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Abstract 1 

 Genome-wide association studies (GWAS) are commonly used to identify genomic 2 

variants that are associated with complex traits, and estimate the magnitude of this 3 

association for each variant. However, it has been widely observed that the association 4 

estimates of variants tend to be lower in a replication study than in the study that discovered 5 

those associations. A phenomenon known as Winner’s Curse is responsible for this upward 6 

bias present in association estimates of significant variants in the discovery study. We review 7 

existing Winner’s Curse correction methods which require only GWAS summary statistics in 8 

order to make adjustments. In addition, we propose modifications to improve existing 9 

methods and propose a novel approach which uses the parametric bootstrap. We evaluate and 10 

compare methods, first using a wide variety of simulated data sets and then, using real data 11 

sets for three different traits. The metric, estimated mean squared error (MSE) over 12 

significant SNPs, was primarily used for method assessment. Our results indicate that widely 13 

used conditional likelihood based methods tend to perform poorly. The other considered 14 

methods behave much more similarly, with our proposed bootstrap method demonstrating 15 

very competitive performance. To complement this review, we have developed an R package, 16 

‘winnerscurse’ which can be used to implement these various Winner’s Curse adjustment 17 

methods to GWAS summary statistics.  18 

Author Summary 19 

  A genome-wide association study is designed to analyse many common genetic 20 

variants in thousands of samples and identify which variants are associated with a trait of 21 

interest. It provides estimates of association strength for each variant and variants are 22 

classified as associated if their test statistics obtained in the study pass a chosen significance 23 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518299
http://creativecommons.org/licenses/by/4.0/


2 
 

threshold. However, due to a phenomenon known as Winner’s Curse, the association 24 

estimates of these significant variants tend to be upward biased and greater in magnitude than 25 

their true values. Naturally, this bias has adverse consequences for downstream statistical 26 

techniques which use these estimates. In this paper, we look at current methods which have 27 

been designed to combat Winner’s Curse and propose modifications to these methods in 28 

order to improve performance. Using a wide variety of simulated data sets as well as real 29 

data, we perform a thorough evaluation of these methods. We use a metric which allows us to 30 

identify which methods, on average, produce adjusted estimates for significant variants that 31 

are closest to the true values. To accompany our work, we have created an R package, 32 

‘winnerscurse’, which allows users to easily apply Winner’s Curse correction methods to 33 

their data sets.  34 

Introduction 35 

It has been observed that in general, the effect size of a variant or single nucleotide 36 

polymorphism (SNP) tends to be lower in a replication study than in the genome-wide 37 

association study (GWAS) that discovered the SNP-trait association. This observation is due 38 

to the phenomenon known as Winner’s Curse. In the context of a single discovery GWAS, 39 

the term Winner’s Curse describes how the estimates of association strength for SNPs that 40 

have been deemed most significant are very likely to be exaggerated compared with their true 41 

underlying values. These estimated effect sizes can take the form of log odds ratios (log-OR) 42 

resulting from a logistic regression for a binary outcome, e.g. disease status, or regression 43 

coefficients (beta) derived from a linear regression for a quantitative trait.  44 

Dudbridge & Newcombe (1) detail two sources of Winner’s Curse in GWASs, 45 

namely ranking bias and selection bias. Ranking bias stems from ranking many SNPs, often 46 

close to a million or more, by some measure of effect size or statistical significance. In 47 
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practice, p-values are generally used. It is then expected that the bias will be greatest for those 48 

variants which have been ranked highly. Selection bias describes how the use of a stringent 49 

threshold, such as 5 × 10-8, can result in overestimated effect sizes for SNPs that exceed this 50 

threshold.  51 

Winner’s Curse bias can have many practical consequences, especially with respect to 52 

techniques which are reliant on SNP-trait association estimates obtained from GWASs. One 53 

such example is Mendelian randomization (MR), a statistical framework which uses genetic 54 

variants as instrumental variables to estimate the magnitude of the casual effect of an 55 

exposure on an outcome. In the case of two-sample MR, if the same GWAS is used to 56 

identify instrument SNPs and estimate their effects relative to the exposure, Winner’s Curse 57 

will result in the over-estimation of these SNP-exposure associations. This bias will then 58 

propagate into the causal estimate, resulting in a deflation of this estimate. On the other hand, 59 

if instrument SNPs are discovered in the same GWAS as that used to estimate the SNP-60 

outcome associations, the causal estimate will be inflated (2). In addition, Winner’s Curse has 61 

been shown to greatly increase the magnitude of weak instrument bias in these MR analyses  62 

