
A new theoretical framework jointly explains behavioral and neural variability across subjects
performing flexible decision-making

Authors: Marino Pagan (1), Vincent D Tang (1), Mikio C. Aoi (1,2), Jonathan W. Pillow (1), Valerio Mante (3,4),
David Sussillo (5,6), Carlos D. Brody (1,7)

Affiliations: (1) Princeton Neuroscience Institute, (2) Department of Neurobiology & Halıcıoğlu Data Science
Institute, University of California, San Diego, (3) University of Zurich, (4) ETH Zurich, (5) Department of
Electrical Engineering, Stanford University, Stanford, CA, USA, (6) Wu Tsai Neurosciences Institute, Stanford
University, Stanford, CA, USA, (7) HHMI

Correspondence: mpagan@princeton.edu, brody@princeton.edu

Abstract

The ability to flexibly select and accumulate relevant information to form decisions, while ignoring irrelevant
information, is a fundamental component of higher cognition. Yet its neural mechanisms remain unclear. Here
we demonstrate that, under assumptions supported by both monkey and rat data, the space of possible
network mechanisms to implement this ability is spanned by the combination of three different components,
each with specific behavioral and anatomical implications. We further show that existing electrophysiological
and modeling data are compatible with the full variety of possible combinations of these components,
suggesting that different individuals could use different component combinations. To study variations across
subjects, we developed a rat task requiring context-dependent evidence accumulation, and trained many
subjects on it. Our task delivers sensory evidence through pulses that have random but precisely known
timing, providing high statistical power to characterize each individual’s neural and behavioral responses.
Consistent with theoretical predictions, neural and behavioral analysis revealed remarkable heterogeneity
across rats, despite uniformly good task performance. The theory further predicts a specific link between
behavioral and neural signatures, which was robustly supported in the data. Our results provide a new
experimentally-supported theoretical framework to analyze biological and artificial systems performing flexible
decision-making tasks, and open the door to the study of individual variability in neural computations
underlying higher cognition.

In our daily lives, we are often required to use context or top-down goals to select relevant information from
within a sensory stream, ignore irrelevant information, and guide further action. For example, if we hear our
name called in a crowded room and our goal is to respond based on the identity of the caller, the frequencies in
the sound will be an important part of driving our actions; but if we wish to first turn towards to the caller,
regardless of who they might be, information about location, of the very same sound, will be the most relevant
to our actions. As with other types of decisions, when the evidence for or against different choices is noisy or
uncertain, accumulation of many observations over time is an important strategy for reducing noise1–4. To study
the neural basis of such context-dependent selection and accumulation of sensory evidence, we trained rats
on a novel auditory task where, in alternating blocks of trials, subjects were cued to determine either the
prevalent location (“LOC”) or the prevalent frequency (“FRQ”) of a sequence of randomly-timed auditory pulses
(Fig. 1a). The relative rates of left vs. right and high vs. low pulses corresponded to the strength of the
evidence about LOC and FRQ, respectively (Fig. 1b). These relative rates were chosen randomly and
independently on each trial, and were used to generate a train of pulses that were maximally randomly-timed,
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i.e., Poisson-distributed. Correct performance requires selecting the relevant feature for a given context,
accumulating the pulses of evidence for that feature over time, and ignoring the irrelevant feature. Many rats
were trained to good performance on this task using an automated training procedure (Fig. 1c; training code
available at https://github.com/Brody-Lab/flexible_decision_making_training), with most rats learning the task in
a timespan between 2 and 5 months (Extended Data Fig. 2g). Attained performances were similar to those of
macaque monkeys performing analogous visual tasks2. Rats learned to associate the audio-visual cue
presented at the beginning of each trial with the correct task context, and were able to switch between selected
stimulus features within ~4 trials of a new context block (Extended Data Fig. 1e). We reasoned that the highly
random yet precisely known stimulus pulses, together with large numbers of trials and subjects, would provide
us with statistical power to characterize both behavioral5 and neural responses.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.518207doi: bioRxiv preprint 

https://github.com/Brody-Lab/flexible_decision_making_training
https://paperpile.com/c/Ajip8T/tBGxO
https://paperpile.com/c/Ajip8T/urcx
https://doi.org/10.1101/2022.11.28.518207
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.518207doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518207
http://creativecommons.org/licenses/by-nd/4.0/


Individual variability of behavioral kernels

To assess the temporal dynamics of context-dependent evidence accumulation, we measured the relative
strength that pulses of evidence from each timepoint in the stimulus had on each subject’s choice. We fitted a
behavioral model in which a weighted sum of net LOC evidence from each timepoint, plus a weighted sum of
net FRQ evidence from each timepoint, were passed through a logistic function to produce the probability that
the subject will choose Right on that trial (Fig. 1d). The weights, chosen to best fit the experimental data, are
estimates of the weight the subject placed on evidence from each timepoint. For a given rat, four
time-dependent sets of weights were retrieved, for LOC and for FRQ evidence in each of the LOC and FRQ
contexts. For good task performance, the weights when the evidence is relevant should overall be larger than
when it is irrelevant. But the shape of the time-dependence could vary across individuals.

To focus on context-dependent effects, we examined “differential behavioral kernels”, which we defined as the
difference, across the two contexts, in the time-dependent weights of a given type of evidence (either LOC or
FRQ; Fig. 1e). Indeed, even though performance was similarly high across our n=20 rats (Fig. 1c), we found a
high degree of heterogeneity in the shape of the differential behavioral kernels (Fig. 1f; Ext. Data Fig. 3). The
shape of the differential kernels spanned a continuum, from a temporally “flat” shape, meaning that context has
a similar impact on pulses presented at any time point, to a shape that converged towards zero near the end of
the stimulus, implying that the weight on choices of the latest pulses does not depend on whether they are
relevant or irrelevant. These different kernel shapes were quantified by a “parallel index” (Fig. 1e). The kernels
were consistent in individual rats across sessions (Ext. Data Fig. 4). Across rats, the shape of LOC differential
kernels was not correlated with the shape of FRQ differential kernels (Fig. 1f). Thus, context-dependent
temporal dynamics of evidence accumulation differed markedly across individual rats, and even within
individual rats for the two different types of evidence, a result consistent with single-context findings in
humans6,7. What underlies this variability across individuals?

Targeted dimensionality reduction (TDR) of trial-based neural dynamics in rat and macaque rule out
two classes of models

What neural mechanisms allow different stimulus features to drive decisions in the different contexts? Some
previous studies have proposed “early gating” of irrelevant information8–12. In this model, top-down signals to
early sensory brain regions block irrelevant information from reaching more anterior, putative decision-making
regions. This would predict that in trials where a given feature is irrelevant, little or no information about that
feature would be found in decision-making regions-- whether at the single-neuron level, or whether at a more
statistically sensitive, neural population level (Fig. 2a,b). However, monkey studies, recording from a cortical
region closely associated with decision-making, the Frontal Eye Fields (FEF)13,14, found no suppression of
irrelevant feature information2,15. Fig. 2c shows this for the data of ref. 2 (p<0.001; reanalyzed using the
methods of ref. 16). In rats, the Frontal Orienting Fields (FOF) are a cortical region thought to be involved in
decision-making for orienting choice responses17,18, and have been suggested as homologous or analogous to
macaque FEF17,19,20. Consistent with a key role for the FOF in our task, bilateral optogenetic silencing of rat
FOF demonstrated that it is required for accurate performance of the task (Extended Data Fig. 5; n=3 rats). We
implanted tetrodes into the FOF and also targeting another frontal region, the medial prefrontal cortex (mPFC),
and we recorded from n=3532 putative single neurons during n=199 sessions from n=7 rats while they
performed the task of Fig. 1. Carrying out the same analysis that had been applied to the monkey data2,16, we
also found no suppression of irrelevant feature information (p<0.01; Fig. 2d). The striking qualitative similarity
between the rat (Fig. 2d) and monkey (Fig. 2c) traces suggests that the underlying neural mechanisms in the
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two species may be similar enough that an active exchange of ideas between studies in the two species will be
very fruitful.

The population analyses in Fig. 2 identify a “choice axis” as the direction in neural space that best predicts the
subject’s upcoming choice (Fig. 2a). A second potential mechanism underlying our task would have the choice
axis reorienting across contexts21, to align more with the relevant evidence for each context (Fig. 2e). To test
this hypothesis, we estimated the direction of the choice axis separately in LOC and in FRQ contexts (see
Methods). Contrary to the prediction of the context-dependent choice axis model, we found the two choice
axes to be very closely aligned with each other, both in data across rats (angle between them = 1.6 degrees;
Fig. 2f), and for each rat individually (Fig. 2g, Extended Data Fig. 7). These results are consistent with the
notion that the choice axes are highly aligned across contexts, as previously reported in monkey FEF2 (but see
21). In sum, as with the monkey data and visual task of Mante et al. 2013, our data, using a different species
(rat) and different sensory modality (audition), led us to rule out both the early gating model and the
context-dependent choice axis model. These conclusions are thus neither modality- nor species- specific. We
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note that although our own data did not support the early gating model, the framework that we develop next
does not assume that early gating has been ruled out. Instead, the framework incorporates early gating as part
of the solutions described in it.

The space of possible remaining solutions is spanned by three distinct components with different
behavioral and anatomical implications.

