algorithm, we generated 40 time series of the
observed protein Y (i.e., Y (t)) using a delayed stochastic simulation
algorithm (Cai, 2007), and added combined additive and multiplicative
noise, sampled from N(0, Y (t) + 10) at each time t, to obtain 40
synthetic measurement trajectories, Yobs(t), that we subsequently used
for inference (Fig. 3b). Trajectories were indistinguishable when both
parameters AX and KM were scaled by the same factor 2 or 0.5 (Fig. 3c).
This degeneracy follows directly from the equation defining the production
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Fig. 3. Estimation of the kinetic and delay parameters using multiple trajectories that
reach steady state is accurate and precise when unidentifiable parameters, KM

and τY , are fixed. (a) Two-step activation model diagram. The unobserved protein,
X, is produced at rate AX , and activates the production of a downstream protein,
Y, after a random delay τX . Activation is modeled by a Michaelis-Menten function.
After transcription is initiated, protein Y takes a random time, τY , to mature. Both
delays, τX and τY follow Gamma distributions with distinct parameters. Proteins
X and Y are diluted at the same rate, B, due to cell growth. We assume that
only protein Y is observed, and the protein count is recorded at discrete times.
These measurements are corrupted by a combination of additive and multiplicative
observational noise, ε(t), which follows the normal distribution N(0, Y (t) + σe).
(b) 40 noisy trajectories of measurements, Yobs(t), at time 0, 1, . . . , 100 (min) of
the two-step activation model in Fig. 2 with kinetic parameters AX = 10 min−1,
AY = 60 min−1, KM = 100, B = 0.05 min−1, delays τX ∼ Γ(18/5, 3/5),
τY ∼ Γ(18/5, 3/5), and observational noise ∼ N(0, Y (t) + 10). (c) The
simulated measurements of Yobs(t) are indistinguishable when varying AX and
KM while keeping their ratio, AX/KM , constant. Here AX/KM = 0.1. The
upper and lower boundaries of the shaded region correspond to the mean±SD
for the 40 trajectories obtained for each parameter set. (d) When estimating
parameters using the trajectories in (b), we found that the means of the two delays,
µτX

and µτY
, were not individually identifiable, but their sum could be accurately

estimated. (e–h) To resolve this identifiability issue, we assumed that the distribution
of τY could be estimated separately, and the distribution was thus fixed in the
estimation process. We could then accurately estimate AX/KM , µτX

, AY ,
and B. These estimates became more accurate and precise as we increased the
number of trajectories used for inference. Here, sample values were divided by true
parameter values to obtain posterior distributions of the normalized parameters.

of Y , AY X(t)/(KM +X(t)): Because the level of X(t) is proportional
to AX , the production term is proportional to AY AX/(KM + AX),
which can be rewritten as AY AX/KM/(1 + AX/KM ). Thus, the
production of Y is mainly governed by the ratio AX/KM rather than
the individual parameters AX and KM . This degeneracy leads to the
unidentifiability of AX and KM . We therefore fixed KM to an arbitrary
value, 100, and estimated the ratio AX/KM instead of AX in the
following.

When we estimated the remaining parameters, the posterior samples of
the mean time delay needed for gene x to regulate gene y, τX , and the mean
synthesis delay of protein Y, τY , were strongly correlated, indicating that
their sum could be accurately estimated, but each could not be estimated
individually (Fig. 3d). Hence, measurements of Y contain information
only about the sum of the two mean time delays. Indeed, simulated
trajectories of the model with τX ∼ Γ(3.6, 0.6) and τY ∼ Γ(3.6, 0.6),
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Fig. 4. Estimation of the kinetic and delay parameters using multiple short
trajectories that did not reach steady state becomes accurate when the decay
rate, B, is assumed known. (a) 40 trajectories of noisy measurements at times
0, 1, . . . , 50 (min) of the two-step activation model shown in Fig. 2 using the same
parameter values as in Fig. 3a. Here, the observation window is too short for the
simulated trajectories to reach steady state, unlike those in Fig. 3a. (b) We also
assumed that KM and the distribution of τY are known, and found that the dilution
rate, B, is underestimated using our algorithm. This indicates that the decay rate,
B, can be accurately estimated only when measurements are taken until the system
reaches steady state. (c–e) To account for this bias, we assume that the decay rate,
B, is known, and fixed it at its true value in our inference algorithm. This allowed us
to obtain the accurate and precise estimates of the ratio AX/KM , µτX

, and AY ,
which improved with the number of measurement trajectories. Sample values were
divided by true parameter values to obtain posterior distributions of the normalized
parameters.

both with means equal to 6 mins, are indistinguishable from simulations
with τX ∼ Γ(1.2, 0.6) and τY ∼ Γ(6.0, 0.6), with means of 2 and 10
mins, respectively (Supplementary Fig. S1). This is consistent with the
fact that the total delay in a cascade equals the sum of individual delays in
the deterministic case (Glass et al., 2021).

