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Abstract

Comparing and searching protein structures independent of primary sequence has
proved useful for remote homology detection, function annotation and protein
classification. With the recent leap in accuracy of protein structure prediction
methods and increased availability of protein models, attention is turning to how
to best make use of this data. Fast and accurate methods to search databases of
millions of structures will be essential to this endeavour, in the same way that
fast protein sequence searching underpins much of bioinformatics. We train a
simple graph neural network using supervised contrastive learning to learn a low-
dimensional embedding of protein structure. The embedding can be used to search
structures against large structural databases with accuracy comparable to current
methods. The speed of the method and ability to scale to millions of structures
makes it suitable for this structure-rich era. The method, called Progres, is available
at https://github.com/jgreener64/progres.

Introduction

A variety of methods have been developed to compare, align and search with protein structures [1]
including comparing residue-residue distances [2, 3], considering local geometry [4], coordinate
alignment [5] and 3D Zernike descriptors [6, 7]. Since protein structure is more conserved than
sequence [8] these methods have proved useful in remote homology detection, protein classification
[9], inferring function from structure [10] and assessing the accuracy of structure predictions. The
highest accuracy methods tend to be careful comparisons based on coordinates like Dali [3], but
searching large structural databases [11, 12] such as the AlphaFold Protein Structure Database
[13, 14] or the ESM Metagenomic Atlas [15] with these methods is slow. Recently Foldseek [16]
has addressed this problem by converting primary sequence into a sequence of learned local tertiary
motifs. It then uses the rich history of fast sequence searching in bioinformatics to dramatically
reduce the pairwise comparison time of the query with each member of the database. It follows that
to further reduce search time, the pairwise comparison step should be made even faster.

Inspired by the impressive performance of simple graph neural networks (GNNs) using coordinate
information for a variety of molecular tasks [17], we decided to train a model to embed protein
structures into a low-dimensional representation. Two embeddings can be compared very quickly
by cosine similarity and a query can be compared to each member of a pre-embedded database in a
vectorised manner on CPU or GPU. It makes sense to use expertly-curated classifications of protein
structures when training such an embedding [18, 9, 19]; we use supervised contrastive learning [20]
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to allow the embedding to be learned in a manner that reflects such an understanding of protein
structure space and returns search results consistent with it.

Our method is similar to another approach that embeds protein structure [21], though our embedding
is based on coordinates rather than hydrogen bonds. Embedding protein folds has also been done
using residue-level features [22, 23], and GNNs acting on protein structure have been used for
function prediction [24]. Other studies have used unsupervised contrastive learning on protein
structures and show that the representations are useful for downstream prediction tasks including
protein structural similarity [25, 26]. However, their contrastive learning is based on sub-structures
in a protein rather than a protein classification. Another approach [27] adopts a similar strategy
but makes use of residue-residue distances and dihedral angles. Contrastive learning using protein
classifications has also improved language models for protein sequences, showing clustering that
better preserves protein structure space [28].

Methods

Training

Structures in the Astral 2.08 95% sequence identity set including discontinuous domains were used
for training [29]. We chose 400 domains randomly from the Astral 2.08 40% sequence identity set to
use as a test set (see below) and another 200 domains to use as a validation set to monitor training.
We removed domains with 30% or greater sequence identity to these 600 domains using MMseqs2
[30], and also removed domains with fewer than 20 or more than 500 residues. This left 30,549
domains in 4,862 families for training.

mmCIF files were downloaded and processed with Biopython [31]. Some processing was also carried
out with BioStructures.jl [32]. Cα atoms were extracted for the residues corresponding to the domain.
Each Cα atom is treated as a node with the following features: number of Cα atoms within 10 Å
divided by the largest such number in the protein, whether the Cα atom is at the N-terminus, whether
the Cα atom is at the C-terminus, and a 64-dimensional sinusoidal positional encoding for the residue
number in the domain [33].

PyTorch was used for training [34]. The neural network architecture was similar to the E(n)-
equivariant GNN in Satorras et al. 2021 [17]. We used a PyTorch implementation (https://github.
com/lucidrains/egnn-pytorch) and a configuration similar to the molecular data prediction task,
i.e. not updating the particle position. In this case the model is E(3)-invariant and is analogous to
a standard GNN with relative squared norms inputted to the edge operation [17]. Edges are sparse
and are between Cα atoms within 10 Å of each other. 12 such layers with residual connections are
preceded by a one-layer multilayer perceptron (MLP) acting on node features and followed by a
two-layer MLP acting on node features. Node features are then sum-pooled and a two-layer MLP
generates the output embedding, which is normalised. Each hidden layer has 128 dimensions and uses
the Swish/SiLU activation function [35], apart from the edge MLP in the GNN which has a hidden
layer with 256 dimensions and 64-dimensional output. The final embedding has 128 dimensions.

