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ABSTRACT 13 

Motivation: There is widespread interest in identifying genetic variants that exhibit parent-of-14 

origin effects (POEs) wherein the effect of an allele on phenotype expression depends on its 15 

parental origin. POEs can arise from different phenomena including genomic imprinting and 16 

have been documented for many complex traits. Traditional tests for POEs require family data to 17 

determine parental origins of transmitted alleles. As most genome-wide association studies 18 

(GWAS) instead sample unrelated individuals (where allelic parental origin is unknown), the 19 

study of POEs in such datasets requires sophisticated statistical methods that exploit genetic 20 

patterns we anticipate observing when POEs exist. We propose a method to improve discovery 21 

of POE variants in large-scale GWAS samples that leverages potential pleiotropy among 22 

multiple correlated traits often collected in such studies. Our method compares the phenotypic 23 

covariance matrix of heterozygotes to homozygotes based on a Robust Omnibus Test. We refer 24 

to our method as the Parent of Origin Inference using Robust Omnibus Test (POIROT) of 25 

multiple quantitative traits.  26 

Results: Through simulation studies, we compared POIROT to a competing univariate variance-27 

based method which considers separate analysis of each phenotype. We observed POIROT to be 28 

well-calibrated with improved power to detect POEs compared to univariate methods. POIROT 29 

is robust to non-normality of phenotypes and can easily adjust for population stratification and 30 

other confounders. Finally, we applied POIROT to a GWAS of quantitative anthropometric 31 

measures at birth. We identified two loci of suggestive significance for follow-up investigation. 32 

 33 

 34 

 35 
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1 INTRODUCTION 36 

Most genome-wide association studies (GWAS) implicitly assume the magnitude and direction 37 

of effect of a genetic variant on expression of a phenotype is independent of whether the variant 38 

was maternally or paternally inherited. However, there exists a distinct class of genetic variants 39 

for which this assumption is violated. Such variants harbor a parent-of-origin effect (POE) 40 

wherein the effect of an allele on a trait depends on whether it was transmitted from the mother 41 

or the father (Lawson et al., 2013). A substantial proportion of the variation in complex traits is 42 

not explained by the additive effects of common single nucleotide polymorphisms (SNPs) across 43 

the genome. POEs may represent an important contribution to this missing heritability 44 

(Guilmatre and Sharp, 2012). 45 

There are multiple cited biological mechanisms by which POEs can arise in mammals. These 46 

include maternal intrauterine environment effects and effects of the maternal mitochondrial 47 

genome. However, the most frequently considered mechanism is genomic imprinting 48 

(Rampersaud et al., 2008). This epigenetic phenomenon was formally discovered in the 1980s 49 

primarily through embryological experiments (Reik and Walter, 2001). In imprinting, the 50 

maternal and paternal alleles undergo differential epigenetic modifications that leads to parent-51 

of-origin-specific transcription of the gene copies. Many imprinted genes tend to be found in 52 

clusters across the genome. Regulation of the expression of these clustered genes is under control 53 

of an imprinting control region (ICR), the mechanisms of which are complex (Barlow, 2011). 54 

These ICR are often characterized by repetitive sequences and located near imprinted genes. It is 55 

estimated that only approximately 1% of mammalian genes are subject to imprinting. However, 56 

there has been growing evidence for the existence of POE variants for a wide range of hereditary 57 

traits (Peters, 2014). Classic examples of POE-associated diseases include Prader-Willi 58 
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syndrome and Angelman syndrome. These diseases result from imprinted genes at 15q11-15q13 59 

when only maternal or paternal copies are expressed, respectively (Aypar et al., 2014). 60 

Considerable research has further suggested POEs originate for a wide spectrum of complex 61 

traits, including obesity-related phenotypes, type 2 diabetes, basal-cell carcinoma, attention-62 

deficit/hyperactivity disorder, schizophrenia, and breast cancer (Rampersaud et al., 2008; 63 

Giannoukakis et al., 1993; Temple et al., 1995; Huxtable et al., 2000; Polychronakos and 64 

Kukuvitis, 2002; Hoggart et al., 2014; Dong et al., 2005; Kong et al., 2009; Wang et al., 2012; 65 

Palmer et al., 2006).  66 

To detect variants demonstrating POEs, studies have historically required genotype data from 67 

related individuals to ascertain parental ancestry of the inherited alleles. In the case of available 68 

parent-offspring trio or other forms of familial genomes, there are well-established methods to 69 

detect POEs (Connolly and Heron, 2015; Weinberg et al., 1998; Cordell et al., 2004; Howey and 70 

