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Abstract 

Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive 

stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical 

development and aging processes. A robust and widely implemented method to map CVR 

involves using a breath-hold task during a BOLD fMRI scan. Recording end-tidal CO2 (PETCO2) 

changes during the breath-hold task is recommended to be used as a reference signal for 

modeling CVR amplitude in standard units (%BOLD/mmHg) and CVR delay in seconds. However, 

obtaining reliable PETCO2 recordings requires equipment and task compliance that may not be 

achievable in all settings. To address this challenge, we investigated two alternative reference 

signals to map CVR amplitude and delay in a lagged general linear model (lagged-GLM) 

framework: respiration volume per time (RVT) and average gray matter BOLD response (GM-

BOLD). In 8 healthy adults with multiple scan sessions, we compare spatial agreement of CVR 

maps from RVT and GM-BOLD to those generated with PETCO2. We define a threshold to 

determine whether a PETCO2 recording has “sufficient” quality for CVR mapping and perform 

these comparisons in 16 datasets with sufficient PETCO2 and 6 datasets with insufficient PETCO2. 

When PETCO2 quality is sufficient, both RVT and GM-BOLD produce CVR amplitude maps that 

are nearly identical to those from PETCO2 (after accounting for differences in scale), with the 

caveat they are not in standard units to facilitate between-group comparisons. CVR delays are 

comparable to PETCO2 with an RVT regressor but may be underestimated with the average GM-

BOLD regressor. Importantly, when PETCO2 quality is insufficient, RVT and GM-BOLD CVR 

recover reasonable CVR amplitude and delay maps, provided the participant attempted the 

breath-hold task. Therefore, our framework offers a solution for achieving high quality CVR maps 

in both retrospective and prospective studies where sufficient PETCO2 recordings are not available 

and especially in populations where obtaining reliable measurements is a known challenge (e.g., 

children). Our results have the potential to improve the accessibility of CVR mapping and to 

increase the prevalence of this promising metric of vascular health. 
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1. Introduction  

The regulation of cerebral blood flow (CBF) is critical to maintain proper brain function. One 

mechanism that allows for tight regulation of CBF is the dilation and constriction of arterioles to 

increase or decrease blood flow, respectively. This mechanism can be characterized by a metric 

called cerebrovascular reactivity (CVR), defined as the CBF response to a vasoactive stimulus. It 

represents the ability of the brain’s blood vessels to dilate or constrict and is thus an indicator of 

vascular health. CVR has gained attention in recent years as an imaging biomarker in a range of 

pathologies, including stroke (Krainik et al., 2005), atherosclerotic disease (Donahue et al., 2014), 

multiple sclerosis (Marshall et al., 2014), moyamoya disease (Mikulis et al., 2005), sickle cell 

anemia (Václavů et al., 2019), and brain tumors (Fierstra et al., 2018), among others. In addition, 

changes in CVR throughout developmental (Leung et al., 2016b) and aging (McKetton et al., 

2018) processes have been reported.  

CVR measurements require two components: 1) a vasoactive stimulus to elicit a change in 

blood flow, and 2) a measure of the CBF response. An established approach for CVR 

measurements involves administering carbon dioxide (CO2) gas via a face mask during an MRI 

scan (Fierstra et al., 2013; Liu et al., 2019; Sleight et al., 2021). CO2 acts as a vasodilator, causing 

a systemic increase in blood flow, and the resulting blood flow response throughout the brain can 

be detected by MRI. Most commonly, the blood oxygenation level-dependent (BOLD) contrast is 

used as a surrogate measure of CBF. Alternatively, arterial spin labeling (ASL) may be used to 

obtain CBF in quantitative units, but it is currently limited by its low SNR, poor temporal resolution, 

and modeling challenges due to altered labeling efficiency in the hypercapnic state (Pinto et al., 

2021).  

Other guidance for exemplar CVR measurements include normalizing the blood flow response 

to the CO2 change to make the units quantitative and accounting for regional delays in the CVR 

response. For quantitative CVR measurements, it is necessary to record the changes in arterial 

CO2 throughout the gas challenge (Kastrup et al., 2001; Liu et al., 2019; Sleight et al., 2021; 

Tancredi and Hoge, 2013). Arterial CO2 measurements are invasive, so end-tidal CO2, the partial 

pressure of CO2 at the end of an exhale, may be used as a surrogate (McSwain et al., 2010; 

Peebles et al., 2007). By accounting for end-tidal CO2 changes (typically in units of mmHg), CVR 

can be reported as the blood flow response per unit change of CO2 (%BOLD/mmHg for BOLD or 

ΔCBF/mmHg for ASL). Additionally, it is important to consider not only the amplitude, but also the 

timing, or delay, of the blood flow response (Bright et al., 2009; Chang et al., 2008; Duffin et al., 

2015; Moia et al., 2020a). Variations in the response time may occur due to regional variations in 
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the timing of arterial blood arrival and local regulation of vessel diameter (Donahue et al., 2016). 

Accounting for this delay is not only important to achieve accurate CVR amplitudes but also serves 

as a separate metric of vascular health that is sensitive to cerebrovascular pathology (Donahue 

et al., 2016; Leung et al., 2016a; Sam et al., 2016; Stickland et al., 2021; Thomas et al., 2014; 

Thrippleton et al., 2018). 

While gas challenges are typically recommended for robust CVR measurements, the 

equipment for gas delivery is expensive and requires technical expertise to operate safely (Liu 

and De Vis, 2019). In addition, some participants find wearing a mask uncomfortable and may 

experience increased claustrophobia or anxiety, introducing uncontrolled confounding factors in 

the data (Urback et al., 2017). Breathing tasks, such as breath-holds (Ratnatunga and Adiseshiah, 

1990), deep breaths (Bright et al., 2009; Sousa et al., 2014), and intermittent breath modulations 

(Liu et al., 2020), are feasible alternatives to gas challenges. By modulating endogenous CO2 

levels, these tasks serve as vasoactive stimuli and can also produce reliable estimates of CVR. 

Breath-holds are a particularly common breathing modulation (Urback et al., 2017) and have been 

used successfully even in populations with known task-compliance challenges (Dlamini et al., 

2018; Handwerker et al., 2007; Thomason et al., 2005). CVR estimates are comparable between 

breath-hold tasks and gas challenges (Kastrup et al., 2001; Tancredi and Hoge, 2013), with robust 

measurements across a range of breath-hold durations (Bright and Murphy, 2013; Magon et al., 

2009). 

However, obtaining accurate CVR measurements from a breath-hold task still requires reliable 

end-tidal CO2 measurements, which may not be achieved in all subjects and settings. Besides, 

end-tidal CO2 measurements require external physiological monitoring equipment (e.g., gas 

analyzer), which may not be available in all clinical or research imaging centers. Even in healthy 

adults, there are challenges in achieving successful breath-hold performance with end-tidal CO2 

recordings. For example, in a recent study of 10 healthy adults (Moia et al., 2021), 3 subjects 

were excluded due to “poor performance of the breath-hold task”. There are added difficulties with 

cooperation in patient cohorts, particularly in those with cognitive impairments who may struggle 

to execute commands (Pujol et al., 1998; Schouwenaars et al., 2021). Obtaining high-quality data 

in younger participants also tends to be more challenging, and previous work has reported 

inconsistent performance of a breathing task among children and young adults (Stickland et al., 

2021). 

The primary complication with breath-hold data quality is obtaining end-tidal CO2 

measurements both before and after the breath-hold, which is critical for characterizing CO2 
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changes and measuring CVR in quantitative, normalized units (Bright and Murphy, 2013; Murphy 

et al., 2011). This can be achieved by designing the breath-hold task with expirations both before 

and after the breath-hold period (Pinto et al., 2021). Unreliable estimates of these expiration end-

tidal CO2 values may occur if the participant simply does not execute them as instructed, for 

example, by performing a brief inspiration instead. In addition, end-tidal CO2 measurements are 

typically acquired via a nasal cannula, which requires a participant to breathe through their nose 

for the duration of the experiment. Lapses in nose-breathing or variations in the pressure of 

exhaled air may also lead to inaccurate end-tidal values.  

In this work, we aimed to find alternative strategies for mapping CVR amplitude and delay that 

could be used in cases where end-tidal CO2 measurements are unavailable or unreliable. We 

approached this problem in breath-hold task data using a lagged-general linear model (lagged-

GLM approach) to achieve more accurate CVR amplitude estimates by accounting for regional 

variations in CVR delay (Moia et al., 2021, 2020a; Stickland et al., 2021). We then compared 

results using end-tidal CO2, or two alternative regressors (reference signals), in the lagged-GLM.  

First, we investigated another measure of respiratory physiology, respiration volume per time 

(RVT) (Birn et al., 2008, 2006). RVT represents changes in both the rate and depth of breathing 

and is obtained by continuously measuring chest position via a pressure-sensitive belt worn 

around the chest or abdomen. RVT is an attractive alternative to end-tidal CO2 because it also 

captures whether the participant attempts the breath-hold task. Even if the end-tidal CO2 

measurements do not reflect a change during the apnea period, there will be a decrease in RVT 

due to the pause in breathing. RVT and end-tidal CO2 are highly correlated, have similar overlap 

in the variance they explain in the BOLD signal, and consistent latencies at which they affect the 

BOLD signal (Chang and Glover, 2009). Additionally, a respiration belt is commonly found in most 

scanner set-ups, making it potentially more accessible than end-tidal CO2 measurements. 

Second, we investigated a data-driven regressor using the average gray matter BOLD 

timeseries (GM-BOLD). The main advantage of the GM-BOLD signal is that no external 

monitoring equipment is required. Changes in the BOLD timeseries should be evident provided 

the participant attempted the breath-hold and achieved periods of hypercapnia  (Bright and 

Murphy, 2013; Stickland et al., 2021). While the global BOLD signal or “refined” GM-BOLD 

regressors have been used in other CVR methods, including techniques that capture both 

amplitude and delay (Geranmayeh et al., 2015; Liu et al., 2017; Tong et al., 2011; Tong and 

Frederick, 2014; van Niftrik et al., 2016), our proposed approach simultaneously models other 
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regressors (e.g., motion confounds) when searching for the optimum delay of the reference signal 

and outputs amplitude maps normalized to the input regressor amplitude (Moia et al., 2020a). 