(3). Another implication of Winner’s Curse bias is in the use of polygenic risk scores which 63 

employs GWAS results for prediction purposes. Enlarged association estimates of significant 64 

variants used in creating the polygenic score can lead to reduced accuracy in out-of-sample 65 

prediction (4). 66 

In this paper, we review existing Winner’s Curse correction methods and explore 67 

possible modifications that could be made in order to improve these methods. However, 68 

eliminating this bias induced by Winner’s Curse is known to be a difficult task. Several bias 69 

reduction approaches have been proposed in recent years, with one of the earliest being the 70 

Conditional Likelihood method suggested by Ghosh et al. (5). This method makes an 71 

adjustment to the association estimate of each SNP which has been deemed significant, i.e. 72 
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those with p-values less than the specified genome-wide significance threshold. In contrast to 73 

this approach in which the correction is performed to each SNP separately, independently of 74 

estimated associations of other SNPs, alternative methods have been suggested which involve 75 

the use of all SNPs, including those which do not pass the threshold, in order to produce bias-76 

reduced estimated effect sizes. The empirical Bayes method described by Ferguson et al. (6) 77 

determines a suitable correction for each SNP by using the collective distribution of all effect 78 

sizes. Bigdeli et al. (7) suggested the use of FDR Inverse Quantile Transformation (FIQT), 79 

while Faye et al. (8) proposed a bootstrap shrinkage estimator with application to the GWAS 80 

setting. As this bootstrap approach requires individual-level data, we propose an alternative 81 

form of this method which uses bootstrapping with summary statistics to make corrections.  82 

The focus in this paper is on methods which attempt to reduce the effect of the bias 83 

induced by Winner’s Curse using only GWAS summary statistics, not individual-level data, 84 

the reason being that approaches based on summary data tend to be more computationally 85 

efficient, in terms of run time and memory efficiency. Furthermore, GWAS summary 86 

statistics are much more accessible and are more widely used in epidemiological techniques 87 

such as MR. In addition, there exist methods which use both a discovery and a replication 88 

GWAS in order to make suitable corrections to estimated effect sizes of significant SNPs. 89 

Examples include the UMVCUE of Bowden and Dudbridge (9) and an additional conditional 90 

likelihood method, Zhong and Prentice (10). That said, the concentration of our work detailed 91 

here is on techniques which have been designed for use when a replication sample is 92 

unavailable.   93 

As mentioned above, we have made amendments to existing Winner’s Curse 94 

correction methods to address certain weaknesses. In particular, we investigated 95 

modifications that could be made to the empirical Bayes method in order to ensure that it 96 

makes better adjustments to association estimates. Following this review of correction 97 
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methods, a rigorous evaluation and comparison of these methods was performed. This 98 

assessment took place by means of a simulation study as well as engagement with three real 99 

data sets. Simulations allowed us to compare methods easily over a wide range of different 100 

possible genetic architectures. We then used UK Biobank (UKBB) body mass index (BMI), 101 

type 2 diabetes (T2D) and height data sets to see how these techniques would perform in 102 

more realistic settings in which a large degree of linkage disequilibrium (LD) exists. In both 103 

instances, assessment of methods was predominantly based on the computation of estimated 104 

mean squared error (MSE) over significant SNPs. A notable challenge that was encountered 105 

at the start of the work discussed in this paper was the lack of available software to 106 

implement these various correction methods. Therefore, to complement this review, we have 107 

developed an R package, namely ‘winnerscurse’ 108 

(https://github.com/amandaforde/winnerscurse), which can be used to apply a number of 109 

Winner’s Curse adjustment methods to GWAS summary statistics. Techniques which require 110 

a replication GWAS are also included in this package.  111 

Materials and methods  112 

Throughout this paper, we let 𝑍𝑖 =
�̂�𝑖

se(�̂�𝑖)̂  and 𝜇𝑖 =
𝛽𝑖

se(�̂�𝑖)̂  with the assumption that 113 

 𝑍𝑖~ 𝑁(𝜇𝑖, 1) (1) 

asymptotically, in which βi denotes the true effect size of SNP i for i = 1, …, N, �̂�𝑖 its 114 

estimated effect size, with respect to a trait of interest, and se(�̂�𝑖)
̂  its estimated standard error. 115 

