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Abstract
Brains contain networks of interconnected neurons, so knowing the network architecture is essential for
understanding brain function. We therefore mapped the synaptic-resolution connectome of an insect
brain (Drosophila larva) with rich behavior, including learning, value-computation, and action-selection,
comprising 3,013 neurons and 544,000 synapses. We characterized neuron-types, hubs, feedforward
and feedback pathways, and cross-hemisphere and brain-nerve cord interactions. We found pervasive
multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from
descending neurons, and multiple novel circuit motifs. The brain’s most recurrent circuits comprised the
input and output neurons of the learning center. Some structural features, including multilayer shortcuts
and nested recurrent loops, resembled powerful machine learning architectures. The identified brain
architecture provides a basis for future experimental and theoretical studies of neural circuits.

One-Sentence Summary: We generated a synaptic-resolution brain connectome and characterized its
connection types, neuron types, and circuit motifs.
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Introduction
A defining characteristic of a brain is its synaptic wiring diagram, or connectome: which neurons synapse
onto each other to form circuits. A synapse-resolution connectome is therefore an essential prerequisite
for understanding brain function that can inspire understanding and guide analysis by constraining
modeling and experimental studies (1–3). To date, complete synaptic-resolution connectomes from
volume electron microscopy (EM) have only been mapped for three organisms with up to several
hundred brain neurons, namely the nematode C. elegans (4, 5), the larva of the sea squirt Ciona
intestinalis (6), and the larva of the marine annelid Platynereis dumerilii (7). Due to technological
constraints, reconstructing and proofreading circuits from larger brains has been extremely challenging.
Synapse-resolution circuitry of larger brains has therefore been approached with a reductionist
framework that considers select subregions in isolation (8–14). Yet, neural activity across whole brains of
multiple species reveals widespread responses to limited stimulation (15–17), suggesting pervasive,
strong interconnectivity between brain regions, as also reported in classical studies of the primate
cerebral cortex (18). Large-scale recording of functional activity in invertebrates (16, 19–21) and
vertebrates (15, 17, 22, 23) demonstrates that neural computations occur across spatially dispersed brain
regions, further motivating brain-wide circuit studies. In the light of pervasive connectivity between brain
regions, our understanding of any one brain region requires analyzing it in the context of its synaptic
inputs and outputs to other regions.

We therefore sought to generate a comprehensive synapse-resolution connectivity map, including both
hemispheres and all inputs and outputs, of a relatively complex brain of a small insect with several
thousand neurons and a rich behavioral repertoire. We settled on an organism, the larva of the fruit fly
Drosophila melanogaster, that has a relatively compact brain, so that it can be imaged at nanometer
scale with EM and its circuits reconstructed within a reasonable time frame. Its brain structures are
homologous to those of adult Drosophila and larger insects (24–26) and its neuronal connectivity is
relatively stable throughout larval life (27). The larva has a rich repertoire of adaptive behaviors, including
several modes of locomotion and many kinds of sequences of actions (28–30), and can form short- and
long-term associative memories (25, 31, 32), and use these memories to guide value-computation and
action-selection (33, 34). Furthermore, an exquisite genetic toolkit (35–37) enables single-cell opto- and
electrophysiological recordings to experimentally test hypotheses generated by the connectome about
the roles of specific circuit motifs in distinct behavioral tasks (28, 29, 31, 34, 38).

We mapped all neurons in the brain using computer-assisted reconstruction with CATMAID (39, 40) in a
previously acquired nanometer-resolution EM volume of the central nervous system (CNS) of the
Drosophila larva (38) and we annotated their synapses. Prior studies have used the same EM volume to
map sensory and premotor circuits in the ventral nerve cord (VNC) and subesophageal zone (SEZ) (38,
41–44), as well specific subregions in the brain (a total of 452 sensory and 1054 brain neurons): the
primary sensory neuropils (45–49) and the higher order center for learning and memory (the mushroom
body, MB) (25, 31, 34). Here, we took a dense circuit mapping approach to reconstruct the remaining
1507 brain neurons. We found that the brain received axons from 477 sensory/ascending neurons and
comprised 2,536 differentiated neurons (3,013 neurons total), the majority of which were not previously
reconstructed in areas that have been dubbed "terra incognita" (10).

We performed a detailed analysis of the 3,013-neuron connectome, including the connection-types,
neuron-types, hubs, brain-wide circuit motifs, and interhemispheric and brain-nerve cord interactions. We
paired all uniquely identifiable, mirror-symmetric left-right homologous neuron pairs from the two brain
hemispheres. 37% of neurons displayed contralateral branches that link the two hemispheres,
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highlighting that mapping both hemispheres is fundamentally required to understand the brain. We
performed an unbiased hierarchical clustering of all neurons based solely on their synaptic connectivity
and identified 90 neuron clusters. These connectivity-defined neuron types were internally consistent for
other features, such as morphology and function, when those features were known. We developed
analysis tools to characterize brainwide multihop pathways and used them to uncover general principles
of multisensory integration, interhemispheric communication, feedback, and brain-nerve cord interactions.
We found extensive feedback from descending neurons back to other brain neurons, suggesting
efference copy signals may heavily influence brain processing. Overall, the brain had a highly recurrent
architecture with 41% of neurons participating in polysynaptic recurrent loops. We found that the
dopaminergic neurons (DANs) that drive learning were amongst the most recurrent in the brain,
suggesting recurrence may be especially important for learning. Structural features identified in the brain,
including multilayer shortcuts and prominent nested recurrent loops, were reminiscent of powerful
machine learning architectures (50–52). The connectome presented here will guide analysis and provide
a basis for many future theoretical and experimental investigations (12, 53, 54) of the structure-function
relationships of neural circuits (29, 38, 55–57), and may provide inspiration for new machine-learning
architectures.

Results
Reconstruction of the Drosophila larva brain in a full-CNS electron microscopy volume
We previously generated a synaptic-resolution EM volume of the CNS of the first instar Drosophila larva
(38, 40). This volume contains all CNS neurons, as well as sensory neuron axons and motor neuron
dendrites, enabling reconstruction of all neural pathways from sensory input to motor output. Previous
studies have used this EM volume to reconstruct most sensory inputs to the brain (452 input neurons),
their downstream partners, and the higher-order learning center (total 1,054 brain neurons). Here, we
reconstructed the remaining 1,507 brain neurons, resulting in a total of 3,013 neurons and approximately
544,000 synaptic sites (Fig. 1A, B; Fig. S1A, B). The vast majority of neurons (>99%) were reconstructed
to completion and the majority of annotated synaptic sites in the brain (75%) were linked with a neuron
(Fig. 1B). The remaining 25% were mostly composed of small dendritic fragments, which are labor
intensive to reconstruct and provide diminishing returns. Prior studies have shown that neurons make
multiple connections with the same partner on different dendritic branches (40), so orphaned synapses
may affect synaptic weights of known connections but are unlikely to add entirely new strong connections
or change conclusions about strongly connected pathways.

Most neurons in Drosophila are mirrored across hemispheres, such that each neuron has a hemilateral
homolog in the opposite hemisphere (40). We identified all homologous hemilateral partners using
automated graph matching (58–60) followed by manual review. These pairings were robust across a
variety of independent morphological and connectivity metrics (Fig. S1E, F). Our current data suggests
that 93% of brain neurons have hemilateral homologous partners in the opposite hemisphere (Fig. 1C),
while the Kenyon cells (KC, 176 mature neurons) in the learning/memory center comprise the vast
majority of unpaired neurons (25).

These homologous partners were used to identify potential reconstruction errors, namely instances of
morphological asymmetries between partners, and to target review to such neurons (Fig. S1D). To
assess the effectiveness of this targeted review, we randomly selected ten brain interneurons and fully
reviewed them according to previously described methods (38, 40). We found that most (74%)
neuron→neuron connections, or edges, remained unchanged. Edges that did change after review mostly
displayed a modest increase in synaptic strength, suggesting errors of omission, the most common type
of error as described in previous connectomics studies (10, 40) (Fig. S1G, H).
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Fig. 1: Comprehensive reconstruction of a Drosophila larva brain. (A) Morphology of differentiated brain neurons in the
central nervous system (CNS) of a Drosophila larva. All neurons were reconstructed in both hemispheres, including all sensory
neurons (SNs) to the brain and axons of brain descending neurons (DNs), including those entering the Subesophageal Zone
(SEZ) and the Ventral Nerve Cord (VNC). The CNS is approximately 105 μm x 120 μm x 240 μm (medial-lateral [ml],
dorsal-ventral [dv], anterior-posterior [ap] axes, respectively). (B) Characterization of brain neurons and their synaptic sites.
>99% of neurons were reconstructed to completion, defined by reconstruction of all leaf nodes in the skeleton (see Methods) and
no data quality issues preventing identification of axon and dendrite. Synaptic sites in the brain and associated with brain
neurons were quantified. Pre- and postsynaptic sites were considered complete when connected to a brain neuron or to the
arbor of a neuron outside the brain. (C) Left/right homologous neuron pairs were identified using automated graph matching with
manual proofreading. 14 neurons displayed no clear partner based on this workflow (unpaired), along with 176 unpaired kenyon
cells (KCs) in the learning/memory center. (D and E) Schematic overview of brain structure, including input neurons,
interneurons, and output neurons. Brain inputs include SNs, which directly synapse onto brain neurons, and ascending neurons
(ANs) from VNC segment A1, which receive direct or multi-hop input from A1 sensories (see Fig. S2). Brain interneurons
transmit these input signals to output neurons: DNs to the SEZ (DNSEZ), DNs to the VNC (DNVNC), and ring gland neurons (RGN).
(F to H) Cell classes in the brain. Some interneurons belong to multiple classes, but are displayed in the paper as mutually
exclusive for plotting expedience (see Fig. S4).

In the following sections, we investigate neuron and connection types, the flow of information from inputs
to outputs, multisensory integration, cross-hemisphere interactions, feedback from outputs to inputs, the
level of recurrence in the brain and brain-nerve cord interactions.

Identification of all brain input neurons, interneurons, and output neurons
To facilitate the analysis of the connectome, we defined and identified a curated set of broad neuron
classes based on available prior information about some brain neurons. All brain neurons were divided
into three general categories: input neurons, output neurons, and interneurons (Fig. 1D, E). Brain input
neurons (Fig. 1F) comprise two broad classes: 1) sensory neurons (SNs) with axons in the brain; many
were reconstructed and characterized previously (45–47, 61), and 2) ascending neurons (ANs) that
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transmit somatosensory signals from the VNC; several were previously reconstructed (38, 41, 44,
62–64). We reconstructed an additional set of A1 ANs, resulting in the most complete set of ANs from a
nerve cord segment (A1) to date (Fig. S2). Brain output neurons comprise three broad classes: those
with axons that terminate in the ring gland (RGNs), descend to the SEZ (DNsSEZ), or descend into the
VNC (DNsVNC) (Fig. 1H). The full set of RGNs have been previously described (41, 47, 49, 65, 66), while
DNsSEZ and DNsVNC were reconstructed and identified here based on axon projections (Fig. S3).

Brain interneurons comprised all neurons with cell bodies and axons/dendrites in the brain. We
subdivided interneurons into neuron classes based on previously known function or direct connectivity
with neurons of known function (Fig. 1G, Fig. S4). We started with sensory input neurons and identified
all of their projection neurons (PNs) in the primary sensory neuropils and the neurons postsynaptic of
these PNs in the brain center for encoding innate valences (the Lateral Horn, LH). We used the
previously characterized neurons of the learning center, the MB: the KCs that sparsely represent stimulus
identities; MB output neurons (MBONs) that represent learnt valences of stimuli; MB modulatory input
neurons (MBINs, mostly dopaminergic, DANs) that provide teaching signals for learning; and their input
neurons (MB feedforward neurons, MB-FFN (31)); MB feedback neurons (MB-FBNs that connect MBONs
and MBINs (31)); and convergence neurons (CN) that integrate learnt and innate valences from the MB
and LH (34). We also identified all  presynaptic partners of the three output neuron types.

Identification of all axons and dendrites in the brain
To better understand individual neuron morphology, we identified all axons and dendrites. In Drosophila,
axons and dendrites contain the majority of a neuron’s presynaptic and postsynaptic sites, respectively,
and are separated by a linker domain devoid of synapses. All linker domains were identified using
synapse flow centrality (40). This data was manually proofread, and an axon-dendrite split point was
placed for each neuron. Based on this analysis, we determined that 95.5% of the brain (2,421 neurons)
are polarized with an identifiable axon and dendrite, 0.5% (13 neurons) are unpolarized with no definable
axon, and 4.0% (102 neurons) were immature (Fig. 2A). These immature neurons were not
developmentally-arrested SU neurons that differentiate into adult neurons (67). Their nuclei were not
heterochromatin-rich like SU neurons, despite their general lack of arborization or synaptic sites. It is
likely that these immature neurons started to differentiate, but are still in the process of neurite outgrowth
and polarization. This population includes 78 immature KCs as previously reported in the
memory/learning center (25, 68). However, there were also 24 non-KC immature neurons, revealing
some neurogenesis of larval neurons outside of the MB.

All polarized neurons segregated pre- and postsynaptic sites within axons and dendrites, respectively
(Fig. 2B). However, despite this general feature, we observed that axons contained postsynaptic sites
and dendrites contained presynaptic sites. Thus, axons can be directly modulated by other neurons (69)
and dendrites can directly synapse onto other neurons, which has been previously observed in the fly
olfactory system (45) and in the visual system in mouse (70). We now report that this is a common
phenomenon throughout the brain.

Four connection types: axo-dendritic, axo-axonic, dendro-axonic and dendro-dendritic.
While axo-dendritic connections are well established in the literature, other non-canonical interactions
such as axo-axonic connectivity (71–73) and dendritic output (70, 74–77) have been observed but are not
as well studied and their prevalence was unknown. We therefore identified all axo-dendritic (a-d),
axo-axonic (a-a), dendro-dendritic (d-d), and dendro-axonic (d-a) connections in the brain. We found that
the majority of connections are either a-d or a-a, however there are still a large number of d-d and d-a
connections (Fig. 2C).
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Fig. 2: Identification of all brain axons and dendrites revealed four connection types. (A) Axons and dendrites were
identified in all brain neurons. >95% of neurons contained fully differentiated axons and dendrites (i.e. were polarized), but a few
unpolarized neurons and immature neurons were identified. (B) Presynaptic sites (orange) and postsynaptic sites (blue) in all
polarized brain neurons, displayed as normalized distances from the axon-dendrite split point. Axons contained mostly
presynaptic sites, while dendrites contained mostly postsynaptic sites, but pre- and postsynaptic sites were observed in both
compartments. (C) Synaptic connections were categorized as axo-dendritic (a-d), axo-axonic (a-a), dendro-dendritic (d-d), or
dendro-axonic (d-a). A-d connections were the most numerous, but many non-canonical connections were observed. Examples
of each connection type are depicted in the right panel. (D) Adjacency matrices displaying all connection types between brain
neurons. Each quadrant represents a different connectivity type between each presynaptic neuron (row) and postsynaptic
neuron (column) in the brain. (E) Graph metrics for subgraphs comprising each connection type: number of nodes participating in
each connection type, graph density (number of connections observed / all possible connections), and max degree (maximum
number of connections from a single neuron). (F) Fraction of feedforward and feedback synapses per connection type, defined
based on anterograde or retrograde direction compared to the overall neuron sorting from sensory to output (Fig. S5E-F). (G)
Comparison of the direction of information flow in the indicated connection types. Individual neurons in each graph type were
sorted using the signal flow algorithm (see Methods) and the correlation between these node sortings was quantified. A-d sorting
best matched the summed graph sorting (all edge types together). The d-a sorting was negatively correlated with a-d (-0.59). (H)
Edge reciprocity between different edge types, i.e. fraction of forward edges that were coincident with different backward edge
types. The most overrepresented reciprocal edge types were d-a/a-d and a-a/a-a, while other types were uncommon.

The connectome can be thought of as four graphs (Fig. 2D), where nodes represent individual neurons
and each graph contains edges between these nodes, which are either a-d, a-a, d-d or d-a. Graph
metrics were quantified for each graph type (Fig. 2E). We found that the axo-dendritic graph had the
highest density and node participation (i.e. the most neuron-neuron connections and highest number of
neurons participating in a-d connectivity), while the axo-axonic graph had the highest max degree (i.e. the
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max number of synaptic partners observed in an individual neuron). These results suggest that there are
fundamental network differences between connection types. We next wondered whetherneurons were
connected by just one edge (singleton) or multiple edge types (multiplexed). We found that the majority of
edges were singletons, connecting neuron partners in only one way (a-d, a-a, d-d, or d-a). However, we
also observed many multiplexed edges (Fig. S5D). The most common examples were a-d / a-a edges,
however many different combinations were observed, including rare combinations of three or four edge
types between the same partner neurons. We found that all multiplexed edge type combinations were
observed more often than expected by a null model, although multiplexed edges were still less frequent
than singleton ones (a-d: 93% singleton; a-a: 89% singleton; d-a: 79% singleton; d-d: 76% singleton).
Four-edge connections were mostly found in local neurons (66%) (LNs, i.e. neurons involved in local
processing in a specific neuropil) of the antennal lobe (45) and visual neuropils, while three-edge
connections were found dispersed throughout the brain with a focus in local neurons (17%) and
pre-descending neurons (14%). Multiplexed connections may grant presynaptic neurons post- and
presynaptic regulatory control of their partner, as has been observed in a-d/a-a triad motifs in mammals
(78). It will be interesting to explore the roles of these non-canonical connections in future experimental
studies.