Cordell, 2012; Ainsworth et al., 2011; Sinsheimer et al., 2003; Howey et al., 2015; Becker et al., 71 

2006; Zhou et al., 2012; Weinberg, 1999). These approaches often test for a mean difference in 72 

allele effect based on grouping offspring by parent-of-origin of the allele. These mean-based 73 

tests are intuitive and optimally powered given sample size. Yet, the requirement of trio or more 74 

general family data severely limits this sample size in practice. This, in consequence, limits 75 

genome-wide discovery of the modest genetic effects that we anticipate for complex human 76 

traits.  77 

Rather than rely on family studies of limited sample size to detect POEs, researchers have 78 

recently transitioned to detecting the phenomenon in GWAS-scale cohorts. This practice requires 79 

innovative statistical methods to deal with missing parental ancestry information. For example, 80 
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Kong et al. inferred parental origin of alleles when parental genotype data are not available by 81 

first phasing Icelandic probands. For each of the proband haplotypes, they searched a genealogy 82 

database for the closest typed maternal and paternal relatives carrying that haplotype (Kong et 83 

al., 2009). For each haplotype, they constructed a robust score comparing the meiotic distances 84 

between the proband and these two relatives to quantify the likelihood of maternal or paternal 85 

transmission and ultimately assign parental origin. While this approach solves the issue of small 86 

sample sizes, power is still impacted by the potential inaccuracy or uncertainty in haplotypic 87 

reconstruction.  88 

More recently, Hoggart et al. described a novel statistical method for detecting POEs for a single 89 

quantitative trait using GWAS data of unrelated individuals (Hoggart et al., 2014). The authors 90 

illustrated that the existence of a POE results in increased phenotypic variance among 91 

heterozygotes compared to homozygotes. They tested for this variance inflation using a robust 92 

version of the Brown-Forsythe test. The method successfully identified previously 93 

undocumented POE associations of two SNPs with body mass index (BMI). This work has 94 

enabled POE analysis in population studies of biobank scale. However, such variance-based tests 95 

are often underpowered compared to their corresponding mean-based tests described above when 96 

allelic parental origin is known (Struchalin et al., 2010). Furthermore, the method only tests for 97 

parent-of-origin-dependent associations between a genetic variant and a single phenotype.  98 

A sizable proportion of genes in the GWAS catalog are pleiotropic (Chesmore et al., 2018). 99 

These genes affect more than one biological process, in turn associating with multiple 100 

(correlated) phenotypes (He and Zhang, 2006). Analyzing the joint effects of a gene on more 101 

than one trait can often result in a marked increase in power over univariate approaches 102 
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(Kocarnik and Fullerton, 2014; Solovieff et al., 2013; O’Reilly et al., 2012). Importantly, well-103 

established POEs in humans are usually the result of embryonic silencing of one parental allele. 104 

As this silencing generally occurs early in development, its effects are likely to present in all or 105 

nearly all tissues expressing the gene. When differential silencing of this gene affects multiple 106 

tissues, this can yield POEs for several distinct phenotypes. Joint analysis of multiple traits can 107 

leverage this potential pleiotropy to improve power over univariate variance-based POE tests 108 

while simultaneously reducing multiple testing burden of multiple phenotypes. 109 

Here, we expand on the concept initially suggested by Hoggart et al. to develop a test for POEs 110 

in genetic studies of unrelated individuals that considers multiple quantitative phenotypes. We 111 

show that a pleiotropic POE variant will not only induce differences in the variance of POE traits 112 

between heterozygotes and homozygotes, but also in their corresponding covariances. In our 113 

method, POIROT (Parent-of-Origin Inference using Robust Omnibus Test), we test for equality 114 

of phenotypic covariances matrices between heterozygous and homozygous groups. Specifically, 115 

we use the robust omnibus (R-Omnibus) test (O’Brien, 1992) to accommodate highly skewed 116 

traits. We first provide background on the statistical construction of our test statistic using the R-117 

Omnibus framework. Next, through simulations, we demonstrate that our proposed method 118 

properly controls type I error and achieves superior power compared to the univariate approach 119 

of Hoggart et al. We apply our method to GWAS data of fetal growth phenotypes from the 120 

Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study and identify two potential POE 121 

loci. We conclude with a discussion of our findings and proposed research to extend this work.  122 

