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Abstract 16 

Determining the repertoire of a microbe’s molecular functions is a central question in 17 

microbial genomics. Modern techniques achieve this goal by comparing microbial genetic 18 

material against reference databases of functionally annotated genes/proteins or known 19 

taxonomic markers such as 16S rRNA. Here we describe a novel approach to exploring 20 

bacterial functional repertoires without reference databases. Our Fusion scheme establishes 21 

functional relationships between bacteria and thus assigns organisms to Fusion taxa that differ 22 

from otherwise defined taxonomic clades. Three key findings of our work stand out. First, 23 

Fusion profile comparisons outperform existing functional annotation schemes in recovering 24 

taxonomic labels. Second, Fusion-derived functional co-occurrence profiles reflect known 25 

metabolic pathways, suggesting a route for discovery of new ones. Finally, our alignment-free 26 

nucleic acid-based Siamese Neural Network model, trained using Fusion functions, enables 27 

finding shared functionality of very distant, possibly structurally different, microbial 28 

homologs. Our work can thus help annotate functional repertoires of bacterial organisms and 29 

further guide our understanding of microbial communities.  30 

 31 

 32 

Introduction 33 

Exploring the molecular functional capabilities of microbes is key to understanding 34 

their lifestyles and contributions to the biogeosphere cycles that run our world(1-6). Microbial 35 

communities are often analyzed by taxonomically categorizing their members, defining their 36 

functional capabilities, and using this knowledge as a proxy for the community’s overall 37 

functional abilities(7-10). The gold standard for taxonomic classification of newly sequenced 38 

organisms, and reclassification of existing ones, is DNA-DNA hybridization (DDH)(11, 12). 39 

DDH can be approximated using 16S rRNA similarity and bacterial morphology and 40 

physiology (13-15). More recent approaches analyze genome sequence properties such as 41 

average nucleotide identity and multilocus sequence similarity(16-20). These sequence-based 42 

methods promise to match DDH’s taxonomic precision while being simpler and cheaper. 43 

Notably, the above methods adopt a primarily phylogenetic view of bacterial 44 

relationships, assessing microorganisms’ likely evolutionary lineage based on genetic 45 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518265doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518265
http://creativecommons.org/licenses/by/4.0/


 

 

similarity. Horizontal gene transfer (HGT), i.e. the exchange of genetic material across 46 

taxonomic lineages, complicates this approach to bacterial classification(21-23). HGT is the 47 

primary way for evolutionarily distant organisms to acquire similar functional capabilities 48 

encoded by similar sequences(24-26). Conversely, evolutionarily close sequence-similar 49 

organisms can functionally diverge under environmental pressure. Given a shift towards 50 

analyzing the functional capabilities of microbes(8, 27-29), i.e. “What are they doing?” 51 

instead of “Who are they?”, one might ask the question “Are these bacteria functionally 52 

related?” as opposed to “Are they evolutionary cousins?” The former question can be 53 

answered well, if incompletely, by phenetic approaches based on, for example, differentiation 54 

of cell wall composition, guanine-cytosine content, and the presence of lipids amongst others 55 

(30, 31). We propose that genome-inferred bacterial functional annotations may further 56 

improve the resolution of these methods. 57 

We previously developed Fusion, a method for evaluating microbial similarities based 58 

on shared functionality encoded in their genomes(27, 32). This approach revealed 59 

relationships between organism groups that are overlooked when using taxonomic or DNA 60 

similarity alone. Here, in addition to updating our classification scheme for a faster and more 61 

precise way of dealing with a flood of microbial genomes, we made five key discoveries: (1) 62 

We established that Fusion outperformed other function definitions in reconstituting the 63 

current state-of-the-art bacterial taxonomies (33) (34). Furthermore, using only a few 64 

common Fusion functions was sufficiently descriptive of these taxonomic assignments. (2) 65 

We also found that functional similarity could complement 16S rRNA sequence identity in 66 

assigning taxonomic classification. (3) In light of these findings, we proposed that a 67 

functional similarity-based classification scheme for Prokaryotes may be more robust than 68 

evolution-based taxonomic classifications. (4) We further found that collections of Fusion 69 

functions co-occurring within organisms highlight known metabolic pathways. We note that, 70 

unlike existing techniques (35-38) our approach allows for discovery of novel pathways. (5) 71 

Finally, we trained a Siamese Neural Network (SNN)(39) model to label two gene sequences 72 

as encoding proteins of the same Fusion function. In contrast to function transfer via 73 

sequence-derived homology, we expect that this model will be useful for further 74 

generalization of function concepts. We also note that this approach could potentially be 75 

optimized to label functional profiles of microbial metagenomes directly from sequencing 76 

reads, i.e. without the need of assembly or metagenomic binning(40-43).  77 

 78 

Results & Discussion  79 

Sequenced bacterial proteomes are significantly redundant. We retrieved from 80 

GenBank (44, 45) (Methods) a set of 8,906 genomes/proteomes of bacterial organisms 81 

representing 3,005 species. This set comprised all fully sequenced bacterial genomes 82 

available at the time of extraction (2018). It is notably redundant with 65% (5,754) of the 83 

proteomes belonging to only 25% (753) of the species. An extreme case of this observation is 84 

the 360 proteomes of Bordetella pertussis, contributing 360 copies of almost every 85 

B.pertussis protein (~3,620 proteins per proteome) to our collection. Overall, nearly 60% 86 

(18.8 of 31.6 million) of proteins in our set were identical to others. Of the ~15.6M sequence-87 

unique proteins in our set (sequence-unique protein set, Methods), ~2.8M (~18%) were found 88 

in multiple proteomes, while ~12.8M (82%) were proteome-specific. 89 
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As expected, much of the sequence redundancy occurred between strains of the same 90 

species, emphasizing the difficulty of distinguishing organism classes. When the set of 91 

organisms was phylogenetically balanced (balanced organism set, Methods), much of the 92 

protein redundancy was removed. This collection contained ~4.75 million proteins, of which 93 

99% (~4.69M) were sequence- and organism- unique. We also note that these proteins still 94 

recapitulated nearly two thirds of the functions identified in the complete set of proteins 95 

(Methods). Most of the analyses presented here are based on the balanced organism set. 96 

Fusion reflects and augments known functionality. We computed functional 97 

pairwise similarities (edges; using HFSP (46), Homology-derived Functional Similarity of 98 

Proteins) between sequence-unique proteins (vertices) and clustered the resulting network to 99 

determine the molecular functions likely carried out by proteins in our set (Methods; Fig. 1). 100 

We obtained 433,891 clusters of functionally similar proteins, dubbed Fusion functions, 101 

ranging in size from 2 to 118,984 proteins (Fig. S1). 102 

This collection of Fusion functions, particularly the large number of small functions, 103 

i.e. containing few proteins, is contrary to expectations of functional diversity as compared to, 104 

e.g. 19,179 Pfam-A families/clans (Pfam v34, Methods) (47) and 11,185 molecular function 105 

GO terms (GeneOntology version 2021-09-01; Methods) (48, 49). This discrepancy between 106 

the annotations is likely accounted for by functional definitions. Pfam-A, for example, needs 107 

many sequences per family to build multiple sequence alignments (MSAs) for Hidden 108 

Markov Model (HMM) construction; thus, some of our functions may simply have not 109 

contained enough sequences to recapitulate a Pfam family. Furthermore, Pfam domains are 110 

not functionally precise as the same domain is often reused in different functions (50-53) and 111 

one protein can have more than one domain. Of the  Fusion functions, only 15% (65,663) 112 

have at least 20 sequence-unique proteins, i.e. the lower limit for even the less-precise MSAs 113 

(54). Of these functions, 80% (52,678) contain proteins with one or more non-overlapping 114 