Supervised contrastive learning [20] is used for training. Each epoch cycles over the 4,862 training
families. For each family, 5 other families are chosen randomly. For each of these 6 families, 6
domains from the family in the training set are chosen randomly. If there are fewer than 6 domains in
the family, duplicates are added to give 6. This set of 36 domains with 6 unique labels is embedded
with the model and the embeddings are used to calculate the supervised contrastive loss with a
temperature of 0.1 [20]. During training only, Gaussian noise with variance 1.0 Å is added to the
x, y and z coordinates of each Cα atom. Training was carried out with the Adam optimiser [36]
with learning rate 5× 10−5 and weight decay 1× 10−16. Each set of 36 domains was treated as one
batch. Training was stopped after 500 epochs and the epoch with the best family sensitivity on the
validation set was used as the final model. Training took around a week on one RTX A6000 GPU.

Testing

For testing a similar approach to Foldseek was adopted [16]. The 15,177 Astral 2.08 40% sequence
identity set domains were embedded with the model. 400 of these domains were chosen randomly
and held out of the training data as described previously. Like Foldseek, we only chose domains
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Table 1: Comparison of ability to retrieve homologous proteins from SCOPe. A similar procedure
is followed as for Foldseek [16] with a set of 400 domains. For each domain the fraction of TPs
detected up to the first incorrect fold is calculated (higher is better). TPs are same family in the case
of family-level recognition, same superfamily and not same family in the case of superfamily-level
recognition, and same fold and not same superfamily in the case of fold-level recognition. The mean
of this fraction over all 400 domains is reported. Run time (single) is the time taken to search a
structure of 150 residues (d1a6ja_ in PDB format) against all the 15,177 Astral 2.08 40% sequence
identity set domains, with the database pre-embedded in the case of Progres and ESM-2. Run time
(all-v-all) is the time taken to calculate all pairwise distances between the 15,177 domains from
structure, not from embedding in the case of Progres and ESM-2. ESM-2 and MMseqs2 use sequence
not structure for searching.

Software Family Superfamily Fold Run time (single) Run time (all-v-all)

Progres (this work) 0.878 0.680 0.144 1.49 s (CPU) 309 s (CPU), 205 s (GPU)
Dali [3] 0.885 0.709 0.168 508 s > 1 month
Foldseek [16] 0.821 0.578 0.070 2.11 s 154 s
TM-align fast [5] 0.806 0.594 0.100 390 s ∼23 days
ESM-2 [15] 0.477 0.221 0.014 28 s (GPU) 590 s (GPU)
MMseqs2 [30] 0.433 0.165 0.001 0.90 s 17.1 s

with at least one other family, superfamily and fold member. For each of these 400 domains, the
cosine embedding distance to each of the 15,177 domains was calculated and the domains ranked
by similarity. For each domain, we measured the fraction of true positives (TPs) detected up to
the first incorrect fold detected. TPs are same family in the case of family-level recognition, same
superfamily and not same family in the case of superfamily-level recognition, and same fold and
not same superfamily in the case of fold-level recognition. Progres, Dali, Foldseek, TM-align and
MMseqs2 were all run on an Intel i9-10980XE CPU and with 256 GB RAM. Progres was run with
PyTorch 1.11. Progres, Foldseek and MMseqs2 were run on 16 threads. For TM-align we used the
fast mode. ESM-2 embeddings used the esm2_t36_3B_UR50D model which has a 2560-dimensional
embedding. The mean of the per-residue representations was normalised and comparison between
sequences was carried out with cosine similarity. ESM-2 and Progres in GPU mode were run on a
RTX A6000 GPU.

Results

We trained a simple GNN, called Progres (PROtein GRaph Embedding Search), to embed a protein
structure independent of its sequence. Since we use distance features based on coordinates the
embedding is E(3)-invariant, i.e. it doesn’t change with translation, rotation or reflection of the input
structure. Supervised contrastive learning [20] on SCOPe domains [18, 37] is used to train the model,
moving domains closer or further apart in the embedding space depending on whether they are in
the same SCOPe family or not. Sinusoidal position encoding [33] is also used to allow the model to
effectively use information on the sequence separation of residues. The main intended use of such an
embedding is fast searching for similar structures by comparing the embedding of a query structure
to the pre-computed embeddings of a database of structures.

In order to assess the accuracy of the model for structure searching, we follow a similar procedure to
Foldseek [16]. Since our model is trained on SCOPe domains it is important not to use domains for
training that appear in the test set. We select a random set of 400 domains from the Astral 2.08 40%
sequence identity set for testing. No domains in the training set have a sequence identity of 30% or
more to these 400 domains. This represents the realistic use case that the query structure has not been
seen during training - for example it is a predicted or new experimental structure - but other domains
in the family have been seen during training. The easier case of searching with the exact domains
used for training gives superior results that are not reported here, and the harder case of searching
with completely unseen folds is discussed later.