2 METHODS 123 

2.1 Phenotype Model 124 
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Using the notation of Hoggart et al., consider one biallelic SNP with reference allele A and 125 

alternative allele B (Hoggart et al., 2014). Assume we have collected ���  individuals who have 126 

the homozygous AA genotype, ��� individuals who have the homozygous BB genotype, and 127 

nAB individuals who are heterozygous. Further assume we have collected K > 1 continuous 128 

phenotypes on all subjects and that we have already adjusted these phenotypes for the effects of 129 

non-genetic confounders like principal components of ancestry.  130 

We first model phenotypes in homozygous AA subjects. Let ������ � ���,	����, ��,
����, … , ��,������� 	131 


� be the vector of phenotypes for the ith AA individual. We can represent ������ using the 132 

following framework 133 

������ � �  ��, � � 1, … , ���# �1� 

Within (1), � � ��	, … , ���� is the � � 1 vector of phenotype means in AA subjects and 134 

�� � ���	, … , ����� is the � � 1 vector of error terms. We assume that E���� � � and Cov���� �135 

�, where � is the � � � variance-covariance matrix of the vector of error terms. 136 

We next model phenotypes in homozygous BB subjects. Let ������ � ���,	����, ��,
����, … , ��,������� 	137 


�be the vector of phenotypes for the ith BB individual. Further, let ��� and ��� represent the 138 

effect of the maternally-inherited and paternally-inherited B allele, respectively, on the kth 139 

phenotype. If there is no association between this SNP and the kth phenotype, it follows that 140 

��� � ��� � 0. If there is a marginal association between this SNP and the kth phenotype, but 141 

there is no POE present, then ��� � ��� � 0. With this notation defined, we can model ������ as  142 
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������ � �   �   �  ��, � � 1, … , ���# �2� 

Where � is as defined previously for (1),   � � ���	, … , ����� is the � � 1 vector of maternal 143 

effects of the B allele on each of the k phenotypes, and  � � ���	, … , ����� is the � � 1 vector 144 

of corresponding paternal effects of the B allele. Each element of  � and  � is assumed to be a 145 

fixed effect. Just as for the AA subjects in (1), we assume that E���� � � and Cov���� � �. 146 

Lastly, we consider heterozygous AB individuals who carry only one copy of the alternative 147 

allele B. Let ������ � ���,	����, ��,
����, … , ��,������� 	 
� be the vector of phenotypes for the ith 148 

heterozygote. We can model this vector as 149 

������ � �  "� �  �1 # "�� �  ��, � � 1, … , ���# �3� 

In (3), "�  is an indicator random variable where "� � 1 if individual i received the B allele from 150 

the mother and "� � 0 if individual i received the B allele from the father. We assume "�  ~ 151 

Bernoulli(½), as we expect that half of heterozygotes will have maternally-derived B alleles. The 152 

maternal and paternal effect vectors are as defined as for the model of BB subjects. We also 153 

assume that E���� � � and Cov���� � �. In other words, the covariance matrix of the error 154 

terms is the same within all three genotype groups. 155 

Based on the derivations above, we can calculate the phenotype covariance matrix for each 156 

genotype category. Based on equations (1) and (2), it is straightforward to show that the 157 

phenotype covariance matrix of AA individuals (�) is the same as the analogous matrix for BB 158 

individuals. Therefore, we can define ���� � �  as the phenotypic covariance matrix for all 159 

homozygous subjects. For heterozygous AB subjects modeled in equation (3), we can show that 160 
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(assuming "� & ��  ' �, � 	 �1, … , ����) the phenotype covariance matrix for heterozygotes is 161 

���� � �

�
� � #  ��� � #  ���  ����. Defining (� � ��� # ���  �) � 1, … , �� , we can 162 

show that ���� � ���� if and only if 163 

* (	
 (	(
 + (	(�(
(	 (

 … (
(�, , - ,(�(	 (�(
 + (�
 . � ���� #�4�  

This observation motivates the use of a test of equality of two covariance matrices for detecting 164 

POEs in a population-based sample where we cannot explicitly observe "�. If a POE SNP exists 165 

for any phenotype k, then (� � 0 and (�

 

0  0. Thus, the kth diagonal element of ���� will be 166 

larger than the corresponding element of ����. Furthermore, if the SNP has POEs on two 167 

phenotypes k and k’, then (�(�� � 0. The kk’ element of ���� will also be different from the 168 

corresponding off-diagonal element of ����.  169 

2.2 POIROT Method to Detect POE SNPs 170 

We can test the null hypothesis that no POEs exist at a given SNP for any of the K phenotypes 171 

under study (1�: 3� � 3�) by equivalently testing 1�: ���� � ����. In our proposed method 172 

