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Abstract

Density-based clustering procedures are widely
used in a variety of data science applications.
Their advantage lies in the capability to find
arbitrarily shaped and sized clusters and ro-
bustness against outliers. In particular, they
proved effective in the analysis of Molecular Dy-
namics simulations, where they serve to iden-
tify relevant, low energetic molecular confor-
mations. As such, they can provide a conve-
nient basis for the construction of kinetic (core-
set) Markov-state models. Here we present the
open- source Python project CommonNNClus-
tering, which provides an easy-to-use and
efficient re-implementation of the common-
nearest-neighbour (CommonNN) method. The
package provides functionalities for hierarchical
clustering and an evaluation of the results. We
put our emphasis on a generic API design to
keep the implementation flexible and open for
customisation.

Introduction

Density-based  clustering  procedures—Iike
CommonNN clustering—identify clusters in
general as data regions of high sample den-
sity separated by sparse, low density regions!
and have interesting properties for a wide range
of applications. In particular, they are useful
in the classification of molecular structures be-
cause clusters identified by density-based clus-
tering methods tend to have a natural corre-

spondence to what is understood as a molecular
conformation: an ensemble of structures with
relatively high observation probability associ-
ated with the same potential energy minimum
or separated by sufficiently small energetic bar-
riers (see figure 1 for an illustrative example).

probability density

RMSD / nm

Figure 1: Molecular conformations with low po-
tential energy (high observation probability) iden-
tified in a MD simulation of a small helical pep-
tide (PDB ID 6A5J), shown here projected onto
the root-mean-square deviation (RMSD) of back-
bone atom coordinates with respect to the starting
structure.

Three points make density-based clustering
methods exceptionally suitable in this situa-
tion: 1) a conformational cluster is not con-
strained to a particular shape or layout. Nei-
ther is it restricted in its size or extent. Com-
monNN clustering makes no assumptions in this
regard. 2) Not every molecular structure is a
good representative for a stable conformation.
This means, it is usually beneficial if a cluster-
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ing can treat individual data points as outliers
(noise), which is the case for the CommonNN
method. 3) The representations of molecules,
i.e. the data space in which they are clustered,
can be high dimensional and arbitrarily struc-
tured. In general, it is not possible for example
to know the correct number of conformational
clusters that are to be found beforehand. The
clustering should not require any prior knowl-
edge about the data, or should allow easy data
exploration. CommonNN offers systematic pa-
rameter screening and optimisation, and can
decompose a data set hierarchically.

CommonNN clustering has proven to be a
viable density-based clustering scheme. It
yields intuitively correct clustering results in a
wide range of challenging test data cases, as
we showed previously in comparative bench-
marks.?? In application, CommonNN cluster-
ing has been for example successfully used
to characterise the rich conformational ensem-
ble of a foldamer and a tandem WW do-
main. The latter features two rigid protein do-
mains connected by a flexible linker that sam-
ple a huge variety of relative orientations and
domain-domain interfaces.* In other instances,
the conformational clustering of small organic
molecules has been applied in the context of
ligand-protein interactions and pharmacophore
modelling.>® As a discretisation scheme for
very well converged core-set Markov models, 8
CommonNN clustering is capable of detect-
ing subtle changes in conformational equilib-
ria and has been useful to explain differences
in the membrane permeability of cyclic pep-
tides? and to describe regulative allosteric pro-
cesses. ' Meanwhile, the CommonNN scheme
found adaptation in a volume-scaled variant vs-
CNN, ! used in very recent research 13,

In this work, we present a revisited implemen-
tation of density-based CommonNN clustering
and we provide an accessible Python package
to make its use easier and more efficient for a
broader audience.

We will quickly summarise the theoretical
idea underlying the clustering method and how
we approach its algorithmic realisation in sec-
tion Theoretical background. In the sections Ba-
sic usage, Advanced usage, and Practical advice

we describe the usage of the package and
some of the program design decisions. Sec-
tion Benchmark provides a small benchmark of
the new implementation.

