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Abstract 
The cellular adaptive immune response relies on epitope recognition by T-cell receptors (TCRs). We used a 
language model for TCRs (ProtLM.TCR) to predict TCR-epitope binding. This model was pre-trained on a large 
set of TCR sequences (~62.106) before being fine-tuned to predict TCR-epitope bindings across multiple human 
leukocyte antigen (HLA) of class-I types. We then tested ProtLM.TCR on a balanced set of binders and non-
binders for each epitope, avoiding model shortcuts like HLA categories. We compared pan-HLA versus HLA-
specific models, and our results show that while computational prediction of novel TCR-epitope binding 
probability is feasible, more epitopes and diverse training datasets are required to achieve a better generalized 
performances in de novo epitope binding prediction tasks. We also show that ProtLM.TCR embeddings 
outperform BLOSUM scores and hand-crafted embeddings. Finally, we have used the LIME framework to 
examine the interpretability of these predictions. 

Introduction  
T Cell Receptors on the surface of a T-cell recognize immunogenic peptides, or epitopes, presented by an HLA 
molecule on the surface of antigen presenting cells and infected cells. The recognition and interaction of epitopes 
with TCRs is constrained by the HLA types and the V(D)J gene segment recombination coding for the TCR 
sequences1,2. HLA class I molecules typically present 8-10 amino-acid peptides, which then bind to TCRs with a 
minimum threshold affinity. These peptides are generated through proteasomal cleavage of intra-cellular proteins 
and are recognized by CD8 T-cells. HLA class II molecules present larger peptides generated from endocytosed 
proteins, with variable length exceeding 14 amino-acids. HLA class II-presented peptides are recognized by CD4 
T-cells2. TCR-epitope recognition is complex, not only because of the spectrum of physicochemical interactions 
between the TCR and the HLA-peptide complex, but also due to cross-reactivity: each TCR can recognize many 
epitopes and each epitope can be recognized by many TCRs2,3. This cross-reactivity enables the emergence of 
public TCRs, i.e., TCRs shared by multiple individuals, and binding to immunodominant epitopes, i.e., recognized 
by distinct TCRs from distinct individuals4,5.   
All developments to date indicate that the prediction of TCR-epitope binding predictions is possible, and that 
reasonable performance can be obtained when predicting binding for unseen CDR3β TCR sequences to epitopes 
present in the training set. However, a major open question is whether such models perform well on previously 
unseen epitopes. This has been tested by the authors of ImRex6 and  Titan models7 .  
Recent developments in natural language processing (NLP) have led to a new paradigm for modeling sequences 
using pretrained masked language models. By treating amino acids as characters in a language, a self-supervised 
language model is first trained on the task of predicting the masked characters in a large corpus of protein 
sequences. This pretrained model can then be finetuned on downstream prediction tasks with limited amounts of 
labelled data, such as predicting secondary structure or stability8–10. This approach is especially relevant for 
learning TCR-epitope binding where little labelled data is available, and TCR-specific language models (e.g. 
TCR-BERT) are emerging as a promising direction to solve this task11.  
The challenges in modelling TCR-epitope binding and the recent achievements in the NLP field applied to proteins 
motivated us to develop a protein language model for TCR sequences (ProtLM.TCR) and apply it to predict the 
binding probability between a given TCR and epitope pair. In this work, we focused on TCR CDR3β sequences, 
HLA class I epitopes and examined the performances of HLA-specific models. We also evaluated the effect of 
TCR and epitope representability on model performance within the training set, as well as generalization to 
previously unseen TCRs and epitopes. Further, we compared the performance of TCR language model-based 
embeddings with other alternatives, such as BLOSUM62 scores, and benchmarked against two publicly available 
models (Titan and ImRex). Finally, we examined the interpretability of the model predictions using the LIME 
framework and compared the predicted interactions with resolved 3D structure of peptide HLA-TCR complex.  
 