The aim of this work was to test if RVT or GM-BOLD timeseries can be used in a lagged-GLM 

framework to achieve estimates of CVR amplitude and delay that are spatially similar to those 

generated with the gold standard of end-tidal CO2, with the caveat that these alternative CVR 

amplitude measurements will no longer be in the standard, normalized units (%BOLD/mmHg) that 

are recommended for CVR comparisons across people and sessions (Kastrup et al., 2001; 

Murphy et al., 2011; Pinto et al., 2021; Sleight et al., 2021). We assess the agreement between 

CVR amplitude and delay maps in breath-hold fMRI datasets with high-quality or “sufficient” end-

tidal CO2 data, and in those where end-tidal CO2 measurements were sub-optimal or “insufficient”. 

We hypothesized that in a lagged-GLM framework, using RVT and GM-BOLD as reference 

signals would produce CVR amplitude and delay measurements that are highly correlated with 

those produced by high-quality end-tidal CO2 measurements. In cases with unreliable end-tidal 

CO2 measurements, we hypothesized that RVT or GM-BOLD timeseries could be used to recover 

reasonable CVR amplitude and delay maps, provided that the participant attempted the breath-

hold task. 

 

Table 1: Comparison of proposed reference signals for modeling CVR amplitude and delay 

 

PETCO2 = partial pressure of end-tidal CO2, RVT = respiration volume per time, GM-BOLD = average blood 

oxygenation level dependent signal in gray matter. 
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2. Methods  

 

Figure 1: Key steps of the CVR modeling methods compared in this manuscript. Reference timeseries are 

generated via external recordings or the BOLD MRI data. PETCO2 and RVT timeseries are convolved with 

canonical response functions. For all methods, modeling is repeated for shifted variations of each reference 

time signal. On a voxelwise basis, the shift that optimizes the full model R2 is selected. Maps of amplitude 

and delay are then generated using these parameters. PETCO2 = partial pressure of end-tidal CO2, RVT = 

respiration volume per time, BOLD = blood oxygenation level dependent, GM = gray matter, HRF = 

hemodynamic response function, RRF = respiration response function. 

 

2.1 Participants 

 A subset of the imaging and physiological data used in this manuscript have been published 

previously (Moia et al., 2021, 2020b). The full dataset includes ten healthy subjects (5F, 24-40y 

at the start of the experiment) with no history of psychiatric or neurological disorders. All subjects 
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completed ten MRI sessions, which were scheduled exactly one week apart at the same time of 

day. MRI scanning took place using a 3T Siemens PrismaFit scanner with a 64-channel head coil. 

The study was approved by the Basque Center on Cognition, Brain and Language ethics 

committee. Informed consent was obtained before each MRI session.  

Eight of the ten subjects were included in this analysis (sub-002, sub-003, sub-004, sub-006, 

sub-007, sub-008, sub-009, sub-010), based on those with sufficient data quality in the same two 

consecutive sessions (ses-02 and ses-03). In addition, two additional sessions were included 

from three of the subjects (sub-006, sub-009, sub-010) to capture two consecutive sessions (ses-

07 and ses-08 for sub-006 and sub-010; ses-08 and ses-09 for sub-009) with insufficient end-tidal 

CO2 timeseries (i.e., low power in the dominant frequency range of the breath-hold task, described 

in greater detail in Section 2.4.1). These eight subjects have similar demographics to the complete 

ten (4F, 27-40 yrs). 

 

2.2 Data collection 

2.2.1 Magnetic resonance imaging  

 Subjects underwent a variety of task-based and resting-state acquisitions during each MRI 

session, but the current study focuses on the multi-echo fMRI acquisition during a breath-hold 

(BH) task. The multi-echo fMRI protocol was a T2*-weighted, simultaneous multislice (multiband, 

or MB), gradient-echo echo planar imaging sequence provided by the Center for Magnetic 

Resonance Research (CMRR, Minnesota) with the following parameters: 340 volumes, TR = 1.5 

s, TEs = 10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°, MB acceleration factor = 4, GRAPPA 

= 2, 52 slices with interleaved acquisition, partial Fourier = 6/8, FoV = 211 × 211 mm2, voxel size 

= 2.4 × 2.4 × 3 mm3, phase encoding = AP, bandwidth = 2470 Hz/px, LeakBlock kernel 

reconstruction (Cauley et al., 2014) and SENSE coil combination (Sotiropoulos et al., 2013). Prior 

to the fMRI acquisition, single-band reference (SBRef) images were collected for each echo time 

to facilitate functional realignment and masking, and a pair of spin-echo echo planar images with 

opposite phase-encoding (AP or PA) directions and identical volume layout (TR = 2920 ms, TE = 

28.6 ms, flip angle = 70°) were acquired to estimate field distortions. For anatomical co-

registration and tissue segmentation, a T1-weighted MP2RAGE (TR = 5 s, TE = 2.98 ms, TI1 = 

700 ms, TI2 = 2.5 s, flip angle 1 = 4°, flip angle 2 = 5°, GRAPPA = 3, 176 slices, FoV read = 256 

mm, voxel size = 1 × 1 × 1 mm 3, TA = 662 s) and a T2-weighted Turbo Spin Echo image (TR = 

3.39 s, TE = 389 ms, GRAPPA = 2, 176 slices, FoV read = 256 mm, voxel size = 1 × 1 × 1 mm3 , 
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TA = 300 s) were acquired. All DICOM files were transformed into NIFTI files with dcm2nii and 

formatted into Brain Imaging Data Structure (Gorgolewski et al., 2016) with heudiconv (Halchenko 

et al., 2019). 

 

2.2.2 Physiological data 

During scanning, expired CO2 and O2 pressures were recorded via a nasal cannula 

(Intersurgical) and gas analyzer (ADInstruments ML206). Chest position was measured with a 

respiratory effort transducer (BIOPAC) placed around the upper abdomen, on the area of highest 

expansion during breathing. These measurements were then transferred to a physiological 

monitoring system (BIOPAC MP150) that simultaneously recorded scan triggers. Physiological 

signals were sampled at 10 kHz, starting before and continuing after the fMRI scan to allow for 

shifting of regressors. Before processing, the files were converted to BIDS with phys2bids (The 

phys2bids developers, 2019) and the physiological signals were decimated to 40 Hz to reduce 

file sizes. 

 

2.2.3 Breath-hold task 

 The BH task paradigm included eight repetitions of a 58 s BH trial. Within each trial, there 

were four paced breathing cycles (1 cycle = 3 s inhale and 3 s exhale), a 20 s BH, 3 s exhalation, 

and 11 s of free recovery breathing (Bright and Murphy, 2013). Participants were cued with visual 

instructions projected through a mirror on the head coil. A 15 s resting period was appended to 

the start and end of the paradigm to enable shifting of physiological regressors in subsequent 

analysis. 

Prior to the scan, subjects were instructed about the importance of exhaling through their nose 

both before and after the BH period. These exhalations are critical because they provide end-tidal 

CO2 measurements to estimate arterial changes in CO2 achieved by each BH (Bright and Murphy, 

2013). If the exhale is not performed properly or the measurement is unreliable, it is not possible 

to obtain a standard CVR estimate in units of %BOLD/mmHg.  
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2.3 Data analysis 

The MRI images and physiological data used in this study are available on OpenNeuro at 

doi:10.18112/openneuro.ds003192.v1.0.1 (Moia, Uruñuela, Ferrer, & Caballero-Gaudes, 2020). 

All code for pre-processing of the MRI data has been prepared to be run in a Singularity container, 

which is publicly available at https://git.bcbl.eu/smoia/euskalibur_container. The pre-processing 

pipeline is available at https://github.com/smoia/EuskalIBUR_preproc. Publicly available Python 

scripts, peakdet (Markello & DuPre, 2020) and phys2cvr (Moia, Vigotsky, & Zvolanek, 2022), were 

used for processing of CO2 recordings and computation of CVR parameter maps. The open-

source Rapidtide v2.2.7 toolbox (B. deB Frederick, Salo, & Drucker, 2022) was used for 

exploratory analysis (see Discussion Section 4.3). Additional analysis code and details about how 

they were implemented for this manuscript are shared in the public GitHub repository: 

https://github.com/BrightLab-ANVIL/Zvolanek_2022. 

 
 
2.3.1 MRI pre-processing 

Key MRI pre-processing steps are discussed here, and more detailed information can be 

found in Moia and colleagues (2021). MRI pre-processing was performed with a series of custom 

scripts combining FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), and ANTs (Tustison et al., 

2014) commands. The T2-weighted image was skull-stripped and co-registered to the MP2RAGE. 

The MP2RAGE was segmented into gray matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF) tissues. Then, the MP2RAGE was normalized to a resampled version (2.5 mm 

resolution) of the MNI152 6th generation template (FSL version, 1 mm resolution) (Grabner et al., 

2006). The T2-weighted image was co-registered to the skull-stripped SBRef image of the first 

echo. Volume realignment of the functional data was performed using the SBRef of the first echo 

as the reference and applying the spatial transformation to all subsequent echoes (Jenkinson et 

al., 2002; Jenkinson and Smith, 2001). An optimal combination of the different echoes was 

created with tedana (DuPre et al., 2021, 2019), which weights each echo timeseries according to 

the voxelwise T2* value (Posse et al., 1999). Finally, the pair of spin-echo images with reverse 

phase-encoding directions was used to perform field distortion correction with Topup (Andersson 

et al., 2003). The optimally-combined, distortion-corrected data were used as the input for CVR 

modeling. 
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2.3.2 Reference signals 

Three different reference signals were generated for each dataset, as depicted in Figure 1: 

end-tidal CO2 (PETCO2), respiration volume per time (RVT), and the average gray matter BOLD 

signal (GM-BOLD). End-tidal peaks were identified with a peak detection algorithm and manually 

reviewed. Linear interpolation was performed between the end-tidal peaks to create PETCO2 

timeseries. Finally, PETCO2 timeseries were convolved with the two-gamma variate canonical 

hemodynamic response function. 