Theoretical background

Consider a data set of points that should be
clustered as a set of samples from an underly-
ing probability density p : 2 — R>( with re-
spect to a d-dimensional feature space 0 C R,
In the case of molecular data, €2 is a configu-
rational space of structural features and p is a
corresponding configurational Boltzmann den-
sity. Density-based CommonNN clustering can
be formulated resting on the idea of applying a
density threshold A to p that separates 2 into
regions of high and low density like shown in
figure 2 for 1D. Clusters are the resulting iso-
lated, continuous regions of high density while
everything below A\ is noise. The set of possi-
ble clustering results is systematically gathered
through variation of A.
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Figure 2: Example probability distribution in 1D
with two maxima. Applying different density-
thresholds A splits the distribution into isolated
high-density regions (clusters) separated by low
density (noise). Starting with a low threshold of
A = 0, all data points are assigned to the same sin-
gle cluster. Higher thresholds lead to low density
points to fall into the noise region, existing clusters
to shrink, and eventually to splits if a local mini-
mum is exceeded.

CommonNN clustering employs a local esti-
mate of the density, based on discrete point
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samples: the proxy for the density is the num-
ber of data points within the (fixed radius)
neighbourhood intersection of two points, i.e.
the number of common nearest neighbours. A
threshold (compare \) on this density estimate
can be given as a minimum number of n, com-
mon neighbours. Additionally, a point pair
is connected through the density estimated in
terms of a similarity measure. Two points
for which the density-threshold is exceeded are
identified to be part of the same cluster (see
figure 3). The two points are in this case said
to “fulfil the density-criterion” or “pass the sim-
ilarity check”. The density estimate usually re-
quires the definition of a metric on the feature
space that allows the calculation of pairwise
distances and the determination of neighbour-

hoods.

original clustered
b ° b °
: ﬂ ¢ .
° - ° L°
[ ] 1 [ ]
o e o ‘@ o o .b Sy
°® v o°
[ ] [ ]

Figure 3: Illustration of the density-criterion in the
CommonNN scheme for random points in 2D. The
red and the orange data point (left) share two of
their neighbours with respect to the search radius
r (blue points). For a set value of n, < 2, the two
points are considered part of the same dense region
(thick red edge between them). A sub-network of
points connected in this way (right) constitutes a
cluster (yellow and green points).

It is convenient to think of a data set that
should be clustered as a graph G(V,FE) in
which each point is represented by a node
(vertex) v;. Edges e;; indicate pairwise rela-
tionships between points. If the edges corre-
spond to whether two points v; and v; fulfil the
density-criterion, the connected components—
sub-networks of nodes that are disjoint from
the rest—of the graph are the clusters that we
want to find. Hence, the main task of the clus-
tering can be solved by leveraging well estab-
lished graph traversal algorithms, for example

a breadth-first-search approach (see figure 1 in
the SI).

Basic usage

The CommonNNClustering package requires
Python > 3.6. It can be installed from
PyPi (pip install commonnn-clustering)
or from the development repository on
GitHub (https://github.com/bkellerlab/
CommonNNClustering). The installation re-
quires Cython, which is used to imple-
ment core functionalities efficiently. At run-
time, NumPy is mandatory as well.  Op-
tionally, Matplotlib, Networkx, Pandas,
scikit-learn, and scipy are leveraged for
additional functionality. Documentation
is available under https://bkellerlab.
github.io/CommonNNClustering. An alter-
native implementation is furthermore avail-
able within scikit-learn-extra (github.com/
scikit-learn-contrib/scikit-learn-extra).

Getting started with the clustering of any
data set using the CommonNNClustering pack-
age is easy and should feel familiar to the use of
similar available object-oriented Python APIs
like that used by scikit-learn.'* The code snip-
pet in figure 4 illustrates the four essential steps
of a clustering: 1) how to import the main
cluster module (line 1), 2) prepare a clustering
object as an instance of the Clustering class
from the data (line 5), 3) trigger the cluster-
ing (fit) itself with specified parameters (line
6), and 4) access the resulting cluster label as-
signments for further analysis (line 7). As a
general design principle, we settled on a data
oriented approach for the whole clustering pro-
cedure, which means that a created clustering
object will be always associated with exactly
one data set of some form. This data set can
be clustered based on different combinations of
cluster parameters, re-using the same clustering
object.

The example assumes the presumably most
frequent use-case of having the data presented
as a NumPy array of shape (#points, #dimen-
sions) or something equivalent for that matter,
i.e. the data contains information on feature
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from commonnn import cluster

4 data = ..