 
Results  
 ProtLM.TCR model  
We pre-trained a self-supervised masked language model (ProtLM.TCR) on a collection of TCR 
CDR3β sequences (~62.10^6) from Widrich et al.12 and Emerson et al.13 by tokenizing the sequences at the 
character level using a tokenizer with vocabulary of IUPAC amino acid codes. 
For self-supervised model training, a random subset of tokens from each sequence was chosen as target labels for 
the model to predict. Across layers, all other tokens were implicitly considered contextual input. The RoBERTa-
style Transformer model processed token indices using self-attention and feedforward modules after converting 
them to a sum of token and positional vector embeddings12,14. The model generates a probability distribution over 
the token vocabulary for each target token, with the final contextualized token embeddings serving as the 
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prediction head (Figure 1). To train the model, the cross-entropy loss between predictions and target labels was 
optimized.  
ProtLM.TCR was fine-tuned for the downstream task of predicting binding between TCR and HLA class I epitope 
sequences. For this downstream model, we introduced self- and cross-attention mechanisms that take pairs of 
epitopes and TCR sequences and embed them individually using the pretrained ProtLM.TCR (Figure 2). This 
downstream cross-attention module consisted of six layers. In each layer the following main processing steps are 
performed: self-attention (2 layers, one for each entity), cross-attention (2 layers) and feed forward (2 layers). 
Before each main processing step the inputs are normalized. After normalizing the epitope and TCR sequences 
separately, they are passed through each of the corresponding six layers, and their results are summed with the 
original input (i.e., skip connection / residual connection). Finally, after the two feedforward layers the 
embeddings associated with the <CLS> token are extracted and sent to the fully connected neural network to 
predict the probability of binding between TCR-Epitope sequences. Importantly, each categorical feature, such as 
HLA allele, is also converted independently into learnable embeddings. Together, the concatenated 
representations of sequence and categorical feature embeddings are appended with a dense layer and trained end-
to-end to generate binding probabilities for a given TCR and Epitope sequences.   
ProtLM.TCR was applied to predict the probability of binding between TCR-Epitope sequences on the three 
distinct dataset designs: random assignment of TCR (rTCR), TCR assignment based on protein similarity clusters 
as computed by ting algorithm (tTCR), Epitope similarity clustering-based assignment (cEPI). Within each of 
these designs we followed a 5-fold cross validation framework. Here we describe the results for each task and 
assess the benefit of the additional categorical features such as HLA alleles. The distribution of TCRs, epitopes 
and their paired instances across these splits is summarized in Table 1.   
  
ProtLM.TCR model requires only TCR and epitope sequences to capture the TCR-epitope binding prediction 
signal  
We fine-tuned the ProtLM.TCR model end-to-end using TCR CDR3β and their paired epitope amino acid 
sequences as input (TCR CDR3β + epitope pairs, total: 312,820, Table 1). We followed a 5-fold cross validation 
random split (total TCRs: 145,524; total epitopes:1,051; Table 1). Our model achieved an average ROC-AUC 
value of 0.79 for prediction in this task (Figure 3, rTCR). However, we were mindful that random assignment of 
CDR3β sequences might result in information leakage due to the presence of closely related sequences in the train 
and test sets (see, rTCR in material and methods). This is especially true for TCRs, which may differ in sequence 
but share important epitope binding motifs. To eliminate this bias, we pursued an approach that clusters TCRs 
based on the sequence similarity using the ting algorithm (see, tTCR in material and methods)15. Following that, 
the TCR clusters were divided into 5-fold cross validation train and test sets. In this design, the average ROC-
AUC value decreased to 0.71 (Figure 3, tTCR), implying that there was indeed some information shared between 
train and test sets which might have influenced the performance obtained on random splits. Overall, these findings 
demonstrate that training ProtLM.TCR models exclusively on CDR3β and epitope sequences was indeed 
sufficient to capture the signal for TCR-epitope binding prediction to a large extent.   
 
The predictions made by ProtLM.TCR were robust to the inherent imbalance of the TCR-epitope training 
datasets  
After down-sampling TCRs from the most abundant epitopes, the ROC-AUC values decreased by 1% in both the 
rTCR and tTCR designs (Figure 3) i.e., 0.79 vs 0.78 (P-value <0.01), and 0.71 vs 0.70 (P-value ~0.26), 
respectively. This change in performance could be due to a decrease in model overfitting on the most abundant 
epitope or simply due to a decrease in the number of classes for which the model performed optimally, resulting 
in a decrease in overall averaged performance. Nonetheless, we conclude, in line with Moris et al., that the over-
representation of certain epitopes had no discernible effect on model performance6.  
 
Adding HLA information as categorical variable improved the predictions 
We noticed that the addition of HLA information as a categorical variable (HLA group and protein) to the basic 
model (CDR3β + epitope) helped to achieve a marginal increase of 2% for rTCR (0.81 vs 0.79, p-value <0.01; 
Figure 3) and an increase of ~4% for tTCR (0.75 vs 0.71, p-value <0.01; Figure 3). This improvement in 
performance demonstrates that including HLA information in the model is beneficial, as expected. Additionally, 
similar improvements were observed when models were trained with down sampled epitopes to reduce data 
imbalance; 0.79 vs 0.78 (p-value <0.01) and 0.74 vs 0.70 (p-value <0.01), respectively, for rTCR and tTCR 
assignments. 
 