Respiration recordings were processed using a custom MATLAB script. Maxima and minima 

in the belt trace were identified with a peak detection algorithm and manually inspected. The 

computation of respiration volume per time (RVT) requires alternating maxima and minima (Birn 

et al., 2006), but in an end-exhalation BH task, there are two consecutive minima due to exhales 

before and after the hold. To address this, only minima preceding the BH period were included. 

Linear envelopes of these maxima and minima were used to compute RVT as previously defined 

(Birn et al., 2006). Briefly, the difference in maxima and minima is computed at each timepoint 

and divided by the time between successive maxima. The RVT timeseries were then convolved 

with the respiration response function (RRF) (Birn et al., 2008). Importantly, all convolved RVT 

timeseries were z-normalized (i.e., zero mean and unit standard deviation). The normalization 

procedure was implemented to account for the high variability in RVT amplitudes (see 

Supplementary Figure S1 and Table S2). All subsequent “RVT” results refer to the convolved, 

normalized reference signal.  

The average BOLD timeseries in GM was generated from the optimally-combined, distortion-

corrected functional data with phys2cvr (Moia et al., 2022b). An eroded version of the co-

registered GM mask (obtained by zeroing non-zero edge voxels within a 2.5 mm sigma Gaussian 

kernel with fslmaths) was used as the ROI for the average timecourse extraction. The reference 

signal was then expressed in signal percentage change.  

 

2.3.3 CVR amplitude and delay estimation 

Voxelwise hemodynamic CVR amplitude and delay were computed using phys2cvr (Moia et 

al., 2022b) to implement a lagged-GLM framework that has been described previously (Moia et 

al., 2021, 2020a; Stickland et al., 2021). Each reference signal was considered independently 

from the others, but the same procedures outlined below were used for each CVR model. 
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First, all traces were shifted to maximize the cross-correlation with the up-sampled GM-BOLD 

timeseries (40 Hz to match the physiological signals). This “bulk” shift primarily accounts for 

measurement delay in the physiological recordings. Then, 61 shifted variants of each regressor 

(including the bulk shifted regressor) were created for each reference signal, in 0.3 s increments 

(Moia et al., 2020a). These shifts ranged ±9 s from the bulk shift. Separate GLMs were created 

for each shifted variant. In each case, fMRI data were modelled by a design matrix consisting of 

the shifted reference signal and the following nuisance regressors: Legendre polynomials up to 

the fourth-order, 6 realignment parameters, and their 6 temporal derivatives. Each lagged-GLM 

was fitted via orthogonal least squares (Moia et al., 2020a). The lagged-GLM with the maximum 

full model R2 was identified for each voxel; its corresponding shift (in seconds) determined the 

CVR delay, and its associated beta coefficient was extracted and rescaled to be expressed in 

percentage BOLD signal change (%BOLD). Therefore, the lagged-GLM generated two maps for 

each reference signal, as depicted  in Figure 1: CVR amplitude (in units of %BOLD normalized to 

the amplitude of the input regressor) and CVR delay (in seconds). Delay maps were centered on 

the median delay across GM voxels. Both CVR amplitude and delay maps were thresholded to 

remove voxels at or adjacent to boundary conditions (delay = -9, -8.7, +8.7, 9 seconds) because 

they were considered not optimized by the lagged-GLM (Moia et al., 2020a). CVR amplitude and 

delay maps were normalized via nearest neighbor interpolation to the MNI152 6th generation 

template (FSL version, 1 mm resolution) resampled to 2.5 mm resolution. 

 

2.4 Data summaries and comparisons 

2.4.1 Determining sufficient reference signal quality 

 The quality of reference signals for each dataset was assessed by computing the relative 

power in the dominant frequency range of the BH task (0.014 to 0.020 Hz). This range is centered 

around 0.017 Hz, which corresponds to the 58 s BH cycle. MATLAB’s bandpower function was 

used to compute the total power between 0.014 to 0.020 Hz, as well as the total power in the 

signal, between 0 Hz and the Nyquist frequency (i.e., 20 Hz). Relative power was then calculated 

using the following equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 (%)  =  
𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝐵𝐻 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑛𝑔𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
𝑥 100  

Reference signals with greater than 50% power in the BH range were deemed “sufficient”, as 

more than half of the signal power is in the frequency range of interest. In the time domain, this 
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relative power threshold corresponds to reference signals with clear signal changes during each 

BH cycle (Figure 2). Reference signals with less than 50% power were categorized as 

“insufficient”. 

 

2.4.2 Reference signal cross-correlations 

 Relationships between the reference signals for each dataset were assessed by computing 

the cross-correlation between each pair. The “bulk shifted” PETCO2 and RVT signals were used 

for these comparisons, which had already been shifted to maximize the cross-correlation with the 

GM-BOLD signal during CVR modeling (see Section 2.3.3). The additional cross-correlation was 

performed to understand the relationships between signals going into the lagged-GLM and to 

check for any remaining offsets that may explain differences in resulting CVR maps. The GM-

BOLD signal was up-sampled to 40 Hz to match the temporal resolution of the physiological 

signals. Using MATLAB’s xcorr function, cross-correlations between each pair of reference 

signals were computed at 0.025 s increments (i.e., 40 Hz) within a range of ±9 s. Pearson 

correlations (r) were transformed to Fisher’s Z values to facilitate group averaging and 

comparisons.  

 

2.4.3 CVR amplitude and delay values 

The 98th percentile of brain voxels in each CVR amplitude map (after thresholding of voxels 

at the boundary) was computed using the fslstats function in FSL. For each reference signal, the 

kernel density estimation of the distribution of CVR amplitude and CVR delay values was 

computed with MATLAB’s ksdensity function. Distributions were computed in gray matter using 

the eroded tissue mask (see section 2.3.2).  

 

2.4.4 Spatial correlations between CVR parameter maps 

CVR amplitude and delay maps for each reference signal were parcellated using FSL’s 

Harvard-Oxford cortical atlas in MNI space (https://identifiers.org/neurovault.collection:262,  

HarvardOxford-cort-maxprob-thr25-1mm), resampled to 2.5 mm resolution. This atlas consists of 

48 cortical parcels and was further split into left and right hemispheres to generate a total of 96 

cortical parcels. Then, the median CVR parameter (i.e., amplitude or delay) within each parcel 
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was computed. The 96 median values from any two corresponding CVR parameter maps (e.g., 

two CVR amplitude maps) were then input to determine “spatial” correlations (i.e., at the level of 

the parcels).  

Three different types of spatial correlations were performed:  

1. Inter-reference: Between CVR parameter maps from different reference signals, within 

the same subject and session (e.g., between PETCO2 CVR amplitude and RVT CVR 

amplitude for sub-002 ses-02), 

2. Inter-session: Between CVR parameter maps from two consecutive sessions, for a given 

subject and reference signal (e.g., between PETCO2 CVR amplitude maps from ses-02 

and ses-03 for sub-002), 

3. Inter-quality: Between CVR parameter maps from datasets with sufficient PETCO2 quality 

and insufficient PETCO2 quality, for a given reference signal and subject (e.g., between a 

sufficient PETCO2 CVR amplitude map and an insufficient PETCO2 CVR amplitude map for 

sub-006). 

For all spatial correlations, the Pearson correlation coefficients were computed and transformed 

to Fisher’s Z. A linear model was fitted, and the beta-coefficients describing the slope were 

extracted. The intercept of the linear model was allowed to vary for both CVR amplitude and delay 

to account for potential offsets between the two inputs.  

 

3. Results 

In the following sections, we first describe the reference signals from all datasets in our study 

and distinguish those with sufficient vs. insufficient quality. Then, we show inter-reference and 

inter-session comparisons for datasets in which all three reference signals have sufficient quality. 

Next, we show inter-quality results (from two sessions) that incorporate one session with 

insufficient PETCO2 quality. Finally, we present the inter-reference comparisons from only 

sessions with insufficient PETCO2 quality. All comparisons are repeated for both CVR amplitude 

and CVR delay. 
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3.1 Reference Signals 

Table 2 summarizes relative power at the BH task frequency for PETCO2, RVT, and GM-BOLD 

in all datasets included in our study. This metric was used to assess data quality, and each dataset 

was classified as “sufficient” or “insufficient” according to the relative power in the PETCO2 

timeseries. We chose a subset of the available data, such that 16 datasets included in our study 

have sufficient PETCO2 quality, and 6 datasets have insufficient PETCO2 quality, with relative power 

below the 50% threshold and reaching as low as 4.33% (sub-009 ses-08). Across all datasets 

considered, insufficient PETCO2 traces have 21.1±11.2% relative power (mean±stdev across 

subjects), while sufficient PETCO2 traces have 68.0±6.57% relative power. Note that all RVT and 

GM-BOLD signals have greater than 50% relative power, with most far exceeding the threshold. 

Relative power in RVT and GM-BOLD signals is also generally higher than in PETCO2, with relative 

power at 85.7±10.8% in RVT signals and 78.7±8.38% in GM-BOLD signals.  

 

Table 2: Classification of reference signals as “sufficient” or “insufficient” based on relative power in the 

breath-hold frequency range. “Sufficient” PETCO2 classification is based on relative power >50%. Datasets 

with insufficient PETCO2 quality are highlighted in gray. 
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The PETCO2, RVT, and GM-BOLD signals for all datasets, in addition to group averages, are 

shown in Figure 2. Sufficient PETCO2 datasets with PETCO2 timeseries that have >50% relative 

power in the BH frequency range are plotted separately from those with insufficient PETCO2. For 

sufficient PETCO2 traces as well as all RVT and GM-BOLD traces, there are clear peaks 

associated with each BH cycle (indicated by the gray bars). These signal changes are expected 

due to periods of apnea, which increase PETCO2 and elicit a cerebrovascular response that is 

detectable by BOLD fMRI. In contrast, the insufficient PETCO2 traces lack consistent peaks for 

each BH cycle, and the magnitude of PETCO2 changes is smaller. These signal characteristics 

likely indicate a failure to perform an exhalation before and after the BH, or exhalation through 

the mouth rather than the nose, which would not be captured by the nasal cannula. In these 

datasets, insufficient PETCO2 traces are not due to a failure to complete the BH task, because 

these subjects also have clear cyclic changes in their RVT signals, indicating long durations of a 

stable chest position (i.e., periods of apnea). 