Numerically strong connections are reproducible across brain hemispheres
We investigated the distribution of edge strengths for each connection type (Fig. S5A, B). We found that
axo-dendritic connections displayed the highest fraction (a-d: 23%) of strong synapse edges (≥5
synapses between the same neuron pair). However, there were also strong connections among
non-canonical connection types (a-a: 10%, d-d: 10%, d-a: 3%). As observed in both invertebrates (10,
79) and the mammalian cortex (80, 81), the majority of edges were weak (1 or 2 synapses) for all
connection types (a-d: 60%, a-a: 75%, d-d: 80%, d-a: 91%). Yet, the majority of axo-dendritic synapses
were contained in strong edges (61%; Fig. S5B). Overall, across all connection types, the brain
comprised 17.9% strong edges and 65.8% weak edges. Strong edges (≥5 synapses) contained 54% of
synaptic sites, while weak edges (1 or 2 synapses) contained 28% of synaptic sites between neurons.
Based on these results, we can confirm that the connectome contains “a skeleton of stronger
connections… immersed in a sea of weaker ones” (80); however, this statement should be tempered with
the observation that most synaptic sites are contained within strong edges and therefore most
developmental effort is spent on these stronger connections.

We next investigated edge symmetry across the two brain hemispheres. We found that edge strength
correlated with interhemispheric symmetry (Fig. S5C); if there was a strong edge between two neurons in
one hemisphere, a homologous edge in the opposite hemisphere was usually found. The four edge types
(a-d, a-a, d-d, d-a) displayed similar patterns: weak edges were mostly asymmetrical while strong edges
were highly conserved between hemispheres. With edge strengths of at least 5 and 10 synapses, the
majority of edges (>80% and >95%, respectively) were symmetrical across all edge types.

Our analysis revealed that the majority of connections in the brain are weak and non-reproducible (not
symmetric between left and right hemispheres). However, the majority of synaptic sites in the brain are
contained in the strong symmetrical connections. It is interesting to speculate that the numerically strong
edges might be important for reproducible aspects of behavior, whereas weak non-reproducible edges
might contribute to stochastic aspects of behavior and idiosyncratic differences between individuals.

Distinct connection-types differentially contribute to feedforward and feedback pathways
We devised a methodology to assay the contribution of different edge types to either feedforward or
feedback signal throughout the brain. We developed a new algorithm, Walk-Sort (see Materials and
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Methods), which uses random walks through the network based on user-defined start and stop points to
determine the relative position of a neuron within this particular flow of information. We applied Walk-Sort
to the summed graph (with all edge types combined, a-d, a-a, etc.) to sort nodes according to the flow
from sensory to descending neurons, and then categorized edges in the resulting sorted graph. We
defined feedforward edges as those connections which project from a higher-ranked (closer to sensory
periphery) to a lower-ranked (further from sensory periphery) neuron, while feedback edges are pointed
in the opposite direction, connecting neurons lower in the sorting with those closer to the sensory
periphery. We found that the a-d graph displayed the most feedforward; a-a and d-d graphs displayed
roughly equal feedforward and feedback; while the d-a graph displayed a bias towards feedback edges
(Fig. 2F; Fig. S5E, F).

We next compared how information flowed through the four networks without assumptions about the
brain input-output axis. We utilized the signal flow algorithm (82, 83) because it sorts neurons within each
graph according to the overall information flow without explicitly defining sensory and output neurons
(required in Walk-Sort). We compared these signal flow sortings between edge types (Fig. 2G, Fig. S6).
We found that the sorting of a-d graph best matched the summed graph (graph with all edge types
combined), i.e. sorted from sensory periphery to brain output neurons. The a-a and a-d graphs displayed
a similar flow from sensory to output, despite the details of the sorting being different (Spearman’s rho
correlation coefficient = 0.44 between the signal flow sorting of the a-a and a-d graphs). Interestingly, the
d-a graph resulted in a sorting that was the inverse of the a-d graph (Spearman’s rho correlation
coefficient = -0.61), i.e. starting at brain output neurons and ending at the sensory periphery. We found
that the majority of d-a edges were the inverse of a-d edges (i.e. there was a high edge reciprocity; Fig.
2H), which explains the inverse relationship between these graphs. Such reciprocal a-d/d-a connectivity
could be important for input regulation, as suggested in mammals (69).

We also observed that a-a edges displayed high edge reciprocity, meaning many neurons engaging in
a-a connectivity displayed reciprocal loops. Note that because a-a connections are directional, such
reciprocal loops were not guaranteed to occur. Consistent with this finding, previous studies have
observed a-a reciprocality between KCs (25, 26), between KCs and MBINs (25, 26, 72), and between
olfactory PN axons in the adult fly (73). A-a connections have been shown to gate activity (84), implement
divisive normalization (85), or result in reciprocal positive feedback loops (72).

Hierarchical clustering reveals 90 connectivity-based brain neuron types
Next, we wanted to subdivide brain neurons into types based on their synaptic connectivity. Neuron types
are often defined based on gene expression (86–88), morphology (10, 89), function (28, 31, 90–92), or a
combination of features (10, 13, 93). These properties are likely all correlated with synaptic connectivity
which is defined by the genome, requires appropriate neuronal morphology and is, in turn, necessary to
support specific computations and behaviors (55, 94, 95). Thus, an unbiased clustering of neurons based
on their synaptic connectivity could potentially reveal both morphologically and functionally defined
neuron types.

We used the graph structure of all four connection types to spectrally embed all brain neurons in a shared
space and clustered them using this representation (see Methods). This resulted in nested sets of
clusters that can be tuned based on the desired granularity, from large groups of neurons to 90
fine-grained cell types (Fig. 3A; Fig. S7). In contrast with community detection algorithms that assume
dense connectivity within communities and may reveal entire processing modules rather than individual
neuron types, our clusters are not necessarily composed of groups of neurons which communicate more
densely within a cluster (96). Instead, our clustering strategy groups neurons with very similar
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connectivity to other neurons even if little direct intracluster connectivity was present—for example,
olfactory PNs from the antennal lobe which are known to function as parallel input channels and whose
activity is regulated as a group (45). Our clustering methodology was also designed to ensure that
left-right homologous neurons are placed in equivalent left-right hemisphere clusters, allowing
straightforward subsequent analysis. To confirm that this connectivity-based clustering reveals neuron
types that share other attributes besides connectivity we asked whether the morphology and function of
neurons within the same cluster were similar. Indeed, we found the morphology of neurons within clusters
was remarkably similar (mean within-cluster NBLAST score of 0.82 ± 0.16 SD), even though clustering
was based solely on connectivity and no morphological data was used (Fig. 3B; Fig. S7A, B).
Furthermore, neurons with similar known functions were usually found in the same or in related clusters
(e.g. clusters of olfactory PNs, clusters of KCs, cluster of MBINs, clusters of MBONs, clusters of
MB-FBNs, etc.; Fig. 3A, Fig. S7D).

The connectivity within and between all clusters is displayed in Fig. 3C. Many (but not all) clusters
displayed strong intragroup connectivity and shared output to similar postsynaptic clusters. A coarser
granularity can be also selected (Fig. 3D) and used to explore connectivity between larger groups of
related neuron types. Altogether, we present a hierarchical clustering of the brain, which is robust across
multiple independent metrics and designed to facilitate downstream analysis. These clusters represent
connectivity-based cell types and are also internally consistent for both morphology and known function.

The majority of brain hubs are pre- or postsynaptic to the learning center
Hubs are thought to play key roles in brain computations and behavior (97–99). We therefore identified
brain hubs for all connection types. In order to focus on the strongest hubs, reproducible across
hemispheres, we filtered the graph to include only strong edges observed in both hemispheres (using a
≥1% input threshold, see Methods). Brain hubs were defined as having ≥20 pre- or postsynaptic partners,
respectively i.e. an in- or out-degree of ≥20 (this threshold is the network mean plus 1.5 standard
deviations (SD)). We distinguished between in-hubs (over the in-degree threshold), out-hubs (over the
out-degree threshold), and in-out hubs (over both thresholds). Using these criteria, we identified 506 a-d,
100 a-a, 10 d-d, and 8 d-a hubs (Fig. 3E, Fig. S8). A-d out-hubs were often observed in clusters closer to
the sensory periphery, notably PNs (31%), while a-d in-hubs were more often closer to output clusters,
including pre-output and output neurons (41%). The majority (73%, 19/26 pairs) of a-d in-out hubs were
postsynaptic to the learning center output neurons (MBONs) and/or presynaptic to its modulatory neurons
that drive learning (MBONs, CNs, MB-FBNs, MB-FFNs, and one pre-DNVNC pair postsynaptic to MBONs;
Fig. 3F). Several in-out hubs (23%, 12 pairs) were convergence neurons (CNs), receiving input from both
the MB, that encodes learnt, and the lateral horn (LH), that encodes innate values (31, 92). One such
in-out hub is the CN-MBON-m1, shown to functionally integrate learnt and innate values and
bidirectionally control approach and avoidance (34). Together, these findings suggest that many of the
brains’ in-out hubs may play a role in computing predicted values of stimuli (based on both learnt and
innate values) and in regulating actions and/or future learning (via feedback to MB modulatory neurons).

Identification of all brain local neurons
Brain neurons are often divided into local neurons (LNs), involved in local processing within a specific
brain neuropil or layer, and PNs, which carry information to other brain regions. To systematically identify
all brain LNs, we developed two connectivity-based definitions (Fig. S9A, B). Type 1 LNs provided a
majority of their output to neurons in their sensory layer (defined by the number of hops from SNs of a
particular modality), and/or to the sensory layer directly upstream of them (Fig. S9A). Type 2 LNs
received a majority of their input and sent most of their output to any sensory layer, to which it did not
belong (Fig. S9B). In this way, we identified all previously published LNs (25, 45, 46) and many new
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Fig. 3: Hierarchical clustering and analysis of brain structure. (A) Hierarchical clustering of brain neurons using a joint
left-right hemisphere spectral embedding based on connectivity. Clusters were colored based on cell classes (Fig. 1G, Fig. S4),
but this information was not used for clustering. Clusters were sorted from SNs to DNs using the Walk-Sort algorithm. (B)
Example clusters with intracluster morphological similarity score using NBLAST (see Methods). Most clusters displayed
remarkable morphological similarity despite being clustered based on connectivity (Fig. S7A, B). (C) Adjacency matrix of the
brain sorted by hierarchical cluster structure with color-coded neuron classes. (D) Network diagram of level 4 clusters displays
coarse brain structure. Colored pie charts display cell types within clusters; size indicates number of neurons in each cluster.
Arrow thickness is scaled to number of synapses between groups. (E) Fraction of a-d hub neurons in level 4 clusters. Cell types
of each cluster are depicted as x-axis marginal plot and annotated to match clusters in (D). Hubs were defined as having ≥20 in-
or out-degree ( ≥20 presynaptic or postsynaptic partners, respectively; based on the mean degree plus 1.5 standard deviations).
(F) Cell classes of in-out hubs (a-d). The majority of neurons were downstream or upstream of the memory/learning center (gray
semi-circle, MB-related). Note that CN + MB-FBN indicates neurons that were both CNs and MB-FBNs. One pair of pre-DNVNC

neurons received direct MBON input. (G) Pathways from SNs to output neurons with 6 or fewer hops, using a pairwise ≥1% input
threshold of the a-d graph. Plot displays a random selection of 100K paths from a total set of 3.6 million paths.
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putative LNs (Fig. S9C, D). We then defined all 2nd order PNs by exclusion, i.e. all neurons that were not
local but were directly downstream of SNs (Fig. S9E). Non-LN neurons that are higher order (i.e. not
directly downstream of SNs) are usually termed output neurons from a specific neuropile (12, 25, 90,
100) rather than PNs, but we refrain from labeling them in a specific way and leave them undefined, as
non-LNs. Although our LN definitions were connectivity-based, they provided results that matched
morphological expectations. Namely, the Euclidean distance between the axon and dendrite of local
neurons was small, while for PNs the axon-dendrite distance was large (Fig. S9D-F). Interestingly, we
also found that LNs engaged in more noncanonical connectivity than PNs, including a-a, d-d, and d-a
connections (Fig. S9G), perhaps allowing LNs to regulate multiple aspects of activity in both the axon and
dendrite.

Interestingly, the majority of LNs (98 neurons) that meet the above definition were either 2nd order
neurons directly downstream of SNs (i.e. one-hop from SNs) or 3rd order neurons (2-hops downstream of
SNs, Fig. S9C). A very small number of 4th-order LNs were also identified (6 neurons, Fig. S9C-D). Two
of the three pairs were pre-DNVNC neurons and one was downstream of neurons that integrate learnt and
innate valence, suggesting some level of local processing in the pre-DNVNC layer and in post-MB layer.
Overall, progressively fewer LNs were found further from the sensory periphery, perhaps suggesting that
computations in higher-order neuropils are less local, involving integration and communication with a
diversity of neuron types (rather than from a single sensory processing layer).

Identification of all brain sensory pathways
Next, we systematically characterized brainwide pathways from distinct types of SNs to all other brain
neurons. We note that, for the remainder of the paper, we will focus our analysis on a-d connections
because they are the most abundant and best understood in terms of functional effects. We generated all
possible a-d pathways from brain input neurons to all other brain neurons and ending at output neurons
in fewer than 6 hops (Fig. 3G). We classified input neurons based on their known sensory modalities.
Olfactory (45), gustatory (47, 66, 101), thermosensory (48, 102), visual (46), gut (47, 103, 104) and
respiratory state SNs (105) project directly to the brain. Somatosensory ANs from the nerve cord received
direct or indirect input from mechanosensory (29, 38, 106), nociceptive (38, 107–109) and proprioceptive
SNs (110, 111) (Fig. S2, Table S1) and projected to the brain.

We identified all 2nd-, 3rd-, 4th-, and 5th-order brain neurons downstream of each input modality (Fig.
4A-C). For the purpose of this analysis, we defined the order of a neuron according to its lowest order
input from any input neuron type. However, we note that neurons can receive multipath input from the
same input neuron type, via distinct paths of different lengths (e.g. they can be both 2nd- and 3rd-order,
etc.). Many brain neurons (539; 21%) were 2nd order, but the majority of brain neurons (1,403; 55%)
were 3rd order (received input from a SN in two-hops). A considerable number were 4th order (386;
15%), but only 12 neurons (<1%) were 5th order (Fig. 4C). Note that 204 brain neurons (8%) were either
immature or received only input from neurons in the SEZ of unknown modality and were therefore not
categorized. Thus, of those neurons analyzed, no brain neuron was more than 4-hops removed from at
least one input neuron and the vast majority were only 2- or 3-hops removed.

We found that most 2nd-order neurons received direct input from a single SN type (Fig. 4B), with some
exceptions, including olfactory local neurons that also received from gustatory and thermowarm SNs, as
previously reported (45, 48). 3rd-order neurons were more often shared across modalities and, by the
4th-order, most neurons were shared across modalities (Fig. 4B). However, we note that even neurons
that are exclusively 2nd or 3rd order for one modality, can receive input from other modalities via longer
paths (discussed in a future section).
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Most sensory modalities exhibited a large expansion of neuron numbers in 3rd-order, compared to
2nd-order layers (Fig. 4A, Fig. S10A, Table S2), indicating prominent divergence, i.e. they broadcast their
signals to very many different downstream partners. Generally, the number of neurons downstream of
2nd-order PNs (divergence) was higher than the number of PNs upstream of the 3rd-order neurons
(convergence). Nevertheless, convergence was also prominent, with most 3rd-order neurons receiving
input from multiple 2nd order PNs.

The expansion-contraction architecture is thought to be an adaptation of learning circuits to sparsify
dense neural codes and enhance stimulus discrimination by increasing the dimensionality of
representation (112–114). Interestingly, in the 1st instar larva, we observed a similar amount of
divergence and convergence onto 3rd-order LH (innate center) and MB (learning center) neurons,
suggesting both 3rd-order neuropils may discriminate between stimuli to a similar extent. Thus, olfactory
PNs synapsed onto 15 ± 5 KCs and 23 ± 10 LHNs (average ± SD). KCs and LHNs received input from 4
± 3 and 4 ± 5 uPNs, respectively. In the adult, the olfactory signal divergence onto KCs is 2.5 times
greater than onto LHNs (100). During larval life, the number of KCs increases 3-fold, whereas the number
of LHNs remains constant. Thus, in a 3rd instar larva divergence of information in the MB compared to
the LH may be greater, potentially enabling better odor discrimination (114).

Sensory information can reach output neurons within one to three hops
We investigated the cell type identities of neurons at different processing layers, i.e. at different hops from
SNs or ANs (2nd, 3rd, 4th and 5th order neurons) within each sensory circuit (Fig. 4C, Fig. S10A). We
found that sensory information reached all cell classes within a couple hops. A surprising percentage of
brain output neurons were 2nd order, i.e. postsynaptic (one-hop) of SNs or ANs (Fig. 4C; DNsVNC: 16%,
DNsSEZ: 54%, RGNs: 61%), or 3rd order, i.e. two hops from SNs or ANs (DNsVNC: 54%, DNsSEZ: 37%,
RGNs: 11%). The remaining 30% of DNsVNC, 9% of DNsSEZ and 28% of RGNs were 4th order (three-hops
from SNs/ANs, Fig. 4C). Thus, all output neurons can receive sensory information within a maximum of
three-hops. However, we found that while these direct (one-hop), two-hop, or three-hop connections
represent the shortest paths to output neurons, most output neurons also received longer multihop input
from SNs.