Training the ProtLM.TCR model for specific HLA improved model performances 
We sought to further investigate the effect of restricting the task of predicting binding between TCR and epitope 
for only one type of HLA. We chose to restrict TCR-epitopes to those associated with HLA-A*02:01, the most 
prevalent HLA type in human populations.   
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This model achieved the highest ROC-AUCs: 0.87 and 0.83 in rTCR and tTCR assignments, respectively (Figure 
3). Down-sampling the epitopes decreased the performances of this HLA-A*02:01 specific model, with a 
reduction of 7% (0.80 vs 0.87, p-value <0.01) in the rTCR and 5% (0.78 vs 0.83, p-value <0.01) in the tTCR 
assignment. These findings indicate that while HLA-specific models can outperform pan-HLA model above, 
however they are more susceptible to data imbalance.  
 
Generalization to previously unseen epitopes is possible but more difficult due to the training dataset's limited 
diversity in the epitope space  
We further sought to determine whether our models can generalize to previously unseen epitopes, a more difficult 
but highly desirable feature. We first clustered epitope sequences (cEPI), then assigned these clusters to train and 
test sets using 5-fold cross-validation, ensuring that epitope clusters in the test set were not present in the train set. 
Here, the model trained only on CDR3β, and epitope sequences achieved an average ROC-AUC of 0.66 before 
and after down-sampling (Figure 3). The model performance did not significantly improve upon addition of HLA 
covariates (ROC-AUC: 0.59 vs 0.66, p-value ~0.1) and the down-sampling did not improve the results (ROC-
AUC: 0.59 vs 0.58, p-value ~0.41). Further, restricting the model to a specific HLA (HLA-A*02:01) negatively 
affected the generalization (ROC-AUC: 0.55 vs 0.66, p-value <0.05). HLA-specific model generalization did not 
significantly improve when down-sampling (ROC-AUC: 0.61 vs 0.55, p-value ~0.2). It is worth to know that 
when adding or restricting features to the model, the numbers of epitopes is reduced significantly (Table 1), which 
makes these comparisons to the starting model (CDR3β + epitope) approximative. 
Overall, these findings indicate that generalization to previously unknown epitopes is possible (66% average 
ROC-AUC), but better performance may be hampered by the low diversity of the epitope space in current training 
datasets (maximum:1,052 epitope sequences, Table1).  
 
TCR language embeddings are better than BLOSUM62 scores 
Keeping the architecture of our model the same, we compared different ways to embed TCR and epitope 
sequences within ProtLM.TCR models (Figure 4). We found that using BLOSUM62 scores as embeddings is 
significantly decreasing the performances as compared ProtLM embeddings (rTCR and tTCR, Figure 4). Using a 
specific TCR language for TCR sequences and general protein language for epitope sequences is significantly 
ameliorating the results for generalization to unseen TCRs (tTCR). ProtLM TCR language embeddings and 
TCRBert embeddings drive similar performances across all splits, with an amelioration of the results in the rTCR 
split in favour of TCRBert embeddings. 

Benchmarking against other deep learning-based models for TCR-epitope binding prediction   
We benchmarked our models against ImRex and Titan models. We first examined their inference performances 
in our data held-out splits, by using the models as published by their authors without any re-training (Figure 5A). 
Both models performed significantly poorly in all the splits showing a limited capabilities for generalization to 
predictions in new unseen data. However, when retrained, both models (Figure 5B) performed better and 
approached the performances of ProtLM models, especially in the unseen epitope design (cEPI). We also found 
that re-training Titan with learnable amino-acid embeddings instead of SMILES for epitopes and BLOSUM62 
scores for TCRs ameliorated the results (Figure 5B- Titan, AA retrained versus SMI retrained and finetuned), 
especially in the unseen TCR design (tTCR).  
ImRex models embed amino acids using physicochemical feature engineering. ProtLM versus ImRex results 
(Figure 5B) suggest that the TCR language might have captured beyond the physicochemical properties of the 
amino acids involved in binding between TCR-epitope sequences.  
In conclusion, the results demonstrate that TCR-epitope prediction is learnable, that protein language modeling 
eliminates the need to explicitly feature-engineer the physicochemical properties of amino acids, and that 
additional data would need to be generated on the TCR and epitope binding to achieve generalization 
performances greater than 0.66 ROC-AUC for predicting the binding of novel epitopes.  