We now consider the general set of possible solutions. To examine the mathematics behind how pulses of
relevant evidence move the system along the choice axis, while pulses of the same evidence, when irrelevant,
have a comparatively much smaller effect (Fig. 3a), we follow existing work in taking dynamics around the
choice axis to be well approximated by a line attractor22,23, i.e. a closely-packed sequence of stable points. This
follows from the idea that the position of the system on the choice axis corresponds to net accumulated
evidence towards Right vs Left choice, and in temporal gaps between pulses of evidence, an accumulator
must be able to stably maintain accumulated values (hence the stable points). A line attractor strongly
constrains the possible dynamics: linearized dynamics in the absence of external inputs for r, the vector of
neurons’ firing rates,

necessarily have one eigenvalue of the matrix M equal to zero (corresponding to the eigenvector pointing
along the line attractor, where all points are stable; by convention, this will be the zeroth eigenvalue), and all
other eigenvalues must have a negative real part (because it is an attractor; see Extended Discussion)22. In
general, the eigenvectors of M need not be orthogonal to each other (“non-normal” dynamics).

An incoming pulse of evidence will perturb the system off the line attractor, to a position we will denote
as i, after which it will decay back (Fig. 3b). How far along the choice axis will the system have moved after the
decay? Standard linear dynamics analysis suggests transforming r into eigencoordinates r(eigen), in which each
coordinate j evolves independently of the others, according to

rj
(eigen)(t) = rj

(eigen)(t=0) exp(λj t),

where λj is that coordinate’s eigenvalue, and rj
(eigen)(t=0) is the jth eigencoordinate of the initial perturbation i.

Since the zeroth eigencoordinate has λ=0, it will remain constant. All others, with eigenvalues λj with negative
real parts, will decay exponentially to zero, after which the system will have moved on the choice axis by a
distance equal to that single remaining constant coordinate with λ=0. That zeroth eigencoordinate is given by
the dot product s●r, where the row vector s, known as the “selection vector2”, is the first left eigenvector of M.
We note that since s●r(t) = constant = s●r(t=0) = s●i, the dynamics of r(t) must be orthogonal to s. That is, s
characterizes the dynamics2 (Fig. 3b; see Extended Discussion for full derivation).

For a pulse of evidence (LOC evidence, for example) to have a greater effect on choice in the LOC than the
FRQ contexts, s●i must be greater in the LOC context than in the FRQ context. Across the two contexts, both
s and i could vary. Thus, any network that solves the task must satisfy

Δ(s●i) = sLOC●iLOC - sFRQ●iFRQ > 0
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(subscripts indicate context, and iLOC and iFRQ refer here to LOC evidence only; an equivalent analysis applies
to FRQ evidence.) Our key theoretical insight is that this difference can be rewritten as the sum of three
components (Fig. 3c).

where the overbar symbol represents the average over the two contexts and Δ indicates difference across
contexts. “Indirect input modulation” is a change across contexts in the input i, with the change orthogonal to
the line attractor; “direct input modulation” is a change in the input i that is parallel to the line attractor; and
“selection vector modulation” is a change in the selection vector s. We note three parenthetical remarks that
follow from this algebraic rewriting. First, early gating (i=0 in the irrelevant context) is a special case within this
framework (for examples of both direct and indirect input modulation from early gating, see examples 1 and 2
in Extended Discussion). Second, and despite the intuition implicit in Fig. 2e, the direction of the line attractor
does not determine the impact on the final distance moved along it after a pulse: that distance is determined
from the flow field (represented by s) and the input vector i (equation (1); see also examples 4,5,6 in Extended
Discussion)2,22 . Third, the direction of the line attractor enters this framework in distinguishing indirect versus
direct input modulation (equation 2). Assuming that the line attractors in the two contexts are parallel to each
other (as follows from Fig. 2f,g and ref. 2), allows specifying a direction such that Δi can be separated into
components orthogonal and parallel to it. This distinction is shown below to be relevant to the speed of
context-dependent effects and variability across individuals.

The action of each of the three components of equation (2) is illustrated in Figs. 3d,e,f. Since any
network that solves the task can be described as a sum of these components, any network solution can be
visualized as a point in barycentric coordinates, i.e. described in terms of distances from the vertices of a
triangle (Fig. 3g). The position within this triangle identifies the relative weight of each of the three components
in equation (2) for that solution.

Different solutions have different, and important, biological implications: for both indirect input
modulation and selection vector modulation, the change on the choice axis after a pulse of evidence is initially
the same for the two contexts, and a differential response develops only gradually (Fig. 3d,e, right panels);
while for direct input modulation, the difference across contexts is immediate (Fig. 3f, right panels). This is
indicated by the “fast” vs “slow” vertical axis in Fig. 3g, and has behavioral implications that will be examined in
Fig 5. Separately, changes in the linearized input i can be achieved through changes in the activity of early
sensory regions or modulations in communication from sensory to decision-making regions; while changes in

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.518207doi: bioRxiv preprint 

https://paperpile.com/c/Ajip8T/tBGxO+DsFi
https://doi.org/10.1101/2022.11.28.518207
http://creativecommons.org/licenses/by-nd/4.0/


the selection vector (i.e., selection vector modulation) are changes purely in the dynamics of decision-making
regions. Thus, where a network lies along the “input” vs “dynamics” tilted axis in Fig. 3g has anatomical
implications as to the possible locus of context-dependence.

Seeking model networks that solve the task and have individual units with heterogeneous responses, as in the
data (see Extended Data Fig. 6), Mante et al. (2013) used gradient descent methods to train recurrent neural
networks (RNNs), and found that most successfully trained RNNs solved the task using context-dependent
recurrent dynamics (i.e. the mechanism we call selection vector modulation). RNNs trained with gradient
descent methods to solve our task are plotted in barycentric coordinates in Fig. 3h, which shows that indeed,
successfully trained networks are densest near the selection vector modulation corner at bottom left (Fig. 3h),
reproducing their result. Mante et al. observed a qualitative similarity in the targeted dimensionality reduction
analysis of Fig 2b-d when applied to the RNNs, and when applied to their experimental data from macaque
FEF. This prompted the suggestion of selection vector modulation as the leading candidate for how the brain
implements context-dependent decision-making. However, the insight in eqn. (2) allowed us to develop
methods to create distributed, heterogenous RNNs that lie at any chosen point within the barycentric
coordinates (Fig. 3i; Methods). Surprisingly, we now find that when analyzed using targeted dimensionality
reduction, RNNs at any point within the barycentric coordinates, not only those close to the selection vector
modulation corner, produce traces that are qualitatively similar to the experimental data (Fig. 3j).
Thus, while targeted dimensionality reduction (TDR) trial-based analyses rule out early gating and
context-dependent changes in the choice axis (Fig. 2), the large space of remaining solutions, spanned by the
three components in equation (2) and with very significant differences and implications across the
encompassed solutions, is not easily differentiated by trial-based analyses. In contrast, Figs. 3d,e,f suggest
that a pulse-based analysis may distinguish some solutions, particularly across the fast vs slow vertical axis of
Fig. 3g. Furthermore, the fact that all points within these barycentric coordinates are equally valid solutions,
and are all qualitatively similar to previous data (see Extended Data Fig. 8), suggests that different individuals
could use different solutions within this space. Could this explain the behavioral variability described in Fig. 1f?
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Estimating pulse-evoked dynamics reveals heterogeneity in neural responses that is predicted by
heterogeneity in “fast” vs “slow” network solutions.

A full characterization of the relevant linearized dynamics requires knowledge of the line attractor direction, the
selection vector s in each context, and the components of the input vector i in each context that are parallel to
s (since the effects of the input vector appear through s●i). The selection vector, however, is not directly
observable. Nevertheless, we can leverage knowledge of the exact pulse timing on each trial to estimate the
dynamics evoked by single pulses of evidence, and their projection onto the choice axis, which distinguishes
solutions across the “fast” vs “slow” vertical axis of Fig. 3g. To do this, we modeled each neuron’s firing rate as
the sum of a time-dependent function (a “kernel”) that is triggered and added by each pulse in the stimulus,
plus time-dependent functions that accounted for other important factors: context, choice, and time (Fig. 4a).
Four pulse-triggered kernels were retrieved, for LOC and for FRQ evidence, in each of the LOC and FRQ
contexts. Recorded neuron firing rates were well-described with this approach (Ext. Data Fig. 9b). Analysis of
the activity of units in model RNNs confirmed that pulse-triggered kernels estimated this way are highly similar
to RNN responses to single evidence pulses presented in isolation (Ext. Data Fig. 9c,d), thus validating the
approach. The pulse-triggered kernel for each neuron represents how its activity evolves over time due to a
pulse. Similarly to how stimulus responses of many individual neurons can be described as a population
trajectory in a joint space, where each axis corresponds to a neuron’s activity (Fig. 2a), the pulse-triggered
kernels of all individual neurons can be described as a pulse-evoked trajectory in the same neural space (Fig.
4b). The key difference is that in Fig. 2, the trajectory is aligned to the stimulus start (and is averaged across
multiple different trains of evidence), whereas in Fig. 4b the trajectory is aligned to the presentation of a single
pulse of evidence. As in the previous analysis, this trajectory was then projected onto the choice axis to obtain
an estimate of the effect of a pulse of evidence on choice axis position (Fig. 4c, left). The difference in this
response for evidence when it is relevant minus when it is irrelevant was defined as the “differential pulse
response” (Fig. 4c, right). Application of this analysis to RNNs confirmed that estimated pulse responses
closely approximate the actual responses to a pulse presented in isolation (Ext. Data Fig. 8c,d). The theory
also predicts that the parallel index for the differential pulse response should be tightly linked to a network’s
position along the “fast” vs “slow” vertical axis in the barycentric coordinates (Fig. 3g); this was confirmed for
RNNs engineered to employ different percentages of direct input modulation (Fig. 4d, Ext. Data Fig. 10a).
Having validated the approach, we then applied it to the neural data we had recorded from the FOF. This
revealed a large degree of heterogeneity in the parallel indices of differential pulse responses across rats and
types of evidence (Fig. 4e), with the experimental traces resembling those produced by RNNs. We found no
correlation across rats for LOC vs FRQ differential pulse kernels (Fig. 4e), an observation similar to our
separate finding for differential behavioral kernels (Fig. 1f). These results are consistent with the notion that the
variability in the observed pulse responses stems from individual animals implementing different combinations
of solution components (Fig. 3g), even across the two types of evidence within individual rats.
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Pulse-evoked neural dynamics recapitulate behavioral variability