N represents the total number of SNPs in the discovery GWAS. Depending on the type of 116 

phenotype, be it a disease or a quantitative trait, this estimated effect size can represent a log 117 

odds ratio or a regression coefficient attained from a linear regression, respectively.  118 

Conditional Likelihood 119 
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As mentioned, the conditional likelihood method of Ghosh et al. (5) notably differs in 120 

its approach at making Winner’s Curse corrections from the other methods evaluated in this 121 

paper. Adjustments are made to the estimated effect sizes of only those SNPs which satisfy |z| 122 

> c, where c is the value corresponding to the pre-specified significance threshold. The 123 

reduction in estimated effect size for each significant SNP is imposed independently of other 124 

SNPs and is directly determined by the value of c. Recognizing that a SNP has been deemed 125 

significant, the corresponding conditional likelihood is given by: 126 

 
𝐿𝑐(𝜇𝑖) =  𝑝𝜇𝑖

(𝑧𝑖 | |𝑍𝑖| > 𝑐) =  
𝑝𝜇𝑖

(𝑧𝑖)

𝑃𝜇𝑖
(|𝑍𝑖| > 𝑐)

=  
𝜙(𝑧𝑖 − 𝜇𝑖)

𝛷(−𝑐 + 𝜇𝑖) +  𝛷(−𝑐 − 𝜇𝑖)
 (2) 

in which 𝜙(𝑥) =  
1

√2𝜋
 𝑒−

𝑥2

2  , the probability density function of the standard Gaussian 127 

distribution and Φ(𝑥) =  
1

√2𝜋
∫ 𝑒−𝑡2/2 𝑑𝑡

𝑥

−∞
, the corresponding cumulative distribution 128 

function (cdf). In general, c takes the form of 𝑐 =  Φ−1 (1 −
𝛼

2
), with α being a threshold to 129 

which a Bonferroni correction has been applied in order to control for family-wise error rate, 130 

e.g. 5 × 10-8.     131 

Using this conditional likelihood, three estimators of µi, or equivalently of βi as any 132 

estimator for µi can be used to produce an estimator for βi by simply multiplying it by se(�̂�𝑖)̂, 133 

were proposed. The first, 𝜇𝑖1 is the obvious conditional maximum likelihood estimator:  134 

 𝜇𝑖1 =  arg max𝜇𝑖
𝐿𝑐(𝜇𝑖) (3) 

while the second, 𝜇𝑖2 is defined as 135 

 
𝜇𝑖2 =  

∫ 𝜇𝑖𝐿𝑐(𝜇𝑖)𝑑𝜇𝑖
∞

−∞

∫ 𝐿𝑐(𝜇𝑖)𝑑𝜇𝑖
∞

−∞

 . (4) 

This is the mean of the random variable that follows the distribution Lc(µi), normalized to 136 

ensure a proper density. However, it was observed that for instances in which the true effect 137 

size, βi is close to that of a null effect, the estimator 𝜇𝑖2 has greater mean squared error than 138 
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𝜇𝑖1 but for true effect sizes further from zero, 𝜇𝑖2 performs better. Therefore, the use of 𝜇𝑖3 =139 

�̃�𝑖1 + �̃�𝑖2 

2
 , which can combine the strengths of these two estimators in order to curtail Winner’s 140 

Curse bias for significant SNPs more accurately, was suggested.  141 

Empirical Bayes 142 

Motivated by Efron’s empirical Bayes implementation of Tweedie’s formula to 143 

correct for selection bias (11), the empirical Bayes method detailed by Ferguson et al. (6) 144 

focuses on the importance of sharing information between SNPs in order to make 145 

adjustments, through the exploitation of the empirical distribution of all effect sizes. This is a 146 

notably different approach to that of the previously discussed conditional likelihood method, 147 

which when making a correction to the estimated effect size of a particular SNP essentially 148 

fails to acknowledge the existence of any other SNPs.  149 

Under the normal sampling assumption described by Eq (16), Tweedie’s formula 150 

describes the relationship between the posterior mean, E(µ|z), and the marginal density 151 

function, p(z), as 152 

 
𝐸(𝜇|𝑧) = 𝑧 + 

𝑑

𝑑𝑧
 log 𝑝(𝑧) (5) 