Pfam domains, i.e. ~1.6 domains per protein, 10,114 unique domains overall, and ~11 Fusion 115 

functions per domain. Of the smaller functions (size < 20 proteins; ~370K in total), 128,128 116 

have at least one Pfam-A domain. We hypothesize that the remaining ~240K functions, not 117 

identifiable by Pfam, may be responsible for highly specific bacterial activity.  118 

We calculated homogeneity (Eqn. 1) and completeness (Eqn. 2) for how well the 119 

Fusion functions (180,806 functions of >1 sequence) of proteins with at least one Pfam 120 

domain (12,611,237) compared to Pfam-A domain assignments (Methods). An optimal 121 

homogeneity (=1) would indicate that each function only contains proteins with one domain. 122 

An optimal completeness (=1) indicates that all proteins with a specific Pfam domain only fall 123 

into a single function. Neither optimal completeness nor heterogeneity are, as described 124 

above, possible for our data. However, both homogeneity (=0.9) and completeness (=0.79) 125 

were still fairly high for our data. That is, Fusion captured much of the Pfam-like functional 126 

diversity.  127 

We further compared the Fusion functions with their respective Pfam domain sets, i.e. 128 

collections of Pfam domains without accounting for domain order in sequence (57,165 sets). 129 

This comparison marginally increased completeness (=0.8, homogeneity=0.94) as compared 130 

to single domain-based evaluations (completeness=0.78, homogeneity=0.9). Additionally 131 

considering domain order (91,113 arrangements), we observed that each Fusion function most 132 

often only contained proteins of one arrangement (homogeneity =0.93) and further increased 133 

completeness over set comparisons (=0.81). Thus, while each Fusion function is highly 134 
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specific to a given Pfam domain arrangements (high functional specificity), each domain set 135 

or arrangement might encode multiple functions.  136 

While Pfam domain arrangements are more precise than individual domains, they do 137 

not always report experimentally defined functionality(55). Fusion functions are somewhat 138 

more precise. For example, the Geobacter sulfurreducens acyltransferases (R)-citramalate 139 

synthase (AAR35175, EC 2.3.1.13) and Salmonella heidelberg 2-isopropylmalate synthase 140 

(ACF66296, EC 2.3.3.182/2.3.3.21) have the same domain arrangement (HMGL-like 141 

pyruvate carboxylase domain, PF00682, followed by a LeuA allosteric dimerization domain, 142 

PF08502) but have a different 4th digit Enzyme Commission classification  (EC) number (56), 143 

indicating their different substrate specificities. Notably, these proteins fall into two different 144 

Fusion functions. To evaluate Fusion functional mappings more broadly we collected, where 145 

available, the experimentally derived EC annotations for proteins in our set (4,206 proteins, 146 

1,872 unique EC numbers) and measured the similarity of these with the corresponding 1,893 147 

Fusion functions. Fusion functions more closely resembled annotations of enzymatic activity 148 

(homogeneity = 0.95, completeness = 0.94) than those of Pfam domains. This finding 149 

suggests that our Fusion functions capture aspects of molecular function better than domain-150 

based annotations. 151 

Organism functional profiles capture taxonomy. For each organism of the balanced 152 

organism set, we extracted Fusion, Pfam-A domain arrangement, and GO term functional 153 

profiles. Briefly, a functional profile is the set of functions of a single organism, e.g. the set of 154 

Pfam-A domain arrangements encoded by the proteins of that organism (Methods). On 155 

average, per organism Fusion, Pfam-A and GO term profiles were of size 2,133, 1,479, 776 156 

(Fig. S2). For each organism pair, we computed profile similarity, i.e. the count of functions 157 

found in both profiles divided by the larger functional profile (Methods; Eqn. 4). On average, 158 

the (larger) Fusion-based functional profiles were less similar than the (smaller) Pfam and GO 159 

-based profiles (Fig. S3). A pair of organisms were predicted to be of the same or different 160 

taxon based on whether their similarity exceeded a set threshold ([0,1] in steps of 0.01). 161 

Predictions were compared against NCBI(33) and GTDB(57) taxonomies at six levels 162 

(phylum through genus; Methods). Note that we could not assess the species level, since no 163 

two organisms of the same species were retained in the balanced organism set.  164 

Both Fusion and Pfam outperformed GO annotations in assessing taxonomic 165 

similarity. Fusion profiles were better than Pfam (Fig. S4), e.g. at 50% recall (Eqn. 5) of 166 

identifying two organisms of the same GTDB phylum, Fusion and Pfam achieved 75% and 167 

48% precision (Eqn. 5), respectively. This advantage was also present across deeper 168 

taxonomic ranks (Fig. S4). We note that Fusion’s improvement over Pfam did not stem from 169 

the difference in the number of functions per organism (profile/function-ome size) as the 170 

predictive power of the function-ome size was only marginally better than random (Fig. S4).  171 

These findings suggest that organism similarity established via comparison of 172 

functional profiles carries taxonomy-relevant information. Furthermore, comparing functional 173 

capabilities can reveal organism relationships that microbial taxonomy, muddled by 174 

horizontal gene transfer, is unable to resolve. 175 

Functional profiles are more informative of taxon identity than 16S rRNA. The 176 

genetic marker most frequently used for organism taxonomic classification is the 16S rRNA 177 

gene(14) – a non-coding gene that, by definition, can not be captured by Fusion. To evaluate 178 
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its predictive power, we extracted 16S rRNA sequences for each genome in our complete set 179 

and calculated sequence identity for all 16S rRNA pairs (Methods). 180 

Sequence similarity between 16S rRNA pairs below 97% is generally accepted as an 181 

indication that the organisms are of different species(58). Indeed, we found that 98.7% 182 

(663.7M) of the 16S rRNA pairs that originate from different species fall below the 97% 183 

sequence identity threshold, while only 2% of same species pairs do (Fig. 2, Fig. S5). That is, 184 

below this sequence identity threshold nearly all (99.96%) sequence pairs were of organisms 185 

of different species, confirming the 97% threshold as a good measure of organism taxonomic 186 

difference.  187 

Using the 97% sequence identity threshold as an indicator of taxon identity, however, 188 

is impossible. Trivially, many genomes have multiple 16S rRNA genes (59). In our set, 625 189 

pairs of 16S rRNAs extracted from the same genome were less than 97% identical (minimum 190 

similarity =75.8%); in these cases, the marker gene similarity could not even identify the 191 

same genome, let alone same species. Furthermore, while almost all of same-species 16S 192 

rRNA pairs were ≥97% identical, nearly half of all pairs above this threshold belonged to 193 

different species (recall=98%, precision=55%, Fig. S6). In contrast, at the optimal Fusion 194 

organism functional profile similarity threshold of 75.5% (Eqn. 4; threshold established via 195 

peak F1-measure, Eqn. 6; Fig. S7), organisms were correctly identified to be of the same 196 

species with 80% precision (recall=94%, Fig. S4). At a matched level of recall, function 197 

comparisons were also more precise than 16S rRNA (75% vs. 55% precision, at 98% recall). 198 

Furthermore, Fusion achieved 95% precision for more than a third (35%) of the organism 199 

pairs, whereas 16S rRNA measures were this precise for less than a fifth (17%). The ability of 200 

16S rRNA to identify organisms of the same genus at the commonly used threshold of 95% 201 

also left much to be desired (43% precision, 78% recall). Fusion performance was 202 

significantly better (90% precision, 70% recall) when using optimal functional similarity 203 

threshold (72.3%) established for this task.  204 

Functional profiles augmented 16S rRNA in determining organism species. For 205 

example, for all organism pairs sharing ≥97% 16S rRNA identity, additionally requiring a 206 

Fusion functional similarity of 75.5% lead to an increased precision of 86% vs. 55% for 16S 207 

rRNA or 80% for Fusion similarity alone; recall was slightly decreased to 92% vs. 98% for 208 