The highest-order neurons in the brain (5th-order) were not output neurons, but 12 pre-output neurons,
presynaptic to DNsVNC. These neurons received input from and output to other pre-DNsVNC (the most
numerous group of 4th-order neurons) and share some upstream and downstream partners, suggesting
complex, multilayered connectivity between pre-DNsVNC (Fig. S11). This suggests that, even though
DNVNC neurons can receive sensory input in very few hops, they also receive the most processed
information in the brain via longer paths. We observed multiple parallel pathways from each sensory
modality to DNs (Fig. S12A, B). However, we also found extensive connectivity between neurons within
these parallel pathways, suggesting they likely form a distributed processing network (Fig. S12C). We
found that a majority of pathways and the vast majority of individual neurons within paths were not unique
to a particular sensory modality and were instead shared by multiple modalities (Fig. S12D, E).

We found that different sensory modalities targeted different types of output neurons (Fig. S10C, D). For
example, gustatory and gut sensory signals targeted more DNsSEZ than DNsVNC, whereas other modalities
targeted more DNsVNC than DNsSEZ. This is consistent with the proposed role of SEZ motor neurons in
driving feeding behavior (66, 115) and VNC motor neurons in driving locomotion (42, 43, 116). Generally,
sensory pathways to DNsSEZ were shorter compared to pathways to DNsVNC. The majority of DNsSEZ were
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2nd-order (receiving direct inputs from SNs), whereas the majority of DNsVNC were 3rd-order. This raises
the possibility that general action selection may require more processing steps than feeding behavior.

Brain output neurons receive the same sensory input via multiple paths of different lengths
While characterizing the shortest paths from SNs to output neurons, we observed that output neurons
also receive sensory information via longer paths. We therefore wanted to systematically analyze both
short and long pathways without a bias towards shortest ones.

For this purpose, we developed a computational tool, the signal cascade, that propagates multihop
signals through the brain based on the numbers of connections between neurons at each hop (Fig. 4D;
see Methods). This tool captures all pathways with reasonably strong connections along their length and
not just the shortest ones. Signals can be started and terminated at pre-defined neurons to explore all
pathways that link them. We note that this algorithm makes no assumption about the excitatory or
inhibitory sign of connections, only about the likelihood of signal propagation from one neuron to the next.
Throughout this paper, we will use brain output neurons as end points unless otherwise mentioned. In
cascades started at SNs, we found that the signal generally reached DNsVNC in 3-6 hops and rarely more
than 8 hops, which we therefore considered the maximum depth of the brain. 5-hop pathways were
shown to be functional in the larva (specifically, MD class IV neurons to MB DANs (31)), but no studies
have yet functionally tested 6, 7, or 8-hop pathways. We therefore stop the cascades at either 8 or 5
hops, using 8-hops to not miss long paths and 5-hops to determine which aspects of architecture are
apparent with a pathway-length for which functional connectivity has been confirmed.

Using signal cascades, we identified all multihop pathways between SNs or ANs and output neurons (Fig.
4I). Individual sensory modalities had different median pathway depths to output neurons. Overall,
olfaction and gustation displayed the shortest pathways to output neurons, while the ascending
somatosensory modalities displayed the longest. This is even more striking, because somatosensory
ANs are already carrying processed sensory information and are themselves one- to three-hops removed
from SNs (29, 38).

We found that output neurons received sensory inputs from the same modality via multiple paths of
different lengths. For example, some paths from the same sensory modality reached DNsVNC in 2 hops,
while others displayed as many as 6 hops (Fig. 4I). This was also true on the single cell level, with the
vast majority of individual DNsVNC receiving multipath input. DNsVNC, on average, received input from at
least three distinct pathways of three different lengths from individual sensory modalities (Fig. 4J). When
DNsSEZ and RGNs received sensory input, it was also mostly multipath. Thus, convergence of shorter and
longer feedforward paths from individual sensory modalities onto single output neurons appears to be a
general architectural feature of the brain feedforward circuits, for all sensory modalities and for all output
neuron types.

More than half of all brain neurons integrate information from all sensory modalities
We next investigated the multimodal character of sensory circuits and the brain as a whole, while taking
into account both short and long pathways. We therefore started signal cascades at different sensory
modalities and assayed which sensory circuits (i.e, which 2nd, 3rd, 4th or 5th-order neurons as defined
based on shortest paths, from Fig. 4A) received these signals. For example, we assayed how much
signal from olfactory SNs traveled to all other sensory circuits (Fig. 4E) and found it is integrated by some
2nd-order and most 3rd-order neurons of distinct sensory modalities.
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Fig. 4: Multimodal sensory integration across the brain. (A) Morphology of brain sensory circuits, identified using multihop
a-d connectivity from SNs or ANs. (B) Neuron similarity across sensory circuits using the Dice Coefficient. Most 2nd-order
neurons were distinct between modalities, while 3rd-order neurons were more similar and 4th-order neurons displayed
widespread similarity. (C) Cell classes in each sensory circuit. Note that row identities are not mutually exclusive. (D) Schematic
of a multihop signal cascade, which probabilistically propagates signal from a user-defined source and endpoint using synaptic
weights between neurons along the path. Multiple iterations are performed to determine how many times cascades visit
particular neurons. Signal cascades were based on a-d connectivity throughout this study. (E) Signal was assessed in all
sensory circuits after running cascades from olfactory SNs to output neurons (1000 independently run cascades, see Methods
for normalization details). Olfactory signal traveled robustly to all 3rd-order neuron types and to some 2nd-order neurons. (F)
Signal cascades from each sensory modality (rows) to all sensory circuit layers (columns). Multimodal integration is widespread
in 3rd-, 4th-, and 5th-order neurons. 4th- and 5th-order neurons were not divided by modality due to extensive overlap of their
members across modalities. The first row displays the same data from (E). (G) Combinations of sensory integration at the
single-cell level (UpSet plot). Neurons were considered to receive sensory input when visited in most cascade iterations. The
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majority of brain neurons integrate from all sensory types, but a few neurons integrated from only one sensory modality (labeled
line) or from a particular combination of modalities. This analysis was performed on fully differentiated neurons in the brain (2412
neurons). 315 neurons did not receive an over-threshold signal; many of these neurons displayed dendrites in the SEZ and
therefore received weak signal from brain neurons. (H) The distance from sensory input in labeled line or integrative cells from
(G) was quantified. Labeled line neurons were generally very close to the sensory periphery, while integrative cells were deeper
in the brain. (I) Signal cascades from sensory modalities to brain outputs (row normalized), including distribution of hops from
sensory to output. The median sensory to DNVNC path lengths were between 4-6 hops, with a maximum value of 8 hops; we
consider this the maximum brain depth. (J) Number of pathways of different lengths from individual sensory modalities to
individual output neurons. Only pathways contributing substantial cascade signal per hop were considered (>0.1 multihop
signal). Individual sensory modalities sent multihop signal to output neuron types through pathways of multiple different lengths.
Note that not all DNsSEZ and RGNs received signal from each sensory modality (thus the peaks at 0).

To assess global sensory integration, cascades were initiated from each sensory modality and signal
assayed at all sensory circuits (Fig. 4F). 2nd-order neurons displayed some multimodal mixing, while 3rd,
4th, and 5th-order neurons received robust input from many sensory modalities, suggesting most brain
regions are multimodal. Many modalities converged at the earliest stages of sensory processing on
2nd-order PNs (Fig. 4F). Strikingly, only 35% of 2nd-order neurons were unimodal. However, this varied
by sensory modality; for example, 100% of thermo-cold and 92% of visual 2nd-order neurons were
unimodal, in contrast to 36% of olfactory and 6% of proprioceptive 2nd-order neurons. Only 4% of
3rd-order and no 4th- or 5th-order neurons were unimodal. Consistent with these findings, we observed
direct connectivity between different sensory circuit types (Fig. S10B), providing avenues for multimodal
mixing.

We next investigated multimodal integration for each brain neuron, independent of its location in sensory
circuits. We started signal cascades from each sensory modality and reported the combinations of
sensory input each neuron received (Fig. 4G, Fig. S10C). We found that a small minority of neurons
(12%) received signal from only one modality, so-called labeled line neurons, while a majority of neurons
were integrative (88%), receiving signal from multiple modalities. Surprisingly, the majority of neurons
integrated information from all sensory modalities (62% of neurons). Most labeled line neurons were
close to the sensory periphery (Fig. 4H). Based on these data, we postulate that true labeled line
pathways are rare and, without comprehensive connectivity data, may only appear as such in a particular
experimental context.

We also quantified sensory integration at the level of brain output neurons. We found that different output
types displayed different patterns of integration (Fig. S10D, E). Most DNsVNC integrated signal from all
sensory modalities (80%), with only a few labeled line DNsVNC (2%). DNsSEZ and RGNs were more often
labeled line (26% and 7%, respectively). These findings are consistent with previous publications
demonstrating that larval feeding circuits utilize DNsSEZ and RGNs (47, 49, 65, 66) that are close to the
sensory periphery.

Finally, we analyzed sensory integration in MB DANs. DANs have been implicated in learning, motivation,
and action-selection across the animal kingdom (117–120) and understanding the type of sensory
information they receive is essential for understanding their function. DANs are known to receive a-d
input from sensory systems that sense rewards and punishments (31, 121–123), but the extent to which
they receive input from other modalities was less clear. Interestingly, we found that all DANs integrated
input from all sensory modalities, including from those that normally sense conditioned stimuli in learning
tasks (e.g. olfactory) and from proprioceptive neurons (Fig. S20A). In contrast to the DANs, other MB
modulatory neurons, namely octopaminergic neurons (OANs) and MBINs with unknown neurotransmitter,
were not as integrative: only 33% of OANs and 60% of other MBINs integrated all modalities. In
summary, a comprehensive view of all sensory inputs into DANs revealed that they receive multi-hop
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input from all sensory modalities, suggesting that multimodal integration may be important for computing
teaching signals that drive learning.

Identification of multihop signal cascade hubs
Our analysis of multihop pathways suggests that signal propagation is not all-to-all, despite extensive
multimodal integration. For example, some neurons do not receive signal from certain sensory modalities
(even with 8-hop cascades). To systematically explore the extent to which signal from any neuron
reaches other brain neurons, we initiated cascades from each homologous pair and asked what fraction
of neurons is reached by their signal within 5- or 8-hops (Fig. S13A). On average, signal from any pair of
SNs reached only 13% (± 20% SD) and 31% (± 30% SD) of brain neurons within 5- and 8-hops,
respectively. Similarly, signal from any pair of brain neurons reached 16% (± 15% SD) and 41% (± 25%
SD) of other neurons within 5- and 8-hops, respectively.

We wondered whether there are neurons whose signal reaches a greater fraction of neurons than others.
We quantified the polysynaptic in- and out-degree of individual neurons, i.e. the number of upstream and
downstream partners connected by 5-hop cascades. We identified cascade hubs (Fig. S13B-D) using the
same definition as for direct-connectivity hubs (Fig. 3E), namely all neurons with more polysynaptic
partners than the network mean plus 1.5 SD. We found many cascade in- (480 neurons) and out- (122
neurons) hubs, but only a single pair of in-out hubs. Cascade in-hubs received input from 59% (± 9% SD)
of the brain, cascade out-hubs output to 46% (± 4% SD) of the brain, and the cascade in-out hub received
from 46% and output to 49% of the brain. There was a fair amount of overlap between cascade and
direct-connectivity hubs: 56% of direct-connectivity hubs were also cascade hubs (73% of in-hubs, 23%
of out-hubs, Fig. S13C). Cascade out-hubs were either part of the sensory periphery (PNs, LNs) or
learning/memory center (KCs, MBONs), while cascade in-hubs belonged to a variety of cell types (Fig.
S13D), including MB-FBNs, CNs, pre-DNVNC, and DNsVNC, MBINs, and MBONs. Interestingly, the only
cascade in-out hub was CSD, a serotonergic neuron (124, 125), thought to single-handedly regulate
hunger-based internal state (126).

Identification of all ipsilateral, bilateral, and contralateral neurons
A fundamental property of brains is their bilateral symmetry, i.e. the presence of two hemispheres. To
better understand how the brain hemispheres interact, we identified all neurons that engaged in
interhemispheric communication via contralateral edges (Fig. 5A, B) and categorized them based on their
axonal and dendritic projections.

We found three major populations of neurons based on their axonal projections: neurons with ipsilateral
(60%), bilateral (24%), or contralateral (16%) axons (Fig. 5C). We found that the vast majority (98%) of
neurons displayed ipsilateral dendrites (Fig. S14). A small set of neurons (1%) had contralateral dendrites
as well as contralateral axons (Fig. S14C), such that their cell body and neurites were located in the
opposite hemispheres. Interestingly, a small population of neurons (1%) had bilateral dendrites that
extend into both hemispheres with either ipsilateral, bilateral or contralateral axons. These neurons were
only observed in the learning center (MBONs) and brain output network (pre-DNsVNC, DNsVNC, DNsSEZ)
(Fig. S15). Neurons with bilateral dendrites are well suited for integrating sensory drive from both
hemispheres to promote non-lateralized behaviors, such as backwards crawling as observed in the
MDNs, which display bilateral dendrites (42).

Some neurons with bilateral axons target distinct partners in the two hemispheres
Neurons with bilateral axons output to both hemispheres, but do they communicate with homologous
postsynaptic partners in both hemispheres? To answer this question, we calculated the cosine similarity
between postsynaptic partners of individual bilaterally projecting neurons in the left and right hemispheres
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(Fig. 5D, left). We found that most bilateral neurons generally connected to homologous partners in both
hemispheres, i.e. had high partner similarity scores, but there were some neurons that had low scores.
We binned these neurons into three categories based on their partner similarity scores and analyzed their
downstream partners further (Fig. 5D, right; Fig. S16).

Strikingly, we found 7 pairs of bilateral neurons with completely different postsynaptic partners on the ipsi-
and contralateral brain hemispheres, and 13 pairs of bilateral neurons with mostly non-overlapping sets
of ipsi- and contralateral postsynaptic partners (Fig. S16). All of these neurons had unilateral dendrites.
Most asymmetric bilateral neurons synapsed onto pre-DNs or DNs in only one hemisphere, but not the
other, or onto different DNs or pre-DNs across the two hemispheres. It is interesting to speculate that
these neurons could be involved in controlling asymmetric motor patterns that require activation of
different subsets of muscles on the left and right side of the body. Indeed, several DNs that receive input
from asymmetric bilateral neurons (Fig. S16C) have presynaptic sites in thoracic and early abdominal
segments, perhaps indicating a role in turning (127–129).

Reciprocal contralateral loops
To better understand information flow between brain hemispheres, we asked how ipsilateral, bilateral,
and contralateral neurons communicate with each other and calculated their connection probability (Fig.
5E). We found that ipsilateral neurons synapsed approximately equally onto ipsilateral, bilateral and
contralateral neurons in the ipsilateral hemisphere. Bilateral neurons had a slight preference for bilateral
and contralateral neurons in both hemispheres. Surprisingly, contralateral neurons displayed a striking
preference for other contralateral neurons, both in terms of input and output. Individual contralateral
neurons directly synapsed onto 3.4 other contralateral neurons on average (34% of their downstream
partners), compared to ipsilateral neurons, which only synapsed onto 1.5 contralateral neurons on
average (15% of their downstream partners).

Given the striking preference of contralateral neurons for each other and the fact that each contralateral
neuron has a homolog in the opposite hemisphere, we wondered whether homologous left-right
contralateral neuron pairs tended to directly synapse onto each other. To test this, we calculated the
connection probability between homologous neuron pairs compared to non-homologous neurons. We
found the connection probability onto a homologous contralateral partner was much higher than onto a
non-homologous neuron (Fig. 5F). We identified 24 neuron pairs that engage in homologous pair loops
(10% of contralateral and 2% of bilateral neurons; Fig. S17). More than half were pre-DNsVNC or DNsVNC;
a third were postsynaptic of the learning center outputs (MBONs) and/or provided feedback onto the MB
DANs (Fig. S18). Many pair loops interacted amongst themselves, forming double loops or super loops
between pair loops (Fig. S18B). Double loops and super loops occured between neuron pairs with
relatively similar morphology and/or connectivity. One super loop involved four neurons downstream of
the in-out hub, MBON-m1, that integrates input from other MBONs and from the LH (92) and computes
predicted values of stimuli. This super-loop output onto pre-DNsVNC and indirectly sent feedback onto MB
DANs via MB-FBNs (Fig. S18C). The other super loop involved five neurons that output onto DNsVNC.
Thus, the reciprocal pair loops, double and super loops appear to be prevalent in brain areas that
potentially play a role in action-selection (downstream of MBONs and upstream of DNsVNC) and learning
(upstream of MB DANs). Indeed, reciprocal connectivity and interhemispheric communication has been
implicated in action selection (29, 130) and working memory (131–133) in a variety of organisms.
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Fig. 5: Characterization of interhemispheric communication by bilateral and contralateral neurons.
(A) Adjacency matrix depicting connectivity between left and right brain hemispheres, sorted within each hemisphere by the
cluster structure (Fig. 3A, Fig. S7D). Blue edges indicate ipsilateral connections, green edges indicate contralateral connections.
(B) Fraction of contralateral a-d presynaptic sites per neuron. The trimodal distribution corresponded to ipsilateral, bilateral, and
contralateral axon neuron types. (C) Morphology of ipsilateral, bilateral, and contralateral axon neurons with a-d synaptic
distribution (right-side neurons displayed so that contralateral arbors can be seen). Most dendrites were ipsilateral, but there
were some rare neurons with bilateral or contralateral dendrites (Fig. S14C). (D) Most individual bilateral axon neurons synapsed
onto homologous neurons in the left/right hemispheres, as indicated by high cosine similarity of their a-d connectivity to
ipsilateral and contralateral downstream partners (left). A bilateral axon neuron received a cosine similarity score of 1 if it
synapsed onto homologous neuron pairs in both hemispheres. A score of 0 indicates that none of its ipsi- and contralateral
partners are homologous pairs. A minority of bilaterals communicated with different left- and right-hemisphere neurons. Three
bins of cosine similarity values and the cell type memberships of the downstream partners are displayed (right). (E) Connection
probability between left and right cell types using a-d edges. Bilateral neurons were equally likely to connect to each hemisphere,
but with a bias towards bilateral or contralateral axon neurons. Contralateral axon neurons displayed a preference to synapse
onto other contralateral neurons in the opposite hemisphere. (F) Interhemispheric reciprocal loops. Neurons with contralaterally
projecting axons tended to form reciprocal a-d connections between left and right homologous pairs, in contrast to the low
probability of forming loops with non-homologous neurons. The cell classes involved in pair loops are reported on the right. (G)
Quantification of sensory signal lateralization per cell class. Signal cascades were generated from left- or right-side SNs
independently; neurons were considered to receive signal if they were visited in more than half of simulated cascades. All
neurons that received signal from both hemispheres were classified as integrative (blue), while those that received signal from
only one hemisphere were classified as lateralized (orange). (H) Interhemispheric crossings were observed in a majority of a-d
pathways through the brain (SNs to DNs). (I) Interhemispheric crossings in ipsilateral and contralateral a-d pathways. Ipsilateral
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pathways were defined as starting and ending in the same hemisphere, regardless of any interhemispheric crossings in
between. Contralateral pathways started and ended on opposite hemispheres. Most ipsilateral paths contained interhemispheric
crossings, while most contralateral paths displayed only one crossing. (J) Signal cascades were generated from left/right SNs
simultaneously and total signal was assayed in DNVNC output neurons. Deletion of random sets of contralateral edges resulted in
a decrease in total a-d signal to DNsVNC (left) and a reduction in the number of DNsVNC that received signal at all (right). Metrics
are normalized to results from the unmanipulated control graph.