 

LIME framework can be used to explain the TCR-epitope binding predictions by ProtLM.TCR models   
We used the Local Interpretable Model-Agnostic Explanations (LIME) framework to explain TCR-epitope 
binding predictions made by ProtLM.TCR models. We illustrate our approach by interpreting the binding 
predictions using the TCR and epitope sequences in the resolved pHLA-TCR-epitope complex for the PDB entry: 
2VLJ16. This complex shows the interaction of CASSRSSSYEQYF CDR3β with its cognate GILGFVFTL epitope 
as presented by HLA-A*02:01 (Figure 6A). We calculated the pairwise amino acid interactions between CDR3 β 
and epitope sequences using this PDB structure to highlight the closest distances showing H-bond interactions 
(Figure 6B). Interestingly, we were able to deduce the importance of Arginine (R) and Serine (S) residues in 
positions 6 and 7, respectively, in driving the CDR3 β interactions with this epitope from the interpretation of the 
LIME scores. Additionally, LIME emphasized the significance of Serine at positions 4 and 8, as well as 
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Tyrosine(Y) and Glutamine(Q) at positions 9 and 11, respectively (Figure 6C). By comparing the LIME heatmap 
(Figure 6C) to the distance matrix table (Figure 6B), we discovered that the highlighted amino-acid positions 
relevant for the interaction had a high degree of overlap. This was particularly interesting because, even though 
ProtLM.TCR was trained using only linear sequences, we were still able to identify specific amino acids (R6 and 
S7) as contributing to the interaction via LIME analysis (Figure 6D), which could also be visualized using the 
PDB 3D interactions.  
We have checked two more LIME interpretations of TCR-epitope bindings in PDB IDs 3O4L and 3GSN 
(Supplementary Figures S1 and S2). In the case of 3O4L, we found the importance of Arginine (R), Glycine (G), 
Tyrosine (Y) and Threonine (T) at position 4, 8, 11 and 7 whereas in 3GSN, Threonine (T) at position 7 
respectively. These amino acids are responsible for CDR3 β interactions with their cognate epitope. These 
highlighted amino acids were further confirmed by visualization of H-Bonds in PDB 3D interactions. 

 
Discussion  
Accurate predictions of T-cell receptor (TCR)-epitope binding will facilitate the prioritization and rationalization 
of vaccine antigens, as well as other biomedical applications. However, developing such models is complicated 
by the scarcity of data, particularly on the epitope side, and the complexity of the biological problem. Indeed, the 
diversity of TCRs, HLAs, and their restricted epitopes, combined with cross-reactivity, complicates the task of 
TCR-binding prediction. The classical immunoinformatic tools do not take T-cell receptors into account and rely 
heavily on HLA-peptide binding affinity prediction, which does not guarantee that the predicted epitopes are 
immunogenic (i.e., will bind to TCRs), and thus the achieved performance is prone to high rates of false positives, 
particularly when testing for immunogenicity17,18. Recently, pan-HLA models have emerged that predict the TCR-
epitope bindings directly from their respective amino acid sequences. Among the challenges in developing such 
models are the following: (i) how to embed amino acids into vectors suitable for training machine/deep learning 
models while preserving their conservation and physicochemical properties? (ii) how to create unbiased datasets 
from published TCR-epitope datasets that account for HLA specificity, cross-reactivity, and a bias toward positive 
binders? and (iii) how to interpret the model predictions and identify key amino acid interactions?  
Our approach alleviates these difficulties by developing a protein language model for TCR (ProtLM.TCR) using 
a large corpus of CDR3β TCR sequences, similarly to previously published protein language models, for which 
the embeddings have been shown able to capture the physicochemical properties of amino acids and their 
probabilistic co-occurrences as shaped by evolution14,19. The learned embeddings are then used in fine-tuning 
models to predict the binding between a given epitope and TCR sequences. These models were trained on a TCR-
epitope dataset prepared from published instances by balancing negative and positive binders across HLA types.    
Our results indicate that training models on only CDR3β and epitope sequences was sufficient to capture most of 
the binding prediction information. When HLA covariates were included, performance was slightly improved. 
However, when such information was included, the data size decreased, which may have skewed the comparisons. 
We anticipate that if the model is trained with the same amount of data but with HLA and TCR-α information 
included, performance will improve significantly.  
By restricting the model to a single HLA (HLA*A:02), the results improved, indicating that HLA-specific models 
may be more accurate than pan-HLA models. The fact that this HLA*A:02 has more data, however, may reflect 
a data-availability bias. With additional data being generated for additional HLAs, follow-up studies should 
address this issue.   
Our models were initially trained and tested on random splits (rTCR); however, equivalent performance was 
obtained by controlling TCR sequences across train and test data splits in clusters that shared not only similar 
sequences but also motifs (tTCR). This generalization to previously unseen TCRs in the last TCR-clustered data 
splits achieved reasonable results, demonstrating that TCR-epitope predictions are learnable and can be used to 
screen new TCRs for binding to the training set epitopes.  
Further, by clustering epitope sequences (cEPI), we controlled epitope similarity between train and test splits. 
While generalization to unknown epitopes performed poorly, the ROC-AUC metrics were significantly greater 
than random expectation. Taken together, these findings demonstrate that the TCR-epitope binding prediction is 
both learnable and generalizable to novel epitopes, though the scarcity of epitope sequences in the training dataset 
may act as a constraint on improved generalization.  
We showed that TCR language models eliminate the need for BLOSUM scores and feature engineered 
embeddings of amino acids when the embeddings are not learned as part of the model training. Additionally, our 
approach of balancing positive and negative binders across HLA types aided Titan and ImRex models in learning 
more effectively, as evidenced by their improved performances when trained on our data splits compared to the 
inference-only performances of their published versions. Our findings imply that any model capable of learning 
motifs (e.g., deep learning and nonlinear models) can be used if the upstream amino-acid embeddings accurately 
represent their physicochemical properties and occurrences, in line with recent observations by Wu et. Al.11.   
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Finally, we examined the model using the Local Interpretable Model-Agnostic Explanations (LIME) technique to 
gain insight into the putative driving interactions between CDR3β and the epitope sequences is captured. We 
further inspected these interpretations by comparing the putative TCR-epitope interaction sites, identified as 
significant amino acids via LIME, to the experimentally determined 3D structures from PDB. We demonstrated 
that our model had learned amino acid interactions that are likely to be involved in TCR-epitope binding based 
on their physical proximity as determined by the 3D structure. While caution should be exercised with all such 
interpretations, as LIME will always provide an interpretation that may or may not agree with the experimental 
data, this approach provides an intuitive means of quickly verifying the model predictions. In future studies, we 
will aim to conduct a comprehensive study of these aspects.  
  