Under the simplifying assumptions that the response to a pulse does not depend on time within a trial nor on
previously presented evidence (assumptions supported by the good fit to the data of a model built with these
assumptions, Figs. 4 and Extended Data Fig. 9b), the theory predicts a specific relationship between
differential behavioral kernels and differential pulse responses: If T is the time at which position on the choice
axis is read out to commit to a Right vs Left choice, then the impact on choices of a pulse at time t will follow
the pulse-evoked movement along the choice axis after an interval T-t. For direct input modulation, with a
differential pulse response that is immediate and sustained (Fig. 3f), the differential behavioral impact of a
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pulse should be the same whether it is presented close to, or long before, choice commitment. This should
lead to a flat differential behavioral kernel (Fig. 5a). But for selection vector modulation or indirect input
modulation, with differential pulse responses that grow only gradually from zero, the differential impact of a
pulse will be small if presented shortly before choice commitment, and larger if presented longer before. This
should result in a converging differential behavioral kernel (Fig. 5b). In other words, the shape of the differential
behavioral kernel should be the reflection on the time axis of the differential pulse response. These two very
different types of measures are thus predicted to have the same parallel index. We tested this prediction on
RNNs engineered to solve the task using different amounts of direct input modulation. We computed both
differential behavioral kernels, as in Fig. 1, and differential pulse responses, as in Fig. 4. As predicted, the
parallel indices of the two were tightly correlated (Fig. 5c). We then tested whether a similar relationship
existed for the rats’ behavioral and neural experimental data. We found robust support in the data for the
prediction that the two measures should be correlated (Fig. 5d, r=0.78, p<0.001), with the correlation also
holding for LOC evidence alone (r=0.77, p<0.05) or for FRQ evidence alone (r=0.76, p<0.05). Thus, although
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there is no correlation within the behavioral measure (Fig. 1f) or within the neural measure (Fig. 4e), the two
are strongly correlated with each other (Fig. 5d). These results support both the overall theoretical framework,
and the idea that variability in solutions across the barycentric coordinates of Fig. 3g is the common source
underlying, and explaining, both neural and behavioral variability.

Discussion

In this work we combined high-throughput training of rats, a novel pulse-based task requiring
context-dependent selection and accumulation of evidence, and pulse-based analyses of behavioral and
neural data, to probe and confirm predictions of a new theoretical framework for flexible decision-making. The
framework describes a space of possible solutions, and explains variability between and within individuals as
variability within that space. Our theory stems from basic linearized dynamical systems analysis23, where a
simple algebraic rewriting of the mathematics behind context-dependent selection and accumulation
(equations 1 and 2) led us to multiple insights: theoretical insights, defining the space of possible solutions
(Fig. 3g); biological insights, describing the behavioral, neural, and anatomical implications of the different
solutions; conceptual insights, identifying the underlying source that links neural and behavioral variability (Fig.
5d); and technical insights, allowing us to engineer recurrent neural networks that could not be constructed
before, spanning the full space of solutions (Fig. 3h,i).

We describe our theoretical work as a "framework" because it does not specify particular network
implementations. Instead, it defines a language describing the axes of the space of possible dynamical
solutions and their characteristics. Each point in the space we have described could be implemented in
multiple ways. Recent complementary work has focused on the study of network implementations12,24,25.

Studies often center on findings that are common across subjects, and it is common practice to report
the result for an “average subject”. However, our results reveal a surprising degree of heterogeneity across,
and even within, individual animals, underscoring the importance of characterizing the computations used by
each individual subject. This issue may be of particular significance for cognitive computations, which are
largely internal and therefore potentially subject to substantial covert variability across subjects. Here, studying
how computations vary across subjects was made possible by two key methodologies. First, we used an
efficient, automated procedure to train a sufficient number of rats to be able to observe and quantify
cross-subject variability5. Second, we characterized each individual’s computations by leveraging the statistical
power afforded by a randomly-timed, pulse-based stimulus5. We used two independent methods that leveraged
this pulsatile stimulus, one based on analysis of neural activity and another based on analysis of behavioral
choices. The high correspondence between the two separate resulting measurements (Fig. 5d) indicates a link
through a common underlying variable. Our framework describes how different, equally valid solutions can
have different speeds with which the impact of an evidence pulse on a subject’s choice becomes affected by
the current context (vertical axis in Fig. 3g). We identify this speed as the common underlying variable linking
the behavioral and neural measurements.

Whether or not early gating (i.e., blocking irrelevant evidence from reaching decision-making regions)
accounts for context-dependent decision-making is an ongoing debate, with some studies providing evidence
that it does (e.g., 11,12,26,27), while others, including our own data (Fig. 2) provide evidence that it does not (e.g.,
2,15,28,29). Similar to variability across the vertical axis of the solution space of Fig. 3g, which we believe is a
result of all of the encompassed solutions being capable of solving the task, solutions using or not using early
gating, both of which are in the framework we have described (see examples 1 and 2 In Extended Discussion),
are equally capable of solving the task. It is thus possible that there could be variability across tasks and
individuals, perhaps even within them, regarding the use of early gating. Further work will resolve the relative
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prevalence, or absence, of early gating. Further work will also be needed to resolve differences between our
work and a recent study21, using a different flexible decision-making task and focused on a different brain
region, which found curved manifolds that rotated across different contexts.

Our work also provides a cautionary note, highlighting the fact that recurrent neural networks (RNNs)
trained through gradient-descent methods, which are commonly used to model brain function2,30–35, allow the
discovery and exploration of some possible solutions, but need not comprise the full set of RNNs that are
consistent with experimental data for a given phenomenon. In our work we found that gradient descent
methods led towards only one corner of the full space of solutions (Fig. 3h). It was a deeper understanding of
the mathematics behind solutions (equations 1 and 2), not gradient descent, that allowed us to engineer
data-compatible RNNs across the full space of solutions (Fig. 3i,j).

Even though our experiments were carried out in rats, the similarity in the results of behavioral and
neural analyses that could be carried out in common across two species, rats and monkeys (Fig. 1c, Fig. 2),
suggests that conclusions reached from rat data may generalize to other species as well. A recent study36

indicates that human subjects performing context-dependent decision-making process different stimulus
features independently, in line with our result that subjects can use separate mixtures of components to select
and accumulate each of the two features (Fig. 1f, Fig. 4e). Drawing parallels across species was greatly
facilitated by adopting highly similar behavioral paradigms (Extended Data Fig. 1), and targeting putatively
similar brain regions (e.g. monkey FEF and rat FOF).

Our theoretical framework indicates that a key part to understanding context-dependent, flexible
behavior consists in unraveling the context-dependent interactions between sensory inputs and recurrent
dynamics. For example, observing large context-dependent changes in the representation of sensory
evidence, either in sensory or decision-making regions (leading to large in equation 1) is not sufficient to
conclude that these drive context-dependent decision-making: only input changes aligned to the direction in
neural space capturing decision-making region recurrent dynamics ( ) produce a context-dependent
effect. Thus, while some studies have argued that early gating is indicated by a representation of evidence in
decision-making regions that is weaker in the irrelevant context (i.e., smaller |i| in our terminology)26, which in
many cases may be correct, example 3 in the Extended Discussion demonstrates that it need not be so: a
context with smaller |i| can counterintuitively be the one where i has the greater impact on decisions, because
it has the larger . The emphasis on the interaction between i and s is closely related to the alignment of
input and dynamics recently observed in the context of sensory learning37. Similarly, large changes in the
recurrent dynamics across contexts ( ) will play no role in the context-dependent behavior if they occur in
directions orthogonal to the average input direction . For clarity, we must emphasize that in our framework,
represents the sensory input to decision-making brain regions when linearized around the context-dependent
state of the system before sensory pulses arrive. Thus, in terms of their anatomical locus, context-dependent
changes in the linearized input ( ) can be potentially created by context-modulation of early sensory regions,
but could also occur purely in higher-order decision-making regions, through context-modulation of the point
around which linearization will be calculated. In contrast, refers exclusively to context-dependent changes
in decision-making regions.

A limitation of our approach is that we are currently unable to discriminate between mechanisms relying
on context-dependent changes of recurrent dynamics versus changes in the linearized sensory inputs (i.e. the
oblique axis in Fig. 3g, right). A full characterization of the relevant neural dynamics will require estimation of
the selection vector s (the vector that summarizes the key aspects of the network dynamics), for each context.
Simultaneous recordings from large neural populations, combined with the application of recently-developed
latent-based methods, such as LFADS38 or PLNDE39, which are designed to capture the dynamics underlying
high-dimensional neural trajectories, may prove instrumental in future work in this direction. Another potential
limitation stems from the possibility that recurrent dynamics might evolve more rapidly40 than the current time
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resolution in our measurements, leaving us unable to discriminate between contextual input modulation versus
fast recurrent modulation. However, our results indicate that our analyses quantified the speed of evidence
selection as smoothly varying across subjects (Fig. 1f; Fig. 4e), suggesting that in most subjects dynamics are
slow enough to be captured with our method.