Interhemispheric integration occurs across most of the brain
Our finding that 37% of brain neurons have contra- or bilateral axons suggests that the two hemispheres
are heavily interconnected and their information could be integrated at many sites. To systematically
investigate where interhemispheric convergence occurs, we generated signal cascades from either left-
or right-side SNs and observed the resulting signal propagation through both brain hemispheres (Fig.
S19A-C). We found that signal crossed to the opposite hemisphere within 2 hops and was robustly found
in both hemispheres by 3 hops (Fig. S19A). We assessed simultaneous overlap between left- and
right-side sensory signals to find interhemispheric integration sites. The cell types of all integrative
ipsilateral, bilateral, and contralateral types were identified (Fig. S19B).

Next, we investigated the lateralization status of single cells across the brain (whether they integrate
signals from only one or both hemispheres). We quantified the lateralization of each neuron based on the
ratio of left and right signal they received via signal cascades (Fig. S19C). We found that a majority of the
brain (81%) integrated signals from both left- and right-side SNs, while a minority (19%) received only
same-side lateralized signal from their own hemisphere. We found very similar results using 5-hop
cascades: 79% of neurons integrated signal from left and right-side SNs and 21% received only signal
from their own hemisphere. When plotted on a per cell type basis (Fig. 5G), it became clear that most
PNs were lateralized, suggesting that interhemispheric mixing primarily occurs in higher-order processing
centers. A large fraction of DNsSEZ also received lateralized input, while the vast majority of DNsVNC did
not (Fig. 5G). This is consistent with previous work suggesting that the SEZ may be involved in
lateralized behavior, such as orientation events/turning (134).

Interhemispheric crossings increase the number of pathways through the brain
Interhemispheric communication may increase the processing potential of the brain by opening up a
larger pool of computational nodes and pathways. To test this hypothesis, we generated a
comprehensive list of multihop pathways from brain input to output neurons (maximum 6 hops for
computational expedience, using ≥1% input threshold). We quantified whether these pathways ended in
the same hemisphere that they started in or whether they crossed between hemispheres. We found that
75% of pathways crossed between hemispheres at least once (Fig. 5H). More than 50% of pathways
began and ended in the same hemisphere (but they may have crossed and crossed back). 25% of paths
never crossed. We characterized the distribution of interhemispheric crossings for all sensory-to-output
pathways and found that multiple interhemispheric crossings were surprisingly common (Fig. 5I). The
majority of ipsilaterally-ending pathways engaged in multiple crossings (median of 2 crossings), while
most contralaterally-ending pathways only crossed hemispheres once (although a large minority crossed
3 times).

We investigated the extent to which contralateral or ipsilateral edges were important for signal
propagation from sensory to output neurons. We removed either ipsilateral or contralateral edges, ran
signal cascades from both left- and right-side SNs simultaneously, and quantified how much signal
reached brain output neurons. We found that excision of contralateral edges reduced the total amount of
signal that reached DNsVNC, as well as the number of individual DNsVNC that received strong sensory
signal (Fig. 5J). Removing contralateral edges had a stronger effect than a similar ipsilateral edge
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removal. In contrast, removal of contralateral edges did not reduce signal to DNsSEZ more than ipsilateral
edge excision and ipsilateral edges seemed to play a bigger role for RGNs (Fig. S19D). Contralateral and
ipsilateral edges were equally important to transmit signal to interneurons generally, other than DNsVNC

(Fig. S19D). Thus, contralateral paths may be bottlenecks for information flow from SNs to DNsVNC.
Consistent with this idea, we found that 67% of a-d in- and in-out hubs (Fig. S7A) had either contra- or
bilateral axons (19% of contralateral and 19% of bilateral neurons were in or in-out hubs).

We also compared how ipsilateral and contralateral edges connect cell types in the brain. We found that
while patterns of connectivity appeared similar (Fig. S19E, F), sometimes contralateral edges provided
categorically new types of connectivity (Fig. S19G).

Overall, contralateral edges increase the number of pathways through the brain, help transmit signal to
DNsVNC, and provide new cell-cell connectivity not observed in the ipsilateral networks of each
hemisphere. We speculate that the increased number of pathways provided by interhemispheric
crossings could increase the processing power of the brain, by increasing the depth of the neural network
and providing more steps of information processing.

Analysis of brainwide pathways reveals a nested recurrent architecture
The dominant synaptic network of the brain comprised a-d connections (Fig. 2C), many of which provide
feedforward signal from sensory to output systems (Fig. 2F). However, recurrence is an important feature
of brain circuits (31, 135–137) and can improve computational power in artificial neural nets (138). We
therefore characterized the reverse signal in the a-d network, from output neurons back towards the
sensory periphery. To do this, we generated independent signal cascades starting at each level-7 brain
cluster (Fig. 3A). Because these clusters were sorted from brain inputs to outputs, we could track the
extent to which signals propagated up or down this brain structure to other clusters. We kept these
cascades short (ending after 2 hops) to initially limit our analysis to the shorter paths of reverse signal
and identify its lower bound. Cascade signal that traveled up the brain cluster structure towards the
sensory periphery was considered backward, while the signal that traveled down the cluster structure
towards the output neurons was considered forward (Fig. 6A). We found that robust forward and
backward signal originated from nearly all brain clusters (Fig. 6B). We found that deeper brain clusters
(closer to brain outputs) received mostly forward signal, while shallower clusters (closer to sensory
periphery) received a mixture of forward and backward signal (Fig. 6C). Most brain clusters provided
forward and backward signal to multiple other clusters simultaneously; this was observed even for single
neurons within each cluster (Fig. 6D).

We wondered to what extent individual neurons provide feedback to their own upstream partners, thereby
forming recurrent loops. We therefore used multihop signal cascades from individual neurons to identify
their direct and indirect downstream partners throughout the brain (up to 5 hops). We then determined
which of these downstream partners sent recurrent signal back to the source neuron. When analyzing the
whole brain in this way, we found 41% of brain neurons were recurrent, i.e. sent signal back to at least
one of their upstream partners (Fig. 6E). Furthermore, downstream neurons often sent recurrent signal to
upstream neurons using paths of multiple different lengths (Fig. 6F). On average, recurrent
communication between a single downstream neuron and its upstream partner used polysynaptic paths
of multiple different lengths (on average 1.9 ± 0.9 SD). Such a nested architecture with multi-stage
recurrent processing has been suggested as a model for the visual cortex (138) and may explain how
shallow architectures observed in biology (here, up 8-hops from sensory to brain outputs) can compete
with the ultra deep networks often used in machine learning (up to a thousand layers (139)).
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Fig. 6: Comprehensive feedforward and feedback pathways through the brain.
(A) Schematic of signal cascades starting from each cluster. Forward signals travel up the cluster sorting towards SNs; backward
signals travel down the cluster sorting towards DNs. (B) Signal cascades originating at each level-7 cluster (along the diagonal)
travel in both forward (above the diagonal) and backward (below the diagonal). Signal cascades were based on a-d connectivity
and contained 2-hops maximum to restrict analysis initially to the lower bound of backward signal. (C) Quantification of forward
and backward signal per cluster (along the x-axis), including cascade output signal (top) and cascade input signal (bottom). (D)
The number of clusters or single cells that received cascade forward or backward signals from clusters or single cells within
clusters, respectively. For the cluster to cluster analysis, non-negligible forward or backward signal (>0.05) was used. For the
single cell analysis, the usual cascade threshold was used (receiving signal from a majority of cascade iterations). (E)
Recurrence in brain neurons. Polysynaptic downstream partners of each brain neuron were identified with a-d cascades (up to 5
hops). Recurrent partners sent multihop signal back to the source neuron, forming a recurrent loop (left). 41% of brain neurons
engaged in at least one such recurrent loop (right). (F) Quantification of recurrent pathways of different length between individual
neurons. We found that recurrent signals usually utilized multiple pathways of different lengths. (G) Recurrence was quantified
for each cell class. To do this, we quantified the fraction of individual neurons’ downstream partners that were recurrent for each
cell type, indicating how many recurrent loops each neuron was involved in. On the right, a schematic of the most recurrent cell
types in the brain and their relation to conditioned stimulus (CS) and unconditioned stimulus (US) during associative learning.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.516756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.516756
http://creativecommons.org/licenses/by/4.0/


Note, the MBIN category was split into OANs (octopaminergic neurons) and DAN/MBIN (dopaminergic neurons and MBINs of
unknown neurotransmitter), as they displayed different distributions of recurrence. (H) Characterization of cells receiving
feedback or parallel efference copy signal from DNsVNC or DNsSEZ in 1- or 2-hops. Feedback was defined as a backward
connection from a specific output neuron onto a neuron in its own feedforward pathway. Parallel efference copy signals output
onto neurons in pathways unrelated to the source output neuron. All connectivity reported here is a-d. (I) Schematic of the
Drosophila larva (i) and how this topology corresponds to different body segments (ii), involved in a diverse set of behaviors (iii).
Because the axons of brain output DNsVNC were reconstructed, axonal outputs to different VNC segments could be quantified
(Fig. S22). (J) Each row represents an individual DNVNC pair with its associated upstream and downstream a-d connectivity in the
brain and its projections to the rest of the CNS. Upstream and downstream partner plots (i, iii) depict the fraction of cell types
1-hop and 2-hops from each DNVNC (color legend, bottom). The projectome plot (ii) reports the number of DNVNC presynaptic sites
in each CNS region. Candidate behaviors are suggested based on known behaviors described in (H, iii). **one DNVNC pair has no
strong 2nd-order partners in the brain. (K) Schematic of common feedforward and efference copy a-d pathways observed in the
brain with a focus on DNVNC connectivity.

Input and output neurons of the learning center are among the most recurrent in the brain
We next analyzed which brain cell classes were the most recurrent (Fig. 6G, Fig. S20B). We define
recurrence for individual neurons as the fraction of their polysynaptic downstream partners (using
cascades of up to 5-hops) that sent signal back to that source neuron (also using 5-hop cascades) with
a-d connections. Therefore, neurons with high and low recurrence scores are engaged in many and few
recurrent loops, respectively.

We observed that the fraction of recurrent partners varied widely between distinct neuron classes (Fig.
6G). PNs and the intrinsic neurons of the learning center (KCs) had virtually no recurrent partners (on
average, 1.2% and 0.1%, respectively). Interestingly, other neurons associated with the learning center
were amongst the most recurrent in the brain: DANs (57%), the modulatory neurons that drive learning;
MB-FBNs (51%), presynaptic to DANs and implicated in computing predicted value and regulating
learning (31, 34); MBONs (45%), the outputs of the learning center and presynaptic to MB-FBNs; and
CNs (42%), presynaptic to both MBONs and LHNs, which integrate learnt and innate signals (92) (Fig.
6G, Fig. S20B). Together, these four sets of neurons implicated in learning (25, 31) and in memory-based
action-selection (34) form a set of interconnected recurrent loops (Fig. 6G, Fig. S20C). It will be
interesting to determine what role this extensive recurrent architecture plays in distinct types of learning
tasks.

Descending neurons provide efference copy to learning center dopaminergic neurons
Many deep brain clusters far from the sensory periphery (Fig. 6C), including many DNs, provided
backward signal to many brain neurons. We found that the axons of some DNsVNC (37%) and most
DNsSEZ (66%) synapsed onto other brain neurons before descending to the VNC and SEZ, thus providing
putative efference copy signals (i.e. copies of motor commands (140, 141)). Single DNs broadcasted
signal to neurons that were directly or indirectly upstream of themselves (feedback signal) or onto parallel
pathways, namely neurons upstream of other output neurons (parallel efference copy signal; Fig. 6H).
DNs synapsed onto many different brain neurons (Fig. 6H), including 130 postsynaptic partners and 588
partners 2-hops downstream of DNsVNC and 320 postsynaptic partners and 1284 partners 2-hops
downstream of DNsSEZ. Of those DNs that synapsed onto brain neurons, we found that individual DNsVNC

synapsed on average onto 6 postsynaptic neurons and indirectly (via 2-hops) onto 43 neurons. Individual
DNsSEZ synapsed on average onto 8 neurons directly and onto 79 neurons in 2 hops.

We investigated the cell type identities of brain neurons receiving DNSEZ and DNVNC input (Fig. 6H). The
most prominent DNSEZ targets werePNs (including direct connections to an olfactory uniglomular PN [uPN
67b], 5 pairs of multi-glomerular PNs, 24 pairs of gustatory PNs) and pre-DNVNC neurons. This suggests
that DNsSEZ might modulate upstream sensory processing, as well as locomotor commands that are sent

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.516756doi: bioRxiv preprint 

https://paperpile.com/c/JqEo5x/TFv4+Oout
https://paperpile.com/c/JqEo5x/W5Ud
https://paperpile.com/c/JqEo5x/3nBg+TFv4
https://paperpile.com/c/JqEo5x/Oout
https://paperpile.com/c/JqEo5x/t7sP+uguC
https://doi.org/10.1101/2022.11.28.516756
http://creativecommons.org/licenses/by/4.0/


to the VNC. The most prominent DNsVNC targets were pre-DNVNC neurons and MB-related neurons that
are thought to play a role in memory-based action-selection (CNs (34)) and in driving learning: MBINs
(mostly dopaminergic, DANs) and FBNs that integrate MBON input and feed it back onto the MBINs (31)
(Fig. 6H). DNsVNC also synapsed onto a few PNs (2 nociceptive and 2 gut/mechanosensory PN pairs) and
4 pairs of MB-FFNs (which carry sensory signal to DANs and OANs) (Fig. 6H), suggesting that ongoing
locomotor commands could potentially modulate early stages of sensory processing as has been
previously described (140, 142).

Signal cascades revealed that all DANs and most of their upstream MB-FBNs (90%) receive feedback
signal from DNsVNC (Fig. S21A-D), forming larger recurrent loops. DANs even received direct or 2-hop
input from DNsVNC. DNsVNC also sent robust feedback to MB-FBNs, that are presynaptic to MBINs/DANs
(Fig. S21C). Because DNsVNC are often directly or indirectly downstream of MBONs and thought to
control locomotor behavioral output (42, 134, 143, 144), feedback connections from DNsVNC to the MB
may be important for evaluation of behavioral responses and comparing them with actual outcomes to
compute error signals that could drive learning (145, 146).

Brain - nerve cord projectome provides a basis to study how the brain controls actions
Our EM volume contains the complete CNS (brain, SEZ and nerve cord), allowing us to assess
communication between the brain and the rest of the CNS. Because the majority of motor neurons (MNs)
are located in the VNC, understanding brain-nerve cord communication is essential to understanding how
behavior is generated. Towards this goal, we reconstructed axons of brain DNs that send feedforward
signal outside of the brain. We divided the CNS into 13 regions based on stereotyped landmarks(147),
including all VNC segments, and determined how many DN presynaptic sites were located in each CNS
region (Fig. 6I-i, Fig. S22). This resulted in a brain-VNC projectome directly linked to the connectome.
Each VNC segment contains MNs, which innervate muscles in stereotyped positions throughout the body
(Fig. 6I-ii). Previous studies have identified body segments involved in specific behaviors (Fig. 6I-iii), such
as forward and backward locomotion (20, 127, 148, 149), turning (127–129), hunch (29, 150), speed
modulation (151), and head movement (152, 153). Using this information and the projectome, one can
generate hypotheses about which DNVNC might control which behavior.