Conclusions  
We have developed models for predicting and interpreting binding between T-cell receptors (CDR3β) and HLA 
class I epitopes using Protein Language Modeling, and we have shown that this provides a better approach for 
embeddings of TCR and epitope amino acid sequences. We have also generated a standard training and evaluation 
dataset and compared our model performance to those previously published models. Doing this, we have achieved 
decent accuracy in predicting the binding of previously unseen TCRs and epitopes. To aid researchers in 
deciphering the antigen-specific landscape and underlying immune responses in a variety of disease-related 
studies, we have also illustrated the model's understanding of the interactions between TCRs and the relevant 
epitope sequences using LIME. Lastly, we also stress the critical nature of increasing data generation in this field, 
particularly in epitope space, to improve accuracy and generalization. This is especially critical for developing 
pan-HLA models.  
 
Material and Methods   

Data Preprocessing  
We gathered the published human TCR-epitope pairs from multiple public databases: VDJdb, IEDB, McPAS-
TCR and PIRD18,20–22. These datasets were then merged and cleaned to remove redundant samples (see Appendix 
1). Negative samples were generated by randomly pairing TCR sequences (CDR3βs) with non-binding epitope-
HLA complexes. Thereafter, we clustered the TCR sequences using ting and the epitope sequences using 
ImmunomeBrowser16,23. To account for the epitope imbalance, we downsampled the datasets by imposing a limit 
on the number of TCRs per epitope. Finally, we created three distinct versions of the dataset:   

(1) random assignment of TCRs (rTCR),   
(2) TCR assignment based on ting clusters (tTCR)   
(3) Epitope clustering-based assignment (cEPI)   

In the latter case we ensured that no epitope clusters are shared between train and test sets. For cross-validation 
purposes, the dataset was divided into five-folds for each of these versions. This distinction in information 
overlaps between the three versions enabled a more refined assessment of the model's generalizability. Table 1 
contains the total number of TCRs, epitopes, and HLA categorical variables, as well as their distribution by train 
and test splits.  
 
Benchmarking  
ImRex and TITAN models were trained on the same dataset of TCR (CDR3β) and epitope sequences that were 
used to train our model. These comparisons used the same 5-fold cross-validation splits and three categories of 
assignment as described above for our model i.e., rTCR, tTCR, and cEPI. We used the average ROC-AUC and 
95 percent confidence interval obtained after evaluating the test splits as an evaluation metric. Additional 
information is included in Appendix I.   
 