Fig. 2B illustrates the power spectra corresponding to the reference signals in Fig. 2A. The 

BH frequency range is indicated by a dashed rectangle, where most of the signal power is 

expected. There are clear peaks within this window for sufficient PETCO2 signals, as well as for all 

RVT and GM-BOLD signals. However, a peak within the BH frequency range is not evident for 

insufficient PETCO2 signals, which is consistent with the lack of periodic signal changes for each 

BH cycle in the time domain. These power spectra also support the low relative power reported 

for insufficient PETCO2 datasets in Table 2. 
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Figure 2: A) Reference signals for each dataset (thin lines) and the group average (thick lines). Gray bars 

indicate each 20 second breath-hold (BH) cycle. Reference signals from the three compared methods are 

depicted: partial pressure of end-tidal CO2 convolved with the hemodynamic response function (PETCO2), 

respiration volume per time convolved with the respiration response function and normalized to unit 

variance (RVT), and average BOLD signal percentage change in gray matter (GM-BOLD). Sufficient 
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PETCO2 datasets (top) indicate those where the PETCO2 timeseries has relative power >50% in the BH 

frequency range, while insufficient PETCO2 datasets (bottom) indicate those where the PETCO2 timeseries 

has relative power <50%. B) Power spectra for each dataset (thin lines) and the group average (thick lines), 

corresponding to the reference signals plotted in panel A. Dashed rectangles indicate the BH frequency 

range (0.014 to 0.020 Hz). Note that there is no peak in this range for the datasets with insufficient PETCO2 

timeseries, while a peak is visible for all other reference signals. 

 

All reference signals are highly correlated in datasets with sufficient PETCO2, while correlations 

with insufficient PETCO2 timeseries are much lower. Relationships between each pair of reference 

signals were characterized by cross-correlations. These results are summarized in 

Supplementary Table S1. Datasets with sufficient PETCO2 have large, positive cross-correlation 

amplitudes for the three reference signal comparisons (reported as mean±stdev Fisher’s Z values 

across subjects): PETCO2 & RVT: 0.96±0.23, PETCO2 & GM-BOLD: 1.19±0.22, GM-BOLD & RVT: 

1.04±0.25. As expected, cross-correlations of PETCO2 with RVT and GM-BOLD are lower in 

datasets with insufficient PETCO2, while the correlation between RVT and GM-BOLD is preserved 

(PETCO2 & RVT: 0.38±0.13, PETCO2 & GM-BOLD: 0.42±0.15, GM-BOLD & RVT: 1.20±0.22).   

 

3.2 Sufficient PETCO2 Datasets: CVR Amplitude Comparisons 

3.2.1 Inter-reference comparisons 

 CVR amplitude maps are spatially similar for all reference signals, after accounting for 

differences in scale, in datasets with sufficient PETCO2 quality. Fig. 3 shows delay-optimized CVR 

amplitude maps generated by each reference signal. For each CVR map, the 98th percentile of 

CVR amplitude across all brain voxels was computed (Supplementary Table S3), and this 

magnitude was used as the positive and negative limits of the color scale. With this scaling 

method, the CVR amplitude maps look nearly identical, though there are small differences 

particularly in voxel clusters throughout WM and CSF regions. The same relative spatial patterns 

are observed in all maps: higher amplitudes in cortical GM, lower amplitudes in WM, and negative 

amplitudes in CSF-filled regions. However, it is important to draw attention to the fact that the 

absolute magnitude of these CVR amplitudes is different between methods. For example, the 98th 

percentile CVR amplitudes are 0.78±0.22 %BOLD/mmHg for PETCO2 CVR, 1.99±0.45 

%BOLD/a.u. for RVT CVR, and 2.31±0.21 %BOLD/%BOLD for GM-BOLD CVR.  
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Figure 3: Delay-optimized CVR amplitude maps for all 16 datasets with sufficient PETCO2 quality 

transformed to the MNI152 6th generation template space. For each subject, maps from session 02 are 

shown on the left and maps from session 03 are shown on the right. A single axial slice of the CVR map 
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from each reference signal is shown in each column. Each CVR map is plotted on a separate color scale. 

The 98th percentile CVR amplitude value across all voxels was computed for each map (see Table S2 for 

the magnitudes) and used as the positive and negative limits of the color scale. Voxels with delays at the 

boundary conditions have been removed. Note the different units of CVR amplitude for each reference 

signal. 

 

As expected from the qualitative similarity of the CVR amplitude maps, the distributions of 

CVR amplitude are similar across GM voxels for each method, though they span a different range 

of values. Fig. 4 displays the distribution of CVR amplitude in GM for all datasets with sufficient 

PETCO2. For all reference signals, the distributions of CVR amplitude are consistent both within 

and between subjects. Note that it may not be appropriate to interpret the range of the CVR 

amplitude distributions, because only PETCO2 CVR amplitude is in meaningful units. Normalization 

of the RVT signal is critical to achieving these similarities in CVR amplitude, as the amplitude of 

the RVT measurement itself is arbitrary, with high variability even between two sessions of the 

same subject (see Supplementary Figure S1 and Table S2). Supplementary Figure S2 shows the 

distribution of CVR amplitudes without normalizing RVT and illustrates the impact on the resulting 

unscaled amplitude maps.  
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Figure 4: Distributions of CVR amplitude across grey matter (GM) voxels in all sufficient PETCO2 

datasets. For each subject, distributions from session 02 are plotted in orange and session 03 are plotted 

in teal. Each row shows the distribution of CVR amplitude for a different reference signal, with PETCO2 

CVR on top, RVT CVR in the middle, and GM-BOLD CVR on the bottom. Note that skewness of the 

PETCO2 CVR distributions is different from those of the RVT CVR and GM-BOLD CVR because of the 

range of the plots (from -2 to +2) which matches closer to the 98% percentiles of the latter.  

 

CVR amplitudes from each reference signal are highly correlated in datasets with sufficient 

PETCO2 quality. Fig. 5A shows the spatial correlations between CVR amplitude values generated 

by each reference signal (inter-reference correlations) and a visual comparison of these spatial 

correlations from session-to-session for each subject. These comparisons are based on CVR 

amplitudes from cortical parcels in the Harvard-Oxford atlas. The correlation coefficients, Fisher’s 

Z transformed correlations, and slopes for the lines-of-best fit are also summarized in 

Supplementary Table S4. All group average inter-reference spatial correlations are significantly 

different from zero (PETCO2 & RVT: Z=2.08, p<0.001; PETCO2 & GM-BOLD: Z=2.26, p<0.001; 
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GM-BOLD & RVT: Z=2.15, p<0.001). There is no significant difference between the strength of 

the CVR amplitude spatial correlations for each pairwise comparison between reference signals, 

based on a t-test adjusted for non-independent correlations (Howell, 2010) (PETCO2 & RVT vs. 

PETCO2 & GM-BOLD: T(13)=0.75, p=0.47; PETCO2 & GM-BOLD vs. GM-BOLD & RVT: 

T(13)=0.40, p=0.70; PETCO2 & RVT vs. GM-BOLD & RVT: T(13)=0.35, p=0.73). 

 There is variability in the slope of the relationship between CVR amplitudes, with the best 

reliability between PETCO2 and RVT. In general, RVT and GM-BOLD CVR amplitudes are 2-3 

times larger than for PETCO2 (average slopes of 2.36±0.71 for PETCO2 & RVT, 2.91±0.23 for 

PETCO2 & GM-BOLD). However, the magnitudes may not be meaningful due to the arbitrary units 

in RVT and GM-BOLD CVR. The reliability of these slopes was assessed with an intraclass 

correlation (using a two-way random effects model of absolute agreement), with the following 

results: ICC(2,1)=0.62 for PETCO2 & RVT, ICC(2,1)=0.44 for PETCO2 and GM-BOLD, and 

ICC(2,1)=0.41 for GM-BOLD and RVT. Thus, there is good reliability for PETCO2 & RVT CVR 

amplitudes, and fair reliability for the other inter-reference relationships. However, these estimates 

may be limited by the small number of repeated measurements and subjects. 
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Figure 5: A) Inter-reference spatial correlations between PETCO2, RVT, and GM-BOLD CVR amplitude 

maps, for each subject and session (summarized in Supplementary Table S4). Each of the three pairwise 

comparisons are plotted in a different row. B) Inter-session spatial correlations between CVR amplitude 

maps from the same reference signal between two consecutive sessions (summarized in Supplementary 

Table S5). The unity line (y=x) is plotted in gray for reference. All correlations were computed using the 

median CVR amplitude in 96 cortical parcels, identified from the Harvard-Oxford cortical atlas and 
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separated by hemisphere. Each dot in a sub-plot represents the median CVR amplitude in one cortical 

parcel. Lines-of-best-fit are shown between each pair of CVR amplitude maps. Pearson correlation 

coefficients (r) are listed in the top left corner and slopes for the lines-of-best-fit (β) are displayed in the 

bottom right corner.  

 

3.2.2 Inter-session comparisons 

For all reference signals, the resulting CVR amplitude maps are highly similar between 

sessions, provided that there was sufficient PETCO2 data in each subject. Inter-session spatial 

correlations were similar for each reference signal with no significant differences in average 

Fisher’s Z across subjects (PETCO2: Z=1.62, RVT: Z=1.50, GM-BOLD: Z=1.75). The inter-session 

spatial correlations are depicted in Fig. 5B and summarized in Supplementary Table S5. There is 

nearly a 1:1 relationship in the CVR amplitude maps between consecutive sessions for each 

reference signal (average slopes: PETCO2=1.00±0.23, RVT=0.91±0.26, GM-BOLD=0.95±0.07). 