As shown in Table 1 our model has sensitivity comparable to Dali [3], Foldseek and TM-align [5] for
recovering domains in SCOPe from the same family, superfamily and fold. It appears that for some
complex β and α/β folds Progres is able to perform better than Foldseek, and the higher sensitivity at
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the fold level suggests that it may be better at detecting remote homology. It is considerably more
sensitive than the ESM-2 protein language model embeddings [15], which here are used directly for
searching without downstream training, and the baseline sequence searching method of MMseqs2
[30]. This indicates the benefits of comparing structures rather than just sequences for detecting
homology. Our model does not give structural alignments but if these are required they can be
computed with tools like Dali after fast initial filtering with Progres.

For searching a single structure against SCOPe on CPU the model is marginally faster than Foldseek
with most run time in Python module loading. For example, going from 1 to 100 query structures
increases run time from 1.49 s to 3.13 s. When searching with multiple structures, most run time is
in generating the query structure embeddings. Consequently, the speed benefits of the method arise
when searching a structure or structures against the pre-computed embeddings of a huge database
such as the AlphaFold database [7, 23]. By artificially copying the SCOPe search set to 10 million or
100 million structures we find that our method takes 2.7 s or 15.7 s to search this set with a single
query on CPU. Such a search would take much longer with Foldseek. This is an indication that very
fast and accurate searching of large databases is possible.

Figure 1 shows a 2D t-SNE embedding [38] of the 128 dimensions of our model embedding for
SCOPe. This shows the lower-dimensional protein fold space [39–41] created by our embedding.
SCOPe classes tend to cluster together, with α+β folds appearing between the all α and all β folds
which show little overlap. Folds tend to cluster together and there is a clear protein size gradient
across the t-SNE embedding. The two orthogonal properties that vary across the t-SNE embedding
seem to be α to β (top right to bottom left in Figure 1) and small to large domain (top left to bottom
right).

Discussion

The model presented here is trained and validated on protein domains; due to the domain-specific
nature of the training it is not expected to work without modification on protein chains containing
multiple domains, long disordered regions or complexes. It is not immediately clear how the
contrastive training would transfer to the multi-domain case. For the model to be useful for searching
the AlphaFold database, the database structures would first have to be split into domains before the
embeddings are pre-computed. There has been progress on this front from CATH-Assign [43], which
gives around 370,000 models for the initial AlphaFold models for 21 model organisms and should
scale up to the larger recent batch of models. Splitting database structures into domains could also
be done at lower accuracy using automated splitting based on residue-residue contacts [44] and the
pLDDT or predicted aligned error of the AlphaFold models. The query should also be single domain,
though larger structures can be split manually. Searching with domains separately can overcome
issues that arise from searching with multiple domains at the same time, such as missing related
proteins due to differing orientations of the domains.

One issue with supervised learning on domains is whether performance drops when searching with
domains that the model has not seen anything similar to during training. We trained an identical model
on a different dataset where 200 domains were used for testing and domains were removed from the
training set if they were from the same SCOPe superfamily as any of the testing domains. The family,
superfamily and fold sensitivities analogous to Table 1 are 0.545, 0.390 and 0.183 respectively. This
indicates a drop in performance for retrieving domains from the same family and superfamily but
similar performance for retrieving domains from the same fold. When searching against SCOPe
with Progres this drop in performance is not relevant since no superfamilies have been excluded
from training. It could present an issue when searching for novel folds in large databases such as the
AlphaFold database or the ESM Metagenomic Atlas [15]. Training on the larger set of CATH-Assign
domains would go some way to addressing this.

Aside from searching for similar structures, an accurate protein structure embedding has a number of
uses. Fast protein comparison is useful for clustering large sets of structures, for example to identify
novel folds in the AlphaFold database [43], and Progres could be used to speed up such methods in
combination with purpose-built libraries for similarity searching such as Faiss [45]. The embedding
of a structure is just a set of numbers, and therefore can be targeted by differentiable approaches
for applications like protein design. A decoder could be trained to generate structures from the
embedding space [46, 47]. Properties of proteins such as evolution [48], topological classification
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Figure 1: 2D t-SNE embedding of the 128 dimensions of our model embedding for the Astral set
of SCOPe domains clustered at 40% sequence identity (15,177 domains). t-SNE was carried out
with scikit-learn [42] using a perplexity value of 30. (A) Coloured by SCOPe class. (B) Coloured
by SCOPe fold; there are 1,253 folds shown and colours are used multiple times. (C) Coloured by
number of residues in the domain. The median length of domains is 149 residues. For colouring, the
maximum number of residues in a domain is treated as 400.

[49], the completeness of protein fold space [50], the continuity of fold space [51], function [12] and
dynamics could also be explored in the context of the low-dimensional fold space.

There are drawbacks to the method presented here: only domains can be searched, no residue
alignment is returned, the model would ideally be retrained periodically to take new families into
account, and exact mirror images of proteins give the same embedding. However, we believe that
the extremely fast pairwise comparison allowed by structural embeddings is an effective way to take
advantage of the opportunities provided by the million structure era.

Availability

A Python package allowing structure searching (against SCOPe, CATH and ECOD) and genera-
tion of pre-embedded databases is available under a permissive license at https://github.com/
jgreener64/progres. Datasets and training scripts will be made available on publication.
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