LIME and interpretability  
The LIME algorithm was used to determine the importance of each amino acid in the interacting amino acids24. 
To interpret the significance of the amino acids involved, a given input sequence was subjected to a masking 
process in which a fixed-size local dataset was created by generating "random" perturbations from the given 
sequence, and then a ridge regression linear model was trained on the resulting dataset to generate scores that 
were then normalized with L1-norm to generate the final scores. Amino acids with positive LIME scores support 
the prediction, whereas amino acids with negative scores contradict the prediction. This means that positively 
scored amino acids are likely to be the primary drivers of binding.  
For the analysis presented in this paper, the Protein Data Bank (PDB) was used to download crystal structures25. 
To determine the interaction between amino acids for a chosen pair of CDR3β and epitope sequences, we 
calculated the residue distance matrix using the PyMOL tool26. The computed distances from maximum to 
minimum were depicted using a blue to red color scheme. The strongly interacting amino acids between CDR3β 
and epitope were visually examined using PyMOL computed hydrogen bond interactions.  
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Table1: Distribution of TCRs, epitopes and pairs across train and test splits per design 

Model   Design  
 CDR3b 
Train  

 CDR3b 
Test  

 CDR3b 
intersect  

 Total 
CDR3bs  

 Epitope 
Train  

 Epitope 
Test  

 Epitopes 
intersect  

 Total 
Epitopes  

 Pairs 
Train   Pairs Test   Total Pairs  

 CDR3β + Epitope    cEPI  
             
131,238  

              
52,491  

                      
38,205  

               
145,524  

                       
841  

                     
210  

                                 
-    

                     
1,051  

          
250,256  

          
62,564            312,820  

   rTCR  
             
116,419  

              
29,104  

                               
-    

               
145,523  

                   
1,037  

                     
763  

                              
749  

                     
1,051  

          
250,256  

          
62,564            312,820  

  tTCR  
             
116,419  

              
29,104  

                               
-    

               
145,523  

                   
1,041  

                     
768  

                              
757  

                     
1,052  

          
250,256  

          
62,564            312,820  

 CDR3β + Epitope 
HLA-A*02:01    cEPI  

               
28,277  

              
12,115  

                        
9,806  

                 
30,586  

                       
366  

                        
91  

                                 
-    

                         
457  

            
50,596  

          
12,649              63,245  

   rTCR  
               
24,469  

                
6,117  

                               
-    

                 
30,586  

                       
451  

                     
300  

                              
293  

                         
458  

            
50,596  

          
12,649              63,245  

   tTCR  
               
24,469  

                
6,117  

                               
-    

                 
30,586  

                       
451  

                     
301  

                              
295  

                         
457  

            
50,596  

          
12,649              63,245  

 CDR3β + Epitope 
HLA-A*02:01 
downsampled   cEPI  

               
14,490  

                
4,419  

                        
1,902  

                 
17,007  
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Figures 

 
 
 
Figure 1: Overview of a masked language modeling pipeline for pretraining RoBERTa-style Transformer 
language models on large corpora of TCR amino acid sequences.  TCR sequences are tokenized at the 
character level using a predefined amino acid token vocabulary. For each sequence, a random subset of tokens is 
chosen to serve as training target labels. All other tokens are used for training. Some of this random subsets of 
tokens are replaced with a mask token, others with a random token, and the remainder are retained. Token indices 
are converted to a sum of token and positional vector embeddings, which are then processed by alternating layers 
of self-attention and feedforward modules in the Transformer model. The model generates a probability 
distribution over the token vocabulary for each token with a target label by acting as a prediction head on the final 
contextualized token embeddings. By optimizing the cross-entropy loss between the model's predictions and the 
target labels, the model is trained.  
 
 
 
 

 
 

Figure 2: Overview ProtLM.TCR architecture.   

Using the pretrained ProtLM.TCR, the TCR and epitope sequences are embedded. The downstream cross-
attention module has six layers, each processed as follows: to compute self-attention, the epitope and TCR 
sequences are normalized separately; then cross-attention between the epitope and TCR is computed; finally, 
two feedforward layers pass TCR and epitope sequences. Moreover, each categorical feature is converted into 
learnable embedding. A skip connection adds the input to the output of each step to improve training. The 
resulting multilayer perceptron is trained end-to-end to generate binding probabilities for a given TCR and 
Epitope sequence.  
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Figure 3: The model performances on three different splitting strategies. We compared the model 
performances under three different splitting strategies, namely (1) random assignment of TCR (rTCR), (2) TCR 
assignment based on ting clusters (tTCR), and (3) Epitope clustering-based assignment (cEPI) while ensuring 
that no epitope clusters are shared between train and test sets. This is the increasing order of complexity for the 
generalizability of the model. The models were trained and tested using 5-fold cross-validation.  