5 default_clst = cluster.Clustering(data)
6 default_clst.fit(**params)

7 default_clst.labels
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Figure 4: Default cluster object creation and
data point clustering.  The scatter plots be-
low are created using the convenience method
default_clst.evaluate().

space coordinates for each sample point. The
program can use these for the calculation of dis-
tances and effectively neighbourhoods to per-
form the clustering. This is, however, not the
only possible scenario. In general, input data
can be fed into a clustering in one of three fun-
damentally different formats: 1) point coordi-
nates, 2) pairwise inter-point distances, or 3)
fixed radius neighbourhoods. Each of these ba-
sic types of information can eventually be ma-
terialised in a multitude of different data struc-
tures. In particular, it is allowed and encour-
aged to leverage other specialised programs to
take over the distance or neighbourhood calcu-
lation, e.g. with kd-trees as provided by scikit-
learn. '

Advanced usage

We designed the CommonNNClustering code so
that it is flexible with regard to different input
formats and variations in other constraints, like
for example the used distance metric. This al-
lows the user to customise the program to in-
dividual needs, also beyond the application to
standard MD data. This section and Figure 5
give a short overview of the design architecture

of the package. The section may be skipped if
the default behaviour described in the last sec-
tion is sufficient.
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Figure 5: Aggregation of a clustering object from
generic types representing exchangeable clustering
components. A so called fitter implements the clus-
tering procedure, making use of generic interfaces.

The central idea is the following: when the
clustering procedure is executed, it has to loop
over input data points and query their neigh-
bourhoods. Instead of accessing whatever in-
put data structure is presented directly, the raw
input data is wrapped within one of several in-
put data objects that all can be worked with
through a common generic interface, i.e. which
are of a certain defined type. The task of ac-
quiring neighbourhood information is delegated
to one of many possible neighbours getter ob-
jects. In this way, the clustering that is itself
implemented in a fitter object does not have
to be concerned with how needed information
is stored in and retrieved from the input data.
In the same way, other important components
as the testing of the density-criterion (similar-
ity checker type), intermediate storage of re-
trieved neighbourhoods (neighbours type), or
the metric (metric type) used for distance cal-
culations (distance getter type) are represented
by exchangeable objects adhering to generic in-
terfaces. A clustering object as initialised in the
code example in figure 4 aggregates all the ob-
jects needed for a clustering and is assembled
in the background according to a recipe.
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Figure 6: 1D cluster parameter scans: number of clusters vs. n. for fixed radii r (proposed initial guess and
much smaller). The most promising regions (stable, high cluster number) are marked with red. Clustering
examples for parameters in the highlighted ranges below. Data points are coloured by cluster label in two
shades of the same colour for the lowest and highest n. value, respectively. See SI for methods.

Please refer to the documentation for details
on how the different interfaces are defined ex-
actly, which generic types are available already,
and how custom types and recipes can be de-
fined and invoked.

Practical advice

The outcome of a CommonNN-clustering
depends on the two cluster parameters r
(neighbour-search radius) and n. (CommonNN
density-cutoff). For higher values of n. at a
given r, two points are assigned to the same
cluster only if the respective pairwise density
estimate is high enough. Which values are
eventually to be chosen for r and n. depends
strongly on the (subjectively) expected cluster-
ing result and on the nature of the data set (its
distribution and sampling), and is in general
not possible to decide a priori.

In selecting a suitable radius r, the aim is
to choose a value that allows for a sufficiently
local density estimate. In this sense, r func-
tions as a ‘resolution” for the clustering. With
a low resolution (a large radius r), local dif-
ferences in the point density can not be de-
tected, and no splitting of the data into clusters
is achieved. If r is very small, fluctuations in

the local point density that may originate from
insufficient sampling, can lead to meaningless
splittings of points into undesired clusters. Fur-
thermore, with small values of r, the sensitivity
of the density threshold towards n, is increased.
As a heuristic for a good first guess on a neigh-
bour search radius r, which allows an appropri-
ately local density estimate, it has proven useful
to take the distance value at which the distri-
bution of pairwise inter-point distances has its
first maximum.