16S rRNA and 94% for Fusion alone. These findings suggest that functional similarity is 209 

orthogonal to 16S rRNA similarity in defining taxonomic identity. 210 

We note that the lack of precision in 16S rRNA has implications for metagenomic 211 

analysis, where 16S rRNA abundance is often used to assess sample taxonomic composition 212 

and functional diversity. Fusion, on the other hand, is specifically designed to enable 213 

sequence-based functional annotations and could directly inform a microbiome’s functional 214 

composition. 215 

Few functions are sufficient to accurately identify taxonomy. Earlier studies argue 216 

that a small number of carefully chosen marker genes/protein families are sufficient to 217 

determine taxonomic relationships of bacteria (57, 60). However, to be comparable across 218 

organisms, these genes should be ubiquitously present. We investigated whether a subset of 219 

Fusion functions could correctly identify two organisms of the same taxon. To this end, we 220 

progressively subset the number of Fusion functions used to generate organism functional 221 

similarities (100k, 50k, 25k, 10k, 5k, 1k, and 500 functions). We used two approaches for 222 

function selection: (1) we chose the functions based on how frequently they appeared in the 223 
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balanced organism set and (2) randomly sampled from the whole pool of functions. 224 

Importantly, our approach was based on the presence or absence of specific functional 225 

abilities encoded by these genes rather than their sequence similarity. We found that just 226 

1,000 common Fusion functions were sufficient to classify organism pairs into the same 227 

taxon, outperforming a “complete Pfam”-based approach (Fig. S8). The same was true for 228 

taxonomic levels of order through genus with a set of 5,000 randomly selected functions (Fig. 229 

3).  230 

We further evaluated the overlap between the selected Fusion functions and the 231 

marker genes used for GTDB (bac120) classification (57, 60) (Methods). Each of the largest 232 

1,000 functions of our balanced organism set contained at least one protein associated with 233 

one of the 120 GTDB marker protein families. However, only slightly more than half (70 of 234 

the bac120) of the marker families were present in the 1,000 sets of 5,000 randomly selected 235 

Fusion functions. The remaining functions were most likely unique to individual organisms. 236 

Modularity-based taxonomic classification reflects phylogeny. Conventional 237 

taxonomic classification schemes rely on morphological and genetic markers (NCBI) or 238 

phylogenetic analysis of genetic data (GTDB). Genetic similarity, however, is not evenly 239 

spread across different sections of the taxonomy. Assuring that taxonomic groups at a given 240 

level are equally diverse is thus a well-known consideration when developing a taxonomy. 241 

GTDB, for example, tries to address this issue by breaking up the NCBI taxonomy’s 242 

polyphyletic taxa and reassigning organisms to taxonomic ranks higher than species in order 243 

to better represent genetic diversity at the individual level(60).  244 

We clustered our organism functional similarity network, where organisms are 245 

vertices and edges represent Fusion functional similarity, to extract groups of functionally 246 

related organisms – Fusion-informed taxa (Methods). We propose that this community 247 

detection-based taxonomy reflects functional similarity and metabolic/environmental 248 

preferences, and thus captures bacterial functional diversity better than phylogeny driven 249 

taxonomies. This is especially important when investigating environmentally specialized 250 

bacteria, e.g. symbionts or extremophiles, which are more likely to undergo convergent 251 

evolution and be functionally similar to other members of their environmental niche than to 252 

their phylogenetic relatives. 253 

We identified resolution thresholds that influence the size and granularity of the 254 

Fusion-taxa such that the results best reflected existing taxonomic groupings at different 255 

taxonomic levels (Fig. 4). Note that for our balanced organism set, this excluded species and 256 

genus levels, as this set lacks pairs of organisms identical at these levels. To evaluate the 257 

similarity between Fusion-taxa and GTDB phylum/class/order/family levels we calculated the 258 

V-measure using GTDB-taxon designations for organisms as reference labels and Fusion-taxa 259 

as predicted labels. The V-Measure is the harmonic mean between homogeneity, a measure 260 

reflecting the number of organisms in a Fusion-taxon that belong to the same GTDB-taxon, 261 

and completeness, a measure reflecting the number of organisms of a GTDB-taxon are found 262 

within one Fusion-taxon. A high V-measure indicates that both homogeneity and 263 

completeness are high. For Fusion-taxa classifications, we selected the Louvain(61) clustering 264 

resolutions attaining the highest V-measures (Fig. 4, Methods). The distributions of GTDB 265 

phylum through order taxa and the corresponding-level Fusion-taxon sizes were similar, i.e. 266 

Kolmogorov-Smirnov p-values for GTDB phylum vs. Fusion resolution(0.68) = 0.89, class 267 

vs. resolution(0.68) = 0.78, and order vs. resolution(0.5) = 0.68. This observation suggests 268 
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some similarity between the larger organism groups captured by Fusion and GTDB despite 269 

differences in their approach to establishing organism relationships. However, the GTDB 270 

family-level taxa sizes were different from the corresponding Fusion-taxa, i.e. Kolmogorov-271 

Smirnov p-value GTDB family vs. Fusion resolution(0.36) = 0.01, highlighting the (expected) 272 

divergence between the functional and phylogenetic approaches at finer taxonomic 273 

resolutions. 274 

Modularity-based taxonomy is robust to the addition of novel organisms. As new 275 

organisms are added to taxonomies, organism assignments may need to be restructured. Here, 276 

updating the number of organisms per taxon or adding a new taxon containing only the novel 277 

organisms is far easier than reshuffling organisms from one taxon to others. Fusion-taxa 278 

appear robust to addition of organisms, favoring the first outcome. To demonstrate this 279 

quality, we created 50,000 new organism similarity networks by adding n organisms to the 280 

balanced organism set clusters, i.e. 100 networks for each n, where n ranges from 1 to 500 281 

organisms randomly selected from the complete organism set, but not contained in the 282 

balanced organism set; each network was of size of 1,503 to 2,002 organisms (balanced 283 

organisms set + n). We re-clustered all networks at resolution=0.5 (Methods), the resolution 284 

we previously determined to correspond best to the GTDB order-level classifications. The 285 

resulting clusters (predicted labels) of the balanced set organisms were compared to the 286 

original clusters (reference labels).  287 

We expected that addition of these new organisms, selected from the complete set, and 288 

thus similar to those already in the network, would reflect the “worst case” scenario for 289 

network stability. That is, while new organisms could be expected to form their own clusters, 290 

microbes similar to those already in the network could stimulate cluster re-definition. Our 291 

function-based clustering did not change significantly upon addition of new (existing taxon) 292 

microbes, demonstrating the stability of the identified taxa (predicted vs. reference labels; 293 

with one added organism, median V-measure=0.99; with 500 added organisms: V-294 

measure=0.96; Methods, Fig. S9).  295 

To further evaluate the (likely limited) effects of introducing organisms of novel taxa, 296 

we extracted ten genomes added to GenBank after the date of our set extraction (February 297 

2018) and whose GTDB order was not represented in our collection. We annotated the Fusion 298 

functional profiles of these organisms by running alignments, as in Zhu et al(32), against our 299 

set of proteins, computed organism similarities to the 1,502 microbes of our balanced set, and 300 

re-clustered the resulting network. Eight of these ten organisms each formed their own 301 

cluster, as expected. The two remaining organisms clustered into an already existing Fusion-302 

taxon. Interestingly, this taxon contained an organism of the same NCBI order as the two new 303 

bacteria, illustrating the subjectivity of GTDB vs. NCBI taxonomies and highlighting the 304 

importance of organism assignment standardization.  305 

When considered together, these observations suggest that functional similarity 306 

networks are stable when augmented with additional data points and present a viable 307 

alternative and/or addition to taxonomic classification of microorganisms. 308 

Co-occurrence of functions informs joint participation in molecular pathways. 309 