In sum, our work provides a new, general framework to describe and investigate neural mechanisms
underlying flexible decision-making, and opens the door to the cellular-resolution study of individual variability
in neural computations underlying higher cognition.
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Extended Data Figures

Extended Data Figure 1. a-d) Comparison of rat task and monkey task2. a) In the rat task, the subject is cued using an
audiovisual stimulus, and is presented with a train of randomly-timed auditory pulses varying in location and frequency. In
different contexts, the subject determines the prevalent location or the prevalent frequency of the pulses. b) Stimulus set
for the rat task: strength of location and prevalent frequency are varied independently on each trial. c) In the monkey task,
the subject is cued using the shape and color of a fixation dot, and is presented with a field of randomly-moving red and
green dots. In different contexts, the subject determines the prevalent color or the prevalent motion of the dots. d)
Stimulus set for the monkey task: strength of motion and prevalent color are varied independently on each trial. e) Rats
rapidly switch between contexts. Performances saturate within the first 4-5 trials in the block. The weight of location and
frequency evidence is computed using a logistic regression (see methods). Thin lines indicate individual rats, thick lines
indicate the average across rats. f) Full matrix of behavioral performances for one example rat across the two contexts.
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Extended Data Figure 2. a-f) Training procedure. a) Stage 1: rats are trained only on the location task, with strong
location evidence and no frequency evidence (pulses consist of superimposed low and high frequency). The context cue
is played before each trial. b) Stage 2: rats learn to alternate between the location and frequency context. In the frequency
context rats are presented with strong frequency evidence and no location evidence (stereo pulses). c) Stage 3:
introduction of pulse modulation. In the frequency context, pulses are now presented on either side (but with no prevalent
side). In the location context, pulses are either high-frequency or low-frequency (but with no prevalent frequency). d)
Stage 4: irrelevant information is introduced, but the relevant information is always at maximum strength. e) Stage 5:
relevant information can have intermediate strength. f) Stage 6: relevant information can have low strength. g) Training
progression. Most rats learn stages 1-3 in approximately 2 weeks, but it takes a much longer time to learn stages 4-6
because of the introduction of irrelevant evidence. The feature selection index quantifies whether rats attend to the correct
feature and ignore the irrelevant feature (see methods). The black dashed line indicates chance, the red dashed line
indicates the threshold performance to consider a rat trained. Most rats learn the task within 2-5 months.
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Extended Data Figure 3. Behavioral data for all rats. Rat ID color indicates whether rat was used for electrophysiology
(red), optogenetics (cyan) or only for behavior (black). a) Psychometric curves for frequency evidence, measuring the
fraction of right choices as a function of strength of frequency evidence (6 levels of strength, see Fig. 1b). Green indicates
frequency context (relevant), purple indicates location context (irrelevant). b) Weights for frequency evidence computed
using the behavioral logistic regression for each rat (see Fig. 1d); colors as in panel a. c) Differential behavioral kernel for
frequency evidence across all rats. d) Psychometric curves for location evidence, measuring the fraction of right choices
as a function of strength of location evidence (6 levels of strength, see Fig. 1b). Green indicates location context
(relevant), purple indicates frequency context (irrelevant). e) Weights for location evidence computed using the behavioral
logistic regression for each rat (see Fig. 1d); colors as in panel d. f) Differential behavioral kernel for location evidence
across all rats.
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Extended Data Figure 4. Stability of behavioral kernels. a-b) All trials collected for each rat were randomly split into two
halves, and behavioral kernels were recomputed independently for each split half. a) Half split behavioral kernels for
frequency evidence. b) Half split behavioral kernels for location evidence. c) The parallel index computed behavioral trials
in the first half split is highly correlated with the parallel index computed using the second half split.
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Extended Data Figure 5. (a) 64-channel custom-made multi-tetrode drive, allowing independent movement of 16
tetrodes. This drive was used in one rat for wired recordings. (b) 128-channel custom-made multi-tetrode drive, allowing
independent movement of 4 bundles with 8 tetrodes each. This drive was used in six rats for wireless recordings. (c)
Device for wireless optogenetic perturbation. In the implant, two chemically sharpened optic fibers targeting both
hemispheres are attached using optical glue to two laser diodes. The laser diodes are controlled independently by a
control board, which communicates wirelessly with the computer controlling the behavior. The control board can be
attached/detached using a microUSB connector. (d) Example rat with wireless electrophysiology implant and headstage.
(e) Example rat with wireless optogenetic implant and control board. (f-g) Result of inactivation of FOF. 3 rats expressed
AAV2/5-mDlx-ChR2-mCherry and were stimulated with blue light (450 nm, 25mW) for the full duration of the stimulus. (f)
Result of unilateral inactivation on rats’ choices as a function of strength of relevant evidence (averaged across the two
contexts). Activation of each laser was randomized across trials. (g) Result of bilateral FOF inactivation on rats’ choices
as a function of strength of relevant evidence (averaged across the two contexts).
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Extended Data Figure 6. Example responses of single units recorded in FOF (a) and in mPFC (b). Shown are the
peri-stimulus time histograms of responses for correct trials, averaged according to context and choice. Units in both
areas exhibit significant heterogeneity and large modulation according to combinations of the rat’s upcoming choice and
the current context. The dashed vertical lines indicate the beginning of the pulse-train stimulus presentation, the end of
the pulse-train stimulus presentation, and the average time when the rat performed a poke in one of the two side ports to
indicate his choice.
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Extended Data Figure 7. Choice-related dynamics, computed independently for each rat, and across the two contexts.
For each rat, the horizontal and vertical axes in the two subpanels are the same across the two panels, and are computed
using data from both contexts. The dynamics in each context are computed using the choice kernels of the pulse-based
regression (Fig. 4a). The black dot indicates the time of the start of stimulus presentation, the purple dots indicate the end
of stimulus presentation. The line indicates the choice axis computed in the given context, and above the panels is
indicated the angle between the choice axes computed across the two contexts.
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Extended Data Figure 8. Engineered recurrent neural networks (RNNs) across the entire vertical axis of the solution
space (Fig. 3g) all qualitatively reproduce rat TDR trial-based dynamics and psychometric results but are distinguished by
pulse-based analysis. a) Architecture of the RNNs. b-f) Activity and behavior of five example RNNs, engineered with
different percentages of direct input modulation (d.i.m.; same notation as in Fig. 4; each column in b-f corresponds to an
RNN with a given d.i.m. percentage). b) TDR trial-based dynamics (as in Fig. 2c-d) are similar across the full d.i.m. range.
c) Differential network response to a single isolated pulse of location evidence across the two contexts (“true” single-pulse
responses). As predicted by the theory, networks with larger d.i.m. components display larger initial differential responses.
d) Estimation of the differential network response using the pulse-based regression method of Fig. 4. The pulse-based
regression accurately captures the true pulse responses of panel b. e) Psychometric curves (Fig. 1c) show uniformly good
performance across the d.i.m. range.
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Extended Data Figure 9. Validation of pulse regression method. a) Example application of the pulse regression to one
example recorded unit. b) Fraction of explained variance as a function of firing rate across all recorded units. c-d) The
pulse-regression kernels provide an accurate estimate of the response to a single isolated pulse. In c) are shown the
responses to a single isolated pulse of either location or frequency evidence in both contexts for an example RNN unit. In
d) are shown the estimates of these pulses from the dynamics of the RNN solving the task with regular trials featuring
many consecutive pulses presented at 40Hz. e) Comparison of the direction of the true line attractor (computed by finding
the RNN’s fixed points, see methods) with the choice axis estimated by the trial-based regression (Fig. 2c,d) and the
pulse-based regression (Fig. 4a). The choice axis closely approximates the direction of the true line attractor.
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Extended Data Figure 10. (a) Differential pulse responses across all RNNs shown in Fig. 5c (n=30). The number above
each behavioral kernel indicates the fraction of direct input modulation for the associated RNN (same notation as in
Extended Data Figure 8). (b) Corresponding behavioral kernel for each RNN. (c) Differential pulse responses across all
rats shown in Fig. 5d (n=7 rats, two features per rat). Gray indicates location feature, blue indicates frequency feature. (d)
Corresponding behavioral kernels for each rat and feature.
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Methods

Subjects

All animal use procedures were approved by the Princeton University Institutional Animal Care and Use
Committee (IACUC) and were carried out in accordance with NIH standards. All subjects were adult male
Long-Evans rats that were kept on a reversed light-dark cycle. All training and testing procedures were
performed during the dark cycle. Rats were placed on a restricted water schedule to motivate them to work for
a water reward. A total of 26 rats were used for the experiments presented in this study. Of these, 7 rats were
used for electrophysiology recordings, and 3 rats were implanted with optical fibers for optogenetic inactivation.