Excluding the outlier of sub-006, the average slope for RVT increases to 0.97±0.21.  

 

3.3 Sufficient PETCO2 Datasets: CVR Delay Comparisons 

3.3.1 Inter-reference comparisons 

 The CVR delay maps generated by PETCO2 and RVT reference signals show similar spatial 

variation, while GM-BOLD delay maps have smaller delay magnitudes and reduced contrast, 

among datasets with sufficient PETCO2 quality. Fig. 6 displays CVR delay maps generated by 

each reference signal. Since CVR delay is expressed in quantitative units of seconds for all 

reference signals, CVR delay maps are centered around the GM median to fairly compare 

between reference signals. In general, PETCO2 and RVT delay maps characterize more extreme 

relative delays than GM-BOLD delay maps (indicated by more yellow and violet voxels throughout 

PETCO2 and RVT maps).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.517116doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.517116
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 25 

Figure 6: CVR delay maps for all datasets with sufficient PETCO2 quality, transformed to the MNI152 6th 

generation template space. For each subject, maps from session 02 are shown on the left and maps from 

session 03 are shown on the right. A central, axial slice of the CVR delay map from each reference signal 
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is shown in each column. CVR delay maps have been normalized to the median delay in grey matter (GM). 

Voxels at boundary conditions (absolute delay = +/- 8.7s, 9s) have also been removed. Negative values 

indicate regions with earlier hemodynamic responses relative to median delay in GM, while positive values 

indicate those with later responses. 

 

The distributions of CVR delay for each reference signal (Fig. 7) support the observation that 

that PETCO2 and RVT CVR delay maps show similar spatial variation while there is reduced 

contrast in GM-BOLD delay maps. The shape of PETCO2 and RVT delay distributions are 

generally similar: both are slightly right skewed and centered just below 0 seconds. On the other 

hand, GM-BOLD delay distributions are narrower and zero-centered, with a high proportion of 

voxels exhibiting delay values near 0 seconds. In addition, the GM-BOLD delay distributions are 

less smooth, with several small peaks apparent for some datasets (e.g., sub-003 ses-02, 

indicated by the orange trace). Finally, PETCO2 and RVT distributions are more variable between 

subjects, while GM-BOLD distributions have a relatively consistent shape. 
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Figure 7: Distributions of CVR delay for each reference signal in all datasets with sufficient PETCO2 quality. 

CVR delay values have been normalized to the median delay in grey matter. For each subject, distributions 

from session 02 are plotted in orange and session 03 are plotted in teal. Each row shows the distribution 

of CVR delay for a different reference signal, with PETCO2 delay on top, RVT delay in the middle, and GM-

BOLD delay on the bottom. 

 

The slopes of inter-reference relationships (Fig. 8A) further illustrate the narrower range of 

delays observed with the GM-BOLD reference signal (Figs 6 and 7). PETCO2 and RVT delay 

values are nearly proportional, with an average slope of 0.93±0.35. Excluding the outlier of sub-

002 ses-02, the average slope becomes 0.99±-0.06. However, as demonstrated in the maps, GM-

BOLD delay values tend to underestimate delay relative to PETCO2 and RVT. See middle and 

bottom rows of Fig. 8A, respectively, and note the switch in axes; this manifests as slopes >1 for 

GM-BOLD with PETCO2 and slopes <1 for GM-BOLD with RVT. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.517116doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.517116
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 28 

When comparing maps of CVR delay across the three reference signals (Fig. 8A), we see 

significant spatial correlations for all comparisons, although they are weaker on average 

compared to the spatial correlations of CVR amplitude (Fig. 5A). The corresponding spatial 

correlation coefficients, Fisher Z transformed correlations, and slopes for the lines-of-best fit are 

summarized in Supplementary Table S6. All group average inter-reference spatial correlations 

are significantly different from zero (PETCO2 & RVT: Z=1.18, p<0.001; PETCO2 & GM-BOLD: 

Z=1.35, p<0.001; GM-BOLD & RVT: Z=1.09, p<0.001). There were no significant differences in 

the average spatial correlations between each pair of reference signals, based on a t-test adjusted 

for non-independent correlations (Howell, 2010) (PETCO2 & RVT vs. PETCO2 & GM-BOLD: 

T(13)=0.59, p=0.57; PETCO2 & GM-BOLD vs. GM-BOLD & RVT: T(13)=1.02, p=0.33; PETCO2 & 

RVT vs. GM-BOLD & RVT: T(13)=0.43, p=0.67). However, there are two datasets with RVT delay 

values that are poorly correlated with other reference signals (sub-002 ses-02 and sub-006 ses-

03). These poor correlations are supported by low cross-correlations between the RVT and GM-

BOLD reference signals in each dataset (0.46 and 0.64, respectively, Table S1), which may drive 

poor optimization in the lagged-GLM and cause more voxels to be near boundary conditions. 

Local variations in BOLD signal features may introduce regional differences in the success of 

optimization, overall leading to poor spatial agreement between RVT delay maps with other 

reference signals. This is consistent with the CVR delay maps shown in Fig. 6 for these datasets.  

The slope of the relationship between CVR delay values from a given pair of reference signals 

is generally more consistent compared to CVR amplitudes, consistent with the common 

quantitative units (seconds) of CVR delay achieved with all three methods. This is demonstrated 

by the inter-subject consistency of slopes for each best-fit line in Fig. 8A. In addition, the inter-

session reliability of the slopes was assessed with an intraclass correlation (using a two-way 

random effects model of absolute agreement). There is good reliability between PETCO2 and GM-

BOLD delays (ICC(2,1)=0.73) and between GM-BOLD and RVT delays (ICC(2,1)=0.63). 

However, there is poor reliability between PETCO2 and RVT delays (ICC(2,1)=0.35). As with CVR 

amplitude, these ICC estimates may be limited by the small number of repeated measurements 

and subjects. 
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Figure 8: A) Inter-reference spatial correlations between PETCO2, RVT, and GM-BOLD CVR delay maps, 

for each subject and session (summarized in Supplementary Table S6). Each of the three pairwise 

comparisons are plotted in a different row. The unity line (y=x) is plotted in gray for reference. B) Inter-

session spatial correlations between CVR delay maps from the same reference signal between two 

consecutive sessions (summarized in Supplementary Table S7). All correlations were computed using the 
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median CVR delay in 96 cortical parcels, identified from the Harvard-Oxford cortical atlas and separated by 

hemisphere. Each dot in a sub-plot represents the median CVR delay in one cortical parcel. Lines-of-best-

fit are shown between each pair of CVR delay maps. Pearson correlation coefficients (r) are listed in the 

top left corner and slopes for the lines-of-best-fit (β) are displayed in the bottom right corner. 

 

3.3.2 Inter-session comparisons 

 CVR delay maps for each reference signal are also highly spatially correlated between two 

consecutive sessions, provided the PETCO2 quality was sufficient. These inter-session spatial 

correlations for CVR delay are summarized in Fig. 8B and Supplementary Table S7. There were 

no significant differences in average Fisher’s Z across subjects (PETCO2: Z=1.11, RVT: Z=1.14, 

GM-BOLD: Z=1.21). The average slope between delays from consecutive sessions is also similar 

for each reference signal (average slope for PETCO2: 0.83±0.22, RVT: 0.81±0.21, GM-BOLD: 

0.87±0.11). 

 

3.4 Insufficient PETCO2 Datasets 

3.4.1 Inter-quality comparisons 

As described in Section 3.1, a total of 6 datasets were identified as having insufficient PETCO2 

quality, based on the relative power content at the BH task frequency. Fig. 9 shows the reference 

signals, power spectra, and resulting CVR maps from datasets with sufficient and insufficient 

PETCO2 quality within the same example subject (inter-quality comparison). Not surprisingly, the 

CVR amplitude and delay maps generated by an insufficient PETCO2 timeseries do not show 

physiologically plausible spatial variations (Fig. 9B). Despite the insufficient task-related 

information within the PETCO2 timeseries, the RVT and GM-BOLD timeseries still demonstrate 

modulations consistent with the 8 cycles of the BH task and clear peaks in their power spectra. 

Therefore, consistent with our hypothesis, the resulting RVT and GM-BOLD CVR parameter maps 

are comparable to those from the dataset with sufficient PETCO2 quality.  
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Figure 9: Example reference signals, power spectra, and CVR maps for two datasets in the same subject 

(sub-009) with A) sufficient PETCO2 quality (ses-02) and B) insufficient PETCO2 quality (ses-08). The 

insufficient PETCO2 timeseries can be distinguished by the absence of a peak in the power spectrum at the 

breath-hold task frequency (0.014 to 0.020 Hz, indicated by dashed lines). CVR amplitude and delay maps 

are comparable between the two datasets, for all reference signals except insufficient PETCO2. Note that 

the RVT timeseries and power spectra are plotted on different scales for visualization purposes. CVR maps 

are scaled to 98th percentile values, which can be found in Table S2. Also note that only the PETCO2 CVR 

amplitude map is in quantitative units (%BOLD/mmHg), compared to RVT CVR (%BOLD/a.u.) and GM-

BOLD CVR (%BOLD/%BOLD).  
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The inter-quality spatial correlations between CVR parameter maps from insufficient and 

sufficient quality datasets support the qualitative observations in Fig. 9, in that the maps generated 

by RVT and GM-BOLD timeseries recover spatial information that is lost by those from the 

insufficient PETCO2 trace. For each reference signal’s CVR map from an insufficient PETCO2 

session, a spatial correlation was performed with the respective parameter map from the first 

sufficient PETCO2 session (ses-02) in the same subject. Table 4 summarizes the Fisher’s Z 

transformed spatial correlation coefficients and the slope of the best-fit line between these data. 

When the reference signal is “insufficient PETCO2”, the average spatial correlations with a map 

computed using sufficient PETCO2 data acquired in a different scan session are not significant for 

either CVR amplitude (Z=1.11±0.53) or CVR delay (Z=0.25±0.53), using Zcrit=1.13 for N=6 at 

alpha=0.05. In contrast, the inter-session spatial correlations for RVT and GM-BOLD CVR 

amplitude and delay maps are significant between sufficient and insufficient datasets. This is 

expected, since the categorization of “sufficient” datasets was based on PETCO2 quality, with RVT 

and GM-BOLD signals surpassing the relative power criterion in all datasets. 