The expression delay of Y, τY , can be directly estimated using an
independent experiment with a genetic circuit containing only gene Y.
We therefore assumed that the distribution of τY is known to resolve the
identifiability issue with τX and τY . As a result, we obtained accurate
and precise estimates of all remaining parameters: AX/KM , AY , τX ,
and B (Fig. 3e–h). These estimates became more precise when we
increased the number of measured trajectories. Precision also increased
with measurement frequency (Supplementary Fig. S2).

Thus tests with a simple circuit and synthetic data suggest that it is in
general impossible to infer all parameters in biochemical reaction networks
when some of the components are not observed. Some of the unidentifiable
parameters need to be fixed to accurately estimate the remaining
parameters in the two-step activation model. For synthetic gene circuits,
some of these parameters could be estimated in separate experiments,
while only combinations of other parameters may be inferable. This
identifiability analysis was possible because we used a Bayesian approach
and estimated the joint posterior of the parameter (Hines et al., 2014).

3.2 With short time series, to estimate kinetic and delay
parameters, the decay rate needs to be known

In time-lapse microscopy experiments cells can enter stationary
phase (Kolter et al., 1993), or the experiment may last too long before the
population reaches an equilibrium distribution. To test whether the kinetic
and delay parameters can be accurately estimated from data obtained
over shorter time intervals we applied our algorithm to synthetic data
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corresponding to the first half of the experiment we described in the
previous sections (Fig. 4a).

Under the conditions leading to accurate and precise estimation in
the previous section (i.e., assuming that KM and the distribution of τY
are known), we observed that the posterior mean of the decay rate, B,
was considerably lower than the true parameter value (Fig. 4b). This
underestimate occurred because the decay rate does not strongly affect
the dynamics of the observed and unobserved proteins in the transient
regime before their counts reach steady state values, since the termsBX(t)

and BY (t) are small until protein counts increase. Thus, B needs to be
measured separately to estimate the other parameters accurately. If the
decay mainly occurs via growth-induced dilution, B can be estimated
by measuring single-cell growth trajectories obtained with time-lapse
microscope. By fixing the decay rate to its true value, we obtained
accurate estimates for the other parameters AX/KM , µτX , and AY , and
these became more precise as we increased the number of measurement
trajectories (Fig. 4c–e).

We therefore found that the dilution rate needs to be estimated
separately to obtain accurate and precise estimates of the remaining kinetic
and delay parameters in the two-step activation model (Fig. 3a) when
observed trajectories did not reach a steady state. We expect that similar
identifiability issues will persist in more complex models.

3.3 Estimation of time delays in unobservable
transcriptional regulation

We applied our method to data obtained from a two-step activation circuit
in E. coli (Fig. 5a). The time-lapse fluorescence images of the cell
populations were obtained previously (Cheng et al., 2017). The two-
step activation circuit consists of two genes; one encodes the unobserved
transcriptional activator AraC and the second encodes the observed YFP,
corresponding to X and Y in the two-step activation model, respectively
(Fig. 3a). Once IPTG and arabinose are added at time t = 0, AraC is
activated. After maturation of the expressed AraC, the mature protein
searches a downstream target binding site and initiates the synthesis of
YFP. The single-cell fluorescence signal from matured YFP was measured
over 50 min (Fig. 5b). From the measured fluorescence intensity for two
independent experiments with 23 and 25 cells, we obtained molecular
counts by multiplying a previously calculated conversion rate (Fig. 5c)
(Choi et al., 2020). Because these trajectories did not reach a steady state,
we first estimated the decay rate, B, and the time delay for the synthesis
of YFP, τY , to be able to accurately estimate the remaining kinetic and
delay parameters from data (Fig. 3d and 4b).

The time delay for the synthesis of YFP can be separately estimated
using a ‘reporter-only’ circuit which consists of a PBAD promoter that
drives the expression of YFP without the need for accumulation of AraC.
Previously, we used data from experiments with such a circuit to obtain
the estimate τY ∼ Γ(6.89, 0.89) (Choi et al., 2020). We used this
estimate in the following. For the decay rate, we can use the dilution
rate because dilution is the main driver of decay since YFP is stable and is
not enzymatically degraded (Andersen et al., 1998). The dilution rate can
be directly estimated from cell area tracked with a time-lapse microscope
(Fig. 5d left) (Megerle et al., 2008; Taheri-Araghi et al., 2015). We fit
an exponential function to each single-cell growth trajectory to estimate
individual dilution rates (Fig. 5d right). We used the average of these
estimates, B̂ = 0.022s−1, as the dilution rate for the follwing estimates.