Using the data from the balanced organism set, we assigned to each function a phylogenetic 310 

profile(62)(Fig. 1B). Each Fusion function was thus represented by a 1,502-length binary 311 

vector, where each entry reflected the presence or absence of the function in each organism 312 

(Methods). We then calculated the Jaccard distance (Eqn. 7) between pairs of functions. 313 
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Where available, we further annotated each function with the EC numbers of its member 314 

proteins; as above, most functions corresponded to only one EC. As a gold standard for our 315 

evaluations, we then retrieved 158 KEGG(63, 64) modules that encompassed at least three EC 316 

annotations resolving to Fusion functions (Methods). The median phylogenetic profile 317 

distance between pairs of Fusion functions (=0.63) co-occurring within any KEGG module 318 

was significantly lower (Wilcoxon Rank Sum, p-value <2.2x10-16) than that of random 319 

(median distance=0.89) pairs (Fig. S10A). This observation supported our expectation that 320 

protein components of the same pathway have co-evolved in the same organism groups.  321 

We note that the higher-than-expected distances between some functions co-occurring 322 

within a KEGG module were partially accounted for by functionally synonymous proteins 323 

(Fig S10B). That is, different proteins carrying out the same or similar molecular activity 324 

were likely part of different taxon-specific functional operons encoding the same generic 325 

molecular pathway. For example, the glycolysis module (M0001) enzymes 326 

phosphohexokinase (2.7.1.11) and pyrophosphate-fructose 6-phosphate 1-phosphotransferase 327 

(2.7.1.90) are functionally synonymous because they both of catalyze conversion of beta-D-328 

Fructose 6-phosphate to beta-D-Fructose 1,6-bisphosphate. The phylogenetic profiles of these 329 

functions, however, were dissimilar (Jaccard distance = 0.83) as any given organism only 330 

uses one of these in its glycolytic pathway. 331 

We also found that the median Jaccard distance between functions in a module 332 

reflected the combination of the number of organisms using the module, number of module 333 

enzymes, and the variance in function prevalence (Fig. 5). A lower Jaccard distance was 334 

expected of ubiquitous pathways, e.g. ribonucleotide synthesis (M00050, M00052; Figure 5A, 335 

bottom right corner) and small niche modules specific only to a few organisms, e.g. 336 

nitrification (M00528) and methanogenesis (M00567; (Figure 5A, bottom left corner). In 337 

contrast, pathways where some functions were more prevalent than others (coefficient of 338 

variation, CV, Eqn. 8) had a higher median distance. For example, the ectoine synthesis 339 

pathway (M00033) had a relatively high CV (1.2), partly due to the difference in prevalence 340 

of fructo-aldolase (EC 4.1.2.13, 407 organisms) and triose-phosphate isomerase (EC 5.3.1.1, 341 

1,492 organisms; Figure 5A, red dot, upper left corner). These relationships were not 342 

observed for a set of randomized modules (Figure 5B). 343 

Note that modules with a high median function distance and high median CV could 344 

differ from common modules by only a few enzymes. For example, the nitrification module 345 

M00804 (44 enzymes) differs from complete nitrification module M00528 (33 enzymes), 346 

solely by the absence of nitrate reductase (EC 1.7.5.1). However, this difference is enough to 347 

increase the median Jaccard distance from 0.39 in M00528 to 0.99 in M00804. Biologically, 348 

this is likely the result of divergence of the nitrification pathway in a small number of 349 

organisms, i.e. nitrate reductase is only found in nitrifying bacteria – a small subset of the 350 

original population. This observation suggests a means for tracking evolution of pathways via 351 

high median functional distances. 352 

Machine learning-based sequence comparisons and sequence alignments capture 353 

different functional signals. We trained a Siamese Neural Network (SNN) to predict 354 

whether two nucleic acid (gene) sequences encode proteins of the same Fusion function. 355 

SNNs are specifically optimized to assess similarities of two objects (65) – in our case 356 

gene/protein functional similarity. This is critically different from traditional classifiers, 357 

where the algorithm aims to predict which defined class an instance belongs to. In training 358 
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(balanced set; ~300K gene pairs, 50% same vs. 50% different function), our model attained 359 

73% overall accuracy at the default cutoff (score>0.5; area under the ROC curve, AUC_ROC 360 

=0.80). SNN prediction scores correlated with the precision of recognizing the pair’s 361 

functional identity; thus, for example, at cutoff =0.98 the method attained 96% precision for 362 

the 19% of gene pairs that reached this threshold. Note that at this stringent cutoff, for an 363 

imbalanced test set with 10% same function pairs, the network still maintained high precision 364 

(82%) at a similar recall (24%). Importantly, increasing the size of the training data to one 365 

million gene pairs, improved the method performance (AUC_ROC = 0.81), suggesting that 366 

further improvements may be possible. 367 

While somewhat correlated (Spearman rho=0.3, Fig. S11), the SNN similarity scores 368 

captured a different signal than the HFSP scores, i.e. values incorporating sequence identity 369 

and alignment length. Thus, a higher-dimensional representation of functional similarity of 370 

gene products beyond what can be detected through homology, may further improve 371 

functional annotations. To test this hypothesis, we compiled a set of Fusion functions where 372 

(1) the Fusion function was associated with only one EC number, (2) a number of different 373 

Fusion functions were associated with one EC number, and (3) different Fusion functions 374 

were associated with different EC numbers. As it was trained to do, SNN captured the 375 

similarity of genes from the first category (same Fusion function, same EC; Fig. S12 right 376 

green column, median SNN-score = 0.83) and the difference of the genes from the third 377 

category (different Fusion function, different EC; median SNN-score = 0.13; Fig. S12, left 378 

orange column). However, genes of the second category (different Fusion functions, same EC 379 

number) were scored significantly higher (median SNN-score = 0.7; Fig. 7, left green 380 

column) by the SNN than expected. We note that these different Fusion function gene pairs 381 

predicted to be of the same function would be considered false positives in SNN training. 382 

Thus, our SNN identified same enzymatic activity gene pairs that were NOT captured as same 383 

function by the homology-based Fusion.  384 

Machine learning-based sequence comparisons and structure alignments capture 385 

orthogonal signals. What functional similarity does an SNN capture? We expected that 386 

functionally similar proteins that are not sequence similar should share structural 387 

similarity(66, 67). We compiled a set of Fusion proteins that have a structure in the PDB and 388 

then computed structural (TM-scores) and functional (SNN-scores) similarities for all pairs 389 

(Methods). Note that we did not use predicted protein structures(68, 69) to avoid 390 

compounding machine learning preferences. 391 

First, we examined the relationship between the TM-score and SNN-score for 392 

sequence-similar protein pairs (HFSP score ≥0; Fig. S13). We found that 97% of these pairs 393 

(3,931 of 4,072) were structurally similar (TM-score ≥0.7; Table S1) and 94% (3,817) were 394 

predicted by the SNN to be of the same function (SNN-score ≥0.5; Table S2). These 395 

observations highlight HFSP’s precision and confirm the expectation that high sequence 396 

similarity in most cases encodes for structural and functional identity.  397 

It is worth noting that only a fifth (3,931 of 17,702) of all protein pairs with a TM-398 

score ≥0.7 also had an HFSP≥0. SNN predictions, on the other hand, identified 77% (13,618 399 

of 17,702) of the high TM-scoring pairs to be of the same function. Note that a quarter (3,544 400 

of 13,618) of the SNN predictions had high reliability (SNN-score ≥ 0.98; Figure 6, Table S3) 401 

and many of these (2,028; 57%) were also sequence similar (HFSP≥0). These observations 402 
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suggest that function transfer by homology, while precise for the pairs it does identify, fails to 403 

find the more remote functional similarity of most protein pairs.  404 

Most (73%, 21,412 of 29,213) of the reliably structurally dissimilar protein pairs (TM-405 

scores <0.2 and excluding pairs that were filtered out by Foldseek(70), Methods) were 406 

predicted to be functionally different by SNN (score <0.5) and only 80 pairs (<1%) attained a 407 

high SNN score (≥0.98). Of pairs in the [0.2,0.5) and [0.5,0.7) TM-scores ranges, i.e. those 408 

that share minimal structural similarity, SNN labeled 45% and 53%, respectively, as having 409 

the same Fusion function; for both sets, only 4% reached SNN-score ≥0.98, which stands in 410 

contrast to the ~26% of the protein pairs with TM-score ≥0.7. These observations suggest that 411 