Using this linked projectome-connectome data, we generated an overview plot that displays, for each
DNVNC, i) its upstream partners; ii) the location of its outputs throughout the CNS, and iii) all its
downstream partners in the brain (Fig. 6J). We annotated the projectome plot with candidate behaviors
that each DNVNC might produce (Fig. 6J-ii). Using this data, we grouped DNsVNC based on proposed roles
in behavior and examined the pre- and postsynaptic partners of each group (Fig. S23B-C). We found that
DNsVNC that may play a role in aversive behaviors (turn, backup, and hunch/head movement) received
input from a higher fraction of innate center neurons (LHNs). Meanwhile, DNsVNC that may play a role in
appetitive behavior (forward crawl) received input from a higher fraction of learning center output neurons
(MBONs). Some members of both types of DNVNC sent feedback to the MB, with direct connections to
MB-FFNs and DANs/MBINs (Fig. S23C). These findings suggest that direct paths from the innate center
may be more important for aversive behavior, which could require a faster response time (107, 154). It
should be noted that despite these differences, the primary pre- and postsynaptic partners for all DNsVNC

were pre-DNVNC neurons (Fig. S23A), regardless of proposed role in behavior.

As mentioned earlier, multiple feedforward pathways of different kinds and different lengths converged
onto DNsVNC (Fig. 6K). There were many short paths via PNs directly onto DNsVNC, longer paths through
the LH, and even longer ones through the MB. Specifically, 19% and 65% of DNsVNC received direct
one-hop input from PNs, respectively. 11% and 66% received both direct and one-hop input, respectively,
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from both PNs and LHNs. A few DNsVNC received direct or one-hop input only from innate pathways
(14%) or only from learning pathways (3%). However, the majority of DNsVNC (80%) received direct or
one-hop input both from neurons that encode innate (PNs and LHNs) and learnt valences (MBONs, CNs,
MB-FBNs). This suggests that learnt and innate pathways converge at multiple levels in the brain: at the
CNs that are directly downstream of LH and MB (92, 155, 156), and again at the DNsVNC. Such a
multilevel convergence architecture that allows representations of distinct valences to be mixed at
multiple levels may generate high-dimensional neural representations that enable more complex
input-output relationships and offer better discrimination (38, 157).

Most descending neurons target pre- and pre-premotor neurons in the nerve cord
The brain projectome reveals which segments DNsVNC project to, but not the way in which the brain
communicates with the VNC circuitry in each segment. To address this question, we analyzed how the
brain communicates with the most completely reconstructed VNC segment (A1), in which all motor (44)
and many sensory circuits (29, 38) have been reconstructed. We identified A1 ascending neurons to the
brain (Fig. S2) and therefore have all links from the brain to the A1 (DNsVNC) and from A1 to the brain
(ANsA1, Fig. 7A).

First, we characterized the motor and sensory layering in the A1 segment to determine where DNsVNC

input onto this structure (Fig. 7A-C). To do this, we quantified how many hops upstream of MNs (for motor
layering, Fig. 7B) or downstream of SNs (for sensory layering) each A1 interneuron was (Fig. 7C).
232/342 A1 interneurons (68%) had direct or indirect connections to MNs, whereas 110 (32%) did not. Of
those that did, most (198 neurons, 85%) were either directly or 2-hops upstream of MNs, indicating A1
motor circuits are relatively shallow (Fig. 7B). Premotor and pre-premotor neurons were the most
prominent DNVNC-A1 targets (Fig. 7B). Out of the 42 DNsVNC inputting to A1 (DNsVNC-A1), 30 (71%) synapsed
onto pre- or pre-premotor neurons (Fig. 7B). 2 DNsVNC-A1 (1 pair, 5%) synapsed onto an MN, while 10
DNsVNC-A1 (24%) synapsed onto sensory, rather than motor circuit neurons (directly or indirectly
downstream of A1 SNs, Fig. 7C).

Interestingly, we found that individual DNsVNC synapsed onto relatively few A1 interneurons, with 1.9 (±
1.4 SD) neurons downstream of each DNVNC and only 48/342 A1 neurons (only 14%) downstream of all
DNsVNC. Similarly, only a small fraction of premotor (14 neurons, 12%) and their upstream pre-premotor
neurons (14 neurons, 17%) were direct targets of DNsVNC. Many (71%) of these pre- and pre-premotor
DNVNC targets also received direct or indirect A1 sensory input, sometimes from multiple modalities.
Finally, we also identified hub neurons in A1 (with ≥10 up- or downstream partners based on A1 network
mean plus 1.5 SD) and asked whether DNVNC targeted these hubs. Indeed, DNVNC targeted two hubs,
namely A03o (in-hub) and A18b (out-hub).

Premotor neurons have been shown to act combinatorially and flexibly in multiple behaviors (44). We
found that DNsVNC targeted a small fraction of pre- and pre-premotor neurons, including a couple of hubs,
suggesting these DNsVNC targets could play a key role in pushing the combinatorial dynamics of premotor
circuits towards particular behaviors.
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Fig. 7: Investigation of brain-nerve cord interactions revealed direct connectivity between ascending and descending
neurons. (A) Schematic of avenues of interaction between the brain and VNC, namely DNsVNC (red edges) and ANs (blue
edges). Analysis focuses on the A1 segment, which is currently the most comprehensively reconstructed VNC segment. (B)
Pre-motor neuron layers in A1. Layers are identified based on a pairwise 1% a-d input threshold (left). Number of interneurons
and ANs in each layer are reported (right). DNVNC targets refer to neurons in A1 that are postsynaptic to a DNVNC. (C) Schematic
of sensory layers in A1 (left). Total number of interneurons (green) and ANs (blue) are reported for each sensory layer and
location of DNVNC targets (red). (D) Connection probability (a-d) between DNsVNC and A1 cell types (left) and between ANsA1 and
brain output neurons (right). ANs did not synapse onto RGNs. (E) Quantification of a-d motifs involving DNsVNC and ANs in A1.
DNVNC-AN reciprocal loops were not observed, while DNVNC-AN-DNVNC zigzag motifs were observed. Simplest version of each
motif is depicted as a schematic (top), but motifs involving 3, 4, and 5 nodes were also assayed. These motifs were allowed to
contain additional A1 interneurons or pre-output neurons in the brain. (F) Visualization of all zigzag motifs observed. Each bar
represents the number of neurons in each cell type and lines represent paths originating and ending at individual cells in each
category. (G) A zigzag motif with previously characterized DNsVNC on either side. This motif starts at PDM-DN, whose acute
stimulation drives a stopping behavior, and ends at MDN, whose acute stimulation causes animals to back up. Stop-backup is a
common behavioral sequence observed in the Drosophila larva.

Some descending neurons target sensory circuits in the nerve cord
We found that the depth of sensory circuits was varied, with a depth of 3-hops (proprioceptive) to
7/8-hops (nociceptive and chordotonals) from SNs within A1 (Fig. 7C). DNsVNC mostly targeted 3rd or
4th-order SNs (2 or 3-hops downstream of SNs), many of which were also pre- or pre-premotor neurons
(31% and 39%, respectively). A notable exception were the proprioceptive circuits. DNs directly synapsed
onto several 2nd-order proprioceptive neurons (Fig. 7C). 50% of these were also pre- or pre-premotor
neurons. This result is in line with the importance of proprioception in motor control (158, 159) and
suggests that some behavioral and proprioceptive signals converge immediately downstream of
proprioceptive SNs.

We categorized DNsVNC into three types based on their direct downstream targets. The first group of
DNsVNC-A1 (10 neurons, 24%) preferentially targeted motor circuits, i.e. motor, premotor, or pre-premotor
neurons that were not part of A1 sensory circuits. These motor-targeting DNsVNC synapsed onto 8 A1
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neurons that had axonal outputs restricted to T3-A1 (3 pairs) or T3-A4 (1 pair). The second group of
DNsVNC-A1 (12 neurons, 29%) preferentially targeted sensory circuits, i.e. 2nd- or 3rd-order SNs that were
not part of A1 motor circuits. These sensory-targeting DNsVNC synapsed onto 12 A1 neurons, including
ANs (2 pairs), neurons restricted to A1/A2 (2 pairs), and long-range VNC neurons that output to either all
thoracic segments (1 pair) or most abdominal segments (A2-A7; 1 pair). These results suggest that
DNVNC modulation of post-sensory cells is propagated across the CNS, including back to the brain via
ANs, within A1 itself, and across nearly all VNC segments (T1-T3, A2-A7). This is in contrast to targets of
motor-DNsVNC that have more restricted output to T3-A4. The remaining DNsVNC-A1 (20 neurons, 48%)
targeted both premotor and 2nd-order SNs (Fig. S24), which displayed both broad and restricted
arborization patterns. In summary, our data suggests that some DNsVNC may play a bigger role in direct
control of motor output, while others may primarily modulate sensory processing in the nerve cord. Nearly
half of DNsVNC-A1 likely contribute to both activities.

Direct descending-ascending connectivity reveals novel brain-nerve cord zigzag motifs
To better understand reciprocal brain-nerve cord communication, we analyzed neurons upstream and
downstream of A1 ANs. Strikingly, we observed many instances of direct DNVNC→AN and AN→DNVNC

and AN→DNSEZ connectivity (but no AN→RGN, Fig. 7D, Fig. S25A). Specifically, 12 DNsVNC-A1 (30%)
synapsed onto 4 ANs in A1 (11%), while 24 ANs in A1 (57%) synapsed onto 22 DNsVNC (12%) and 12
DNsSEZ (7%) in the brain. To test if AN-DN and DN-AN connections were a general feature present in
other segments, we assayed connectivity between DNsVNC and all currently reconstructed ANs from all
VNC segments. Strikingly, individual DNsVNC received 3.6% (± 5.2% SD) of their input from ANs (1.3% of
which was from A1 ANs and 2.3% from other ANs), while DNsSEZ received 1.3 (± 3.0% SD) input from
ANs. It should be noted that this is an underestimate because most ANs have not yet been
reconstructed. Conversely, individual ANs across the VNC received 4.1 (± 9.7% SD) input from DNsVNC.
Overall, these results suggest that DNVNC-AN interactions may be a general feature of the CNS.

Interestingly, reciprocal loops between DNsVNC and ANs were never observed. Instead, we found zigzag
motifs, DNVNC

1 → AN → DNVNC, with different DNsVNC on each side (Fig. 7E, F). Similar zigzag motifs were
also observed involving DNsSEZ (Fig. S25B, C). We hypothesized that these motifs could encode behavior
sequences if the DNs promote specific actions and if the ANs provide some sort of feedback about the
action that has just been completed. For example, given the motif DNVNC

1 → AN → DNVNC
2, DNVNC

1 may
generate one behavior, which activates the AN both by the motor command and by proprioceptive
feedback, which in turn activates DNVNC

2 to generate a second behavior.

To test this hypothesis, we analyzed the sensory information carried by the two pairs of ANs in A1 that
participate in zigzags. We found that one pair was presynaptic to proprioceptive SNs, while the other was
highly multimodal and 2-hops downstream of most SNs (Fig. S24, see asterisks), including chordotonals,
which also play a role in proprioception (160). Next, we checked whether DNVNC

1 and DNVNC
2 in any of the

zigzag motifs drive behaviors in known behavioral sequences. Unfortunately, we only know the
behavioral roles of a small fraction of DNsVNC (because the driver lines for most have not yet been
generated). However, we did find one motif with known behavioral roles for both DNs (Fig. 7G). This motif
contained PDM-DN (DNVNC

1) and the MDNs (DNVNC
2), which promote stop (43) and backup (42),

respectively. Stop-backup is, indeed, a common behavioral sequence in the larva (30). Future studies will
be required to test this hypothesis further and determine the roles of the newly discovered brain-nerve
cord DN1-AN-DN2 zigzag motifs.
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Discussion
We present a synaptic-resolution connectivity map of the entire brain of the Drosophila larva and a
detailed analysis of brain structure, including connection types, neuron types, hubs, circuit motifs and
brain-nerve cord interactions. Each neuron was split into two compartments, axon and dendrite, resulting
in a rich multiplexed network with four connection types, facilitating hierarchical clustering and
investigation of signal transduction. To characterize long-range brainwide anatomical pathways, we
developed an algorithm that utilizes synapse numbers between neurons to generate and track
probabilistic signal propagation across multihop connections. Using this tool, we analyzed feedforward
(from sensory to output) and feedback pathways and cross-hemisphere interactions. We found extensive
multilevel multisensory integration and extensive interhemispheric communication. The brain had a highly
recurrent architecture with 41% of neurons participating in recurrent loops. We found that brain output
neurons broadcast their signal (presumably about motor commands) to a wide variety of upstream
neurons, including those very close to sensory periphery (2nd-order PNs) as well as DANs that drive
learning. Interestingly, the input and output neurons of the learning center were amongst the most
recurrent in the brain. Below, we discuss the potential significance of identified architectural features,
comparisons with other organisms, and parallels with machine learning architectures.

Different types of neuronal connections in the brain
We found that the connectome comprised four connection types: axo-dendritic (66.4%), axo-axonic
(26.4%), dendro-dendritic (5.4%), and dendro-axonic (1.8%). Axo-dendritic synapses made up the
majority of feedforward and feedback connectivity. Axo-axonic synapses tended to form reciprocal
connections between neurons, perhaps indicating reciprocal inhibition or gating of axonal output (84).
Axo-axonic connectivity has also been observed in the adult fly olfactory system (73), which may be
important for divisive normalization (85). While dendro-dendritic and dendro-axonic connections have
been previously observed in mammals(74, 77, 161), their prevalence in the brain has never been
investigated and their functional role is poorly understood. We found that a majority of dendro-axonic
connections were the inverse of an axo-dendritic connection, suggesting they may provide instantaneous
feedback onto the upstream axon for input regulation (69). We also observed multiplexed connections
between neurons, including up to all four types simultaneously. The most common multiplexed
connection, axo-dendritic with axo-axonic, may grant the presynaptic neuron post- and presynaptic
control of the downstream neuron, as has been observed in triad motifs in mammals(78). Overall, our
comprehensive analysis revealed non-canonical connectivity throughout the brain. Future experimental
studies are needed to elucidate their roles in neural computation.

Connectivity-based clustering reveals 90 distinct types of brain neurons
Neuron types in various organisms have been classified based on their function (28, 31, 90, 91, 162),
morphology (10, 89), gene expression (86–88), or combinations of features (10, 13, 93), such as
morphology and connectivity. While it is reasonable to expect that all these features are correlated, it is
still unclear which one is ideal for defining neuron types and how neuron types defined based on different
features correspond to each other. Here, we used synaptic connectivity alone to perform an unbiased
hierarchical clustering of all neurons and identified 90 types. We found that the morphology of neurons
within clusters was remarkably similar, even though clustering was based solely on connectivity and no
morphological data was used. Furthermore, neurons that had similar known functions in behavior were
usually found in the same or related clusters. Thus, clustering neurons based on synaptic connectivity
resulted in clusters that were internally consistent for other features, when those features were known.
However, many of the identified clusters contained previously uncharacterised neurons with unknown
physiology and function. The comprehensive atlas of neuron types and individual neurons generated by
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our reconstruction can be used in the future to guide the development of tools for their selective targeting
and characterizing their functional properties and patterns of gene expression.

Pathways from sensory to output neurons form a multilayered distributed network
Sensory information is thought to be processed both serially, through multiple successive processing
steps that extract progressively more complex features (163, 164), and in parallel, with different features
processed simultaneously in parallel pathways (165, 166). However, the exact architecture of sensory
circuits is not fully understood: how many processing steps from sensory inputs to brain outputs; how
many parallel pathways for each sensory modality; how much cross-communication between distinct
pathways of a single modality and between distinct modalities? The comprehensive nature of our
connectome enabled us to address these questions by systematically analyzing all multihop pathways
from all sensory modalities to brain output neurons. We observed multiple parallel pathways of varying
depths downstream of each modality, albeit with extensive interconnectivity between different pathways.
This architecture suggests that distinct features may not be processed independently, but that each
feature may potentially influence the computation of most other features in a distributed network.

We found that the shortest paths from sensory neurons to output neurons are surprisingly shallow. All
output neurons receive input from sensory neurons within a maximum of 3 hops. However, most output
neurons also received input from the same modality via multiple longer pathways. Thus, output neurons
receive both relatively direct, as well as highly processed sensory information, transformed at multiple
prior steps. Convergence of shorter and longer pathways onto command-like neurons has been
previously observed in the nerve cord (38, 44). The shorter pathways could potentially enable quicker
responses when sensory input is strong and unambiguous and may be evolutionarily older than the
longer pathways that enable more complex action-selection based on multisensory context and learning.
Consistent with this, in zebrafish, circuits regulating increasingly complex behaviors are layered on top of
pre-existing circuits for more basic responses that are built early in development (167).

Architectures with longer and shorter paths that skip layers have also been utilized in prominent machine
learning networks, including deep residual learning in ResNets (50) and DenseNets (168) and sequential
shortcuts in U-Net convolutional architectures (169). While the predictive accuracy of artificial neural nets
can be improved by simply increasing network depth (170), accuracy can saturate and degrade if too
many layers are added. Increasingly complex and abstract features are integrated with each additional
layer (171), but if these features become too abstract, learning degrades. Shortcuts between layers can
solve this problem (50, 172) by combining lower level features as an additional teaching signal in addition
to the more abstract high level features. Adding shortcuts to shallow networks increases their
computation capacity, allowing them to compete with or outperform deep networks lacking shortcuts.
Taken together, these lessons from ANNs suggest that, perhaps, the layer skipping we observed allows
the brain network to increase computational capacity given a finite depth/number of neurons constrained
by evolution and development.

The majority of brain neurons integrate input from all sensory modalities
Integrating information from multiple modalities improves signal-to-noise and reduces ambiguity. Thus,
many higher-order neurons involved in learning and action selection are known to be multisensory (173,
174). Consistent with this, here we found that 80% of brain output neurons that control locomotion
(DNVNC) receive input from all sensory modalities and only 2% are unimodal.