However, it is important to note the differences in PETCO2 CVR maps are not as dramatic for 

all datasets with insufficient PETCO2 quality. These maps are presented in Supplementary Figure 

S3. Specifically, amplitude maps from some insufficient PETCO2 traces have reasonable quality, 

while the delay maps remain noisy. For example, the CVR amplitude maps obtained with 

insufficient PETCO2 are similar to those obtained with RVT and GM-BOLD for sub-006 ses-07, 

sub-009 ses-09, and sub-010 ses-08. These datasets also have higher inter-quality spatial 

correlations, as indicated by the Fisher’s Z values in Table 4. The relative power in the insufficient 

PETCO2 signals for these three datasets (Table 2) far exceeds the relative power of 4.33% in the 

example case highlighted in Fig. 9, indicating that there may have been some sufficient BH trials 

to generate reasonably good CVR amplitude maps. While some insufficient PETCO2 CVR 

amplitude maps are similar, the CVR delay maps still have noticeable regional differences (e.g., 

more negative delays and reduced tissue contrast), though less extreme than shown in Fig. 9. 
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Table 4: Inter-quality spatial correlations between each reference signal’s CVR map from an insufficient 

PETCO2 quality dataset and the corresponding CVR map from a sufficient PETCO2 dataset 

 

β = coefficient of slope for best-fit line to correlation. Z = Fisher’s Z transformation of correlation coefficient. 

*Indicates Fisher’s Z is significantly different from 0 at alpha = 0.05 (critical Z = 1.13 for N = 6). 

 

3.4.2 Inter-reference comparisons 

Similarly, the inter-reference spatial correlations within each insufficient PETCO2 dataset 

demonstrate the corrupted CVR amplitude and CVR delay maps generated by the PETCO2 traces. 

These results can be found in Supplementary Table S9. Correlations of PETCO2 CVR amplitude 

with RVT and GM-BOLD CVR amplitude are expectedly lower (Z=1.44±0.73 and Z=1.41±0.69, 

respectively) compared to those between GM-BOLD and RVT (Z=2.56±0.13), which still have 

sufficient power at the task frequency. This difference is especially apparent in sub-009 ses-08 

and sub-010 ses-07.  

The same pattern of low spatial correlations with results derived from PETCO2 is evident in the 

CVR delay values (Z=0.75±0.38 for correlation of delays with insufficient PETCO2 CVR and RVT; 

Z=0.66±0.37 with insufficient PETCO2 CVR and GM-BOLD, and Z=1.340±0.22 with RVT and GM-

BOLD). In addition, the average spatial correlations for CVR delay are all considerably lower than 

those for CVR amplitude of the same pairwise comparison. 

 

4. Discussion 

In this study, we tested whether RVT or GM-BOLD can be used in a lagged-GLM framework 

to achieve estimates of CVR amplitude and delay that are spatially correlated with estimates from 

PETCO2. We tested this in breath-hold data in healthy adults, including datasets where PETCO2, 

RVT, and GM-BOLD reference signals had sufficient power (>50%) at the task frequency, and 
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datasets where only the PETCO2 timeseries had insufficient power. We found that in datasets with 

sufficient quality, all reference signals are highly correlated. Correspondingly, CVR amplitude 

maps are spatially similar for all reference signals, after accounting for differences in scale. 

However, both RVT and GM-BOLD CVR amplitudes are not in standard CVR units of 

%BOLD/mmHg. Regarding CVR delay, the maps generated by PETCO2 and RVT show similar 

spatial variation, while GM-BOLD delay maps have a smaller range and reduced contrast. Finally, 

when PETCO2 is insufficient, RVT and GM-BOLD can be used to recover spatially similar CVR 

amplitude and delay maps, provided that the participant attempted the breath-hold task. We 

explore each of these findings in further detail in the following sections. 

 

4.1 Reference signals are highly correlated in breath-hold data with sufficient PETCO2 

quality 

The high cross-correlation amplitudes observed between PETCO2, RVT, and GM-BOLD 

signals are expected and consistent with previous reports in the literature. Each of these signals 

captures the physiological processes occurring during a breath-hold, marked by a cessation of 

breathing, increased arterial CO2 concentration, increased CBF, and an increased BOLD signal 

that eventually returns to baseline (Bright et al., 2009; Kastrup et al., 1999; Thomason et al., 

2005). PETCO2 and RVT have separately been shown to correlate with the resting-state BOLD 

timeseries (Birn et al., 2008, 2006; Wise et al., 2004). Additionally, Chang et al. demonstrated 

that PETCO2 and RVT (convolved with the respiration response function) are highly correlated and 

account for similar spatial and temporal variations in the resting-state BOLD signal (Chang and 

Glover, 2009).  

In breath-hold data, these cross-correlations are magnified due to the alternating periods of 

task and rest, which lead to large coupled amplitude fluctuations in PETCO2, RVT, and GM-BOLD 

that are approximately sinusoidal at the task frequency (Pinto et al., 2021). These quasi-sinusoidal 

variations are critical to our approach for determining sufficient PETCO2 based on relative power 

at the task frequency. While this strategy can be easily implemented to quality check PETCO2 

recordings, it requires periodic breathing modulation and thus cannot easily be translated to 

evaluate the quality of natural PETCO2 fluctuations in resting-state data. 

The reference signals we considered are not exhaustive. The near-sinusoidal fluctuations in 

the BOLD response during a quasi-periodic breath-hold task can be modeled using a Fourier 

series, with a sine-cosine pair at the task frequency and additional harmonics, to estimate both 
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CVR amplitude and delay (Lipp et al., 2015; Murphy et al., 2011; Pinto et al., 2016; van Niftrik et 

al., 2016). Additionally, many studies use different variations of a global BOLD signal to model 

CVR, rather than a respiratory-derived signal, due to the known influence of arterial CO2 

fluctuations on the BOLD signal (Geranmayeh et al., 2015; Liu et al., 2017; Tong et al., 2011; 

Tong and Frederick, 2014; van Niftrik et al., 2016). As we have demonstrated with GM-BOLD, 

there are clear breath-hold effects in the average BOLD response, leading to CVR measurements 

that are comparable to those derived from PETCO2. 

 

4.2 CVR amplitude maps are comparable between reference signals, but RVT and GM-

BOLD amplitudes are not in standard CVR units 

Based on the high cross-correlations between input reference signals, it is not surprising that 

the resulting CVR amplitude maps are also highly correlated. In fact, CVR maps from each 

reference signal look nearly identical when scaled to the 98th percentile CVR amplitude. 

Regardless of the method used to model CVR, this visualization scaling approach may facilitate 

qualitative comparisons of CVR maps, longitudinally, between cohorts, and between protocols. 

Our CVR visualization approach also indicates the method used to model CVR may not be critical 

for qualitative comparisons, which is consistent with the current ethos regarding the “multiverse” 

of analysis pipelines in the functional neuroimaging community (Botvinik-Nezer et al., 2020; 

Dafflon et al., 2022; Steegen et al., 2016; Taylor et al., 2022). 

Despite the qualitative similarities between CVR maps, there are important differences in the 

absolute magnitudes of CVR amplitude. Both RVT and GM-BOLD CVR are not in standard CVR 

units, which is an important caveat, particularly for comparing CVR between cohorts or with 

literature values. In these cases, it is still best to use PETCO2 as a reference signal, because the 

resulting CVR amplitude in units of %BOLD/mmHg is physiologically meaningful. There is also 

between-subject variability in the slope of the relationship between CVR amplitudes, likely driven 

in part by the arbitrary units of RVT and GM-BOLD CVR. Overall, RVT CVR had the most reliable 

relationship with PETCO2 CVR amplitude, suggesting that this might be a better alternative than 

GM-BOLD to capture differences in CVR amplitude. 

However, our results indicate that RVT and GM-BOLD would still be useful in many cases, 

such as making relative comparisons between brain regions within a subject and identifying focal 

pathology. In addition, the CVR maps for RVT and GM-BOLD were consistent between scan 

sessions. With these steady measurements, it could be possible to compare longitudinally within 
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a subject, provided that a breath-hold task is used to induce modulations and there is sufficient 

power at the task frequency. 

We observed that normalizing the RVT timeseries before inputting it to the lagged-GLM is 

critical to achieve reasonable CVR amplitude values. RVT is reported in arbitrary units (a.u.) 

because the magnitude of RVT varies across experimental setups and is sensitive to the tightness 

of the respiration belt and its placement on the body (i.e., chest vs. abdomen). Thus, there is high 

variability in the scale of RVT fluctuations across datasets (Supplementary Fig. S1 and Table S2). 

The resulting CVR amplitude maps are impacted by this variability because they are scaled to the 

amplitude of the reference signal. If RVT is not normalized, there are large differences in the range 

of amplitude values, which could be misleading if CVR maps are plotted on a fixed scale 

(Supplementary Fig. S2). 

 

4.3 CVR delay maps are comparable for PETCO2 and RVT, but GM-BOLD may 

underestimate delay variability 

In datasets with sufficient PETCO2 quality, RVT and GM-BOLD both produce delay maps that 

are highly correlated with those from PETCO2, but the delay magnitudes tend to be smaller when 

GM-BOLD is the reference signal. This is evident in the narrower distributions of GM-BOLD delay 

values (Fig. 7) and in the biased slopes from inter-reference spatial correlations with PETCO2 and 

RVT delays (Fig. 8A). Thus, GM-BOLD may underestimate the true delay value, particularly for 

voxels with larger absolute PETCO2 delays. 

There are a few potential reasons for the narrower distribution of GM-BOLD delay values. We 

normalized delay maps to the GM median to compare between reference signals and participants. 