Behavior

All rats included in this study were trained to perform a task requiring context-dependent selection and
accumulation of sensory evidence (Figure 1a). The task was performed in a behavioral box consisting of three
straight walls and one curved wall with three “nose ports”. Each nose port was equipped with an LED to deliver
visual stimuli, and with an infrared beam to detect the rat’s nose entrance. In addition, above the two side ports
were speakers to deliver sound stimuli, and water cannulas to deliver a water reward.
At the beginning of each trial, rats were presented with an audiovisual cue indicating the context of the current
trial, either “location context” or “frequency context”. The context cues consisted of 1s-long, clearly
distinguishable FM modulated sounds, and in addition the “location context” was signaled by turning on the
LEDs of all three ports, while in the “frequency context” only the center LED was turned on. After the end of the
context cue, the rats were required to place their nose into the center port. While maintaining fixation in the
center port, rats were presented with a 1.3s-long train of randomly-timed auditory pulses. Each pulse was
played either from the speaker to the animal's left or from the speaker to their right, and each pulse a 5 ms
pure tone with either low-frequency (6.5 KHz) or high frequency (14 KHz). The pulse trains were generated by
Poisson processes with different underlying rates. The strength of the location evidence was manipulated by
varying the relative rate of right vs left pulses, while the strength of the frequency evidence was manipulated by
varying the relative rate of high vs low pulses (Fig. 1b). The overall pulse rate was kept constant at 40 Hz.
In the "location context", rats were rewarded if they turned, at the end of the stimulus, towards the side that had
played the greater total number of pulses, ignoring the frequency of the pulses. In blocks of "frequency" trials,
rats were rewarded for orienting left if the total number of low frequency pulses was higher than the total
number of high frequency pulses, and orienting right otherwise, ignoring the location of the pulses. The context
was kept constant in blocks of trials, and block switches occurred after a minimum of 30 trials per block, and
when a local estimate of performance reached a threshold of 80% correct. Behavioral sessions lasted 2-4
hours, and rats performed on average 542 trials per session.

Electrophysiology

Tetrodes were constructed using nickel/chrome alloy wire, 12.7 μm (Sandvik Kanthal), and were gold-plated to
200 k𝛺 at 1 kHz. Tetrodes were mounted onto custom-made drives (Ext. Data Fig. 5a)41, and the microdrives
were implanted using previously described surgical stereotaxic implantation techniques18. Five rats were
implanted with bilateral electrodes targeting FOF, centered at +2 anteroposterior (AP), ±1.3 mediolateral (ML)
from bregma, while two rats were implanted with bilateral electrodes targeting the prelimbic (PL) area of
mPFC, with coordinates +3.2 anteroposterior (AP), ±0.75 mediolateral (ML) from bregma. In one rat with an
implant in FOF, 16 tetrodes were connected to a 64-channel electronic interface board (EIB), and recordings
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were performed using a wired setup (Open-Ephys). In the other six rats, 32 tetrodes per rat were connected to
a 128-channel EIB and recordings were performed using wireless headstages (Spikegadgets; Ext. Data Fig.
5b).

Optogenetics

Preparation of chemically-sharpened optical fibers (0.37 NA, 400 μm core; Newport) and basic virus injection
techniques were the same as previously described18. At the targeted coordinates (FOF, +2 AP mm, ±1.3 ML
mm from bregma), injections of 9.2nl of adeno-associated virus (AAV) (AAV2/5-mDlx-ChR2-mCherry, three
rats) were made every 100 μm in depth for 1.5mm. Four additional injection tracts were completed at
coordinates 500 μm anterior, 500 μm posterior, 500 μm medial and 500 μm lateral from the central tract. In
total, 1.5μl of virus was injected over approximately 30min. Chemically sharpened fibers were lowered down
the central injection track. Virus expression was allowed to develop for 8 weeks before optogenetic stimulation
began. Optogenetic stimulation was delivered at 25mW using a customized wireless system derived from the
“Cerebro” system ( https://karpova-lab.github.io/cerebro ; Ext. Data Fig. 5c,d)42,43.

Analysis of behavior

Data was extracted from all behavioral sessions in which rats’ fraction of correct responses was equal or above
70%, feature selection index (see below) was equal or above 0.7, and in which rats performed at least 100
trials. Analysis of behavior was performed for all rats with electrophysiology or optogenetics implants, as well
as for all other rats that performed at least 120,000 valid trials, i.e. where the rat maintained fixation for the full
duration of the pulse train before making a decision. Psychometric curves (Fig. 1c; Extended Data Figure 3)
were used to display the fraction of rightward choices as a function of the difference between the total number
of right pulses and left pulses (location evidence strength), and as a function of the difference between the total
number of high pulses and low pulses (frequency evidence strength). These curves were fit to a 4-parameter
logistic function5:

(3)𝑦(𝑥) = 𝑦
0

+ 𝑎

1+𝑒𝑥𝑝
−(𝑥−𝑥

0
)

𝑏( )
To quantify whether a rat selected the contextually relevant evidence to form his decisions on a given session,
we computed a “feature selection index”. For this purpose, we performed a logistic regression for each of the
two contexts, where the rat’s choices were fit as a function of the strength of location and frequency evidence.
For each context, we considered all valid trials, and we compiled the rat’s choices, as well as the strength of
location and frequency evidence. The vector of choices was parameterized as a binary vector (Right = 1; Left =
0), the strength of location evidence was computed as the natural logarithm of the ratio between the rate of
right and the rate of left pulses, while the strength of frequency evidence was computed as the natural
logarithm of the ratio between the rate of high-frequency and the rate of low-frequency pulses. In the location
context, we fit the probability of choosing right on trial k using the logistic regression:

(4)𝑙𝑜𝑔𝑖𝑡 𝑃(𝑟𝑖𝑔ℎ𝑡)
𝑘( ) = 𝑠

𝐿𝑂𝐶 𝐸𝑉𝐷, 𝑘
𝐿𝑂𝐶 𝐶𝑇𝑋 · 𝑤

𝐿𝑂𝐶 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋 + 𝑠

𝐹𝑅𝑄 𝐸𝑉𝐷, 𝑘
𝐿𝑂𝐶 𝐶𝑇𝑋 · 𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋 + β𝐿𝑂𝐶 𝐶𝑇𝑋

where indicates the strength of location evidence on trial k, indicates the strength of𝑠
𝐿𝑂𝐶 𝐸𝑉𝐷, 𝑘
𝐿𝑂𝐶 𝐶𝑇𝑋 𝑠

𝐹𝑅𝑄 𝐸𝑉𝐷, 𝑘
𝐿𝑂𝐶 𝐶𝑇𝑋

frequency evidence on trial k, is the weight of location evidence on the rat’s choices, is the𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋 𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋
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weight of frequency evidence on the rat’s choices, and is a bias term. The relative weight of locationβ𝐿𝑂𝐶 𝐶𝑇𝑋

evidence in the location context was computed as:

relative weight location = (5)
𝑤

𝐿𝑂𝐶 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋

𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋+𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋

Similarly, in the frequency context we fit the rat’s choices as:

(6)𝑙𝑜𝑔𝑖𝑡 𝑃(𝑟𝑖𝑔ℎ𝑡)
𝑘( ) = 𝑠

𝐿𝑂𝐶 𝐸𝑉𝐷, 𝑘
𝐹𝑅𝑄 𝐶𝑇𝑋 · 𝑤

𝐿𝑂𝐶 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋 + 𝑠

𝐹𝑅𝑄 𝐸𝑉𝐷, 𝑘
𝐹𝑅𝑄 𝐶𝑇𝑋 · 𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋 + β𝐹𝑅𝑄 𝐶𝑇𝑋

where indicates the strength of location evidence on trial k, indicates the strength of𝑠
𝐿𝑂𝐶 𝐸𝑉𝐷, 𝑘
𝐹𝑅𝑄 𝐶𝑇𝑋 𝑠

𝐹𝑅𝑄 𝐸𝑉𝐷, 𝑘
𝐹𝑅𝑄 𝐶𝑇𝑋

frequency evidence on trial k, is the weight of location evidence on the rat’s choices, is the𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋 𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋

weight of frequency evidence on the rat’s choices, and is a bias term. The relative weight of frequencyβ𝐹𝑅𝑄 𝐶𝑇𝑋

evidence in the frequency context was computed as:

relative weight frequency = (7)
𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋

𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋+𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋

Finally, the feature selection index was then computed as the average between the relative weight of location
in the location context (Eq. 5), and the relative weight of frequency in the frequency context (Eq. 7):

feature selection index = (8)1
2 ·

𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋

𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋+𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐿𝑂𝐶 𝐶𝑇𝑋 +

𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋

𝑤
𝐿𝑂𝐶 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋+𝑤

𝐹𝑅𝑄 𝐸𝑉𝐷
𝐹𝑅𝑄 𝐶𝑇𝑋

The feature selection index was used to precisely quantify the rats’ learning during training, as this metric
allows to compare data across stages with different evidence strength (Extended Data Fig. 2). In addition, the
relative weight of location and frequency were computed for each rat as a function of the position of a trial
within the block (e.g. immediately after a block switch, one trial after a block switch etc.), providing a measure
of the rats’ ability to rapidly switch attended feature upon context switching (Extended Data Fig. 1e).