SNN, though not trained on protein structure, reliably identifies presence/absence of 412 

functional similarity at the extremes of structural similarity; it is significantly less certain for 413 

proteins that are only mildly structurally similar. 414 

We further evaluated if protein pairs with known EC annotations (Methods) followed 415 

a similar structure-function relationship. As before (Fig. S12), we observed that the proteins 416 

of the same EC number were, on average, predicted with a higher SNN-score than different-417 

EC pairs (Fig. S14). We then measured the ability of the SNN and the TM-score to predict the 418 

3rd EC level of each protein pair. We found that while the SNN precision and recall were 419 

significantly above random, they were lower than simply using the TM-score (Figure 6). 420 

Importantly, we note that combining the TM and SNN predictions significantly improved 421 

recognition of genes of the same function. Adding an SNN-score evaluation of structurally 422 

similar protein pairs (TM-score ≥0.7) increased the precision to 90% at recall 30%. We thus 423 

suggest that the SNN reports a signal of functional similarity that is captured neither by 424 

sequence nor structure similarity alone.  425 

To explore this signal further, we investigated outlier protein pairs in our set, i.e. 426 

structurally different (TM-score <0.2), sequence dissimilar (HFSP<0) pairs of proteins of the 427 

same 4th digit EC number attaining an SNNscore≥0.98, i.e. UniProt ids: P37870/P37871, 428 

O35011/O31718, and Q8RQE9 /P3787. For these, both TMAlign and the SNN were correct. 429 

That is, for each pair, the sequences were structurally different chains of the same heteromer 430 

structure (P37870/P37871 and O35011/O31718) or chains of different structures of the same 431 

protein complex (Q8RQE9/P37871) – all annotated with one EC number. While these three 432 

examples are anecdotal evidence they also clearly demonstrate the limitations of available 433 

chain-based functional annotations.  434 

Going forward, our SNN can be further optimized and used for function prediction. 435 

We suspect that we will be able to create a functional ontology, combining Fusion functions 436 

that share a higher level of functional similarity not captured via sequence, or even structure, 437 

comparisons. We also see an exciting prospect for future use of our DNA-based predictor in 438 

metagenomics, where gene to fragment comparisons could potentially allow for forgoing 439 

assembly, to generate functional abundance profiles of microbial communities. 440 

Summarizing the Findings. Understanding bacterial lifestyles requires describing 441 

their functional capabilities and critically contributes to research in medical, environmental, 442 

and industrial fields. The recent explosion in completely sequenced bacterial genomes has, 443 

simultaneously, created a deluge of functionally un-annotated and misannotated sequences 444 

and allowed for the development of new and informative sequence-based methods.  Here, we 445 

optimized Fusion, a method for annotating the functional repertoires of bacteria, to 446 

recapitulate bacterial taxonomic assignments and create a novel functional taxonomy. 447 
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Importantly, we showed that bacterial functional profiles are significantly better at 448 

differentiating distinct species than 16S rRNA comparisons. We also found that using 449 

phylogenetic profiles of individual bacterial functions could provide insight into emergent 450 

functionality and potentially aid in the detection of novel metabolic pathways. Finally, we 451 

trained a Siamese Neural Network (SNN) to label pairs of genes whose product proteins are 452 

functionally similar. Notably, our SNN’s ability to capture functional similarity signals that 453 

are orthogonal to sequence and structural signals may open the door to investigating remote 454 

homology. We propose that this method could elucidate a non-sequence or structure-driven 455 

functional ontology. Furthermore, it could potentially be optimized for extraction of 456 

functional annotation directly from metagenomic reads. 457 

 458 

Materials and Methods 459 

Microbial proteomes. We retrieved a set of microbial proteomes from GenBank (44, 460 

45) (NCBI public ftp - ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria; February 28, 2018) 461 

and extracted the corresponding coding sequences from the complete bacterial genome 462 

assemblies. As per NCBI, complete assemblies are complete gapless genomic assemblies for 463 

all chromosomes, i.e. in bacteria, the circular genome and any plasmids that are present. Our 464 

resulting dataset thus contained the proteomes of 8,906 distinct bacterial genome assemblies 465 

with a total of 31,566,498 proteins (full protein set). We further redundancy reduced this set 466 

at 100% sequence identity over the complete length of the two proteins using CD-Hit (71, 467 

72). Our sequence-unique protein set contained 15,629,432 sequences. Sequences shorter 468 

than 23 amino acids (1,345 sequences) were removed from the set as this length is insufficient 469 

to determine functional similarity between proteins (46). All further processing was done on 470 

the resulting set of 15,628,087 sequences. Of these, 12.78M were truly unique, i.e. proteins 471 

for which no 100%-identical sequence exists in the original full protein set; the remaining 472 

2.85M sequences represented the nearly 16M proteins that were redundant across organisms 473 

in our set.  474 

Computing protein functional similarities. Functional similarities between our 475 

sequence-unique proteins were assessed using HFSP(46). Specifically, we generated a set of 476 

all-to-all alignments with MMSeqs2(73) (evalue ≤ 1e-3, inclusion evalue ≤ 1e-10, iterations = 477 

3). Note that due to the specifics of MMSeqs2, the two alignments for a every pair of proteins 478 

Pi and Pj, i.e. Pi-to-Pj and Pj-to-Pi, are not guaranteed to be identical and thus may have 479 

different HFSP scores. We chose to conservatively represent each protein pair by only one, 480 

minimum, HFSP value. For every protein pair, we retained in our set only the alignments 481 

where this HFSP value was ≥0; at this threshold HFSP correctly predicts functional identity of 482 

proteins with 45% precision and 76% recall (46).  Any protein without predicted functional 483 

similarity to any other protein in the sequence-unique protein set was designated as having a 484 

unique function, i.e. true singletons (766,050 proteins). Of these, 57,646 sequences 485 

represented 127,543 proteins in the full protein set, while 708,404 were truly unique. The 486 

remaining 14,862,037 proteins were connected by ~22.2 billion functional similarities.  487 

Generating Fusion functions. We built a functional similarity network using the 488 

22.2B similarities (edges) of the 14.86M proteins (vertices) as follows: For any protein pair 489 

PiPj, an edge was included if (1) HFSP(PiPj) was ≥ 30 or if (2) HFSP(PiPj) ≥ 490 

0.7*max(HFSP(PiPk), HFSP(PjPl)), where proteins Pk and Pl are any other proteins in our set; 491 

note that Pk and Pl can but don’t have to be the same protein. The first cutoff at HFSP≥30, 492 
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ensured that our protein pairs were often correctly assigned same function (precision = 95%). 493 

Our second criterion aimed to assuage the much lower recall (10%) and capture more distant 494 

relationships while introducing as little noise as possible, i.e. only reporting functionally 495 

similar pairs at specifically-targeted, stricter HFSP cutoffs. The resulting network contained 496 