Many GM voxels will be well-characterized by the average BOLD timeseries and have similar 

delay values that are reduced to zero after this spatial normalization step. Additionally, the GM-

BOLD signal (after the T2-weighted combination of the echoes) might be more affected by motion-

related effects than other reference signals (Moia et al., 2021). For example, peaks or slow drifts 

in the GM-BOLD timeseries due to head motion could bias the optimum delay estimated for a 

given voxel. More likely, the GM-BOLD signal is “blurring” the breath-hold response due to the 

wide variation in relative timing across the brain (Tong et al., 2019). This has been addressed 

previously with the concept of making a “refined” or “dynamic” global signal regressor that 

accounts for voxel-specific variations in delay to recover a source signal (Erdoğan et al., 2016; 

Frederick et al., 2012; Tong and Frederick, 2014). Our approach using the average response 
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across GM voxels is well-established but more simplistic and may have restricted the sensitivity 

to a wider range of delays. An average signal from the cerebellum (Donahue et al., 2016; Liu et 

al., 2021), sagittal sinus (Pillai and Mikulis, 2015; van Niftrik et al., 2016), or other small ROIs 

(Erdoğan et al., 2016) could also be used to mitigate this issue. However, the cerebellum is 

sensitive to noise (Diedrichsen et al., 2010; van der Zwaag et al., 2015) and these ROIs are 

arbitrary for CVR analysis. 

To address limitations attributed to the GM-BOLD regressor, we performed a post hoc 

exploratory analysis to compare CVR delays using a “refined” GM-BOLD approach. The refined 

GM-BOLD regressor used in this analysis was generated by Rapidtide v2.2.7, a data-driven 

algorithm that uses the refined GM-BOLD timeseries as a regressor, for which it iteratively 

considers a voxel-by-voxel fit across a range of temporal offsets using a cross-correlation method 

(Frederick et al., 2012, 2016). We considered a temporal range of ±9 s with 0.3 s increments to 

match the lagged-GLM (specific command options are detailed in Table S11, and we refer the 

reader to the Rapidtide documentation (Frederick et al., 2022a) to explore more in-depth details 

about the settings). This algorithm further differs from the lagged-GLM processing method by also 

temporally smoothing the average GM-BOLD response with a band-pass filter (0.009-0.15 Hz) 

and “despeckling” using a spatial median filter to correct erroneous time delays due to 

autocorrelation in the probe regressor (Frederick, 2017). Additionally, motion parameters and 

Legendre polynomials are regressed from the data before the cross-correlation fit, in contrast to 

being included in the lagged-GLM. Fig. 10 shows a comparison between the original GM-BOLD 

approach and a refined GM-BOLD approach for a representative subject (sub-008). Results for 

all subjects with sufficient PETCO2 data quality can be found in Supplementary (Figures S4-S7, 

Table S10). The refined GM-BOLD regressor is similar to the GM-BOLD time series yet smoother, 

with high frequencies removed (Fig. 10A). 

CVR delay maps generated using the refined GM-BOLD approach depict greater visual 

contrast between gray matter and white matter in comparison to the CVR delay maps generated 

with the average GM-BOLD approach (Fig. 10B). Furthermore, the distribution of delays 

generated from a CVR delay map using the refined GM-BOLD approach show a skewness 

towards larger positive delays (Fig. 10C). The delay values from both methods are highly 

correlated and the slopes of the spatial correlations are greater than 1, indicating that the refined 

GM-BOLD approach depicts more extreme delays across most of the cortex in comparison to the 

GM-BOLD approach (Fig. 10D). Thus, using a refined GM-BOLD timeseries as a regressor may 
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partially compensate for the smaller distribution in delays attributed to the lagged-GLM with a 

standard GM-BOLD timeseries. 

 

 

Figure 10: A) Reference signal for sub-008 from GM-BOLD (blue) and Refined GM-BOLD (yellow) in ses-

02 (top) and ses-03 (bottom). B) CVR delay map for sub-008, transformed to MNI space. Maps from ses-

02 are shown on the top row, and maps from ses-03 are shown on the bottom row. An axial slice from two 

compared methods is shown in each column: GM-BOLD (left) and Refined GM-BOLD (right). CVR delay 

maps using the GM-BOLD approach have been normalized to the GM median delay with voxels at 

boundary conditions (absolute delay = +/- 8.7s, 9s) removed. Refined GM-BOLD delay maps are re-

centered to 0s and exclude voxels where the similarity function failed (Frederick et al., 2022a). C) CVR 

delay distribution for sub-008 across GM-BOLD (solid line) and Refined-GM (dashed line) from ses-02 

(orange) and ses-03 (teal). D) Inter-reference spatial correlation between GM-BOLD and Refined GM-

BOLD delay maps for sub-008 in ses-02 (orange) and ses-03 (teal) with respective best-fit-lines and an 

identity line (black) for comparison. Each point represents the median delay value in one of the 96 cortical 

parcels from the Harvard-Oxford cortical atlas. Correlation coefficient (R) for each session is listed on the 

top left, and the slopes for the lines-of-best-fit (/beta) for each session are listed on the bottom right. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.517116doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.517116
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 39 

4.4 When PETCO2 quality is insufficient, maps of CVR amplitude and delay can be achieved 

with RVT or GM-BOLD as reference signals 

We have demonstrated that in breath-hold fMRI data, if a participant attempts the task but 

PETCO2 quality is poor, RVT or GM-BOLD can be used to create CVR amplitude and delay maps. 

Based on comparisons with sufficient PETCO2 quality data, RVT seems the best alternative to 

generate CVR amplitude and delay maps that are highly correlated and have consistent 

relationships with those obtained with PETCO2 measurements. In addition, RVT still generates 

CVR measurements that are normalized to a respiratory-derived measure. If opting for a global 

signal like GM-BOLD, it would be best to use a refined GM-BOLD regressor to account for 

potential under-estimation of CVR delay. 

We also proposed a method to define a “sufficient” PETCO2 trace for CVR mapping, using a 

relative power threshold >50% at the breath-hold task frequency. However, this threshold is 

slightly arbitrary and may need to be adjusted for specific cases, with a holistic evaluation of 

reference signals and their resulting CVR amplitude and delay maps. In fact, some of the datasets 

with insufficient PETCO2 still showed reasonably good CVR amplitude maps (Fig. S3). However, 

the corresponding CVR delay maps are less similar to those generated by sufficient quality 

timeseries and should give cause for caution when interpreting the CVR amplitude maps, due to 

potential mis-fitting of the reference signal. For example, there are several regions of negative 

CVR amplitudes in the map for sub-010 ses-07 (indicated by blue voxels in the corresponding 

map of Fig.S3), which resemble the vascular “steal” phenomenon and could be mis-characterized 

as pathology (Conklin et al., 2010; Poublanc et al., 2013; Sam et al., 2016). Therefore, insufficient 

PETCO2 CVR maps should be interpreted carefully, particularly in clinical cases. 

Although these are promising results to recover CVR maps retrospectively or in low resource 

settings, we still recommend trying to obtain sufficient PETCO2 estimates from a breathing 

modulation for the highest quality CVR maps. There are suggestions throughout the literature on 

how to implement robust breath-hold tasks (Bright and Murphy, 2013; Murphy et al., 2011; Pinto 

et al., 2021; Scouten and Schwarzbauer, 2008; Urback et al., 2017). In brief, it is strongly 

recommended to incorporate a training session before the scan to ensure that participants 

understand and comply with task instructions (Kannurpatti et al., 2010; Magon et al., 2009; Zacà 

et al., 2014). Monitoring respiratory signals throughout the task is also encouraged to ensure 

quality of the recording and assess task performance (Bulte and Wartolowska, 2017). In addition, 

cueing strategies (e.g., text, symbolic, or auditory) should be carefully considered to make 

instructions intuitive for the target population. Lastly, other breathing tasks might be more feasible 
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than a breath-hold, such as intermittent breath modulation (Liu et al., 2020) or paced deep 

breathing (Bright et al., 2009; Sousa et al., 2014; Stickland et al., 2021). With these alternative 

methods, a similar approach to determine relative power at the task frequency could still be 

implemented, though the limitations of extending our findings to other breathing modulations are 

discussed in Section 4.7. 

 

4.5 Potential impacts and examples of utility  

The use of alternative reference signals to generate CVR amplitude and delay maps has a 

range of potential impacts. The framework proposed here using RVT or GM-BOLD reference 

signals makes prospective CVR mapping accessible to any imaging centers that lack the 

equipment and personnel necessary to monitor and post-process respiratory gas recordings. A 

respiration belt should be integrated with most scanning set-ups, and the GM-BOLD signal 

requires no additional monitoring. All lagged-GLM regression analyses, with the exception of the 

RVT computation, are based on open-source software (peakdet, phys2cvr, and rapidtide) to 

facilitate the modeling steps for future applications. In addition, these findings present the 

opportunity to retrospectively generate CVR maps in breath-hold data where PETCO2 data was 

not collected or had insufficient quality.  

Potentially most impactful, a method to acquire robust CVR amplitude and delay maps even 

in datasets with insufficient PETCO2 quality has important implications for populations where it may 

be difficult to obtain reliable end-tidal measurements. This includes children, where previous work 

has demonstrated reasonable task compliance but poor PETCO2 quality, either due to mouth 

breathing or failure to perform end-exhales. It also includes aging cohorts and clinical populations 

(both pediatric and adults), who may similarly have difficulty following the steps needed for 

sufficient quality PETCO2 (Handwerker et al., 2007; Thomason et al., 2005). 