Behavioral logistic regression

To quantify the dynamics of evidence accumulation, behavioral data was analyzed using another logistic
regression. Importantly, in Eq. 5 and 7 we quantified the rat’s weighting of evidence using a single number,
because we considered the generative rates, i.e. the expected strength of location and frequency evidence on
a given trial. Now, we seek instead to quantify how these weights vary throughout stimulus presentation, by
taking advantage of the knowledge of the exact pulse timing. For each rat, data across all sessions was
compiled into a single vector of choices (Right vs Left), and two matrices detailing the pulse information
presented on every trial. More specifically, the choice vector was parameterized as a binary vector (Right = 1;
Left = 0), with dimensionality N, where N is the total number of valid trials. Pulse information was split into
location evidence and frequency evidence, and was binned into 26 bins with 50 ms width. For a given bin, the
amount of location evidence was computed as the natural logarithm of the ratio between the number of right

and the number of left pulses, and was compiled in a location pulse matrix with dimensionality N x 26.𝑋𝐿 
Similarly, frequency evidence was computed as the logarithm of the ration between high-frequency and

low-frequency pulses, and was compiled into a frequency pulse matrix with dimensionality N x 26. To𝑋𝐹 
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quantify the impact on choices of evidence presented at different time points we fit a logistic regression, where
the probability of choosing right at trial k was given by:

(9)𝑙𝑜𝑔𝑖𝑡 𝑃(𝑟𝑖𝑔ℎ𝑡)
𝑘( ) =

𝑡=1

26

∑ 𝑋
𝑘,𝑡
𝐿 · 𝑤

𝑡
𝐿 + 𝑋

𝑘,𝑡
𝐹 · 𝑤

𝑡
𝐹 + β

where indicates the location evidence at time t on trial k, indicates the frequency evidence at time t on𝑋
𝑘,𝑡
𝐿 𝑋

𝑘,𝑡
𝐹

trial k, indicates the location weight at time t, indicates the frequency weight at time t, and indicates the𝑤
𝑡
𝐿 𝑤

𝑡
𝐹 β

bias to one particular side. Weights were fit using ridge regression, and the ridge regularizer was chosen to
optimally predict cross-validated choices. The regression was applied separately for trials in the location
context, and trials in the frequency context, resulting in four sets of weights computed for each rat (Fig. 1d).

To study how evidence was differentially integrated across the two contexts, we then computed a
differential behavioral kernel. The location differential kernel was equal to the difference between the location
weights computed in the location context, and the location weights computed in the frequency context.
Similarly, the frequency differential kernel was equal to the difference between the frequency weights
computed across the two contexts (Fig. 1e).

To quantify the shape of the differential behavioral kernels, we computed a behavioral parallel index. This
was defined as the ratio between the minimum difference between the weights across the two contexts, over
the maximum difference, computed across all time points. As a result, a parallel index = 1 indicates that the
difference between the two sets of weights is constant at all time points (i.e. the maximum difference is equal to
the minimum difference), while a parallel index = 0 indicates that the two sets of weights fully converge for
some time point. Note that the parallel index does not specify the direction of convergence, although
empirically we found that differential behavioral kernels only displayed convergence towards the end of the
pulse stimulus presentation (Fig. 1f, Extended Data Fig. 3).

Analysis of neural data

Spike sorting was performed using MountainSort44, followed by manual curation of the results. 3280 putative
single units were recorded from 5 rats in FOF, while 252 units were recorded from 2 rats in mPFC. To measure
the responses of individual neurons, peri-stimulus time histograms (PSTH) were computed by binning spikes in
20 ms intervals, and averaging responses for trials according to choice and context. Responses of single
neurons in both areas were highly heterogeneous and multiplexed multiple types of information (Extended
Data Fig. 6), and no systematic difference was found in the encoding of task variables across the two regions
(see e.g. Extended Data Fig. 7), so all studies of neural activity were carried out at the level of neural
populations, and pooling data from FOF and from mPFC.

Trial-based targeted dimensionality reduction (TDR) analysis of neural population dynamics

To study trial-averaged population dynamics, we applied model-based targeted dimensionality reduction
(mTDR)16, a dimensionality-reduction method which seeks to identify the dimensions of population activity that
carry information about different task variables. This method was applied to our rat dataset, and to reanalyze a
dataset collected while macaque monkeys performed a similar visual task (Extended Data Fig. 1)2. In brief, the
goal of mTDR is to identify the parameters of a model where the activity of each neuron is described as a
linear combination of different task variables (choice, time, context, stimulus strength). For each of these task
variables, the model retrieves a weight vector specifying how that variable influences neural activity at each
time, and the collection of these weight vectors across all neurons are constrained to form a low-rank matrix.
Singular Value Decomposition of this low-rank weight matrix is then used to identify basis vectors that
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maximally encode each of the task variables. Using this method, we identified one axis maximally encoding
information about the upcoming choice of the animal (“choice axis”), one axis maximally encoding information
about the momentary strength of the first stimulus feature (location for rat data, motion for monkey data), and
one axis maximally encoding information about the momentary strength of the second stimulus feature
(frequency for rat data, color for monkey data). To study how neural dynamics evolved in this reduced space,
we first averaged the activity of each neuron across all correct trials according to the strength of location
evidence, strength of frequency evidence, context, and choice. For this analysis, spike counts were computed
in 50 ms non-overlapping bins with centers starting at the beginning of the pulse train presentation and ending
50 ms after the end of the pulse train presentation. For any given trial condition, a “pseudo-population” (i.e.
including non-simultaneously recorded neurons) was computed for each time point by compiling the responses
of all neurons into a single vector. The trajectory of this vector over time was then projected on the retrieved
task-relevant axes to evaluate population dynamics (Fig. 2).

Pulse-based TDR analysis of neural population dynamics

To estimate the impact of evidence pulses and other task variables on neural responses, we fit the activity of
each recorded unit using a pulse-based linear regression (Fig. 4a). The critical difference between our previous
trial-based application of TDR and the current pulse-based analysis is that in the trial-based analysis, neural
responses are described as a function of a single number, the expected strength of location and frequency
evidence over the entirety of a trial, and the analysis ignores the precise timing of pulses. In contrast, the
pulse-based analysis leverages knowledge of the precise timing of evidence presentation, a feature made
possible by the pulse-based nature of our task. For each neuron, spike counts were computed in 20-ms
non-overlapping bins with centers starting 1 second before the beginning of the pulse train presentation, and
ending 700 ms after the end of the stimulus presentation. The activity of neuron i at time t on trial k was
described as:

𝑟
𝑖,𝑡

(𝑘) = β
𝑐ℎ𝑜𝑖𝑐𝑒; 𝑖,𝑡

· 𝑐ℎ𝑜𝑖𝑐𝑒 (𝑘) + β
𝑐𝑜𝑛𝑡𝑒𝑥𝑡; 𝑖,𝑡

· 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑘) + β
𝑡𝑖𝑚𝑒; 𝑖,𝑡

+ β
𝐿𝑂𝐶,𝐿𝑂𝐶; 𝑖

* 𝑝𝑢𝑙𝑠𝑒𝑠
𝐿𝑂𝐶,𝐿𝑂𝐶

(𝑘) +

(10)+ β
𝐿𝑂𝐶,𝐹𝑅𝑄; 𝑖

* 𝑝𝑢𝑙𝑠𝑒𝑠
𝐿𝑂𝐶,𝐹𝑅𝑄

(𝑘) + β
𝐹𝑅𝑄,𝐿𝑂𝐶; 𝑖

* 𝑝𝑢𝑙𝑠𝑒𝑠
𝐹𝑅𝑄,𝐿𝑂𝐶

(𝑘) + β
𝐹𝑅𝑄,𝐹𝑅𝑄; 𝑖

* 𝑝𝑢𝑙𝑠𝑒𝑠
𝐹𝑅𝑄,𝐹𝑅𝑄

(𝑘)

where indicate the rat’s choice on trial k (Right = 1, Left = 0), indicate the context on trial k𝑥
𝑐ℎ𝑜𝑖𝑐𝑒

(𝑘) 𝑥
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

(𝑘)

(Location = 1, Frequency = 0), indicates the signed location evidence (number of right pulses𝑝𝑢𝑙𝑠𝑒𝑠
𝐿𝑂𝐶,𝐿𝑂𝐶

(𝑘)

minus number of left pulses) presented at each time bin on trial k in the location context, 𝑝𝑢𝑙𝑠𝑒𝑠
𝐿𝑂𝐶,𝐹𝑅𝑄

(𝑘)

indicates location evidence in the frequency context, indicates frequency evidence (number of𝑝𝑢𝑙𝑠𝑒𝑠
𝐹𝑅𝑄,𝐿𝑂𝐶

(𝑘)

high pulses minus number of low pulses) in the location context, and indicates frequency𝑝𝑢𝑙𝑠𝑒𝑠
𝐹𝑅𝑄,𝐹𝑅𝑄

(𝑘)

evidence in the frequency context. The first three regression coefficients , and accountβ
𝑐ℎ𝑜𝑖𝑐𝑒; 𝑖

β
𝑐𝑜𝑛𝑡𝑒𝑥𝑡; 𝑖

β
𝑡𝑖𝑚𝑒; 𝑖

for modulations of neuron i across time according to choice, context and time. The other four sets of regression
coefficients , , and indicate the impact of a pulse on the subsequentβ

𝐿𝑂𝐶,𝐿𝑂𝐶; 𝑖
β

𝐿𝑂𝐶,𝐹𝑅𝑄; 𝑖
β

𝐹𝑅𝑄, 𝐿𝑂𝐶; 𝑖
β

𝐹𝑅𝑄,𝐹𝑅𝑄; 𝑖

neural activity, and the symbol * indicates a convolution of each kernel with the pulse train; for example, in the
case of location evidence in the location context:

= (11)β
𝐿𝑂𝐶,𝐿𝑂𝐶; 𝑖

* 𝑝𝑢𝑙𝑠𝑒𝑠
𝐿𝑂𝐶,𝐿𝑂𝐶

(𝑘) ∑ β
𝐿𝑂𝐶,𝐿𝑂𝐶; 𝑖,τ

· 𝑝𝑢𝑙𝑠𝑒𝑠
𝐿𝑂𝐶,𝐿𝑂𝐶 

(𝑘;  𝑡 − τ)
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meaning that the element at position of kernel represents the impact of a pulse of location evidenceτ β
𝐿𝑂𝐶,𝐿𝑂𝐶; 𝑖

in the location context on the activity of unit i after a time . The three kernels for choice, context and timeτ
describe modulations from 1 second before stimulus start to 0.7s after stimulus end in 20-ms non-overlapping
bins, resulting in 151-dimensional vectors. The four pulse kernels describe modulations from the time of pulse
presentation to 0.65s after pulse presentation resulting in 33-dimensional vectors. To avoid overfitting, this
regression was regularized using a ridge regularizer, as well as an L2 smoothing prior45.
Pulse kernels were regarded as an approximation of the neural response to each pulse type (an assumption
confirmed by analysis of recurrent neural networks, Ext. Data Fig. 9c,d), and pulse-evoked population
responses were computed by compiling pulse kernels across all N neurons recorded from the same rat (Fig.
4b). We then studied the evolution of the projection of this N-dimensional pulse-evoked population response𝑝

𝑡

onto a single “choice axis”. To compute the choice axis, we evaluated the dynamics of choice-related activity
across all neurons (Ext. Data Fig. 7), and we computed the first principal component of the matrix obtained by
compiling the choice kernels across all neurons, limited to a time window during the presentation of the pulse
train stimulus (0 to 1.3s after stimulus start).

To study the differential evolution of pulse-evoked population responses across the two contexts, we
computed a “differential pulse response”. For location evidence, the differential pulse response was defined as
the difference between the projection onto the choice axis of the response to location pulses in the location
context, and the response to location pulses in the frequency context. For frequency evidence, the differential
pulse response was computed as the difference between the projection onto the choice axis of the frequency
pulse response in the frequency context, minus the frequency pulse response in the location context (Fig. 4c).

To quantify the shape of differential pulse responses, we computed a neural parallel index. This was
defined as the ratio between the minimum difference between the pulse responses across the two contexts,
over the maximum difference, computed across all time points. As a result, a parallel index = 1 indicates that
the difference between the two pulse responses is constant at all time points (i.e. the maximum difference is
equal to the minimum difference), while a parallel index = 0 indicates that the two pulse responses fully
converge for some time point. Note that the parallel index does not specify the direction of convergence,
although empirically we found that differential pulse responses only displayed a shape that diverged over time,
i.e. further amplifying the effect of relevant over irrelevant evidence onto the choice axis (Fig. 4e, Extended
Data Fig. 10).

Recurrent neural networks (RNNs)

To validate our analyses of behavior and neural dynamics, and to gather a deeper understanding of the
mathematical mechanisms that could underlie our rats’ context-dependent behavior, we trained Recurrent
Neural Networks (RNNs) to perform a pulse-based context-dependent evidence accumulation task analogous
to that performed by the rats.

The activity of the N=100 hidden units of each network (Ext. Data Fig. 8a) was defined by the equations:

(12)τ · 𝑑𝑥/𝑑𝑡 =  − 𝑥 + 𝑤
𝑅

· 𝑟 + 𝑤
𝑢
𝐿𝑂𝐶 · 𝑢𝐿𝑂𝐶 + 𝑤

𝑢
𝐹𝑅𝑄 · 𝑢𝐹𝑅𝑄 + 𝑤

𝐶
· 𝑐 + 𝑘

(13)𝑟 =  𝑡𝑎𝑛ℎ (𝑥)

where x(t) is a N-dimensional vector indicating the activation of each unit in the network, which are passed
through a tanh nonlinearity to obtain the activity vector r(t); indicates the N x N matrix of recurrent weights;𝑤

𝑅

is the location input vector indicating at each time point the amount of location evidence (right minus left𝑢𝐿𝑂𝐶
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pulses), is the frequency input vector indicating at each time point the amount of frequency evidence (high𝑢𝐹𝑅𝑄

minus low pulses), indicates the 1 x N matrix of weights applied to the location input, indicates the 1𝑤
𝑢
𝐿𝑂𝐶 𝑤

𝑢
𝐹𝑅𝑄

x N matrix of weights applied to the frequency input, is a 2-dimensional vector with a one-hot encoding of the𝑐
current context, indicates the 2 x N matrix of weights applied to the context, and k is a scalar indicating a𝑤

𝐶

bias term. In the location context, the first element of c is 1, and the second element is 0; in the frequency
context, the first element of c is 0, and the second element is 1. The output of the network was determined by a
single output unit performing a linear readout of the activity of the hidden units:

(14)𝑧 =  𝑤
𝑂

· 𝑟 + 𝑘
𝑂

where indicates the N x 1 vector of weights assigned to each hidden unit, and is a scalar representing𝑤
𝑂

𝑘
𝑂

the output bias. The choice of the network on a given trial was determined by the sign of z at the last time point
(T = 1.3s). During training and analysis, evolution of the network was computed in 10 ms time bins. During
training, the time constant was set to 10ms, but in subsequent analyses this value was varied to replicate theτ
autocorrelation observed in neural data to = 100ms.τ

Training of RNNs using backpropagation

Recurrent neural networks were trained using back-propagation-through-time with the Adam optimizer and
implemented in the Python JAX framework. The weights of the network were initialized using a standard
normal distribution, modified according to the number of inputs to a unit, and then rescaled. If is drawn from aη
standard normal distribution , input weights were chosen as ; recurrent weights were chosenη ~ 𝑁(0, 1) η · 1

𝑈

as ; output weights were chosen as ; where U indicates the number of inputs (U=4), and Nη · 0.8
𝑁

η · 1
𝑁

indicates the number of hidden units (N=100). All the biases of the network were initialized at 0. The initial
conditions were also learned, and were also initialized randomly from a standard normal distribution, with each
element of the initial condition initialized as . The Adam parameters for training were: b1=0.9;0. 1 · η
b2=0.999; epsilon=0.1 . The learning rate followed an exponential decay with initial step size = 0.002, and
decay factor = 0.99998. Training occurred over 120,000 batches with a batch size of 256 trials. Using this
procedure, we trained 1000 distinct RNNs to solve the task using different random initializations on each run
(Fig. 3h). All networks learned to perform the task with high accuracy (see e.g. Ext. Data Fig. 8e).
All the code for training, analysis, and engineering of RNNs will be made available before the time of
publication at: https://github.com/Brody-Lab/flexible_decision_making_rnn.

Analysis of RNN mechanisms

To analyze the mechanism implemented by each RNN to perform context-dependent evidence accumulation,
we first identified the fixed points of each trained network using a previously described optimization
procedure2,46.
While the network dynamics are in general described by a nonlinear function F (equations 12, 13), around fixed
points these dynamics can be approximated as a linear system:

(15)𝑑𝑟/𝑑𝑡 =  𝐹 (𝑟, 𝑢𝐿𝑂𝐶 , 𝑢𝐹𝑅𝑄 ) ≈ 𝝏𝐹
𝝏𝑟 · 𝑟 + 𝝏𝐹

𝝏𝑢𝐿𝑂𝐶 · 𝑢𝐿𝑂𝐶 + 𝝏𝐹

𝝏𝑢𝐹𝑅𝑄 · 𝑢𝐹𝑅𝑄  =  𝑀 · 𝑟 + 𝑖𝐿𝑂𝐶 · 𝑢𝐿𝑂𝐶 + 𝑖𝐹𝑅𝑄 · 𝑢𝐹𝑅𝑄
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The jacobian matrix M indicates the state-transition matrix of the linear dynamical system, capturing the partial
derivative of each unit’s activity with respect to change to any other unit’s activity. The “effective input” i is
defined as the partial derivative of each unit’s activity with respect to changes to the input, and it can be

computed independently for pulses of location evidence ( ), or for pulses of frequency evidence ( ).𝑖𝐿𝑂𝐶 𝑖𝐹𝑅𝑄

In our analysis for simplicity we will only focus on the effect of pulses of location evidence (the same
considerations hold for frequency evidence), so we will drop the superscript and simply write “i “ to indicate the
“effective input” for pulses of location evidence. We will instead use a subscript to indicate whether this
effective input for location evidence is computed in the location context ( ) or in the frequency context ( ).𝑖

𝐿𝑂𝐶
𝑖

𝐹𝑅𝑄

Likewise, we will drop the superscript from the input weights and simply use to indicate the input weights for𝑤
𝑢

location evidence.
For each trained RNN, we focused on the analysis of the linearized dynamics corresponding to the fixed point
with the smallest absolute network output (i.e. where the network is closest to the decision boundary), but
results were similar when considering different fixed points (i.e. linearized dynamics were mostly similar across
different fixed points). Similar to previous reports, we found that in every network fixed points were roughly
aligned to form a “line attractor” for each of the two contexts, and that eigendecomposition of the jacobian
matrix M reveals a single eigenvalue close to 0, and all other eigenvalues negative, reflecting the existence of
a single stable direction of evidence accumulation (i.e. the line attractor) surrounded by stable dynamics.
The right eigenvector associated with the eigenvalue closest to 0 defined the direction of the line attractor ,ρ
while the corresponding left eigenvector defined the direction of the selection vector s. For each network, we
computed these quantities separately for the two contexts, i.e. by setting the contextual input c as (1,0) for the
location context, or as (0,1) for the frequency context before computing the fixed points and the
eigendecomposition. As a result, for each network we computed the line attractor in each of the two contexts,
which we name and , the selection vector in each of the two contexts ( and ), and theρ

𝐿𝑂𝐶
ρ

𝐹𝑅𝑄
𝑠

𝐿𝑂𝐶
𝑠

𝐹𝑅𝑄

effective input in each of the two contexts ( and ). Using these quantities, we directly computed the𝑖
𝐿𝑂𝐶

𝑖
𝐹𝑅𝑄

terms in equation 2 to quantify how much each of the three components contributed to differential pulse
accumulation, and we plotted the results for 1000 RNNs in barycentric coordinates (Fig. 3h).