Amazingly, provided one can estimate p(z), Tweedie’s formula facilitates estimation of the 153 

posterior mean in complete absence of knowledge of the prior distribution, p(µ), which in this 154 

instance is the true distribution of standardized effect sizes across the genome. Thus, the 155 

estimator of µi proposed by this method takes the form of 156 

 
𝜇𝑖 =  𝐸(𝜇𝑖|𝑧𝑖)̂ =  𝑧𝑖 +  

𝑑

𝑑𝑧𝑖
 log 𝑝(𝑧𝑖)̂ . (6) 

Estimation of log p(z) occurs upon application of the following steps. First, partitions 157 

of the interval [z1, zN] of identical width are formed, in which the z-statistics have been 158 
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arranged in ascending order. The number of z-statistics which fall inside each partition are 159 

noted and regressed against a set of natural cubic spline basis functions with knots located at 160 

the midpoint of each partition, using a Poisson generalized linear model. Ferguson et al. (6) 161 

suggest choosing the number of basis functions so that the Bayesian Information Criterion 162 

(BIC) is minimized for the model. The fitted regression function at z is then used to obtain the 163 

estimate for log p(z), and subsequently, 𝜇𝑖 for i = 1, …, N, by means of numerical 164 

differentiation.  165 

Ferguson et al. (6) show that if the true marginal density, p(z), could be used here, 166 

then the empirical Bayes estimator would perform optimally at minimizing the mean squared 167 

error (MSE) over all SNPs. However, since it is only an estimate of p(z) that can be obtained, 168 

this optimal behaviour is not guaranteed. This is especially a concern in the extreme tails of 169 

the distribution where the z-statistics of the most significant SNPs lie as it is more difficult to 170 

accurately estimate p(z) in these regions. Ferguson et al. (6) considered an ad hoc strategy to 171 

assist in overcoming this issue. The suggested approach involves the combination of this 172 

estimator with the conditional likelihood estimator, in a manner which is determined by the 173 

estimators’ respective lengths of 95% confidence and credible intervals. Here, we instead 174 

investigated 5 alternative modifications to the original empirical Bayes method described 175 

above in order to better stabilize the tail of the estimated marginal density, 𝑝(𝑧)̂ and its 176 

derivative, particularly in the context of strong LD that is observed in high density 177 

genotyping arrays. These variations avoid the unappealing combination of two appreciably 178 

different estimators, empirical Bayes and conditional likelihood. The explored modifications 179 

were:  180 

- Altering the minimum-BIC estimated spline function to be log-linear beyond the 10th 181 

largest negative and the 10th largest positive z-statistics 182 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518299
http://creativecommons.org/licenses/by/4.0/


9 
 

- Limiting the number of knots in the spline, in particular using 7 degrees of freedom as 183 

originally suggested by Efron (11) 184 

- Utilizing smoothing splines, rather than natural splines, through the gam function in 185 

the R package mgcv (12), to avoid specifying knot positions, assuming a poisson 186 

distribution for the partition counts  187 

- As above, but this time using a more realistic negative binomial distribution for these 188 

counts 189 

- Employing splines with additional shape constraints, through the scam function in the 190 

R package scam (13), to enforce monotonicity of the estimated density function, 𝑝(𝑧)̂ 191 

More information about these modifications and their rationale is given in the supplementary 192 

material.  193 

FDR Inverse Quantile Transformation 194 

FDR Inverse Quantile Transformation (FIQT), as proposed by Bigdeli et al. (7), 195 

employs a straightforward two-step procedure in order to produce less biased association 196 

estimates. First, a FDR (false discovery rate) multiple testing adjustment is applied to the p-197 

values of all SNPs, giving FDR adjusted p-values pi
*, i = 1, …, N. Following this, these 198 

adjusted p-values are transformed back to the 𝑧-statistic scale by means of an inverse 199 

Gaussian cumulative distribution function (cdf) and for each SNP, it is ensured that this new 200 

z-statistic, 𝑧𝑖
∗̂, has the same sign as its original effect size. Mathematically, 𝑧𝑖