To estimate the remaining parameters we applied our MCMC algorithm
to the measurements of the observed fluorescent protein and obtained
estimates of the posterior distributions for the parametersAX/KM , µτX ,
and AY . The posterior means of the kinetic parameter AX/KM and AY

in Experiment 1 were higher than those in Experiment 2 (Fig. 5e). This
difference was due to a ∼20% higher intensity in Experiment 1 compared

to Experiment 2 (Fig. 5c). On the other hand, the posterior means of the
expected time delay for the transcriptional regulation of AraC, µτX , are
similar between the two experiments: 7.50±0.21 min and 7.87±0.34 min
(Fig. 5e).

The estimated time delay for the transcriptional regulation is the sum
of delays corresponding to AraC synthesis, diffusion, and binding-site
search. Interestingly, the binding-site search time of transcriptional factors
in prokaryotic cells is usually less than a few minutes even for chromosomal
genes whose copy number is just one or two (Hammar et al., 2012; Elf
et al., 2007). The two-step activation circuit is plasmid-borne, and thus
has copy number in the dozens. This indicates that the binding-site search
time is much shorter than those for chromosomal genes (i.e., less than a
minute), so the estimated time delay (∼7.5 min.) mostly comes from the
synthesis, including transcription, translation, folding, and dimerization.
This time delay has not been characterized previously. This finding thus
provides a better understanding of the kinetics of AraC protein, a widely
used transcriptional activator in synthetic biology.

4 Conclusion
We have developed a simulation-based Bayesian MCMC method for the
inference of kinetic and delay parameters from noisy measurement of a
GRN with unobserved components. We applied the method to a two-step
activation model where an unobserved species X regulates the synthesis
of an observed species Y.

Using synthetic data, we have shown that certain parameters are not
identifiable. However, accurate estimates of some of these parameters can
be obtained if the observable system components can be characterized in
separate experiments. Specifically, we found that the production rate of
X, AX , and the Michaelis-Menten constant for regulating gene Y, KM ,
cannot be estimated independently. However, the ratio between these two
parameters (i.e., AX/KM ) is identifiable from the observed trajectories
(Fig. 3c). We also found that the sum of two delays, the regulatory delay,
τX , and synthesis delay, τY , was identifiable, but the delays were not
identifiable individually (Fig. 3d). Often τY orKM can be estimated from
separate experiments. In that case the regulatory delay, τX , and production
rate, AX , are identifiable with data from the full circuit. Furthermore, if
the measured trajectories do not reach steady state, the decay rate, B, is
also not identifiable (Fig. 4b). For proteins that are not actively degraded
this last identifiability issue can be resolved by estimating the decay rate
directly from cell size measurements.

We applied our method to two independent sets of experimental time-
lapse fluorescence data from a two-step activation circuit in which AraC
protein activates the synthesis of YFP. We fixed the decay rate to the
dilution rate estimated from the observed cell area time series (Fig. 5d).
Furthermore, we also fixed the delay for the synthesis of YFP to the value
estimated with YFP-reporter only circuit in our previous work (Choi et al.,
2020). This allowed us to estimate the production rates and regulation
delay parameters of unobserved AraC protein using only observations
of YFP. The estimated production rates AX/KM and AY were higher
in the second experiment (Fig. 5e). This might be due to the mean
trajectory being higher in the second group (Fig. 5c). On the other hand,
the estimated regulation delays, τX , are similar in the two experiments.
This might be because regulation delay is an inherent attribute of AraC
and the downstream gene sfyfp unlike the fluorescence level, which can
be sensitive to camera settings. We hypothesize that the estimated time
delay of transcriptional regulation of AraC (∼ 7.5 min.) mostly comes
from the synthesis, not binding-site search. This finding can play an
important role in building synthetic circuits as the AraC protein, whose
kinetics are yet to be fully characterized, is a widely used transcriptional
activator in synthetic biology (Romano et al., 2021; Moon et al., 2012).
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Fig. 5. Our inference method provided similar estimates of the mean regulation delay from two independent experiments with a two-step activation circuit in E. coli. (a) The
two-step activation circuit in E. coli. Once IPTG and arabinose are added to the growth media, the expression of araC is induced and it activates the synthesis of YFP after
the time delay of the regulation, τX . The synthesis of YPF also involves a time delay, τY ∼ Γ(6.89, 0.89), which we estimated previously using a reporter-only circuit. In
this circuit, only the fluorescence level of YFP is measured while the level of AraC is not measurable. (b) Time-lapse images of YFP expression from the two-step activation
circuit monitored using fluorescence microscopy (Cheng et al., 2017). The fluorescent cells were observed after induction with 0.2mM IPTG and 2% (w/v) arabinose at
time 0. (c) Molecular counts were obtained by dividing the fluorescence level of each cell by a conversion constant, calculated in our previous paper (Choi et al., 2020).
The numbers of cell trajectories are 23 and 25, respectively. The thick lines represent the mean trajectories. (d) The area of each cell from two independent experiments
was measured by tracking the lineage of each cell. When a mother cell divided into two daughter cells, the area of the mother cell was added to the areas of its daughter
cells. Additionally, the area was normalized by its initial value, obtaining the relative cell area of each cell (left). The relative areas were used to estimate the dilution rate,
B, by fitting an exponential function to the relative area trajectories (right). (e) Applying our inference method to the cell trajectories, we obtained the posterior samples of
the parameters AX/KM , µτX