POIROT, we test for equality of these phenotypic covariance matrices between homozygotes and 173 

heterozygotes using the robust omnibus (R-Omnibus) test of O’Brien (O’Brien, 1992). POIROT 174 

uses R-Omnibus rather than the traditional Box’s M test (Box, 1949) to test covariance 175 

differences since the latter is highly sensitive to deviations of phenotypes from multivariate 176 

normality. This can lead to a undesirable elevation in type I error rates (Tiku and Balakrishnan, 177 

1984).  178 
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To derive the R-Omnibus test, we first center the phenotypes by the median within each 179 

genotype group (AA, AB, BB). This step is necessary if a marginal association exists between 180 

the alternative allele and a given phenotype. In that event, the variance of original phenotype 181 

values among aggregate homozygous subjects (AA, BB) would be erroneously inflated. We next 182 

group these centered phenotypes by homozygote versus heterozygote status. Let 4�,���� be the kth 183 

centered phenotype of the ith heterozygote (� � 1, … , ���� and 4�,���� be the kth phenotype of the 184 

ith homozygous (AA and BB combined) individual (� � 1, … , ���  ���). We then calculate the 185 

median of each phenotype k in heterozygotes and homozygotes separately. Let 5�
��� be the 186 

median of the kth phenotype in the ��� heterozygotes. Correspondingly, let 5�
��� be the median 187 

of the kth phenotype in the ��� + ��� homozygotes. For heterozygotes and homozygotes 188 

separately, we then calculate for phenotypes k and k’: 189 

6�,�,����� � 74�,���� # 5�
���874�,����� # 5��

���8#�5�  

6�,�,����� � 74�,���� # 5�
���874�,����� # 5��

���8#�6�  

;�,�,��
��� � 6�,�,�����

<6�,�,����� <	
 ##�7�  

;�,�,��
��� � 6�,�,�����

<6�,�,����� <	
 #�8�  

In (7) and (8), we standardize the Z measures by dividing by the square root of their absolute 190 

values. We consider ?�
 �� to be the vector of W values for the ith heterozygous subject, and 191 

?�
 �� is the corresponding vector of W values for the ith homozygous subject. We then perform 192 
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a two-sample Hotelling’s T2 test (Hotelling, 1931) comparing our two sets of @ � ��
  ��/2 193 

sample means (?BBB ��, ?BBB ���. There are @ dependent variables being compared between 194 

heterozygotes and homozygotes as this corresponds to the number of upper-triangular elements 195 

in the phenotypic covariance matrix. We calculate the test statistic C
 � �������	

����
���	

�?BBB �� #196 

?BBB ����D!"�?BBB �� # ?BBB ���, where D!" is the inverse of the pooled covariance matrix estimate. 197 

Under the null, our test statistic C
~E
�@, ����  ���� # 2� (Hotelling, 1931). The test can also 198 

be viewed as a one-way multivariate analysis of variance test (MANOVA). 199 

2.3 Simulation Study 200 

We conducted a variety of simulation studies to determine POIROT’s ability to detect POEs 201 

while maintaining proper rates of type I error. We considered K = 3, 6, or 10 phenotypes and n = 202 

3,000, 5,000, or 10,000 unrelated individuals. To generate phenotypes for each round of 203 

simulation, we first randomly generate K intercepts from a standard normal distribution to form 204 

the � � 1 vector �. This corresponds to the mean vector of phenotypes among AA homozygotes. 205 

For simplicity, we assume the diagonal elements of the matrix �, corresponding to the variances 206 

of the random error terms, are all equal to one. We assume the K phenotypes exhibit one of three 207 

possible levels of pairwise correlation (low, medium, or high). We assume the pairwise trait 208 

correlations are randomly drawn from a uniform distribution. To simulate phenotypes exhibiting 209 

“low” correlation, we assume this is a Uniform(0,0.3) distribution. For phenotypes of “medium” 210 

and “high” correlation, we assume a Uniform(0.3,0.5) and Uniform(0.5,0.7) distribution, 211 

respectively. These random draws are used to populate the off-diagonal elements of �. 212 

Once we have constructed �, we then randomly generate n maternal and paternal genotypes for a 213 

given SNP by sampling twice from a Bernoulli(p = MAF [minor allele frequency]) for each 214 
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parent. To generate offspring genotypes, we sample from a Bernoulli(p = 0.5) distribution to 215 

determine which maternal allele and which paternal allele is transmitted. Thus, we can now 216 

assign all n offspring to one of four genotype groups: (1) AB with maternal reference/paternal 217 

alternative, (2) AB with paternal reference/maternal alternative, (3) AA, and (4) BB. We then 218 

simulate the phenotypic error vector for all n unrelated offspring by drawing from a multivariate 219 

distribution with mean 0 and variance-covariance matrix �. The respective fixed � � 1 maternal 220 

and paternal effect vectors of the alternative allele ( �,  �) are constructed depending on the 221 

specific null or alternative scenario under consideration. We then add these vectors to the 222 

random error and intercept term in concordance with the genotype group of each individual, as 223 

described in Section 2.1.  224 

For type I error rate simulations, as described above, we assume these phenotypes have pairwise-225 

trait correlation of levels low, medium, or high. To reflect the scenario where there exist no 226 