∗̂, i = 1, …, N, 201 

can be described as 202 

 
𝑧𝑖

∗̂ =  sign(𝑧𝑖)𝛷−1 (1 −
𝑝𝑖

∗

2
) . (7) 

For SNP i, its new estimated effect size is simply calculated as 𝛽�̂� = 𝑧𝑖
∗̂ se(𝛽�̂�)̂.  203 
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The rationale that led to the use of this method is based on the analogy between 204 

performing multiple testing adjustments to p-values and reducing Winner’s Curse bias in 205 

estimated SNP effect sizes, in which these effect sizes are in the form of z-statistics. In the 206 

attempt to correct for Winner’s Curse, a shrinkage towards the null effect of zero is generally 207 

incurred by the z-statistics while the application of a multiple testing adjustment to p-values 208 

sees the growth of the p-values towards one, the null value. 209 

This multiple testing adjustment is imposed through the implementation of the R 210 

function p.adjust. This is followed by the use of the R function qnorm for the purpose of 211 

back-transformation. However, near zero p-values can prove problematic when evaluating 212 

qnorm and thus, a restraint is incorporated in FIQT which results in the association estimates 213 

of SNPs with very large z-statistics, e.g. greater than 37, failing to be adjusted.  214 

Bootstrap 215 

Inspired by the bootstrap resampling method detailed in Sun et al. (14), we have 216 

established a similar approach which can be easily applied to published sets of GWAS 217 

summary statistics without requiring original individual-level data. In addition, a second 218 

advantage of our new method is a considerable improvement in computational efficiency 219 

over the method described in Sun et al. (14).   220 

This procedure begins with arranging all N SNPs according to their original z-221 

statistics, 𝑧𝑖 =
�̂�𝑖

se(�̂�𝑖)̂ , in descending order, that is a labelling of SNPs is assumed such that z1 > 222 

z2 > ··· > zN . A randomized estimate of the extent of ranking bias for the kth largest z-statistic 223 

is calculated by means of the parametric bootstrap as follows: 224 

1) A value �̂�𝑖
b is simulated for SNP i, i = 1, …, N, independently, from a Gaussian 225 

distribution with mean �̂�𝑖 and standard deviation se(�̂�𝑖)
̂ , i.e.  226 
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 �̂�𝑖
b ~ 𝑁 (�̂�𝑖, se(�̂�𝑖)

̂ ) . (8) 

 227 

2) Upon obtaining �̂�𝑖
b for i = 1, …, N, the zi

b-statistic of SNP i is defined as 228 

 
𝑧𝑖

b =
�̂�𝑖

b

se(�̂�𝑖)
̂

 . (9) 

We define A(k) as the index corresponding to the kth largest entry in the vector: 229 

[𝑧1
b, … , 𝑧𝑁

b ] = [
�̂�1

b

se(�̂�1)̂ , … ,
�̂�𝑁

b

se(�̂�𝑁)̂ ]. 230 

3) Then, the estimated bias of SNP k, the SNP with the k th largest original z-statistic, 231 

takes the following form:  232 

 
bias𝑘 =  

�̂�𝐴(𝑘)
b − �̂�𝐴(𝑘)

oob  

se(�̂�𝐴(𝑘))̂
=  

�̂�𝐴(𝑘)
b − �̂�𝐴(𝑘) 

se(�̂�𝐴(𝑘))̂
 ,  (10) 

in which �̂�𝐴(𝑘)
b  is the bootstrap value of the SNP ranked in position k in the ordering of 233 

zi
b-statistics, �̂�𝐴(𝑘)

oob = �̂�𝐴(𝑘) is that same SNP’s original β estimate and se(�̂�𝐴(𝑘))̂  its 234 

standard error.  235 

In the next step of the process, a cubic smoothing spline is fitted to the data in which the z-236 

statistics are considered as the inputs and biask, their corresponding outputs. The predicted 237 

values from this model fitting provides new estimates for the bias correction, biask
* for each 238 

SNP. This additional stage in which biask
* is obtained reduces the need for more than one 239 

bootstrap iteration for each SNP in order to ensure competitive performance of the method. 240 

This results in a faster approach with increased accuracy. Finally, the new estimate for the 241 

true effect size of SNP k, the SNP with the kth largest original z-statistic, is defined as: �̂�𝑘
∗ =242 