14,130,628 vertices connected by 780,255,934 edges; 731,409 proteins were disconnected 497 

from the network, i.e. putative functionally unique singletons. The network was composed of 498 

multiple connected components, where the largest contained 481,801 proteins (distribution of 499 

component sizes in Fig. S1).  500 

We used HipMCL(74) (High-performance Markov Clustering), an optimized version 501 

of Markov Clustering(75, 76), to further individually cluster the components of this network 502 

into functional groups. Note that as HipMCL requires a directed graph as input, we converted 503 

each edge in our data into a pair of directed edges of the same weight. The key parameters 504 

chosen for each HipMCL run were S=4000, R=5000, and inflation (I) =1.1. This clustering 505 

resulted in 1,432,643 protein clusters as well as 1,235 clusters containing only one protein, 506 

i.e. additional putative singletons for a total of 732,644. 507 

Each of the 1,432,643 MCL clusters was further clustered using CD-Hit at 40% 508 

sequence identity (with default parameters). Note that only 7% of the MCL clusters contained 509 

more than one CD-HIT cluster. A total of 1,632,986 CD-Hit cluster representatives, i.e. 510 

longest protein in each CD-HIT cluster, were thus extracted. To this set of representatives, we 511 

added the putative singletons for a total of 2,365,630 proteins. These were used to generate a 512 

new functional similarity network by including all edges with HFSP(PiPj)≥0. Note that 513 

226,346 (~10%) of these were not similar to any other representative proteins; of these, ~40k 514 

were originally designated putative singletons. The resulting functional similarity network 515 

comprised 2,139,284 vertices and ~303M edges. The network was re-clustered with HipMCL 516 

(S=1500, R=2000, I=1.4; smaller inflation values did not generate results due to MPI 517 

segmentation faults that could not be resolved) generating 438,130 Fusion functions. 518 

Enzymatic function annotation. Information about protein enzymatic activity 519 

(Enzyme Commission, EC number(56)) was extracted from Swiss-Prot(77, 78) (June 2021) as 520 

follows: for each protein there had to be (1) experimental evidence for protein existence at 521 

protein level, (2) experiment-based functional annotation, and (3) only one EC number, fully 522 

resolved to all 4 levels. The resulting dataset was redundancy reduced at 100% sequence 523 

identity across the entire protein length. Swiss-Prot entries sharing the same sequence, but 524 

assigned different EC annotations, were excluded from consideration. The final data set 525 

contained 18,656 unique proteins and 4,269 unique EC annotations. The overlap between the 526 

EC data and the Fusion protein set (Fusion enzyme set) comprised 4,206 unique proteins in 527 

1,872 unique EC annotations. 528 

Pfam data. Protein mappings to Pfam(47) domains (Pfam-A version 34) were 529 

generated using pfamscan v1.4(79) with default values; in hmmscan(80) (hmmer v3.3), HMM 530 

evalue (-E = 10) and domain evalue (--domE = 10) were used. If the sequence hit multiple 531 

Pfam domains belonging to the same clan/family, only the clan was reported. For 12,720,756 532 

sequence-unique proteins (85% of our 14.86M) the set of non-overlapping Pfam domains and 533 

their order in sequence were extracted, e.g. given domains X and Y, the domain arrangements 534 

‘XYY’, ‘XY’ and ‘YX’ are regarded as three individual occurrences; the remaining 15% of 535 

the proteins did not match any Pfam-A domain. We thus identified 92,321 unique Pfam 536 
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domain arrangements. These corresponded to 58,021 domain sets, where the domain 537 

arrangements ‘XYY’, ‘XY’ and ‘YX’ resolve to only one domain set representation (X,Y). 538 

Overlap between Fusion clusters and GTDB. In order to compare Fusion functions 539 

to the set of 120 marker proteins/protein families that GTDB uses (TIGRFAM & Pfam 540 

families) to establish taxonomic relationships between organisms (bac120), Fusion proteins 541 

were associated with TIGRFAM (release 15.0 – September 2014) & Pfam (PFAM-A version 542 

34) domains using hmmscan (hmmer v3.3). Only one best TIGRFAM/Pfam hit (i.e. smallest 543 

e-value) was extracted per protein. Results were limited to hits with HMM evalue (-E = 1) 544 

and domain evalue (--domE = 10). Fusion functions were assigned the set of 545 

TIGRFAMs/Pfams according to their proteins matches. Finally, the overlap between domain 546 

associations of Fusion functions and the TIGRFAMs/Pfams used by GTDB as marker genes 547 

was evaluated. 548 

GeneOntology annotations. GO(48, 49) “molecular function” annotations were 549 

extracted from the GO 2021-09-01 release. For each protein, its set of GO annotations 550 

included all protein self-annotations, as well as annotations of its parent nodes, i.e. other 551 

nodes connected via an “is a” edge up to the root of the molecular function subgraph. This 552 

resulted in 25,825 sets of GO terms for 7,313,428 (49% of 14.9M) sequences-unique proteins.  553 

Comparing Fusion functions to existing functional annotations. We compared 554 

Fusion functions to EC and Pfam annotations by calculating the homogeneity (h, Eqn. 1), 555 

completeness (c, Eqn. 2) and V-Measure (v, Eqn. 3) (81) values using scikit/python (82). 556 

When comparing Fusion functions to, for example, EC numbers, homogeneity describes how 557 

often a Fusion function is associated with multiple EC numbers. That is, a high homogeneity 558 

(close to 1) signifies a clustering where most Fusion functions have an association to only one 559 

EC number. Completeness describes how often a specific EC number can be found in 560 

different Fusion functions. A high completeness (close to 1) indicates that for most ECs, a 561 

specific EC number is associated with only one or a small number of functions. V-Measure 562 

represents the harmonic mean between homogeneity and completeness. A V-measure of 1 is 563 

indicative of an optimal clustering, where each function is only associated with one EC 564 

number, and an EC number is only associated with this one function. 565 

 566 
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(Eqn. 3)  𝑣 = .∗0∗(
01(

 575 

 576 

Taxonomy information. Our taxonomic analyses were conducted on the basis of two 577 

taxonomy schemes: the NCBI taxonomy(33) and the GTDB(57) (genome taxonomy 578 

database). NCBI taxonomy rank information for each assembly was retrieved during protein 579 

dataset extraction (Feb 2018) and is available for all 8,906 organisms in our set. GTDB 580 

taxonomy information was extracted from GTDB release rs202 (April 2021). Genbank 581 

assembly ids were mapped to bacterial assemblies available in GTDB. GTDB taxonomy 582 

information is available for 99% (8,817) of the organisms. 583 

Balancing the assembly set. According to GTDB, the 8,906 assemblies/organisms in 584 

our set belong to 3,005 species. Of these species, 2,252 (75%) have only one associated 585 

organism, whereas others have hundreds; e.g. E. coli and B. pertussis have 472 and 360 586 

assemblies, respectively. We generated a balanced organism set to reduce this unevenness. 587 

First, we reduced our full set of 8,906 assemblies to retain the 3,012 genomes that were 588 

representative of strains included in the GTDB bac120 phylogenetic tree. Note that of these, 589 

2,206 genomes were in both GTDB and our data, while 806 genomes were not present in our 590 

set and were represented by other assemblies of these same strains. Using dendropy(83), we 591 

then extracted from the full GTDB bac120 tree (47,895 organisms) a subtree containing only 592 

these 3,012 representatives while retaining the original branch lengths. We used 593 

Treemmer(84) to determine which leaves to retain in our set such that the RTL (relative tree 594 

length) of the pruned tree was ≥0.90. RTL is used as an indicator of retained genetic diversity 595 

after pruning, reflected as the sum of all branch lengths in the pruned tree in relation to the 596 

full tree. We thus selected 1,502 assemblies (further referenced to as the balanced organism 597 

set) – a minimum set of organisms that retains at least 90% genetic diversity present in our 598 

complete set of 8,906 assemblies. 599 

Computing organism functional similarity. Each organism in our set can be 600 

represented by a functional profile, i.e. a set of corresponding Fusion functions, Pfam 601 

domains, or GO annotations. Functional similarity between the function-omes of two 602 

organisms, Fi and Fj, was calculated, as previously described (27, 32), by dividing the number 603 

of their shared functions by the size of the larger of the two profiles (Eqn. 4). 604 