To determine n., we use the strategy of set-
ting r according to said heuristic and screen-
ing n. from small to large values, to obtain
clusterings at increasingly high density thresh-
olds.? This allows to systematically select the
favoured clustering result. For comparison, r
may be adjusted slightly in both directions—
in particular for high sampling rates, the res-
olution can usually be increased. Figure 6 il-
lustrates this strategy with three representative
data sets. When settling on a specific cluster-
ing result, it is advisable to look for a param-
eter range in which the clustering is qualita-
tively stable, meaning where only the size of
individual clusters varies (shrinks for increased
n.) but not their number. The general observa-
tion is that while the density-criterion goes up,
the number of clusters increases as more and
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more splittings occur. The number will eventu-
ally go down again as more and more low den-
sity clusters fall below the density threshold and
vanish into noise.

CommonNN clustering is intrinsically hierar-
chical (compare figure 2). The variation of the
density-criterion essentially leads to a hierar-
chy of clusterings, and individual clusters may
be extracted at different levels of this hierar-
chy. Specifically, one may want to further split
higher density clusters without loosing low den-
sity clusters into noise. We support currently
two ways of doing this around threshold-based
clustering: a manual and a semi-automatic ap-
proach.

Full user-control on each hierarchy level is of-
fered by the manual approach as illustrated in
SI figure 2 and figure 7. The idea is to follow the
strategy of increasing n. with fixed r to a point
where the number of isolated clusters is locally
maximised without too many low density clus-
ters being lost into noise. Than this clustering
result is isolated, i.e. frozen or saved, and the
clustering is continued only on a subset of child
clusters. Finally, the resulting hierarchy can be
reeled—wrapped up—back into a single parti-
tioning.

The second approach is based on the idea to
semi-automatically build the hierarchy of clus-
terings at certain levels by specifying a list of
parameter combinations. This necessitates that
in a second step, the resulting hierarchy needs
to be screened according to some criteria for
which child clusters should be kept as the final
result. SI figure 3 and figure 8 illustrate this ap-
proach employing a hierarchy screen followed by
a trimming to avoid that clusters shrink (and
eventually vanish completely) if they do not
split further. Again, please refer to the docu-
mentation for more details on hierarchical clus-
tering and different trimming approaches.
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Figure 7: Manual hierarchical clustering of the ala-
nine data set. Upper: Data points coloured by
cluster label assignment after 2-step clustering (re-
clustering of cluster 1 and 2 obtained in a first step).
Lower: A hierarchy of clustering objects can be vi-
sualised as pie-chart showing the hierarchy levels
going outward from high (root) to low (children)
where the size of the pieces represents the amount
of data points in a certain cluster. Alternatively, a
Sugiyama tree-diagram can be drawn showing the
splittings at individual hierarchy levels from top to
bottom.
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Figure 8: Semi-automatic hierarchical clustering
on the helixz data set. Upper: Pseudo free energy
surface of the distribution. Lower: Data points
coloured by cluster labels (r = 0.3, n. € [0,600])
after trimming.
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Benchmark

If large data sets are clustered or many pa-
rameter combinations are used, it becomes im-
portant that the clustering is relatively fast.
Benchmarking the computational efficiency of
a clustering is difficult because it does not only
depend on the implementation itself but also on
the type and structure of the data set. The tim-
ings depend non-trivially on the cluster parame-
ters, which influence how often neighbourhoods
need to be retrieved and checked, and how
quickly this can be done. CommonNN cluster-
ing can also be realised in several different ways
(using different combinations of generic types).
Besides pure computational efficiency, memory
concerns may also be of importance.

We show the clustering performance with col-
lected timings under varying constraints using
qualitatively the same data set but an increas-
ing number of points. Empirical scaling was
determined by fitting the measured execution
times ¢ versus problem size n to the power func-
tion ¢ ~ an® where a is a proportionality con-
stant and b is the growth factor of interest. The
presented timings have been measured on a De-
bian 10 operating system, equipped with an In-
tel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
and 164 GB RAM. Note, that all implementa-
tions are serial at the moment. Timings are re-
ported as the best out of ten repetitions. Mem-
ory usage is reported as allocated resident mem-
ory and the lowest out of ten repetitions.