 �̂�𝑘 − se(�̂�𝑘)̂  ∙ bias𝑘
∗
. 243 
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In addition to those mentioned previously, there are several notable differences 244 

between our algorithm described above and the method proposed by Sun et al. (14). Firstly, it 245 

is the parametric bootstrap that is used here to estimate the magnitude of bias for each SNP as 246 

opposed to the more common nonparametric bootstrap which requires individual-level data. 247 

Our method draws only one bootstrap resample, i.e. only one bootstrap value �̂�𝑖
b is simulated 248 

for SNP i, i = 1, …, N. It also includes an extra step which involves the use of a smoothing 249 

spline. In contrast, Sun et al. (14) express the need for a number of bootstrap samples, e.g. at 250 

least 100, in their approach. Furthermore, our algorithm based on the parametric bootstrap 251 

only corrects for ranking bias, and not threshold-selection bias. 252 

Simulation study 253 

The simulation study followed a factorial design in which GWAS summary statistics 254 

were simulated for a quantitative trait under 8 different genetic architectures, described by 255 

combinations of three parameters, namely sample size n, heritability h2, polygenicity 256 

(proportion of effect SNPs) π. The following the values chosen for these parameters:  257 

- sample size 𝑛 ∈ {30000, 300000} 258 

- heritability ℎ2 ∈ {0.3,0.8} 259 

- polygenicity 𝜋 ∈ {0.01,0.001} 260 

Assuming a selection coefficient equal to zero and a normal distribution of effect sizes, for a 261 

fixed array of N = 1,000,000 SNPs, our strategy entailed imposing a simple correlation 262 

structure on the SNPs in order to imitate the presence of linkage disequilibrium (LD) in real 263 

data. It was assumed that the same correlation structure exists in independent blocks of 100 264 

SNPs. Thus, for each block of 100 SNPs, the estimated effect sizes, �̂�𝑖 were simulated using:  265 
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�̂� ~ 𝑁 (𝑫−

1
2𝑹𝑫

1
2𝒃, 𝑫−

1
2𝑹𝑫−

1
2𝜎2). (11) 

Here, b is a vector containing the true SNP-trait effect sizes which have been scaled to ensure 266 

that the phenotype has variance 1, i.e. σ2 = 1. The matrix D is a diagonal 100 × 100 matrix, in 267 

which 𝑑𝑖 = 𝑛 ∙ 2 ∙ maf𝑖(1 − maf𝑖) and mafi is the minor allele frequency of SNP i, while R is 268 

a simple 100 × 100 matrix of inter-genotype correlations, with 𝑅𝑖𝑗 = �̂�|𝑖−𝑗| and �̂� = 0.9825. 269 

The reasoning for the selection of this value for �̂� and why it was considered suitable, as well 270 

as other details regarding this simulation, are described in the supplementary material. For 271 

each SNP, values for �̂�𝑖, se(�̂�𝑖 ) ̂ and 𝐸(�̂�𝑖) were produced with 𝐸(�̂�𝑖) obtained using 𝐸(�̂�) =272 

 𝑫−
1

2𝑹𝑫
1

2𝒃. For each of these 8 different genetic architectures, 100 sets of summary statistics 273 

were simulated.  274 

The Winner’s Curse correction methods detailed in ‘Materials and methods’ were 275 

applied to each data set using the R package ‘winnerscurse’, producing adjusted estimated 276 

effect sizes, �̂�adj, 𝑖, for each SNP i, i = 1, …, N. The performance of these methods were 277 

investigated at two different significance thresholds, namely α1 = 5 × 10-8 and α2 = 5 × 10-4, 278 

with a stronger focus given to the more commonly used genome-wide significance threshold 279 

of α1 = 5 × 10-8. In order to assess each method’s ability at providing less biased SNP-trait 280 

association estimates, both the estimated change in mean squared error (MSE) and estimated 281 

change in root mean squared error (RMSE) of significant SNPs due to method 282 

implementation were computed for each data set and method. For simplicity, let i = 1, …, Nsig 283 

represent indexes for the significant SNPs in a particular simulated set of summary statistics, 284 

i.e. Nsig is the number of SNPs which satisfy |zi| > c with |𝑧𝑖| = |
�̂�𝑖

se(�̂�𝑖)̂ |, 𝑐 =  Φ−1 (1 −
𝛼

2
) and 285 

𝛼 ∈ {𝛼1, 𝛼2}. Then, the estimated change in MSE of significant SNPs may be defined as: 286 
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 1