POEs or marginal effects of the alternative allele at the locus for any phenotype, we assume that 227 

 � �  � � �. We also considered a second null scenario wherein a marginal association exists 228 

for the variant that is not specific to the parent of origin, i.e.,  � �  � � �. However, we note 229 

that if the same seeds are used in simulating the data, this marginal fixed effect is effectively 230 

removed when centering phenotypes by genotype group. The resulting test statistics are 231 

equivalent to the first null scenario. We first consider the circumstance where the random error 232 

terms are drawn from a normal distribution, i.e., the error follows 5FG���, �� and assume a 233 

MAF of 0.25. For each of the 27 combinations of number of phenotypes, sample size, and 234 

pairwise-trait correlation, we conducted 50,000 null simulations. To evaluate the robustness of 235 

our method to highly skewed phenotypes, we then repeated these parameter settings with non-236 

normal random error terms. In particular, we utilize the method of Vale and Maurelli to simulate 237 
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multivariate non-normal error terms assuming a skewness of two and excess kurtosis of two for 238 

each phenotype (Vale and Maurelli, 1983). An example distribution of such a phenotype is 239 

illustrated in Supplemental Figure 1. 240 

Next, we investigated the power of our test when POEs do in fact exist for a locus. We again 241 

considered K = 3, 6, or 10 normally distributed phenotypes. We assumed 1, 2, or 3 had parent-of-242 

origin specific associations with the variant. When the number of affected phenotypes is greater 243 

than one, this corresponds to pleiotropy. For these scenarios, we assumed  � � � and ��� = 0.5, 244 

0.6, or 0.75 for each phenotype k harboring a POE. All other elements of the maternal effect 245 

vector are 0 for the phenotypes with no POE associations. We again considered low, medium, 246 

and high pairwise-trait correlations. We assumed a MAF of 0.25 and sample sizes of 5,000, and 247 

10,000. We applied our method to 5,000 simulated datasets for each of the 162 settings and 248 

calculated power at significance level H 	 I0.005, 5 � 10!#K. We also compared the 249 

performance of POIROT to the corresponding univariate test of Hoggart et al. (Hoggart et al., 250 

2014). For the univariate test, we first calculated power using standard Bonferroni correction. 251 

Power was calculated as the proportion of loci for which the minimum observed p-value across 252 

the K phenotypes tested was less than H/�. Given that these phenotypes are correlated and 253 

therefore may not reflect K independent tests, this approach can be overly conservative. Thus, we 254 

implemented a second more liberal approach that estimates the true number of independent tests, 255 

��$$, which corresponds to the minimum number of principal components (PCs) explaining 90% 256 

of the variation in our K phenotypes. We then calculated power of the univariate approach as the 257 

proportion of loci for which the minimum observed p-value was less than H/��$$ (Gao et al., 258 

2008; Broadaway et al., 2016). We then repeated these parameter settings for assessing power of 259 

POIROT with non-normal phenotypes, as described for null simulations. 260 
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2.4 Application of POIROT to HAPO Study 261 

Moore and Haig hypothesized that genomic imprinting is a result of the opposing interests of the 262 

maternal and paternal genomes on fetal development (Moore and Haig, 1991). In particular, the 263 

paternal genes favor greater nutrient transfer from mother to embryo to make offspring larger 264 

and thus more likely to survive. However, larger offspring represent a greater challenge to the 265 

mother in terms of the ability of the offspring to safely fit through the birth canal and a potential 266 

threat to future reproductive success. This can lead maternal genes to favor a more modest 267 

nutrient transfer to the embryo. Based on this evolutionary theory, anthropomorphic phenotypes 268 

at birth like total weight or head circumference carry high potential to be imprinted and are likely 269 

candidates for potential POEs. Therefore, to assess the utility of POIROT for detecting POEs on 270 

continuous phenotypes using published population-based GWAS data, we utilized genotype and 271 

phenotype data from the Hyperglycemia and Adverse Pregnancy Outcome Study (HAPO Study 272 