Some studies have also shown that multimodal integration can start early in sensory processing and
occur at multiple levels (38, 63, 175). However, whether early and multilevel multimodal integration are a
general principle was unclear. Here we found that the vast majority (88%) of brain neurons are
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multimodal and a striking 62% integrate input from all modalities. Multisensory integration was pervasive
not only in known action-selection neurons and output neurons (e.g neurons downstream of MB,
pre-DNVNC and DNVNC), but also in neurons close to sensory periphery. Most unimodal neurons were 2nd
order PNs postsynaptic of sensory neurons. However, even amongst PNs, only a minority (35%) were
unimodal. Thus, brain feedforward circuits that link sensory inputs to brain outputs form a large
distributed network with extensive convergence between modalities at multiple levels. Such multilevel
convergence architecture may enable more complex input-output relationships offering better
discrimination between multisensory events (157, 176).

Recurrent architecture of the brain with multiple nested loops
Feedback has been observed in many brain circuits and implicated in a range of computations, including
normalization, object detection, comparing expected and actual outcomes, working memory and others
(135, 177–179). However, the exact architecture of feedback pathways and the amount and nature of
feedback that each neuron receives is still poorly understood. Here, we used signal cascades to
systematically identify all connected pairs of brain neurons (with up to 5-hops) that had a reciprocal
connection (of up to 5 hops). We found that a striking 41% of brain neurons received recurrent input from
at least one of their downstream partners. Furthermore, most pairs of connected neurons were connected
via multiple recurrent pathways of varying lengths, forming multiple nested loops. Recurrent nested
structure has been shown to compensate for a lack of network depth in artificial neural networks (138)
and is thought to allow neural nets to use arbitrary computation depth depending on the task (51).

Learning center dopaminergic neurons are amongst the most recurrent in the brain
DANs were amongst the most recurrent neurons in the brain with almost all DANs reciprocally connected
with more than 50% of their partners (via multihop connections). DANs are central for learning,
motivation, and action across the animal kingdom (117–120) and are implicated in a range of human
mental disorders (180, 181). The highly recurrent connectivity of DANs could potentially deliver high
dimensional feedback (182), enabling them to encode a range of distinct features and flexibly engage in
many parallel computations. Recurrent loops could also play roles in working memory (31, 132, 133,
183).

We provide, for the first time, a comprehensive list of multihop (up to 5 hops) feedback and feedforward
inputs onto DANs. Previous studies have reported that DANs receive extensive feedback from neurons
downstream of the MB that integrate learnt and innate values (31). Here, we find that DANs also receive
extensive feedback from brain output neurons, DNsVNC and DNsSEZ, which likely encode motor commands
for locomotion and feeding. Furthermore, DANs receive extensive polysynaptic feedforward inputs from
all sensory modalities. In addition to the previously known inputs from sensory neurons that encode
unconditioned stimuli (rewards and punishments), DANs also received polysynaptic input from sensory
neurons that normally encode conditioned stimuli in learning tasks, including olfactory (also observed in
the adult fly (100)), visual, and thermosensory, and from proprioceptive neurons. Recent studies, in the
adult fly, have shown that DAN activity correlates with movement (184). These movement-related signals
could be explained by efference copy input from DNsVNC and/or by input from proprioceptive sensory
neurons. Thus, in principle, DANs could compare motor commands with proprioceptive feedback on
actual movement.

In summary, the observed architecture gives DANs access to multiple kinds of information that is thought
to be critical in driving reinforcement learning: actual rewards (122), predicted values (145), selected
actions (185), and proprioceptive feedback about ongoing actions (184). Future functional studies will
reveal how all of this incoming information is used by the DANs during different kinds of learning tasks.
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The majority of the brain hubs are directly downstream or upstream of the learning center
In C.elegans, in-out hub neurons have been shown to play essential roles in behavior (186, 187). Here,
we found that the majority (73%) of the larval brain’s in-out hubs were postsynaptic to the learning center
output neurons (MBONs) and/or presynaptic to the learning center modulatory neurons (DANs, OANs,
MBINs). Many (23%) were also postsynaptic to the center that mediates innate behaviors (the LH), thus
integrating both learnt and innate values (92). A prior functional study of one of these hubs, the
MBON-m1, has shown it computes an overall predicted value of stimuli by comparing excitatory and
inhibitory input from neurons that encode positive and negative value, respectively. MBON-m1
bidirectionally promotes actions, promoting approach and avoidance when its activity is increased and
decreased, respectively. Several additional hubs identified here (CN-12, CN-13, CN-37) have similar
patterns of input to MBON-m1, raising the possibility that they also play a similar role in computing
predicted values. These hubs also provide direct feedback to the MB DANs and could therefore play
roles in regulating learning. Future studies of the brain in-out hubs could therefore shed important insights
into the mechanisms of value-computation, action-selection and learning.

Cross-hemisphere interactions
Why have two brain hemispheres instead of just one? In primates and humans, this redundancy
facilitated evolution of computational lateralization in the cortex (188, 189). Brain lateralization can occur
in insects (190, 191), but it is rare and developmental differences between hemispheres are even
compensated for (192), suggesting there are other advantages to a bilateral brain. Here, we found that
the brain utilized neurons from both hemispheres in a majority of pathways from sensory to output
neurons. Contralateral connections were particularly important to transmit sensory signal to descending
neurons (DNsVNC), suggesting that contralateral neurons may be bottlenecks for propagating information.
Consistent with this idea, the majority of brain in-out hubs (88%) had contralateral axons. Previously, it
has been postulated that interhemispheric communication increases the computational power of the brain
by providing access to additional computational units (neurons) and pathways (193). Our current work
suggests this hypothesis is plausible and provides the ability to target specific contralateral hubs to test
their role in future experimental studies.

We also found a striking propensity for contralateral neurons to connect to each other. Furthermore, we
discovered a group of neurons that form reciprocal loops between left-right homologous partners (called
pair loops). The interpretation of pair loops depends on their sign. If inhibitory, they may be important for
interhemispheric comparisons. If excitatory, they may be involved in signal perpetuation/short-term
memory (130, 132). Indeed, study of split-brain patients with commissurotomy demonstrated that
interhemispheric communication is important for short-term memory in humans (131). Consistent with this
idea, many pair loops occurred between neurons implicated in memory formation, the MB-FBNs.

Brain and nerve cord interactions
To provide a basis for understanding how the brain controls locomotion and regulates somatosensation,
we investigated the connectivity patterns between brain output neurons (DNsVNC) and the most
reconstructed nerve cord (VNC) segment (A1) (29, 38, 44, 194). We found that relatively few DNsVNC (42
DNsVNC , 23%) directly targeted a small fraction of A1 neurons (48 neurons, 14%). These DNsVNC were
categorized into three different groups: 1) those that target pre- and pre-premotor neurons, 2) those that
target low-order post-sensory neurons, and 3) those that target both. Premotor-targeting DNsVNC are likely
involved in biasing behavioral output, while the post-sensory-targeting group is likely involved in
modulating sensory processing. These different DN types targeted A1 neurons with distinct arborization
patterns. The post-sensory neurons innervated most VNC segments, while the premotor neuronal arbors
were more restricted. Thus, motor-DNsVNC appear to target a few key premotor control elements within
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each segment to switch between locomotor states. Meanwhile, DNsVNC that modulate sensory processing
appear to have global effects across the VNC through widely projecting A1 interneurons.

We also found that DNs directly synapsed onto ascending neurons (ANs) and ANs directly synapsed
onto DNs, a general phenomenon observed in multiple segments throughout the VNC. Some of these
DN-AN and AN-DN connections formed zigzag motifs (DN1→AN→DN2), but never reciprocal loops. ANs
within zigzag motifs carry proprioceptive information, raising the possibility that such motifs could encode
behavioral sequences. The AN in zigzag motifs may signal the completion of a first action promoted by
DN1 and facilitate the initiation of the next action promoted by DN2. Consistent with this idea, recent
studies have identified examples of direct connections from ANs to DNs, and these ANs mediate specific
actions (159, 195, 196). Investigating hypotheses about the roles of the newly identified zig-zag motifs
and DN-AN connectivity generally will require a full characterization of the behavioral roles of the DNs
and the signs of their connections with ANs.

Conclusions
In summary, we have provided a synaptic-resolution map of an insect larval brain and developed a
methodology for comprehensive analysis of large-scale connectomes. We characterized connection
types, neuron types, network hubs and brainwide circuit motifs. The connectome provides a valuable
resource and a basis for many future theoretical and experimental studies. The genetic tools available in
this tractable model system (35–37) will allow selective visualization and manipulation of individual
neuron types and testing the functional roles of specific neurons and circuit motifs revealed by the
connectome. Furthermore, although the details of brain organization differ across the animal kingdom,
many circuit architectures are conserved (25, 45, 90, 197–200). We therefore expect that the
architectural features described here will be useful in future studies of both invertebrate and vertebrate
brains as well as in network science (201). We found structural features, including multilayer shortcuts
and robust recurrence, that were reminiscent of prominent machine learning architectures. Future
analysis of these similarities and differences will be useful to learn more about brain computational
principles and perhaps inspire new machine learning architectures. We therefore expect that this
connectome will become a continued source of hypotheses and inspiration for future research.
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Materials and Methods
Electron Microscopy Data and Reconstruction
The EM volume of the central nervous system (CNS) of the 6 hour old Drosophila melanogaster first
instar larva used in this study has been previously reported (38, 40). Briefly, the genotype of this animal
was Canton S G1 [iso] x w1118 [iso] 5905. The resulting EM volume contains 4841 z-slices with a x,y,z
resolution of 3.8 x 3.8 x 50 nm. This dataset includes the complete CNS, including all neurons, synapses,
and accessory structures. Note that only the axons and dendrites of sensory neurons and motor neurons,
respectively, are present in the volume. However, the morphology and location of these neurons was
sufficient to match them to the respective neurons in whole animal datasets and thereby identify the
identities and modalities of sensory axons (45–47, 49) or the corresponding muscle targets of motor
neurons (44).

We identified the boundaries of the brain hemispheres and all brain neurons within using stereotyped
landmarks (202). Neurons and synapses were manually reconstructed by multiple users using the
Collaborative Annotation Tool for Massive Amounts of Imaging Data, CATMAID (39). Many previous
publications have contributed to the reconstruction of neurons in this CNS (25, 29, 38, 44–47, 49, 194),
so the completeness of brain neurons was first assessed using review and publication status. A complete
census of the brain was conducted by examining each lineage entry point (202) to identify all brain cell
bodies. Each cell body was then used as a seed point for iterative reconstruction by multiple users until
all arbor end-points were identified. The reconstruction process generally followed previous descriptions
(38, 40), however a targeted review process was used by comparing left-right homologous neuron pairs.
Quantification of the results of this methodology suggests it produced neuron reconstructions that are
robust across multiple metrics (Fig. S1E, F), although some errors of omission were observed.

Clustering
We developed a modified spectral clustering procedure to cluster brain neurons based on connectivity. To
achieve a clustering in which homologous left/right neuron pairs are likely to be in the same cluster (as
opposed to having clusters comprised of left-only or right-only neurons), we developed a technique to
perform a spectral embedding which collapses left/right symmetry into a single embedding space. First,
the network was split into four subgraphs: connections from neurons on the left side to neurons on the left
side (LL), from right to right (RR), from left to right (LR), and from right to left (RL). Each subgraph had its
edge weights transformed using a procedure called pass-to-ranks, a regularization scheme which
replaces each edge weight with its normalized rank among all edges and is helpful for spectral
embedding in the context of outliers or skewed edge weight distributions(203–205). We then embed each
subgraph into a -dimensional Euclidean space ( ) using the adjacency spectral embedding (ASE)
as implemented in graspologic (204, 205). Due to an orthogonal nonidentifiability associated with the
latent position estimates from ASE (204), we used a joint optimal transport/orthogonal Procrustes
procedure (206, 207) to align the latent positions of the LL and RR subgraphs, and separately the LR and
RL subgraphs. This procedure yields a representation for each node in terms of its ipsilateral (LL or RR)
inputs and outputs, as well as its contralateral (LR or RL) inputs and outputs. To achieve a single
representation for each node which is amenable to clustering, we concatenated each of these
representations per node, and performed another singular value decomposition to further project each
node into a lower-dimensional space ( ). This procedure is inspired by the Multiple ASE (MASE)
procedure (208). Finally, to ensure that homologous neuron pairs are clustered the same way, we
average the embeddings for a left and right node (note that most of these points were already close in
this embedded space due to the procedure described above).
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With this representation for each neuron, we clustered using a hierarchical approach to Gaussian mixture
models (GMM) inspired by past work on hierarchical stochastic block models (209, 210). GMM on an
ASE embedding was recently shown to be a consistent way of estimating the membership assignments
for a statistical network model called the stochastic block model, motivating this approach (204, 211). We
utilize a Python implementation of GMM with model selection (212, 213). In the hierarchical paradigm, all
neurons currently under consideration are clustered using a 1-component and 2-component GMM. The fit
of both models is evaluated using the Bayesian information criterion (BIC) metric (214), which is
commonly used to select the number of clusters in a GMM (215, 216). If the 2-component model is
preferred by the BIC score and the number of neurons is not too small (32 neurons is chosen as the
cutoff), then the set of neurons under consideration is split according to this clustering. This procedure
was allowed to recurse until the depth of the corresponding “cluster tree” reached eight, yielding a
multiresolution clustering of the brain connectivity.

Walk-Sort
We developed a method based on random walks to order each neuron in the brain based on proximity
from user-defined input neurons to user-defined output neurons. First, we selected input neurons (known
SNs or ANs from the VNC) or output neurons (neurons projecting to the VNC, SEZ, ring gland and motor
neurons) of the brain. We then considered these groups of neurons in (input, output) pairs, and started
256 random walks from each neuron in the input category. The probability of walking from node to node

was defined as the number of synapses from node to node divided by the number of output
synapses from node . We kept any random walks which went from the given input to output neuron
groups in fewer than 16 hops. This process was repeated for each pair of (input, output) neuron groups,
as well as for random walks run in reverse (traversing edges opposite to their true orientation). After
generating these paths, each neuron in each path was given a rank based its order in the path divided by
the path’s number of hops:

Example walk: [(sensory) A, B, C, D, E (output)]
Walk orders: [0, 1, 2, 3, 4]
Normalized walk orders: [A: 0, B: 0.25, C: 0.5, D: 0.75, E:1]

Each neuron was then given a “walk sort” score, defined as its median walk order across all of the walks
in which it was visited.

Pairs via Graph Matching
We employed a family of techniques based on the Fast Approximate Quadratic (FAQ) graph matching
algorithm (58–60, 217) to predict bilateral neuron pairs on the basis of connectivity. These algorithms
seek to find a 1-to-1 alignment of one network’s adjacency matrix with respect to another which
minimizes the norm of their difference. In this case, the two adjacency matrices were the induced
subgraphs (all connections among a specified subset of nodes) of the left and right hemispheres (i.e. the
ipsilateral connections) of the brain. We used 406 ground-truth neuron pairs from previous publications
(25, 31, 45, 162) as seeds, specifying a fixed, partial alignment between the two networks. The seeded
graph matching algorithm (as implemented in iGraphMatch (218) or graspologic (205)) was randomly
initialized 50 times (while preserving the known matching from the ground truth pairs). Predicted pairs
from each initialization of the algorithm were recorded. We then ranked potential pairs according to how
often they were matched to each other, manually reviewing each potential pair for correctness. This
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process was iterated multiple times, with newly identified pairs added to the population of seed pairs, until
all reasonable pairings were exhausted.

Pair Ranking by Connectivity Similarity
To quantify the similarity of neuron pairs based on connectivity (Fig. S1E), we used a
graph-matching-based metric to avoid biasing our scoring towards the bilateral pairing we sought to
evaluate. Let be the adjacency matrix of the left hemisphere induced subgraph, and let be the
adjacency matrix of the right hemisphere induced subgraph. For both networks, we use the number of
synapses across all edge types as the edge weight. The graph matching problem (GMP) seeks to
minimize the objective function

over the set of matchings (or permutations) . A matching is an -length vector, where is the
number of nodes, and if , indicating that node in is matched with node in . In other words,
this objective function measures a squared error between the adjacency matrices of the two networks
under some 1-to-1 mapping of the nodes from one network to the other. Many modern approaches to
solving the GMP relax the permutation constraint to the convex hull of the permutation matrices.
Intuitively, this relaxation can be thought of as a soft matching between nodes in the two hemispheres.
We ran a previously developed FAQ graph matching algorithm (60), using a maximum of 30 iterations, 20
initializations, and (see original publications for algorithm details). Note that the annotated pairs
were not used as seeds for this analysis and the initializations were random; thus, these annotations did
not bias the graph matching. Instead of projecting to the set of permutation matrices at the end of the
algorithm, we instead take a weighted sum of the doubly stochastic matrices over each initialization in
order to provide a soft matching between potential neuron pairs that can be used for ranking. Let be
the objective function value after optimization for initialization , and let

where is the number of initializations. Let be the final doubly stochastic matrix at the end of
optimization for initialization . Then, we use the weighted sum

to find a final doubly stochastic matrix, . We then assessed how well bilateral pairs were matched by
the soft assignment matrix . To do so, we ranked the elements of each row of (settling ties using
the average) and then assessed the rank of the known bilateral neuron pair in this connectivity ranking.