 

 

 

Figure 4: Testing for the impact of embedding strategies on the performances of ProtLM models 

We tested four different approaches to embed TCRs and epitopes in ProtLM.TCR models: (i) embedding with 
ProtLM pretrained TCR language for both TCRs and epitopes (our principal model ProtLM); (ii) embedding 
TCRs and epitopes using ProtLM pretrained TCR language and ProtLM pretrained language on UNIREF50db 
(ProtLM_RobTwoP); (iii) embedding both TCR and epitopes using TCRBert pretrained language 
(ProtLM_TCRBert); and (iv) embedding TCR and epitopes using BLOSUM 62 matrix scores (Blosum). 
Statistical tests were performed by contrasting each model performances to ProtLM, using Wilcoxon’s test (p-
values: *<0.05; **<0.01; ***<0.001). 
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Figure 5: Comparison of the performance of ProtLM.TCR with Titan and ImRex models using our three 
different splitting strategies. Titan and ImRex model performances were evaluated using the same data splits 
used to train and evaluate ProtLM.TCR models. A) We used the original  models exclusively for inference  
where the models were used exactly as they were obtained from their respective repositories and tested on the 
held-out data split. B) All models were trained from scratch for the retrained comparisons. For Titan, we used 
SMILES (SMI) or amino-acid (AA) encodings for epitope sequences; TCR sequences are always encoded as 
AA; we either fine-tuned the models using their original embeddings (BLOSUM) or completely retrained 
them. Statistical tests were performed by contrasting each model performances to ProtLM, using Wilcoxon’s 
test (p-values: *<0.05; **<0.01; ***<0.001). 
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Figure 6: Local Interpretable Model-Agnostic Explanations (LIME) for The binding between TCR and 
epitope sequence for PDB ID 2VLJ (A) 3D structure of the 2VLJ entry in PDB database, which shows a TCR 
beta (CASSRSSSYEQYF): TCR alpha complex binding GILGFVFTL epitope presented by HLA class I (HLA-
A*02:01):Beta-2 macroglobulin complex (B) Heatmap visualizing the distance matrix (in Å units) between 
amino acids in TCR CDR3β  to their pairs in the epitope side. Distances less than 8 Å showed strong H-bond 
interactions (e.g., V6 epitope- R6 and S7 CDR3β interactions showed 8 Å and 7 Å respectively). The smaller 
the distance, the higher the interaction. The below row (MIN) represents the minimum distance of CDR3β to 
each of the epitope amino acids. (C) Heatmap visualization showing the LIME scores as computed for each 
amino acid in the CDR3β  (CASSRSSSYEQYF) when predicting its interaction with GILGVFTL epitope. The 
position of each amino acid in the sequence is presented in the x-axis and its identity in the y-axis. Red color 
represents strong effect in the binding predictions, whereas blue represents weak effect. (D) The crystal structure 
of the complex shows the interactions of epitope V6 amino-acid with CDR3β R6 and S7 amino-acids via 
hydrogen bond and water molecules.  
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Appendix I  
  
Data Preprocessing  
  

 Data for this study was extracted from VDJdb, IEDB, McPAS-TCR and PIRD databases and 
filtered for human HLA class I. 
 Basic data cleansing was performed, and HLA categories were standardized as per WHO 
nomenclature.  
 It was ensured that the CDR3β sequences have always the conserved C and F amino acids at N- 
and C-terminal respectively by explicitly adding the caps wherever necessary.  
 Dataset was then filtered based on the minimum length of sequences.  
 Samples with non-standard amino acids, undetermined HLA class were removed.  
 Samples duplicated between different data sources were identified and removed.  

 TCR sequences were clustered using ting28 under default settings with reference dataset: gliph-
1.0/db/TCRab-naive-refdb-pseudovdjfasta.fa and kmer file: LULO-TC-DN6_Tc_N_CD40L-.tsv  

 epitope sequences were clustered using IEDB clustering tool25 with 70% minimum sequence 
identity threshold and the recommended clustering method: cluster-break for clear representative 
sequence.  
 Negative sample generation:  

o For each epitope, all the TCRs from TCR clusters that are not known to bind that 
epitope were selected as non-binding candidates for that epitope.  
o Negative samples are created by replacing the binding TCRs in the positives, with 
randomly sampled non-binding candidates to achieve a 1:1 target ratio for each epitope, while 
always keeping the HLA constraint.  

 Six different versions of the dataset were created:  
o v1: CDR3β and epitope as input features  
o v2: CDR3β, epitope and HLA categories as input features  
o v3: same as v1, but restricted to HLA-A*02:01  
o v4: down sampled version of v1.  
o v5: down sampled version of v2.  
o v6: down sampled version of v3.   
o These six datasets were split using the below strategies:  
o Random splits: 5-fold cv such that unique CDR3β sequences are randomly split 
between folds  
o ting TCR clusters-based splits: 5-fold cv such that TCR clusters are split independently 
between folds i.e., a given cluster can only be bucketed in one of the folds.  
o epitope-clusters based splits: 5-fold cv such that epitope clusters are split 
independently between folds  

  
  