@ coordinates r = 0.25 (b = 2.0 4 0.0)

V distances r = 0.25 (b = 2.1 £ 0.0)

A neighbourhoods r = 0.25 (b = 2.1 4 0.0)
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4
10 — ”’J
10° 1 min _ _:'f:ré
0 -~ /“ .f-:
i 10 ':""'17 e
. L100 GB
£ 110 GB
- 1 GB
100 MB
10 MB
1 MB

Fpoints

Figure 9: CommonNN performance for a data set
with an increasing number of uniformly distributed
points in 2D (see SI) using different default recipes.
Execution time measurements (dashed lines) in-
clude the clustering only, disregarding data prepa-
ration. The similarity cutoff was set to n, = 0
in all runs. Memory demand (filled areas) covers
the complete Clustering objects, including input
data, during the clustering.

Figure 9 shows a benchmark on uniformly dis-
tributed points with fixed cluster parameters.
The CommonNN-cutoff is set to n. = 0, which
means that the similarity criterion check is es-
sentially skipped and the timings reflect only
the general breadth-first search clustering pro-
cedure, including the construction of the in-
termediate neighbour lists. This allows us to
derive a cluster parameter independent per-
formance baseline. We compare different in-
put data formats and the corresponding default
recipes (see the documentation for details on
what these recipes entail). In all cases, we ob-
serve an empirically quadratic scaling of the
computation time with respect to the number of
points in the data set. By using pre-computed
distances or neighbourhoods as the input, one
can save a substantial amount of computing
time. Neighbourhoods sorted by point indices
give absolutely the best performance: 256,000
data points can be clustered on the order of
seconds.

Pre-computed information occupies a certain
amount of memory. In particular the storage
of a square distance matrix can become pro-
hibitively expensive. Note that for 256,000 data
points, the available memory was exceeded in


https://doi.org/10.1101/2022.11.28.518169
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.28.518169; this version posted November 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Pre-computed neighbourhoods re-
quire much less memory. Furthermore, we see
that it is beneficial to choose a rather small ra-
dius r. This will keep the number of neighbours
per point small, which leads to faster filling of
the neighbours containers and also to a lower
memory demand, especially if neighbourhoods
are pre-calculated.

our case.
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Figure 10: Full CommonNN clustering bench-
marks including input data preparation time, based
on the varied data set (see SI). The similarity cut-
off was set to n. = 50 while the neighbour search
radius was set to r = (0.2 initially and scaled down
by a factor of 0.9 each time the number of points
was increased.

To evaluate the cost of input data prepa-
ration, figure 10 shows benchmarks including
the time needed to pre-calculate distances or
neighbourhoods. The advantage of using pre-
calculated distances is essentially nullified if
the preparation time has to be considered for
the overall clustering performance. Clustering
from pre-computed neighbourhoods clearly out-
performs starting from point coordinates even
if the preparation time is considered. Here,
putting in the effort of sorting the neigh-
bourhoods still offers a little edge. The pre-
computation is amortised already in the first
run. For these benchmarks, the cluster param-
eter n, was fixed at a non-zero value so that
similarity checks are included. The radius r was
scaled down progressively, which can be justi-
fied for large (well sampled) data sets. This has
the effect of producing sub-quadratic scaling.

In summary, it is generally not recommended
to use a pre-computed distance matrix as in-

put source. Pre-computed neighbourhoods are
more beneficial in terms of execution time and
memory demand, although they have to be re-
computed for changing radii . If memory is
very limited, plain point coordinates may be
the best option.

Conclusion

We demonstrated the commonnn Python pack-
age that provides a convenient user interface
to threshold-based, density-based CommonNN
clustering. The presented revised implemen-
tation rigorously improves our previous one in
terms of clustering performance, usability and
flexibility. Its generic design allows the applica-
tion of the procedure in a wide range of situa-
tions. The package is open to be extended with
specialised types to cover additional use-cases—
for example other forms of input data. Future
work will be dedicated to broaden the array of
available types and on incorporating computa-
tional parallelisation schemes into their design.
Furthermore, automatic hierarchical clustering
without explicit use of a threshold is explored.
Currently, we also refine the application of the
procedure to dynamic pharmacophore data to
cluster protein-ligand complex binding poses.
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