Multiplexed Edge Analysis
Signal flow
To roughly order the network from sensory neurons to output neurons without specifying a start or end of
the network (Fig. S6), we applied the “signal flow” algorithm (82, 83, 219). This algorithm uses an energy
function based on the sum of edge weights which point from a lower-scored neuron (closer to output) to a
higher-scored neuron (closer to sensory), and minimizes this function over the set of possible
1-dimensional scores for each neuron. We ranked these signal flow scores for each neuron
independently for each network type (axon to dendrite, axon to axon, etc.). For pairwise comparisons of
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all network orderings, we computed the rank correlation (Spearman’s ) between the signal flow
rankings for each network.

Edge reciprocity
Reciprocity is a commonly used metric in network science which quantifies the probability that two nodes
in a directed network are connected via mutual edges in each direction (220). Specifically, it is defined as
the number of reciprocal edges divided by the total number of edges, where a reciprocal edge means that

both and are present in the adjacency matrix . Here, we generalize this notion to multigraphs.
With representing the unweighted, loopless adjacency matrix for the source network, and

defined likewise for the target network, we define the edge reciprocity as

In other words, averaged over the entire network, this is the conditional probability of observing edge

conditioned on observing edge , .

Multiplex edge probabilities
To examine the likelihood of various multiplexed edge combinations, we counted the number of
pairs with each possible combination of edge type occurrences in the measured networks (e.g. an
axo-dendritic edge with no other type present, axo-dendritic and axo-axonic but no other edge types, etc.)
(Fig. S5D). To calibrate expectations for these counts, we used a simple null model of multiplex edge
overlaps. This model assumed that each of the four edge type graphs was generated independently, and
modeled each network as a completely random (Erdos-Renyi) network. To compute the parameters of
this model, we first simply calculate the global connection probability for each network as

Under the assumptions above, the expected number of pairs which have only axo-dendritic ( )
edges (denote this ) is:

More generally, we denote to be a 4-dimensional binary vector, which indicates the presence ( ) or
absence ( ) of the , , or edge types, respectively. Then, we can write the expected
number of edges under edge type pattern as:

Under this definition, we calculated the expected number of edges for each combination of the four edge
types, and used this to compare to the observed counts.
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Signal Cascades
We applied a technique for modeling information propagation through a network based on the
independent cascade model, which has been used to study epidemic and social information transmission
through networks (221, 222). Briefly, the algorithm (which we call the signal cascade) starts with a set of
active nodes which are then allowed to propagate their active state to other nodes according to a set of
probabilistic rules based on the number of synapses from active to inactive neurons. At each time step, a
new set of nodes becomes active, and previously active nodes enter a deactivated state in which they
cannot be activated again during that experiment. We modified the original independent cascade model
to include a set of “stop” nodes from which the cascade does not proceed further, allowing us to isolate
effects from feedback from a specific set of neurons during a given experiment. This tool allows one to
determine how much signal from a given set of starting neurons could reach other sets of neurons in the
brain, and after how many timesteps (hops). Our approach differs from some previous models of signal
propagation across a connectome in that we only allow activation from neurons which were active at the
last timestep, rather than from neurons which were activated at any previous timestep (155, 223),
allowing us to assess the temporal ordering of the potential flow of information through the brain.

To elaborate on the details of the model, the algorithm starts with a set of user-defined nodes which are
initially in an active state at time , and all other nodes in an inactive state, meaning they are
susceptible to activation. We denote the set of active, inactive, and deactivated nodes at timepoint as

, , and , respectively. Our modified cascades algorithm also includes a set of nodes which
are “end” nodes from which the cascade no longer continues - these nodes can become active, but then
do not propagate their signal at the next timepoint. To determine which nodes become active at the next
timepoint , each synapse is assigned an equal probability of transmission, with . For

each outgoing synapse ( ) from each active node which is not a stop node ( ) to each

previously unactivated node ( ), we conduct an independent Bernoulli trial with probability to
determine whether that synapse activates node at the next timepoint. Nodes that had at least one

successful activation of an upstream presynapse are included in the set . Every node that was active

at time is moved to the set , the deactivated nodes which cannot be activated again during the
current cascade. This process was repeated for timesteps, where could vary depending on the
particular question of interest. These cascades were run 1,000 times for the same set of start and end

nodes . To understand how signals could propagate through the brain based on this model, we
tracked the probability that a node was active at a given time over these 1000 independently run
cascades. When analyzing groups of neurons, signal cascade data was aggregated by averaging these
activation probabilities across neurons in a group.

Morphological similarity calculation within neuron groups
To quantify the similarity between neuron morphologies within clusters (Fig. 3B; Fig. S7A, B), we applied
the NBLAST algorithm (224) as implemented in navis (225), computing NBLAST scores between all pairs
of neurons on the same hemisphere. To make NBLAST scores symmetric (same score between neurons

as between ) we set the NBLAST scores for and to be the geometric mean of
their original scores. We then apply a normalization scheme to each pairwise NBLAST similarity matrix, in
which scores are converted to their pairwise ranks in the similarity matrix (205). With these normalized
NBLAST scores, we define a simple score of morphological similarity within each cluster. First, we
computed the mean of all pairwise similarity scores between neurons in a hemisphere of a specific
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cluster. Then, we took the mean of those average scores between left and right hemispheres to compute
the final score for a given cluster.

Code
Many analyses relied on NumPy (226), SciPy (227), Pandas (228), NetworkX (229), navis (225), and
python-catmaid (pypi.org/project/python-catmaid/). Plotting was performed using matplotlib (230),
Seaborn (231), and Blender (https://www.blender.org/). UpSet plots were used to visualize complex
intersections (232).
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Fig. S1. Reconstruction methodology. (A) Slices from a whole CNS ssTEM (serial section transmission electron
microscopy) volume of the first-instar Drosophila melanogaster larva. The membranes of two example neurons are
highlighted. To reconstruct neuronal arbors, users annotate the center of each neuron in ssTEM slices using the
CATMAID software. These nodes are automatically connected to generate three-dimensional skeleton
representations of each neuron. (B) Criteria to identify pre- and postsynaptic sites in the ssTEM volume. Synaptic
sites are only annotated if they: 1) display presynaptic vesicles, 2) postsynaptic densities in postsynaptic cells, 3)
contain a presynaptic T-bar structure that can be observed over multiple z-slices, 4) a synaptic cleft, evident as a
subtle black-white-black pattern between the membranes of synaptic partners, and 5) nearby mitochondria. (C)
Methodology for whole brain reconstruction. All neuron cell bodies were identified in the brain and reconstructed
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from these seed points. Incomplete open-ends, or sections of arbor that were incomplete, were reconstructed by
multiple users in an iterative process until the tips of all arbor were accounted for. (D) Left-right hemisphere
homologous neuron pairs were morphologically compared to target review to regions that were likely to have
reconstruction issues or errors of omission (missing branches for example). (E) The quality of left-right homologous
pairs were assessed morphologically and using network-based connectivity metrics. Left and right hemisphere
neurons were transformed into a shared space, followed by NBLAST comparison. The rank of NBLAST-predicted
pairings was compared to the expert-annotated left-right pairings. A similar rank comparison was performed using
connectivity information via a graph-matching-based vertex nomination scheme, which evaluated how likely
neurons were to be matched to their annotated pair (see Methods for details). (F) The cable length, number of
inputs (postsynaptic sites), and number of outputs (presynaptic sites) were compared between left and right
homologs. The similarity between left-right pairs suggests that the reconstruction methodology generates
reproducible results. (G) Assessment of targeted review methodology compared to traditional full review of all
neuron arbor. A random set of 10 brain interneurons were selected for full review. The connectivity of these neurons
before and after full review was compared. (H) The majority of edges in these neurons did not change after full
review. Edges that did change tended to increase, suggesting that most errors were of omission.
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Fig. S2. Overview of ascending neurons from A1. (A) Multihop connectivity matrix between SN types in A1
(rows) and individual AN pairs (columns, IDs correspond to left-side neuron ID in CATMAID). Numbers in this matrix
indicate the number of hops between row and column neurons (i.e. 1 indicates a direct connection, 2 indicates a
2-hop connection, etc.). Each hop must be a strong, bilaterally symmetrical connection with ≥1% input onto the
dendrite to be reported. We considered 1- and 2-hop connections to be salient and assigned putative modalities
based on these connections. (B to F) Morphology of individual ascending neuron pairs grouped by sensory
modality. The thoracic and abdominal segments are indicated in each plot, as well as the location of presynaptic
sites in the axon and postsynaptic sites in the dendrite for each neuron in the anterior-posterior axis.
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Fig. S3. Overview of brain output neurons. (A) Rendered CNS regions from the EM volume, including both brain
hemispheres, the ring gland, the SEZ, and the VNC. The boundary between the brain and SEZ was defined using
cell bodies of ventral brain neurons. The brain itself was defined according to stereotyped lineage entry points (see
Methods). The boundary between SEZ and VNC was defined based on neurohemal organs at the boundary (Fig.
S22A). The image represents a side view of the CNS. dv=dorsoventral axis, ap=anteroposterior axis. (B) A
top-down view of the ring gland in the brain, which is positioned between the two hemispheres on the dorsal side.
ml=mediolateral axis, ap=anteroposterior axis. (C) The three brain output types were categorized based on location
of axon presynaptic sites. RGNs displayed axonal outputs in the ring gland, DNSEZ displayed axonal outputs in the
SEZ, and DNVNC displayed axonal outputs in the VNC. Distributions of all postsynaptic sites (input) and presynaptic
sites (output) in both axon and dendrites are plotted for each output type.
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Fig. S4. Overview of brain interneurons. (A) Overlap between cell-type classifications. Cell-type classifications of
many neurons were unique, but neurons with multiple classifications also occurred. Throughout this paper,
interneuron classes are displayed as mutually exclusive for plotting expedience, based on the following priority: [SN,
AN, LN, MBIN, KC, MBON] > [PN, DNVNC] > [MB-FBN] > [LHN] > [CN] > [DNSEZ, PNsomato] > [RGN, MB-FFN] >
[pre-DNVNC] > [pre-DNSEZ]. For example, a neuron that is both MBON and pre-DNSEZ is plotted as a MBON in future
figures. Cell classes within brackets displayed no overlap. (B) Schematic of connectivity between cell classes in the
brain, based on prior studies (25, 31, 45, 92) and cell classes defined in the present study, including LN, PNsomato,
pre-DNSEZ, and pre-DNVNC. (C) Cell classes and their connectivity definitions (left columns). All brain neurons that
met each cell class definition were identified. Neuron morphologies of each cell type are displayed (center columns)
or only the neurons that exclusively belong to the respective cell type (right columns). Arrows indicate a-d
connections, unless labeled a-a. LNs were identified using definitions explained in Fig. S9A, B.
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Fig. S5. Detailed analysis of four connection types. (A) Distribution of edges and synapses based on edge
weight (number of chemical connections between neurons). Axo-dendritic (a-d) connections displayed stronger
edge weights than other edge types. (B) Fraction of edges or synapses in strong (≥5 synaptic strength) or weak
edges (1-2 synaptic strength), per edge type (sum = the summed graph, all edge types together). (C) When an
edge was observed in one brain hemisphere, we determined whether a homologous edge existed in the opposite
hemisphere. This edge symmetry was quantified across synaptic strengths. If matching edges existed in both
hemispheres, they were considered symmetrical regardless of edge strength. Stronger edges were more likely to
have a homologous edge in the opposite hemisphere than weak edges. (D) Number of multiplexed edges in the
connectome, i.e. two or more edges that both originate from one neuron and terminate onto another neuron. Most
edges were singletons, also observed in a Erdos-Renyi null model (see Methods, Multiplexed Edge Analysis).
However, there were many multiplexed edge types, including a-d/a-a edges and rare 4-type edges, and these
multiplexed edges were observed more frequently than expected by the null model. Comparisons between the
observed and the expected number of edges under the null model were significantly different (p < 10-37, binomial
test) for each of the edge type combinations. (E) Methodology to identify feedforward and feedback edges in each
connection type. The Walk-Sort algorithm was applied to the summed graph (all edge types together), resulting in a
sorting from SNs to DNs. This sorting was then applied to all graph types. Feedforward and feedback edges were
quantified based on their anterograde or retrograde direction in respect to the overall graph sorting. (F) Adjacency
matrices of each connection type with sorting from the summed graph applied. The mean synaptic mass above the
diagonal (feedforward) or below the diagonal (feedback) was quantified. The dotted line on the diagonal of each
adjacency matrix corresponds to the dotted line in each line plot directly below. The a-d graph displayed the most
feedforward synapses, while the d-a graph displayed the most feedback synapses.
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Fig. S6. Signal flow sorting for each edge type in the connectome. (A) Schematic examples of comparison of
signal flow sortings between graphs with different edge types (in a hypothetical graph with 4 nodes/neurons).
Graphs comprising each edge type are sorted independently using the signal flow algorithm. These sortings are
compared and the correlation between sortings is quantified. An example of correlation (top) and anti-correlation
(bottom) are displayed. (B) Comparison of signal flow sortings for each graph type. Individual dots correspond to
single cells, colored based on cell classes. The rank correlation between these node sortings was quantified for
each pairwise comparison and displayed in the bottom right of each plot. We found that the axo-dendritic sorting
best matched the summed graph (all edge types together), sorted from sensory neurons (green; top right) to output
neurons (red, bottom left). The dendro-axonic sorting was negatively correlated with the axo-dendritic (-0.63) and
summed sortings (-0.55).
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Fig. S7. Overview of level 7 brain clusters. (A) Morphology of level 7 brain clusters. Neurons within each cluster
are colored based on cell class (legend, bottom right). The intracluster morphological similarity was quantified using
averaged within-cluster NBLAST scores (see Methods) and is displayed on the left bottom of each cluster plot. Note
that similarity cannot be calculated (nan) for a small number of clusters, because they only contain a single neuron
pair. (B) Distribution of intracluster morphological similarity. Most clusters display a high level of morphological
similarity between their constituent neuron members. Note that using this metric, 0.5 corresponds to the expected
similarity between any two randomly chosen neurons. (C) Distribution of neuron counts per cluster. (D) Fraction of
neuron classes per level 7 cluster. Clusters are sorted from SNs to DNs.
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Fig. S8. Characterization of all brain hub neurons. (A) Out hubs (≥20 out-degree), in-out hubs (≥20 out-degree
and ≥20 in-degree), and in hubs (≥20 in-degree) in the a-d graph (i). In degree is the number of strongly connected
presynaptic partners, while out degree is the number of strongly connected postsynaptic partners. The locations of
hubs in the brain cluster structure (ii), their neuron class identities (iii), and some example morphologies (iv) are
depicted. (B) Out hubs, in-out hubs, and in hubs in the a-a graph. (C, D) Out hubs in the d-d and d-a graphs.
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Fig. S9. Identification of local and projection neurons in the brain. (A) Definition of a local neuron (LN) within a
cohort (type 1), based on LNs observed in olfactory and visual neuropils (45, 46). Type 1 LNs sent most of their
output to neurons within their own sensory cohort (i.e. neurons that are the same number of hops away from SNs of
a particular sensory modality, see Fig. 4A-C, Fig. S10A) or to neurons upstream of that cohort via a-a connections.
(B) Definition of a LN outside of a cohort (type 2), based on LNs observed in the mushroom body, specifically APL
and its interactions with KCs (25). Type 2 LNs received most of their input and sent most of their output to a cohort
of neurons, to which they do not belong. Sensory circuits were again defined as cohorts (Fig. 4A-C, Fig. S10A). (C)
LN types were identified in all sensory circuits. Most sensory circuits contained LNs, but higher-order circuits and
somatosensory circuits displayed less LNs than circuits directly downstream of brain sensory neurons. Because
there is strong overlap in 4th-order neuropils, 4th-order LNs were shared between different modalities. Projection
neurons (PN) were defined by exclusion in 2nd-order circuits (all neurons that were not local or brain output
neurons). PNs were postsynaptic of SNs, while PNssomato were postsynaptic of somatosensory ANs. (D) Morphology
of all LN pairs. Previously identified LNs are annotated (Broad LNs, picky LNs, choosy LNs, ChalOLP, GlulOLP,
OLP4, and APL), as well as one 4th-order LN pair. (E) Morphology of example PNs. (F) The axon-dendrite distance
was longer in PNs and PNssomato compared to LNs, using the centroids of axon presynaptic sites and dendrite
postsynaptic sites. (G) Connection types observed in PNs and LNs. LNs exhibited significantly more noncanonical
outputs and inputs. Mann Whitney U test, p-values: * < 0.05, *** < 0.001
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Fig. S10. Detailed analysis of multimodal integration. (A) Overview of input neurons, 2nd-, 3rd-, and 4th-order
neurons for each sensory modality (identified using a-d connectivity). The number of neurons in each category is
quantified and color-coded by neuron classes. (B) Direct a-d connectivity between sensory circuits, displayed as the
summed number of synapses between neuron groups, normalized by the total number of postsynaptic cells. (C)
Celltype breakdown of each combination of input from multihop a-d sensory cascades. (D) Multihop a-d signal from
each sensory modality to individual brain output neurons. (E) Fraction of different output types that display high,
medium, or low sensory integration. Most DNsVNC were highly integrative, while many DNsSEZ and RGNs displayed
low sensory integration.
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Fig, S11. Overview of 5th-Order Neuron Morphology and Connectivity. (A) Morphology of all 5th-order neurons,
plotted together or as left/right homologous pairs. (B) Neuron classes of each 5th-order neurons’ presynaptic and
postsynaptic partners (using a ≥1% input threshold of a-d connectivity). All 5th-order neurons were pre-DNVNC