Engineering of RNNs to implement arbitrary combinations of components

To engineer recurrent neural networks that would implement arbitrary combinations of components, we started
from the RNN solutions obtained from standard training using backpropagation-through-time. For a given
trained network, we first computed the fixed points of the network and the linearized network dynamics, and we
identified the line attractor, selection vector and effective input across the two contexts (see above).
Because the RNN dynamics are known (Equations 12 and 13), the linearized dynamics can be expressed in
closed form as a function of the network weights:

(16)𝑀𝑗 = 𝝏𝐹
𝝏𝑟

𝑗
= 𝑤

𝑅
𝑗 ⊙  𝑡𝑎𝑛ℎ' ( 𝑤

𝑅
·  𝑟

𝑓𝑖𝑥𝑒𝑑
 + 𝑤

𝐶
·  𝑐 + 𝑘) 

(17) 𝑖 = 𝝏𝐹
𝝏𝑢 = 𝑤

𝑢
⊙  𝑡𝑎𝑛ℎ' ( 𝑤

𝑅
·  𝑟

𝑓𝑖𝑥𝑒𝑑
  + 𝑤

𝐶
·  𝑐 + 𝑘) 

where indicates the j-th column of the jacobian matrix, indicates the j-th column of the matrix of recurrent𝑀𝑗 𝑤
𝑅
𝑗

weights, indicates the network activity at the fixed point, indicates the first derivative of the 𝑟
𝑓𝑖𝑥𝑒𝑑

𝑡𝑎𝑛ℎ'

hyperbolic tangent nonlinearity, and indicates the Hadamard product or element-wise multiplication, where⊙
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the elements of two vectors are multiplied element-by-element to produce a vector of the same size. We further
define the “saturation factor” for each of the two contexts as:

(18) 𝑠𝑎𝑡
𝐿𝑂𝐶

= 𝑡𝑎𝑛ℎ' ( 𝑤
𝑅

·  𝑟
𝑓𝑖𝑥𝑒𝑑, 𝐿𝑂𝐶

 + 𝑤
𝐶

· 𝑐
𝐿𝑂𝐶

+ 𝑘)

(19) 𝑠𝑎𝑡
𝐹𝑅𝑄

= 𝑡𝑎𝑛ℎ' ( 𝑤
𝑅

·  𝑟
𝑓𝑖𝑥𝑒𝑑, 𝐹𝑅𝑄

 + 𝑤
𝐶

·  𝑐
𝐹𝑅𝑄

+ 𝑘)

where indicates the fixed point with the smallest absolute network output in the location context, 𝑟
𝑓𝑖𝑥𝑒𝑑, 𝐿𝑂𝐶

indicates the fixed point with the smallest absolute network output in the frequency context, 𝑟
𝑓𝑖𝑥𝑒𝑑, 𝐹𝑅𝑄

𝑐
𝐿𝑂𝐶

indicates the context input in the location context (1,0), and indicates the context input in the frequency𝑐
𝐹𝑅𝑄

context (0,1). The effective input for the two contexts can therefore be computed as:

; (20) 𝑖
𝐿𝑂𝐶

= 𝑤
𝑢

⊙ 𝑠𝑎𝑡
𝐿𝑂𝐶

 𝑖
𝐹𝑅𝑄

= 𝑤
𝑢

⊙ 𝑠𝑎𝑡
𝐹𝑅𝑄

The three components of context-dependent differential integration defined in Equation 2 can therefore be
rewritten as a function of the input weights .𝑤

𝑢

Selection vector modulation, which is equal to the dot product between the difference in the selection vector
and the average effective input, can be rewritten as:

(21)∆𝑠 · 𝑖 = ∆𝑠 · 𝑖
𝐿𝑂𝐶

+ 𝑖
𝐹𝑅𝑄( )/2 = ∆𝑠 · 𝑤

𝑢
⊙ 𝑠𝑎𝑡

𝐿𝑂𝐶
+ 𝑠𝑎𝑡

𝐹𝑅𝑄( )/2 = ∆𝑠 · 𝑤
𝑢

⊙ 𝑠𝑎𝑡 = 𝑤
𝑢

· ∆𝑠 ⊙ 𝑠𝑎𝑡( )  

where indicates the average saturation factor across contexts, and the last step took advantage of the𝑠𝑎𝑡
associative property of the Hadamard and dot product.
Direct input modulation, which is equal to the dot product between the difference in the effective input and the
line attractor, can be rewritten as:

(22)∆𝑖 · ρ = 𝑖
𝐿𝑂𝐶

− 𝑖
𝐹𝑅𝑄( ) · ρ = 𝑤

𝑢
⊙ 𝑠𝑎𝑡

𝐿𝑂𝐶
− 𝑠𝑎𝑡

𝐹𝑅𝑄( ) · ρ = 𝑤
𝑢

⊙ ∆𝑠𝑎𝑡 · ρ = 𝑤
𝑢

· ∆𝑠𝑎𝑡 ⊙ ρ( )  

where indicates the difference between the saturation factor across the two contexts.∆𝑠𝑎𝑡
Indirect input modulation, which is equal to the dot product between the difference in the effective input and the
average selection vector orthogonal to the line attractor , can be rewritten as:𝑠

⊥

(23)∆𝑖 · 𝑠
⊥

= 𝑖
𝐿𝑂𝐶

− 𝑖
𝐹𝑅𝑄( ) · 𝑠

⊥
= 𝑤

𝑢
⊙ 𝑠𝑎𝑡

𝐿𝑂𝐶
− 𝑠𝑎𝑡

𝐹𝑅𝑄( ) · 𝑠
⊥

= 𝑤
𝑢

⊙ ∆𝑠𝑎𝑡 · 𝑠
⊥

 = 𝑤
𝑢

· ∆𝑠𝑎𝑡 ⊙ 𝑠
⊥( )  

Knowledge of equations 21, 22 and 23 allow us to identify input vectors that produce network dynamics relying
on any arbitrary combinations of the three components. For example, producing a network using exclusively
selection vector modulation requires the first component (Eq. 21) to be large , while the second (Eq. 22) and
third (Eq. 23) components must be 0. In other words, the input weights must satisfy:𝑤

𝑢

> 0      ; = 0     ; = 0 (24)𝑤
𝑢

· ∆𝑠 ⊙ 𝑠𝑎𝑡( ) 𝑤
𝑢

· ∆𝑠𝑎𝑡 ⊙ ρ( ) 𝑤
𝑢

· ∆𝑠𝑎𝑡 ⊙ 𝑠
⊥( )
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In addition, we must also require that the network does not accumulate the pulse in the irrelevant context.
Because we are conducting this analysis for pulses of location evidence, this means that the dot product
between the effective input and the selection vector in the frequency context should be 0 :

= 0 = 0 (25)𝑖
𝐹𝑅𝑄

· 𝑠
𝐹𝑅𝑄

⇒ 𝑖
𝐹𝑅𝑄

· 𝑠
𝐹𝑅𝑄

= 𝑤
𝑈

⊙ 𝑠𝑎𝑡
𝐹𝑅𝑄

· 𝑠
𝐹𝑅𝑄

= 𝑤
𝑈

· 𝑠𝑎𝑡
𝐹𝑅𝑄

⊙ 𝑠
𝐹𝑅𝑄( )

Finally, we then use the Gram-Schmidt process to find the set of weight maximally aligned to the vector𝑤
𝑢

, and orthogonal to vectors , and . Similar considerations can be∆𝑠 ⊙ 𝑠𝑎𝑡 ∆𝑠𝑎𝑡 ⊙ ρ ∆𝑠𝑎𝑡 ⊙ 𝑠
⊥

𝑠𝑎𝑡
𝐹𝑅𝑄

⊙ 𝑠
𝐹𝑅𝑄

applied to produce networks using different mechanisms. For example, to engineer a network that uses only
direct input modulation the input weight must be maximally aligned to and orthogonal to ,∆𝑠𝑎𝑡 ⊙ ρ ∆𝑠 ⊙ 𝑠𝑎𝑡 

and . Engineering networks implementing combinations of mechanisms can be∆𝑠𝑎𝑡 ⊙ 𝑠
⊥

𝑠𝑎𝑡
𝐹𝑅𝑄

⊙ 𝑠
𝐹𝑅𝑄

obtained by choosing the input vector as a linear combination between extreme network solutions. Finally, we
emphasize that the mechanism chosen for one stimulus feature (e.g. location) is entirely independent from the
mechanism chosen for the other stimulus feature (e.g. frequency).

Statistical methods

Comparison of the strength of the encoding of relevant vs irrelevant information (Fig. 2c,d) was performed by
quantifying the variability across responses to different stimulus strengths, normalized by trial-by-trial variability,
limiting the analysis to the subspace orthogonal to choice encoding. Error bars for neural and behavioral
kernels were computed using bootstrapping47.
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