(Eqn. 4)  𝐹𝑢𝑛𝑐𝑆𝑖𝑚A𝐹2 , 𝐹3B =
#4!∩4"#

678"|4!|,#4"#$
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Fusion functional profiles for similarity calculations were generated at Fusion Level 1 606 

with and, separately, without the inclusion of singletons. Pfam functional profiles were 607 

generated using Pfam domain arrangements and, separately, domain sets, as described above. 608 

GO functional profiles were generated using the GO terms extracted per proteins as described 609 

above. Note that Pfam and GO annotations are not available for all proteins, but each protein 610 

has an associated Fusion function. Thus, each method-based functional profiles (i.e. GO vs 611 

Pfam vs Fusion) of a single organism could be based on different sets of proteins.  612 

We computed the precision/recall (Eqn. 5) values for correctly identifying two 613 

organisms as being of the same taxonomic rank based on their shared functional similarity. 614 

This was done at each taxonomic rank (phylum, class, order, family, genus, species) for both 615 

taxonomic definitions (NCBI and GTDB) and using a series of similarity thresholds ranging 616 

from 0 to 1 in increments of 0.01.  617 

(Eqn. 5)  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = :;
:;14;

; 	𝑅𝑒𝑐𝑎𝑙𝑙 = :;
:;14<

 618 

Here any pair of two organisms of the same taxonomic classification above the chosen 619 

threshold are true positives (TP), whereas pairs below the threshold are false negatives (FN). 620 

Any pair of two organisms of different taxonomic classifications above the similarity 621 

threshold are false positives (FP), while pairs below are true negatives (TN).  622 

Grouping organisms by functional similarity. An organism similarity network was 623 

generated using Fusion functional profiles. Here assemblies (vertices) were connected by 624 

Fusion functional similarity edges; the resulting network is complete (all-to-all edges are 625 

present) as any two organisms share some similarity. We used Louvain clustering (61) to 626 

identify organism groups; implemented in ‘python-louvain’ 627 

(https://github.com/taynaud/python-louvain), an extension to ‘networkx’ 628 

(https://networkx.org). Organism groups at varying levels of granularity were generated by 629 

varying the resolution threshold parameter of Louvain clustering (resolution 0 to 1.5 in 630 

increments of 0.01), where larger resolution values lead to fewer but larger clusters. The V-631 

measures (Eqn. 3) of the resulting partitions (“predicted labels") vs. GTDB taxa (reference 632 

labels) were calculated.  633 

16S rRNA extraction and similarity calculations. 16S rRNA sequences were 634 

extracted from the NCBI GenBank database for 8,479 of the 8,906 organisms (427 organisms 635 

were missing annotated 16S rRNAs). From RDP (Ribosomal Database Project, v11.5)(85), 636 

we further extracted all 16S rRNA sequences and their corresponding multiple sequence 637 

alignment (MSA). The 16S rRNAs of the 8,479 organisms that were not contained in the RDP 638 

MSA were added using Infernal 1.1.4 (86) and the RDP bacterial covariance model. Using the 639 

resulting MSA we extracted gapless pairwise sequence identities for all 16S rRNA pairs (i.e. 640 

683,261,061 pairs between 36,967 16S rRNA sequences). 641 

We calculated the optimal F-measure (Eqn. 6) for both identifying organisms of the 642 

same species/genus using measures of 16S rRNA identity and Fusion organism similarity 643 

(Eqn. 4). Here, true positives (TP) are organisms of same taxon, attaining an identity or 644 

similarity measure at or above the chosen threshold, false negatives (FN) are organisms of 645 

same taxon but scoring below the threshold, and false positives (FP) are organisms of 646 

different taxa and scoring at or above the threshold. 647 

(Eqn. 6) 𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 	 .×:;
.×:;14;14<

 648 

 649 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518265doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518265
http://creativecommons.org/licenses/by/4.0/


 

 

Fusion function phylogenetic profiles. For all functions found in at least five 650 

organisms of the balanced organism set (1,502 organisms total), we created a profile 651 

indicating all assemblies containing a protein assigned to the function, akin to the Pelligrini et 652 

al study(62). Each functional profile was thus a 1,502-length binary vector; i.e. the presence 653 

or absence of the Fusion function in each organism was indicated with a 1 or 0. Furthermore, 654 

to be considered, each function had to have >5% of its proteins either belong to or have an 655 

HFSP score >20 with a protein in the Fusion enzyme set. Jaccard distance Dj was calculated 656 

for every pair of profiles F1 and F2 (Eqn. 7).  657 

(Eqn. 7) 𝐷3(𝐹,, 𝐹.) = 1 −	 |4#∩4$||4#∪4$|
 658 

Note that any pair of functions which had the same 4th level EC digit and a profile 659 

Jaccard distance >0.80, i.e. same enzyme found in very different organisms, was likely to 660 

represent only homologs of only slightly different functions; as such, profiles of these 661 

functions were merged. Jaccard distances were then recalculated for all resulting pairs of 662 

functions. This process was repeated until no two functions which match these conditions 663 

remained. The final profile matrix consisted of 1,420 functions, each represented by a 1,502-664 

length profile vector. 665 

For pairs of functions which co-occurred in a KEGG module, we calculated the 666 

coefficient of variation (CV) to assess the dispersion of the Jaccard Distances (Eqn. 7) in a 667 

module (Eqn. 8). A higher CV indicates that the functions present are found in different sets 668 

of organisms, while a low CV indicates that all functions in a module are found in nearly the 669 

same organisms. 670 

(Eqn. 8) 𝐶𝑉 = ?
@
 671 

KEGG module annotations for Fusion functions. From KEGG (Kyoto 672 

Encyclopedia of Genes and Genomes)(63, 64), using R and the web scraping packing "rvest", 673 

we extracted the 280 unique KEGG modules and their corresponding enzymes (4th level EC 674 

numbers) found in our balanced organism set. We filtered these modules to retain those with 675 

at least three EC annotations mappable to Fusion functions. The resulting 158 modules were 676 

used for further analysis. Any pair of functions participating in the same module were labeled 677 

as co-occurring. To create a random set, we selected function pairs that were not present in 678 

the same module. We evaluated the median profile distances between co-occurring and 679 

random function pairs (Z-test at α = 0.05, performed by bootstrapping subsamples of both sets 680 

of function pairs a thousand times). Note that a Fusion function may be mapped to more than 681 

one EC number and the same EC number may be assigned to more than one function. If a 682 

function was annotated with multiple EC numbers shared in a single module, the distance 683 

between the function and other shared functions was only considered once. A null set of 684 

profile distances was created by randomly permuting the EC numbers assigned to each 685 

module.  686 

Machine learning-based predictor of shared protein functionality. We trained a 687 

Siamese Neural Network (SNN) (39) predictor to assess whether any two DNA sequences 688 

encoded proteins of the same Fusion function. SNNs are a class of neural network 689 

architectures that contain two identical subnetworks, i.e. the networks have the same 690 

configuration with the same parameters and weights. This type of network is often used to 691 

find the similarity of the inputs – in our case, two sequences encoding proteins of the same 692 

function. Because SNNs identify similarity levels, rather than predicting specific classes of 693 
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each input, they require significantly less data for training and are less sensitive to class 694 

imbalance. The latter was particularly a benefit here because the number of sequence pairs of 695 

different functions necessarily drastically exceeds the number of pairs of the same function. 696 

Additionally, as SNNs output a similarity metric rather than a probability score, they are 697 

likely specifically informative of the various levels of functional similarity, e.g. for a given 698 

pair of enzymes, whether two genes act upon the same bond vs. whether they use the same 699 

electron donor. 700 

To train the model, we extracted 70 random Fusion functions, each containing at least 701 

ten different proteins from our sequence-unique set. The set of functions was split 50/10/10 702 

for training, testing and validation. For training and validation, we balanced the dataset, i.e. 703 

we randomly selected gene sequence pairs such that 50% of the pairs included genes of same 704 