neurons and therefore synapsed onto DNsVNC. Connections were also observed onto other pre-DNVNC, pre-DNSEZ,
and occasionally PNsomato neurons. One 5th-order neuron pair directed synapse onto FBN-7, an a-d in-out hub (Fig.
3F) involved in feedback in the larval learning and memory center. (C) The similarity between each 5th-order
neuron’s downstream and upstream partners was compared using the Dice Coefficient, such that 0 indicates no
shared partners and 1 indicates that partners are exactly the same.
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Fig. S12. Shortest Pathways from Projection to Descending Neurons for each Sensory Modality.
(A) Parallel shortest pathways from PN to DNsVNC for a hypothetical sensory modality, using a-d connectivity.
Pathways often shared neurons, but it was possible to cluster groups of related parallel pathways from the same
sensory modality. (B) Clustering of PN-DNVNC shortest pathways based on Dice Coefficient comparison of neuron
members within each pathway. Each sensory modality displayed a variety of pathway clusters, which may be
thought of as parallel pathway types. (C) Extensive a-d connectivity was observed between neurons within pathway
clusters for each sensory modality (boxed areas in matrix), as well as between pathway clusters across sensory
modalities (all areas outside of boxes). (D) Unique pathways were identified across sensory modalities (i.e.
pathways only observed in a single modality). We found many unique pathways, but in 9/12 sensory modalities,
most pathways were not unique. (E) We found that the vast majority of neurons found in PN-DNVNC pathways were
not unique across modalities, consistent with the finding that most neurons are multimodal (Fig. 4G).
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Fig. S13. Overview of signal cascade brain coverage and cascade-based hubs. (A) Quantification of the
fraction of brain neurons that receive 5-hop or 8-hop max cascade signals using a-d connectivity, starting from
individual sensory pairs (left) or individual brain neuron pairs (right). (B) Cascade-based hub neurons were
identified using a polysynaptic in or out degree threshold (mean degree plus 1.5 standard deviations). Polysynaptic
in and out degrees refer to the number of upstream or downstream neurons using 5-hop signal cascades. (C) Set
intersections between connectivity-based hubs and cascade-based hubs. (D) Celltype identities of cascade-based
hubs. Note that there is only one pair of cascade-based in-out hubs, namely the serotonergic neuron CSD (also a
pre-DNVNC).
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Fig. S14. Interhemispheric characterization of all axons and dendrites. (A) Axons and dendrites were
annotated as ipsilateral, bilateral, or contralateral, based on their relation to the brain hemisphere which contained
the cell body. A majority of brain neurons displayed ipsilateral dendrites with a mixture of axon types. However, a
small number of neurons displayed bilateral and contralateral dendrites. (B) Morphology of the major classes of
neurons, which all contain ipsilateral dendrites. Schematic diagrams and the morphology a few examples are
depicted for each category. (C) Morphology of the minor classes of neurons, containing bilateral or contralateral
dendrites. Schematic diagrams and the morphology a few examples are depicted for each category. Neurons with
contralateral axons and contralateral dendrites were treated as ipsilateral-ipsilateral neurons for interhemispheric
analyses throughout this study, despite their unusual morphology.
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Fig. S15. Characterization of neurons with bilateral dendrites. (A) Morphology of MBON-j1, the only example of
an ipsilateral axon / bilateral dendrite neuron. (B) Morphology of all bilateral axon / bilateral dendrite neurons. Note
that most are mushroom body (MB) output neurons (MBONs). (C) Morphology of all contralateral axon / bilateral
dendrite neurons. Note that 5/7 pairs are DNs and extend axons into the SEZ or VNC. (D) Summary of direct a-d
upstream and downstream partners. Barplots above each neuron indicate the fraction of neurons upstream of either
the ipsilateral or contralateral dendrite of each neuron, such that both bars sum to 1. Barplots below each neuron
indicate the fraction of neurons downstream of ipsilateral or contralateral portions of the axon. The name of the
neuron of interest is displayed above each bar plot and the color of the neuron indicates its cell type. Note that the
downstream VNC targets of DNsVNC are not currently reconstructed in these cases, so only downstream neurons in
the brain are displayed.
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Fig. S16. Characterization of neurons with asymmetrical bilateral axons. (A) Morphology of asymmetrical
bilateral axon neurons. (B) Morphology of partially asymmetrical bilateral axon neurons with a cosine similarity
<0.33 between ipsilateral and contralateral edges. (C) Summary of all direct a-d upstream and downstream partners
of asymmetrical bilateral axon neurons. All downstream ipsilateral and contralateral partners have different identities
and here we demonstrate that many of the class identities are also different. (D) Summary of all direct a-d upstream
and downstream partners of partially asymmetrical bilateral axon neurons. Many class identities were different
between downstream ipsilateral vs. contralateral partners.
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Fig. S17. Overview of all reciprocal pair loops in the brain. (A) Cell types of homologous pair loops. (B) Location
of pair loops within the brain cluster structure. Pair loops tend to be in deep brain regions. (C) Overview of all direct
a-d upstream and downstream partners for all pair loops combined. (D) Morphology of each pair loop (PL) in the
brain, colored and labeled by cell-type identity.
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Fig. S18. Characterization of motifs observed in reciprocal pair loops. (A) Common motifs observed across
pair loops. Generally, pair loops propagated signals within sub-systems (innate processing loop, deep brain loop,
and MB-feedback loops I/II) or propagated signals to the brain output system (output loop types I/II). (B) Adjacency
matrix displaying a-d connectivity between all pair loops. We observed direct connectivity between multiple pair-loop
types, including double loops (where two pair loops formed reciprocal connectivity between the four neurons within
two pair loops) and super loops (where 4-5 pair loops formed complex reciprocal structures). (C) Summary of direct
a-d upstream and downstream connectivity for each pair loop in both ipsilateral and contralateral hemispheres.
Barplots indicate the fraction of neurons of a particular class in each upstream or downstream network. The double
loops and super loops are boxed and correspond to those identified in B.
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Fig. S19. Characterization of contralateral edges in interhemispheric communication. (A) Signal cascades
were generated from SNs on either the left or right hemisphere of the brain (using a-d connectivity). Left- and
right-side ipsilateral, bilateral, and contralateral neurons were identified that received these signals within 4 hops
(top, middle). Substantial signal to the contralateral hemisphere was already observed by hop 2. The percent of
neurons that simultaneously integrate both left- and right-hemisphere sensory signals was quantified (bottom).
Integration occurs as early as hop 2 but peaks at hop 3. (B) Cell types that integrate both left- and right-side
sensory signals simultaneously at 2-, 3-, or 4-hops in the majority of signal cascade iterations (N=1000). (C)
Quantification of sensory signal lateralization per neuron. Left- and right-signal cascades were generated from SNs
using a-d connectivity. The left or right sensory signal each neuron received was quantified (regardless of whether
these signals were coincident). The difference between ipsilateral and contralateral cascade signals was calculated
for each neuron, such that 0 indicates equal signal from ipsilateral/contralateral sources, while +1 or -1 indicates

67

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.516756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.516756
http://creativecommons.org/licenses/by/4.0/


signal only from ipsilateral or contralateral SNs, respectively. The majority of the brain integrates both left and right
sensory signals, while some neurons receive lateralized signal from ipsilateral SNs. No neurons received only
contralateral signal. (D) The role of ipsilateral and contralateral edges was tested by generating multihop a-d signal
cascades from left and right brain inputs simultaneously. Random sets of ipsilateral or contralateral edges were
removed from the graph before running these cascades. Total signal reaching each indicated neuron type and the
total number of neurons visited were then assayed. Both contralateral and ipsilateral edges were important for
signal to reach DNsSEZ. The same was true for RGNs, but ipsilateral edges appeared to be more important than
contralateral edges. Ipsilateral and contralateral edges were both important for sensory signal to reach brain
interneurons generally. (E) The connection probability (a-d) between different cell types is displayed both within a
hemisphere and across hemispheres. Left-left and right-right as well as left-right and right-left patterns of
connectivity appeared very similar. However, ipsilateral patterns of connectivity (left-left, right-right) appeared
different from contralateral patterns (left-right, right-left). (F) Adjacency matrix displaying the difference between
contralateral and ipsilateral connection probability between neuron classes. Most types of inter-class connection
probability were reduced across hemispheres as compared to within a hemisphere (red). However, there were
some examples of increased connection probabilities across hemispheres vs. within a hemisphere (blue). (G) All
class connection probabilities that were stronger contralaterally are displayed. Some connection types also existed
within the ipsilateral hemisphere, but were strengthened contralaterally (top panel). Other connection types were
either very weak or didn’t exist ipsilaterally, but were observed in contralateral connections (bottom panel). Many of
these connections involve feedback from DNsVNC.

68

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.516756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.516756
http://creativecommons.org/licenses/by/4.0/


Fig. S20. Recurrence in individual mushroom body modulatory neurons. (A) Signal cascades up to 5-hops
maximum (a-d) to each modulatory input neuron in the learning center. Dopaminergic neurons (DANs) all integrated
signal from every sensory modality. Only 33% of OANs and 60% of non-DAN MBINs integrated signal from every
sensory modality. (B) Recurrence in individual neuron pairs, sorted from least to most recurrent. The locations of
DANs and non-OAN MBINs are depicted with orange circles or hollow orange circles, respectively. Note that 4/7
DANs are more recurrent than 95% of brain neuron pairs, while the remainder are more recurrent than 90% or 80%
of brain neuron pairs. Recurrence is based on a-d connectivity. (C) Characterization of the recurrent partners
downstream of individual MBINs (a-d). Many MB-FBNs, CNs, MBONs, MBINs, and pre-DNVNC neurons were
observed.

69

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.516756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.516756
http://creativecommons.org/licenses/by/4.0/


Fig. S21. Feedback and parallel efference copy signal from descending neurons. (A) Cell types receiving
feedback or parallel efference copy signal from DNsVNC, with 1-5 hops using ≥1% a-d input thresholds or 8-hops
maximum using signal cascades. (B) Number of cell types receiving either feedback or parallel efference copy
signal from DNsVNC. (C) Fraction of DANs and MB-FBNs that received polysynaptic (1-5 hops) or cascade signal
from DNsVNC. A direct connection was observed from a DNVNC to DAN-j1, as well as 2-hop feedback onto DAN-i and
DAN-k1 through MB-FBNs. (D) Polysynaptic connectivity matrix (a-d) between individual DNVNC pairs and individual
MBIN pairs, indicating the number of hops between the upstream DNVNC and downstream MBIN. All reported
connectivity passed a ≥1% axo-dendritic input threshold. DNVNC pairs are labeled by the ID of the left-side neuron.
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Fig. S22. Generating a CNS projectome. (A) Subregions of the CNS. The boundaries between the SEZ and VNC
segments were determined using stereotyped landmarks, namely dorsal and ventral neurohemal organs. The
boundary between the brain and SEZ was defined using the cell bodies of ventral brain neurons. The brain was
defined according to stereotyped lineage entry points (see Methods). (B) Example of a DNVNC pair displayed within
the CNS rendering. Pre- and postsynaptic sites are colored red and cyan, respectively. The number of DNVNC

presynaptic sites was quantified within each CNS region.
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Fig. S23. Characterization of upstream and downstream DNVNC partners. (A) Fraction of cell types that are 1-
and 2-hop upstream or downstream of DNsVNC (a-d), reported as mean ± SEM. The most common partners on
average were pre-DNVNC neurons, both upstream and downstream. However, DNsVNC also directly communicated
with many different cell types. (B) Fraction of LHNs and MBONs that were directly upstream of DNsVNC (a-d),
grouped by behaviors proposed based on outputs to VNC segments (Fig. 6J). Groups of DNsVNC putatively grouped
by aversive behaviors displayed a higher fraction of upstream innate center neurons (lateral horn neurons, LHN),
while DNsVNC putatively grouped by forward crawl (appetitive behavior) displayed a higher fraction of upstream
memory/learning center output neurons (MBONs). (C) Fraction of projection neurons (PN or PNsomato) and MB input
neuron types (MB-FFN, MBIN) directly downstream of DNsVNC (a-d), grouped by proposed role in behavior.
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Fig. S24. Categorization of DNsVNC based on downstream partners in A1. (A) DNsVNC were categorized using
their downstream a-d partners in motor/premotor circuits, post-sensory circuits, or a mixture of
premotor/post-sensory circuits. Plots depict the distance in hops between motor neurons or A1 SNs and A1
interneurons downstream of DNsVNC. For premotor neurons, this indicates the upstream distance (i.e. premotor
neurons are 1-hop upstream of motor neurons). For post-sensory neurons, hop distance indicates the number of
hops downstream of each sensory neuron modality. Postsynaptic A1 partners of DNsVNC are color-coded based on
their premotor or post-sensory status. * and ** indicate the two ascending neuron pairs involved in zigzag motifs (*
refers to AF10-like from Fig. 7G).
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Fig. S25. Detailed overview of brain-nerve cord interactions. (A) Connection probabilities (a-d) between brain
output neurons and nerve cord neurons (A1 segment of the VNC). DNVNC-A1 neurons interact with many cell types,
including ANs and post-sensory/pre-motor neurons. ANs in A1 also interact with DNsVNC. (B) Schematic
representations of different possible zigzag motifs. Note that the Zigzagto-RGN motif (DNVNC-AN-RGN) was not
observed. (C) Observed occurrences of each motif type (a-d connectivity). The zigzagto-RGN motif was never
observed. Note that while diagrams in (B) displays 3-node motifs, we also quantified 4- and 5-node motifs where
additional neurons were allowed between the ascending and brain output neuron (e.g.
DNVNC-ascendingA1-interneuronbrain-DNVNC, a 4-node motif).
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Modality Neuron
Count

Neuron
Type

Brain Entry
Point

Associated
Organ(s)

Neuron
Classes

Detailed/
Additional Roles

Olfactory 42 Sensory AN DO Olfactory
Receptor
Neurons

Pheromone
Sensing

Gustatory
External

136 Sensory MxN, AN DO, TO AN-B3,
MxN-B1,
MxN-B2

Quinine, Bitter, Salt
Sensing;

Potential Role in
Mechanosensation

Gustatory
Pharynx

110 Sensory MxN, AN DPS, DPO,
PPS, VPS

AN-B2,
MxN-B3

Sweet, Bitter,
Caffeine Sensing

Gut Internal
State

85 Sensory AN ENS AN-B1

Thermo-Warm 4 Sensory AN DO Thermo-WC

Thermo-Cold 6 Sensory AN DO Thermo-CC

Visual 29 Sensory Bolwig Nerve Bolwig
Organ

Photoreceptors Blue-tuned (Rh5) or
Green-tuned (Rh6)

Nociceptive 12 Ascending VNC-Brain
Tract

VNC Nociceptive
Ascending
Neurons

Mechano-
Chordotonals

10 Ascending VNC-Brain
Tract

VNC Chordotonal
Ascending
Neurons

Chordotonals have
additional role in
proprioception

Mechano-
Class II/III

2 Ascending VNC-Brain
Tract

VNC Class II/III
Ascending
Neurons

Class III sensories
have additional role
in cold nociception

Proprioceptive 8 Ascending VNC-Brain
Tract

VNC Proprioceptive
Ascending
Neurons

Respiratory
Internal State

25 Sensory VNC-Brain
Tract

Tracheal
Network

V’td Sensory
Neurons

Table S1. Description of sensory and ascending neurons by modality. Brain input neurons were divided into
groups based on modality. These modalities were previously described for sensory neurons, while ascending
neuron modalities are based on connectivity (Fig. S2). The number of input neurons, their cell type, which tract was
used to enter the brain, the associated organ for these neurons, and the neuron classes contained in each group
are displayed. More detailed or additional roles are also reported. Entry Points: AN = Antennal Nerve, MxN =
Maxillary Nerve, VNC = Ventral Nerve Cord. Associated Organ(s): DO = dorsal organ, TO = terminal organ, DPS =
Dorsal Pharyngeal Sense Organ, DPO = Dorsal Pharyngeal Organ, PPS = Posterior Pharyngeal Sense Organ,
VPS = Ventral Pharyngeal Sense Organ, ENS = Enteric Nervous System. AN-B1, AN-B2, AN-B3, MxN-B1,
MxN-B2, and MxN-B3 refer to neuron classes reported in (47). Thermo-WC (warm cells) and Thermo-CC (cold
cells) refer to classes reported in (48).
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Modality Convergence:
Mean # PNs

upstream of KCs

Convergence:
Mean # PNs
upstream of

non-KCs

Divergence:
Mean # KCs

downstream of
PN

Divergence:
Mean # non-KCs

downstream
of PN

Expansion:
Ratio of

3rd-/2nd-order
neurons

Olfactory 4.43 4.59 9.28 33.17 5.85

Gustatory
External

1.46 4.60 0.77 28.28 3.90

Gustatory
Pharynx

1.06 3.52 0.58 26.32 3.37

Gut Internal
State

0.00 4.68 0.00 14.42 1.03

Thermo-Warm 0.00 1.02 0.00 25.00 8.17

Thermo-Cold 1.50 2.06 1.12 17.25 9.12

Visual 1.60 1.97 0.44 11.39 4.36

Nociceptive 0.00 3.38 0.00 18.96 4.45

Mechano-
Chordotonals

0.00 3.16 0.00 16.52 5.22

Mechano-
Class II/III

0.00 2.14 0.00 12.81 3.84

Proprioceptive 0.00 1.85 0.00 12.50 5.50

Respiratory
Internal State

0.00 1.62 0.00 13.50 3.33

Table S2. Convergence, Divergence, and Expansion between 2nd-order and 3rd-order Sensory Circuits. The
mean number of PNs upstream of individual KCs or non-KCs is depicted in the first two columns (PN signal
convergence). The mean number of KCs or non-KCs downstream of individual PNs is depicted in the third and
fourth columns (PN signal divergence). The ratio of total number of neurons in 3rd and 2nd-order sensory circuits is
depicted in the last column (signal expansion).
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