Cooperative Research Group, 2009; HAPO Study Cooperative Research Group et al., 2008, 273 

2006; HAPO Study Cooperative Research Group, 2002). This study explored genetic variation 274 

associated with offspring size measures at birth, maternal glucose tolerance indicators, and the 275 

interaction of maternal/fetal genetic and environmental factors on these phenotypes using paired 276 

maternal and offspring DNA. 277 

Through dbGaP (accession number phs000096.v4.p1), we obtained data on six quantitative 278 

phenotypes related to infant size at birth (birth weight, birth length, head circumference, flank 279 

skinfold thickness, subscapular skinfold thickness, triceps skinfold thickness). Relevant 280 

covariates included PCs, infant sex, gestational age at birth, maternal pre-pregnancy BMI, and 281 

maternal smoking status during pregnancy (none, 1-10 per day, >10 per day). While this is a 282 
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multi-ethnic study, we restricted our analysis to infants of European ancestry. Subjects were 283 

genotyped using the Illumina Human610 Quad BeadChip. Prior to lift over and imputation, we 284 

excluded infants with genotype missingness greater than 10%, variants with missingness greater 285 

than 2%, variants with MAF < 0.005, and variants with Hardy-Weinberg Equilibrium p < 1e-8. 286 

We then lifted over genotype array data to hg38 and followed the pre-imputation quality control 287 

pipeline provided at https://www.well.ox.ac.uk/~wrayner/tools/#Checking. We performed 288 

imputation using the TOPMed Imputation Server (reference panel TOPMed Freeze 5) (Taliun et 289 

al., 2021; Das et al., 2016; Fuchsberger et al., 2015). We kept only those variants with Rsq 290 

L 0.3. After quality control and imputation, 6,219,272 SNPs with MAF > 0.05 remained for 291 

analysis across 1,289 unrelated infants. All mothers indicated no illicit drug use during 292 

pregnancy. Covariate adjustment was performed by first fitting a linear model for each 293 

phenotype and extracting the residuals as the new adjusted phenotypes. We then applied 294 

POIROT to these six adjusted phenotypes to jointly test for POEs across the genome. We 295 

compared the findings of our approach to those from the method of Hoggart et al. performed on 296 

each phenotype individually. 297 

3 RESULTS 298 

3.1 Type I Error Rate 299 

We summarize the type I error of null scenarios with a sample size of 5,000 individuals using 300 

Quantile-Quantile (QQ) plots in Figure 1 (normal traits) and Figure 2 (non-normal traits). Across 301 

the settings considered, our method yields the expected distribution of p-values under the null 302 

hypothesis of no POEs for any single phenotype. The distribution of the p-values is again as 303 

expected under the null when we have non-normality of phenotypes (Figure 2), suggesting our 304 
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method remains robust. We summarize the empirical type I error rates of our proposed test and 305 

the competing univariate approach at significance level H 	 I0.05, 0.005, 5 � 10!#, 5 � 10!%K in 306 

Supplemental Table 1. POIROT maintained appropriate type I error across all scenarios for 307 

normally distributed traits. We observed slightly higher error when 6 or 10 highly-skewed non-308 

normal phenotypes were tested. The univariate approach with correction for ��$$ tests showed 309 

minor inflation with 6 or 10 highly correlated phenotypes. 310 

3.2 Power 311 

Simulation results comparing the performance of POIROT to the competing univariate test under 312 

the assumption of true POE(s) are summarized in Figure 3. This figure reflects normally 313 

distributed traits and sample size of 5,000 (H �  5 � 10!#). Corresponding results from all other 314 

additional power settings, including both normal and non-normal traits, sample sizes of 5,000 315 

and 10,000, and H �  0.005, 5 � 10!# are provided in Supplemental Figures 2-9.  316 

Simple Bonferroni correction tends to be overly conservative in the presence of correlated traits. 317 

We therefore used two multiple-testing correction approaches for the univariate method. As 318 

power generally increases with increasing sample size and POE magnitude, the scenarios shown 319 

in Figure 3 correspond to a βMk of 0.75 and sample size of 5,000. For almost all scenarios, we see 320 

three general trends. First, unlike the univariate method, our method successfully leverages the 321 

correlation among phenotypes. We see power increasing with increasing trait correlation. 322 

Second, when pleiotropy exists and more than one phenotype harbors a POE, our method 323 

outperforms the univariate approach regardless of the multiple testing correction strategy. Third, 324 

power of POIROT increases as the number of phenotypes associated with the maternally-325 

transmitted alternative allele increases across all levels of phenotypic correlation.  326 
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The one exception to these trends is the top right panel of Figure 3. This reflects the scenario 327 

where 3 of 3 phenotypes harbor POEs of the same magnitude and direction. We see here that 328 

power decreases going from low to medium correlation and from medium to high correlation. 329 