, and AY . To avoid bias and identifiability issues in estimation, we fixed the dilution rate B to its average value, 0.022, as it was directly
estimated from the observed cell areas (d) and the time delay of the synthesis of YFP τY to Γ(6.89, 0.89) as it was previously estimated (Choi et al., 2020). We obtained
the estimates (mean±SD) of AX/KM , 12.90±0.14 min−1 and 14.15±0.17 min−1, and the estimates of AY , 30.64±0.27 min−1 and 41.45±0.28 min−1. These
estimates are higher in the second experiment because the mean trajectory is higher in the second experiment (c). On the other hand, the estimates of the mean delay,
7.50±0.21 min and 7.87±0.34 min, were similar in both experiments.

For example, transcriptional regulators are being used in constructing
cascaded genetic logic gates or oscillators where delay can impact output
and dynamics (Moon et al., 2012; Mather et al., 2014).

As the number of parameters and unobserved species in a system
increases, identifiability issues often worsen (Raue et al., 2009; Hines et al.,
2014; Browning et al., 2020). In addition, more complex models typically
result in more local maxima in the corresponding posterior distributions.
Markov chains can get trapped at a local maximum, leading to inaccurate
estimates. This problem could be resolved by adopting advanced sampling
methods, such as the multiset samplers (Leman et al., 2009; Kim and
MacEachern, 2015) which relies on many agents in one Markov chain and
can more easily escape a local maximum.

While our method may appear similar to approximate-Bayesian
computation (ABC) approach (Beaumont et al., 2002), the two are
qualitatively different. While in our method the proposed reaction counts
are accepted based on the MH acceptance probability, in the ABC approach
a proposed sample is accepted based on a metric and a threshold, both

of which need to be defined appropriately. Our method is related to the
ABC-MCMC approach (Marjoram et al., 2003), in which parameters
are accepted stochastically. However, ABC-MCMC uses stochastic
simulations only for computing the acceptance probability to update a
proposed parameter while in our approach a stochastic simulation of the
model system is used to obtain proposed reaction counts.

Thus, the key step of the present method is the use of a stochastic
simulation algorithm. The acceptance probability of proposed reaction
counts based on the MH algorithm can be computed using the likelihood
ratio of only observed processes (Eq. 10), independently of the complex
dynamical model of the system. This allows for our method to be easily
implemented. Furthermore, this way to obtain proposal reaction counts
captures strong correlations between individual counts without the need to
tune hyperparameters. In contrast, a direct application of the block-update
method (Boys et al., 2008; Choi et al., 2020; Cortez et al., 2022) requires
the tuning of numerous proposal distributions, leading to small acceptance
rates and slow convergence of the MCMC.
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We assumed that all cells in a population are identical, and
thus share the same parameters, i.e., we ignored the cell-to-cell
variability. Even isogenic cell populations can show significant cell-to-
cell variability (Kepler and Elston, 2001; Kærn et al., 2005; Raj and
van Oudenaarden, 2008; Smith and Grima, 2018), and heterogeneity
in a population plays a crucial role in biological processes such as
development. Our method can be extended to account for such variability
using hierarchical model, a potential avenue for future work.

Our approach is scalable. Because the likelihood function has been
derived for a general biochemical reaction network, the simulation-based
MCMC can be tailored to a more complex model. The method does require
performing stochastic simulations of the biochemical system for each
MCMC iteration, resulting in a high computational cost. This cost could be
reduced by developing an emulator, which is a fast data generator replacing
a slower computational model to avoid the sampling process (Kennedy and
O’Hagan, 2001).

A simulation-based MCMC method can be developed for other
dynamical models as long as a likelihood function is available. While
we used a continuous-time Markov Chain, which efficiently explains a
biochemical reaction network with a low copy number of molecules, one
can also use a stochastic differential equation (Calderazzo et al., 2018;
Ruttor and Opper, 2009) which is accurate when the copy numbers are
higher, an agent-based model (Grazzini et al., 2017), or a delay differential
equation (Kim et al., 2022). Thus, we expect that our framework can be
extended to various stochastic models of non-Markovian GRNs, and thus
characterize the dynamics of a variety of systems from partial observations.
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