Overall, improved accessibility to CVR mapping can increase the prevalence of this 

informative metric of vascular health. Several reviews have described the utility of CVR mapping 

for understanding disease mechanisms and as a biomarker to triage patients for therapeutic 

interventions and track the efficacy of these interventions (Blair et al., 2015; Gupta et al., 2012; 

Juttukonda and Donahue, 2019; Pillai and Mikulis, 2015; Sleight et al., 2021; Smeeing et al., 

2016). Aside from clinical populations, CVR mapping is also recommended in healthy cohorts to 

isolate differences in the BOLD response that may be due to differences in vascular rather than 

neural processes (Handwerker et al., 2007; Thomason et al., 2007; Tsvetanov et al., 2015). 
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4.6 Alternative approaches to address compliance challenges in CVR mapping 

While we ideally recommend using a breathing task and respiratory-derived signal for CVR 

mapping, alternative methods without end-tidal CO2 recordings or in resting-state have been 

proposed to address the challenges associated with breathing tasks. These methods are 

reviewed in detail by Pinto et al., 2021, but we discuss key comparisons. As described in Section 

4.4, the Rapidtide algorithm can generate a probe regressor from the global BOLD signal or 

another reference timeseries and use temporal cross-correlation with each voxel timeseries to 

determine maximum correlations and corresponding time delays (Frederick et al., 2016) (Tong 

and Frederick, 2014). The correlation metrics are surrogates for CVR, although the outputs are 

not in the standard CVR units (%BOLD/mmHg) that allow for comparison across subjects, 

particularly if the global signal is used as the probe. With a PETCO2 probe, the Rapidtide outputs 

could potentially be modified to obtain CVR amplitude in normalized units. 

From resting-state data, the global BOLD signal can be bandpass filtered to approximate 

arterial CO2 fluctuations and used as a regressor to estimate CVR (Liu et al., 2017). In addition, 

resting-state metrics such as the amplitude of low frequency fluctuations (ALFF) or fractional 

ALFF (fALFF) have demonstrated high correlations with CVR derived from CO2 challenges (Di et 

al., 2013; Golestani et al., 2016; Kazan et al., 2016). However, this relationship is controversial 

(Moia et al., 2022a). For instance, Moia et al., 2022 shows, in the same dataset used in this study, 

that resting-state metrics (RSFA, ALFF, fALFF) have highly variable inter-subject relationships 

with breath-hold CVR measures.  

Additionally, the lagged-GLM has been previously performed with PETCO2 from resting-state 

data, but the delay optimization procedure was less successful, leading to noisy estimates of CVR 

amplitude and delay (Stickland et al., 2021). This was hypothesized to be due to the smaller 

fluctuations in the resting-state signal relative to a breathing task and the confounds of low-

frequency oscillations from neural activity and other physiological processes that may disrupt the 

optimization procedure (Caballero-Gaudes and Reynolds, 2017; Liu, 2016; Murphy et al., 2013). 

The increased BOLD sensitivity and data quality associated with the multi-echo acquisition in our 

study also helps to improve the CVR estimates (Moia et al., 2021). Similar results would be 

expected for alternative resting-state reference signals.  

Although these alternative methods provide some insight into cerebrovascular physiology, 

each is missing a key characteristic of robust CVR measurements. Namely, none of these 
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methods simultaneously use a breathing modulation to challenge the vascular system, normalize 

the BOLD changes to a reference signal that accounts for variability in breathing task 

performance, and correct for regional delays in CVR response time (Stickland et al., 2021).  

 

4.7 Limitations and future work 

The comparisons laid out in this study are valid only for breath-hold task fMRI data in healthy 

individuals. The alternative reference signals considered here may not be highly correlated with 

PETCO2 in paced deep breathing tasks and may have insufficient variability in resting state to 

produce reasonable CVR maps. Using a paced hyperventilation task to induce hypocapnia, Vogt 

and colleagues (2011) found that RVT convolved with the respiration response function was less 

strongly correlated to BOLD signal changes than PETCO2 convolved with an empirically derived 

response function. They conjectured that the uncoupling of the signals was due to the higher rate 

of CO2 reduction during hyperventilation relative to the slower rate of metabolic CO2 production, 

which is captured by the PETCO2 regressor but not in the canonical respiration response (Vogt et 

al., 2011). This could potentially be addressed with optimization of the respiration response 

function for hypocapnia.  

Furthermore, to achieve RVT or GM-BOLD CVR maps that are comparable to those from 

PETCO2, the participant must attempt the breath-hold task with repeated periods of apnea. These 

changes in chest position are necessary to generate an RVT signal that has sufficient power at 

the task frequency. Similarly, the periods of apnea are required to induce a rise in arterial CO2 

levels and the successive increase in CBF detected by the GM-BOLD signal. Achieving this level 

of task compliance could still be difficult in some cohorts, although there is a breadth of literature 

demonstrating successful use of breath-hold tasks (Pinto et al., 2021; Urback et al., 2017). 

In participants with cerebrovascular pathology, careful consideration should be given to the 

reference signal and lagged-GLM parameters. For example, the average gray matter signal might 

be biased by regions with atypical perfusion dynamics. This could be addressed by averaging 

across normal-appearing tissue, or by using global signal refinement procedures as described in 

Section 4.4. Hemodynamic delays are also longer in many pathologies, such as steno-occlusive, 

small vessel disease, and dementia (Atwi et al., 2019; Duffin et al., 2015; Hartkamp et al., 2012; 

Holmes et al., 2020; McKetton et al., 2019; Thrippleton et al., 2018). The delay range used in the 

lagged-GLM step should be extended to reflect those that are physiologically plausible for a given 

condition. Using a lagged-GLM approach, delays in the range of ±9 seconds are consistently 
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reported in healthy individuals (Bright et al., 2009; Donahue et al., 2016; Moia et al., 2021, 2020a; 

Sousa et al., 2014; Stickland et al., 2021), while in a case of unilateral moyamoya, delays 

exceeded 10 seconds in the affected hemisphere (Stickland et al., 2021). 

 Our choice to use a multi-echo fMRI acquisition rather than a more commonly used single 

echo protocol may also limit the generalizability of our findings. In fact, the GM-BOLD signal used 

in our study benefits from the boost in SNR achieved from the optimal combination of 5 echoes 

(Cohen and Wang, 2019; Moia et al., 2021). If a multi-echo fMRI approach is not feasible, spatial 

smoothing or cortical parcellation could be used as alternatives to boost SNR at the cost of spatial 

definition. Results from CVR mapping will also be sensitive to the quality of the input fMRI data, 

from acquisition to the pre-processing and denoising steps applied (Caballero-Gaudes and 

Reynolds, 2017). As with all fMRI acquisitions, we recommend mitigating motion confounds 

during the scan and modelling these noise sources in the lagged-GLM (Moia et al., 2021). 

 CVR map quality and accuracy could be further improved by refining the response functions 

used to model the effects of PETCO2 and respiration fluctuations on the BOLD signal. We assumed 

canonical response functions for the HRF (Friston et al., 1998) and RRF (Birn et al., 2008) used 

to model PETCO2 and RVT, respectively. While we have accounted for regional variations in the 

timing of these responses, we have not incorporated flexible response shapes. Spatial 

heterogeneity in the amplitude and timing of BOLD responses to respiratory variation is apparent 

in resting-state data, with notable differences between primary sensory regions and frontoparietal 

regions (Chen et al., 2020; Pinto et al., 2017). The inclusion of temporal and derivative basis sets 

in the lagged-GLM as described by Chen at al., 2020 may better account for this variability. In 

addition, response functions have been shown to vary between subjects and even between 

sessions from the same subject (Kassinopoulos and Mitsis, 2019). Kassinopoulos and Mitsis 

(2019) proposed a framework to estimate subject-specific response functions by using a 

combination of optimization techniques to estimate parameters of the double gamma functions, 

which could also be implemented to generate more accurate reference signals. Similarly, they 

could be estimated from the subject-specific global or GM-BOLD signals (Falahpour et al., 2013), 

but importantly the estimated response functions should be tested in other datasets to avoid 

circularity. Regardless of the approach, differences in response functions are especially important 

to consider in cohorts that may have atypical hemodynamics, as in older adults and 

cerebrovascular pathology (D’Esposito et al., 2003). Future work should re-evaluate consistency 

between CVR maps with region-specific and/or subject-specific response functions. 
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 We encourage collaboration among stakeholders in the CVR community and suggest 

integration among the existing approaches that aim to address the feasibility of physiological 

modeling and CVR mapping. For example, a refined GM-BOLD regressor could be extracted from 

existing algorithms such as Rapidtide (Frederick et al., 2022b) or seeCVR (Bhogal, 2022) and 

incorporated into the lagged-GLM. Alternatively, standard implementations of CVR modeling 

algorithms, including Rapidtide, seeCVR, and quantiphyse (Craig et al., 2022), could be modified 

to input RVT as a reference signal not already supported. Machine learning may also be a 

promising tool to address challenges with reference signal quality. For example, Agrawal et al., 

2022 successfully used the respiratory waveform in resting-state data to predict CO2 and derive 

PETCO2 using a fully convolutional neural network (Agrawal et al., 2022). However, their method 

does not maintain PETCO2 in quantitative units of mmHg either, which would be preferred for 

modeling CVR amplitude. A separate study proposed two deep learning architectures (again a 

convolutional neural network and a fully connected single-unit network) to reconstruct respiratory 

variation signals from the fMRI data itself (Salas et al., 2021). Future work could adapt these 

models to predict a “sufficient” PETCO2 trace from insufficient PETCO2 data, from a respiration 

trace, or from the fMRI data in the context of a breath-hold task. This would be especially 

promising if the algorithm is able to scale the resulting PETCO2 signal in standard units (i.e., 

%BOLD/mmHg). 

 

5. Conclusion 

End-tidal CO2 (PETCO2) is commonly used as a reference signal to facilitate modeling of 

cerebrovascular reactivity (CVR) in BOLD fMRI data, but the PETCO2 recordings may be 

unavailable or unreliable in many settings. We demonstrate that respiration volume per time 

(RVT) or the average gray matter BOLD response during a breath-hold task can be used in a 

lagged general linear model framework to obtain estimates of CVR amplitude and delay. 

Furthermore, CVR maps from these reference signals have good spatial agreement with those 

from the gold standard reference of PETCO2. In datasets with sub-optimal or “insufficient” PETCO2 

recordings, RVT and GM-BOLD can also be used to recover reasonable CVR amplitude and 

delay maps, provided that the participant achieved periods of apnea during the breath-hold task. 

This framework offers a solution to obtain non-quantitative CVR amplitude and quantitative delay 

maps when reliable PETCO2 recordings are unavailable due to limitations in resources or 

participant compliance. 
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