We also see lower power when 3 phenotypes are affected when compared to the corresponding 330 

settings when only 2 of 3 phenotypes have POEs. This pattern, although unusual, has been 331 

documented in previous cross-phenotype methodological studies (Ray et al., 2016; Broadaway et 332 

al., 2016). As described in Section 2.2, the R-Omnibus test for equality of covariance matrices 333 

used by POIROT ultimately employs a one-way MANOVA test to generate our test statistic. Ray 334 

et al. describe how when we have K correlated traits being tested and a SNP is associated with all 335 

K traits, utilizing a MANOVA to find marginal associations with multiple traits can result in an 336 

appreciable loss of power. In particular, the authors show how the power of MANOVA is 337 

asymptotically lower when all traits are associated with equal magnitude and direction than when 338 

fewer than K phenotypes are associated (Ray et al., 2016). 339 

3.3 Applied Data Analysis 340 

We applied our method for detecting POEs to genotype and multivariate phenotype data of 1,289 341 

unrelated infants of European ancestry from the Hyperglycemia and Adverse Pregnancy 342 

Outcome (HAPO) Study. Raw phenotype measures were quantitative anthropometric measures 343 

related to infant size at birth (birth weight, length, head circumference, and three skinfold 344 

measurements). Phenotypes were appropriately adjusted for the effects of the first two PCs, 345 

infant sex, gestational age at birth, maternal BMI, and maternal smoking frequency. For the 346 

6,219,272 variants considered, the average computation time per test was 0.58 seconds. Analysis 347 

was run with parallel computation, and time per chromosome ranged between 8.4 and 117.3 348 
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hours (median 39.0 hours). In short, although we did not see any variants falling below the 349 

Bonferroni-adjusted genome-wide significance threshold of 5 × 10−8, we saw one SNP with near 350 

genome-wide significance (rs1496904, POIROT p = 9.58 × 10−8). This SNP is 138kb from the 351 

transcription start site of gene SEMA6D. Common polymorphisms in this gene have previously 352 

been associated with arm fat mass, leg fat mass, body fat percentage, height, and other adult-353 

correlates of traits similar to those we tested in the HAPO study infants 354 

(http://www.nealelab.is/uk-biobank/, Ochoa et al., 2021; Kichaev et al., 2019)). Thirteen other 355 

variants at this locus (chr15:47321206-47355147) similarly had POIROT p-values below 5 × 356 

10−7. As we see in the Manhattan plot of Figure 4b, there is another locus of suggestive 357 

significance on chromosome 1 (chr1:154328785-154347720) with six variants whose p-values 358 

fall below 5 × 10−7. The lead SNP is rs141140594 (POIROT p = 2.43 × 10−7). This SNP lies 3kb 359 

from gene ATP8B2. Nearby variants have previously been associated with type 2 diabetes. 360 

However, the mechanisms by which this gene is functionally implicated in the disease remain 361 

unclear (Imamura et al., 2016; M et al., 2020). Furthermore, these loci were not identified by the 362 

univariate approach across the six tests for each phenotype (minimum p = 5.42 × 10−5). 363 

4 DISCUSSION 364 

In this paper, we introduce a multivariate method, POIROT, for identifying common variants 365 

exhibiting POEs on one or more quantitative phenotypes in unrelated subjects. This work is 366 

motivated dually by the widespread evidence of pleiotropy in the genetics literature, as well as 367 

the limited statistical options for detecting POEs in unrelated cohorts. Our proposed method is an 368 

inherently simple statistical test of whether the phenotypic covariance matrix of heterozygotes is 369 

equal to that of homozygotes at a given locus. It represents a multivariate extension of the POE 370 
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test of a single continuous phenotype proposed by Hoggart et al. (Hoggart et al., 2014). It allows 371 

for appropriate adjustment for the effects of important covariates on the phenotypes under study 372 

and is also computationally efficient for application to biobank-scale datasets (Supplemental 373 

Tables 2-3). The R code for implementing POIROT is publicly available (see Data Availability). 374 

Through simulations, we demonstrate POIROT achieves appropriate type I error under the null. 375 