Benchmarking  

1. ImRex:   
 Model: Architecture 0 - 2020-07-30_11-30-27_trbmhci-shuffle-padded-b32-lre4-reg001 – a 
model trained on VDjdb (august 2019 release).  
 Hyper parameter changes: batch size 32 -> 128, dropout_conv: 0.25->0.1; 
max_length_epitope 11->45; max_length_CDR3β 20->40; lr 0.0001 -> 0.00015; regularization 0.1 
->0.008; number of train epochs:20; We used the provided hand-crafted amino-acid physico-
chemical feature. These parameters were identified by doing hyperparameter search on one of our 
data splits (the ting model_0 split_0_train.csv subset).  
 Code version: origin/master from 24 Feb 2021.  
  

2. Titan:   
We trained 3 architectures using TCR CDR3β and Epitope sequences. The configuration was downloaded 
from IBM.box.com/v/titan_dataset  

  Architecture 0 – Inference: trained and published model from IBM.box.com/v/titan_dataset, 
where TCR CDR3β amino-acids are encoded as amino-acids and embedded using BLOSUM, and 
epitope sequences are encoded using SMILES and the embedding were learned.  
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 Architecture 1 – Titan retrained: TCR CDR3β are encoded as amino-acids and embedded 
using BLOSUM and epitope sequences are encoded using SMILES and the embeddings are 
learned.  
 Architecture 2 – Titan finetuned: - finetuning the model provided in 
IBM.box.com/v/titan_dataset that was trained by the authors on full TCR proteins encoded as AA 
and embedded using BLOSUM, and epitopes encoded as SMILES and embeddings are learned. 
Here we used TCR CDR3β amino-acids and embeddings using BLOSUM and epitopes using 
SMILES and embeddings are learned. We changed the number of epochs to 20.  
 Architecture 3 – Titan retrained: TCR CDR3β and epitopes are encoded as AA and 
embeddings are learned.  
 Code version: origin/main from 16 Sep 2021  
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Supplementary Figures 
  
  

  
  
  
Figure S1: Local Interpretable Model-Agnostic Explanations (LIME) for the binding between TCR and 
epitope sequence for PDB ID 3O4L(A) 3D structure of the 3O4L entry in PDB database, which shows a 
TCR beta (CSARDGTGNGYTF): TCR alpha complex binding GLCTLVAM epitope presented by HLA class 
I (HLA-A*02:01):Beta-2 microglobulin complex (B) Heatmap visualizing the distance matrix (in Å units) 
between amino acids in TCR CDR3β  to their pairs in the epitope side. Distances less than 8 Å showed 
strong H-bond interactions. The smaller the distance, the higher the interaction. The below row (MIN) 
represents the minimum distance of CDR3β amino acids to each of the epitope amino acids. (C) 
Heatmap visualization showing the LIME scores as computed for each amino acid in the CDR3β chain 
(CSARDGTGNGYTF) when predicting its interaction with GLCTLVAM epitope. The position of each 
amino acid in the sequence is presented in the x-axis and its identity in the y-axis. Red color represents 
strong effect in the binding predictions, whereas blue represents weak effect. (D) The crystal structure 
of the complex showing the interactions of epitope T4 and V6  amino-acid with CDR3β R4/Y11 and G8 
amino-acids form hydrogen bond via Glycerol whereas, T7 of CDR3 β and M8 epitope form direct H- 
bonds.  
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Figure S2: Local Interpretable Model-Agnostic Explanations (LIME) for the binding between TCR and 
epitope sequence for PDB ID 3GSN (A) 3D structure of the 3GSN entry in PDB database, which shows 
a TCR beta (CASSPVTGGIYGYTF): TCR alpha complex binding NLVPMVATV epitope presented by HLA 
class I (HLA-A*02:01):Beta-2 microglobulin complex (B) Heatmap visualizing the distance matrix (in Å 
units) between amino acids in TCR CDR3β  to their pairs in the epitope side. Distances less than 8 Å 
showed strong H-bond interactions. The smaller the distance, the higher the interaction. The below 
row (MIN) represents the minimum distance of CDR3β amino acids to each of the epitope amino acids. 
(C) Heatmap visualization showing the LIME scores as computed for each amino acid in the CDR3β 
chain (CASSPVTGGIYGYTF) when predicting its interaction with NLVPMVATV epitope. The position of 
each amino acid in the sequence is presented in the x-axis and its identity in the y-axis. Red color 
represents strong effect in the binding predictions, whereas blue represents weak effect. (D) The 
crystal structure of the complex showing the interactions of epitope T8 with T7 of CDR3β via H- bonds.  
  
 
  
  
  
  
  
  
  
  
  
  
  
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.11.28.518167doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518167