Fusion function and 50% were of different function. The final training set contained 20M 705 

gene sequence pairs generated from 29,907 sequences, the validation set contained 200,000 706 

pairs and 9,982 sequences respectively. In testing we used balanced as well as imbalanced 707 

data sets. The imbalanced test set was generated to better resemble real-world data with a split 708 

of 90%/10% where 90% of the sequence pairs are between sequences of different function. 709 

The test set contained 100,000 sequence pairs generated from 1,000 gene sequences. 710 

We tokenized protein-encoding genes to codons, i.e. split into non-overlapping 3-711 

nucleotide chunks of sequence and projected each token into the LookingGlass(87) 712 

embedding space (length=104). The embeddings were then processed via an LSTM (88) and 713 

further used in SNN training. Note that at most the first 1,500 tokens were embedded per 714 

sequence. For sequences shorter 1,500 codons, the embedding vector was zero padded, i.e. 715 

any position in the vector after the last token was set to 0. The model was trained and 716 

validated in 50 iterations on our balanced training/validation data set. After 50 iterations 717 

performance of the model reached a precision of 0.72 and recall of 0.72 on the validation set 718 

at the default threshold of 0.5. The final model was tested on the imbalanced (90/10 split 719 

different/same function sequence pairs) attaining a precision of 0.22 and recall of 0.80 at the 720 

default prediction score cut-off of 0.5. 721 

To further evaluate the model, we extracted a set of Fusion functions associated with 722 

only one level 4 EC annotation, but where the EC annotation was associated with multiple 723 

Fusion functions. We then predicted SNN scores for three sets of protein pairs: (1) proteins 724 

from the same Fusion function and same EC annotation, (2) proteins from different Fusion 725 

functions and same EC annotation, and (3) proteins of different Fusion functions and different 726 

EC annotation.  727 

Structural alignments of Fusion proteins. We extracted from the PDB(89, 90) (May 728 

2022) the available structure information for proteins in our set, i.e. 79,464 chains/entities 729 

mapping to 5,153 protein sequences in our sequence-unique protein set. Where multiple PDB 730 

structures mapped to one protein sequence we selected the PDB entry with the best resolution 731 

(lowest Å). For this set, we used foldseek(70) (–alignment-type 1, --tmscore-threshold 0.0) to 732 

identify structure pair TMscores(91) from TM-align(92). When a protein sequence pair 733 

resolved to multiple PDB entity (chain) pairs we selected the entity pair with the highest 734 

TMscore. Note that Foldseek was unable to generate TMscores for 498 PDB structures 735 

(mapping to 1,005 protein sequences) due to computational limitations and we excluded any 736 

structural/protein pair that included one of these from further consideration. 737 
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For the resulting 8,527,385 protein pairs we generated SNN prediction scores. For 738 

8,080,324 of 8,527,385 (95%) pairs no TM-scores could be generated as they did not pass the 739 

pre-filtering step of Foldseek, i.e. they had no similar folds at all; for these we assumed a 740 

TMscore = 0. Notably, 143,347 (1.7%) of these were still predicted by the SNN to have high 741 

functional similarity (SNNscore≥0.98); we assume this percentage to be the approximate error 742 

rate of the SNN. 743 

We also created subsets of PDB entity pairs where each protein was annotated with an 744 

E.C. number, i.e. proteins extracted for the Fusion enzyme set. 745 

 746 

 747 
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 982 
Fig. 1. Fusion workflow. (A) Fusion Functions are a result of an all-against-all 983 

protein alignment between all ~15.6M proteins in our set. (B) Organism (row-984 

wise) comparisons net the organism functional profile similarities, while 985 

column-wise comparisons yield the functional phylogenetic profile 986 

similarities. (C) Analyzing organism similarities results in the functional 987 

taxonomy and contributes to the 16S rRNA analyses. Pathway finding uses 988 

functional profiles, while SNN function prediction relies on protein function 989 

annotations. 990 

 991 
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 992 
Fig. 2. 16S rRNA identity and functional similarity capture different taxonomic 993 

patterns. Density plots capture the location of pairs of different species (left, 994 

blue) and same species (right, orange) organisms in the space defined by the 995 

16S rRNA identity (y-axis) and Fusion similarity (x-axis). Horizontal solid and 996 

vertical dashed lines represent the 16S rRNA and Function similarity 997 

thresholds of 97% and 75.5%, respectively. 998 
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 999 
Fig. 3. Randomly selected Fusion functions identify organism taxonomic 1000 

relationships. Each panel reflects the precision (y-axis) at a given recall (x-1001 

axis) for correctly identifying two organisms as sharing the same taxonomic 1002 

rank (panel label). Line color indicates the functional samples. For example, 1003 

using 5,000 Fusion functions (yellow) outperforms using all of Pfam 1004 
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(darkblue) for most cutoffs across all panels. Displayed are only 1005 

precision/recall pairs where predicted positives pairs (TP+FP) make up at least 1006 

0.1% of all possible pairs. 1007 

 1008 

Fig 4. Community based organism classification using Fusion functional 1009 

organism similarities recapitulates established taxonomy. Choosing 1010 

different Louvain resolution parameters (x-axis) to establish communities of 1011 

functionally similar organisms we can optimize the rate (y-axis) at which any 1012 

two organisms are assigned to be in the same Fusion taxon vs. reference of 1013 

GTDB-taxonomy assignment. For example, clustering the Fusion organism 1014 

similarity network at a Louvain resolution parameter of 0.36 yields the best 1015 

approximation of communities of organisms, corresponding to the family 1016 

taxonomic level. Thresholds for order, class and phylum are 0.50, 0.68 and 1017 

0.68 respectively. 1018 
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 1019 

Fig 5. Median Jaccard distance and Fusion prevalence are inversely correlated. 1020 

For each KEGG (A) and random (B) pathway module (dot in the plot), we 1021 

calculated the median Jaccard distance between pairs of Fusion functions (y-1022 

axis) and the median number of proteomes each function is found in (x-axis). 1023 

The dot color reflects the coefficient of variation (CV), or standard deviation 1024 

over the mean for the assembly values, and the dot size captures the number of 1025 

genomes encoding the given module (size). In (A), modules with low median 1026 

Jaccard values indicate either ubiquitous biological pathways (M00050, 1027 

M00052), or pathways unique to specific niche communities (M00528, 1028 

M00567). Modules with large distances tend to have high CVs, indicating a 1029 

large difference in the prevalence of shared functions.  1030 
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 1031 

Fig 6. Combining TM and SNN scores improves annotation of functionally 1032 

similar proteins. For proteins with available structures, the TM-score (blue 1033 

solid line) was a better estimate of protein functional similarity (same EC 1034 

number) than the SNN-score (orange solid line); even at the high reliability 1035 

threshold of SNN-score ≥0.98 (circle), the method attained only 46% precision 1036 

and 16% recall as compared 53% precision and 43% recall of the TM-1037 

score≥0.7 (cross). However, the combined SNN & TM-score metrics (dashed 1038 

lines) were better than either of the methods alone. That is, for a subset of 1039 

structurally similar proteins (TM≥0.7) the SNN score (orange dashed line) was 1040 

a good indicator of functional similarity. Similarly for reliably functionally 1041 

similar proteins (SNN≥0.98), the TM-score (blue dashed line) had a 1042 
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significantly higher precision. Note that our dataset is representative of real life 1043 

and thus, trivially, imbalanced as there are significantly fewer same EC 1044 

(positive) pairs than different EC (negative) pairs; here, a ratio of ~1/15 1045 
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