It further displays superior power to detect POEs than the competing univariate approach under 376 

most settings. Our method is indeed robust to non-normality of phenotypes across several 377 

simulation scenarios. We further applied our method to real GWAS data on unrelated infants 378 

from the HAPO Study. In this analysis, we considered six anthropometric measurements at birth 379 

related to fetal growth. Although the analysis presented here did not reveal any variants meeting 380 

the stringent genome-wide significance threshold, two loci of suggestive significance were 381 

identified that may warrant further investigation. These loci are not located within 500kb of any 382 

known imprinting gene in humans. They may, however, be strong candidates for follow-up 383 

replication analyses using independent trio studies or other familial studies of these phenotypes.  384 

The top locus has been shown in prior studies to be associated directly with similar adult 385 

anthropometric measures. Further, the second has documented associations with type 2 diabetes, 386 

a condition of the metabolic syndrome. The Barker hypothesis posits that inadequate fetal 387 

nutrition, quantitative measures of which include birth weight, confers greater risk of metabolic 388 

syndrome later in life (Edwards, 2017). We also note that these loci were not identified by the 389 

competing univariate approach. This suggests that joint consideration of multiple related traits 390 

can indeed help improve discovery of POE variants. We do note that such discovery potential is 391 

limited in the HAPO dataset due to sample size (N=1,289). This dataset is small compared to 392 
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many modern consortium GWAS and is vastly unpowered to detect even marginal effects of  393 

SNPs affecting body size or type 2 diabetes (Xue et al., 2018; Berndt et al., 2013). In our 394 

simulations, we show significant power in sample sizes 5-10 times larger than that of the HAPO 395 

analysis. That any plausible suggestive results are observed by our method in this dataset, we 396 

take as a promising sign for future work. 397 

There are several avenues we are interested in pursuing to extend the work presented here. 398 

Rather than testing genome-wide variants, implementation of a two-stage screening procedure 399 

may mitigate the multiple testing burden. In the first stage, we propose to perform a standard 400 

GWAS for marginal (not parent-of-origin dependent) variant associations that considers multiple 401 

traits jointly. We restrict consideration to marginal association tests that are orthogonal to 402 

POIROT and thus provide complementary information. We can then efficiently test a smaller 403 

subset of top SNPs identified from the first stage for POEs. Another limitation we acknowledge 404 

is the requirement of continuous phenotypes. We are interested in the possible extension of our 405 

approach to accommodate dichotomous multivariate traits. One potential solution would be to 406 

use liability-threshold models (Hujoel et al., 2020) that can effectively transform a binary 407 

outcome into a continuous-valued posterior mean genetic liability. 408 
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FIGURES 422 

 423 

Figure 1. QQ plots of p-values for proposed parent-of-origin effect test under the null hypothesis 424 

22
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 � �  � � � using a series of 50,000 simulations of 5,000 individuals using 3 (left column), 6 425 

(middle column) or 10 (right column) continuous normal phenotypes. MAF is assumed to be 426 

0.25. Horizontal panels depict level of pairwise-trait correlation (low, medium, high). 427 

Abbreviations: QQ, quantile-quantile; MAF, minor allele frequency. 428 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.517712doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.517712
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24

 429 

Figure 2. QQ plots of p-values for proposed parent-of-origin effect test under the null hypothesis 430 

 using a series of 50,000 simulations of 5,000 individuals using 3 (left column), 6 431 
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(middle column) or 10 (right column) continuous non-normal phenotypes. MAF is assumed to be 432 

0.25. Horizontal panels depict level of pairwise-trait correlation (low, medium, high). 433 

Abbreviations: QQ, quantile-quantile; MAF, minor allele frequency. 434 

 435 

  436 

Figure 3. Power of POIROT to identify POEs assuming K = 3, 6, or 10 normal phenotypes 437 

(horizontal panels) compared to univariate test. We assume either 1, 2, or 3 of the phenotypes 438 
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harbor POEs at the locus (vertical panels). We performed 5,000 simulations for each scenario. 439 

We calculated power at significance level 0.0005 for our multi-trait test and 0.0005/K 440 

(Bonferroni correction) and 0.0005/Keff for the univariate test, where Keff is the number of PCs 441 

needed to explain 90% phenotypic variation.  for POE traits, MAF = 0.25, and 442 

sample size = 5,000.  Abbreviations: POE, parent-of-origin effect; MAF, minor allele frequency; 443 

PCs, principal components. 444 

 445 

446 

Figure 4. A) QQ plot from parent-of-origin effects analysis using POIROT and six HAPO study 447 

phenotypes related to infant size at birth. B) Manhattan plot of corresponding analysis where 448 

dashed line represents genome-wide significance of . Abbreviations: QQ, quantile-449 

quantile. 450 

  451 
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