𝑁sig
∑ (�̂�adj,𝑖 − 𝛽𝑖)

2𝑁sig

𝑖=1
−

1

𝑁sig
∑ (�̂�𝑖 − 𝛽𝑖)

2𝑁sig

𝑖=1
 (12) 

while the estimated change in RMSE is defined similarly as: 287 

 
√

1

𝑁sig
∑ (�̂�adj,𝑖 − 𝛽𝑖)

2𝑁sig

𝑖=1
− √

1

𝑁sig
∑ (�̂�𝑖 − 𝛽𝑖)

2𝑁sig

𝑖=1
. (13) 

The change in MSE and RMSE for each method was calculated for only those data sets in 288 

which at least one significant SNP was detected. In addition to these two metrics, the relative 289 

change in MSE, which is equal to the change in MSE divided by the naïve MSE, was 290 

computed in a similar manner. For a given correction method, this value provides the 291 

percentage improvement in MSE due to applying that method to the set of summary statistics.  292 

In addition to the above simulation set-up, GWAS summary statistics were simulated 293 

and methods evaluated under the assumption that SNPs were independent. In this instance, 294 

the study was extended to 24 genetic architectures in which the selection coefficient S took 295 

values -1 and 1 as well as 0. This simulation process which incorporates an independence 296 

assumption was repeated in a similar fashion for a binary trait with a normal distribution of 297 

effect sizes. Furthermore, a quantitative phenotype with a bimodal effect size distribution as 298 

well as one with a skewed distribution were also considered. In order to reduce computation 299 

time, only 50 sets of summary statistics were simulated for each combination of the four 300 

parameters for these three additional situations.  301 

Empirical analysis 302 

In order to compare the performance of these Winner’s Curse correction methods with 303 

respect to real data, three different UK Biobank data sets were used, namely body mass index 304 

(BMI), height and type 2 diabetes (T2D). As with real data, the true effect size of each SNP is 305 

unknown and so it is more difficult to assess how much each method reduces the bias induced 306 

by Winner’s Curse. To overcome this challenge, each original large data set was randomly 307 
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split in two, leaving between 166,172 and 166,687 individuals in each of the six smaller data 308 

sets. This provided the ability to execute two independent GWASs of similar sample size for 309 

each trait in which one GWAS was designated as the discovery GWAS and the other the 310 

replication GWAS. The unbiased replication GWAS association estimates can then be used 311 

as proxies for the true effect sizes of the SNPs found to be significant in the discovery 312 

GWAS. PLINK 2.0 (15) was used to perform quality control as well as each of the statistical 313 

analyses. 314 

The required quality control steps which took place beforehand included the removal 315 

of related individuals. Samples which had been identified as outliers with respect to 316 

heterozygosity and missingness together with samples with discordant sex information and 317 

those suffering from chromosomal aneuploidy were also discarded. Furthermore, non-318 

European samples which were identified by principal component analysis (PCA) using 1000 319 

Genomes data were removed. With respect to variants, only those with an information score 320 

greater than 0.8, a minor allele frequency greater than 0.01, a genotyping rate of at least 98% 321 

and those that passed the Hardy-Weinberg test at the specified significance threshold of 1 × 322 

10-8 were included.  323 

The methods of interest were applied to the summary statistics of each discovery 324 

GWAS using the R package ‘winnerscurse’. Evaluation took place by computing the 325 

estimated MSE of Nsig significant SNPs in that GWAS, defined as: 326 

 1

𝑁sig
∑ (�̂�disc,adj,𝑖 − �̂�rep,𝑖)

2𝑁sig

𝑖=1
−

1

𝑁sig
∑ (se(�̂�disc,𝑖)

̂ )
2𝑁sig

𝑖=1
.  (14) 

For each of the three traits, it was possible to evaluate the performance of methods twice as in 327 

each case, the original roles of the two independent data sets, i.e. discovery and replication, 328 

could be switched and re-evaluation of methods could then take place with respect to the 329 

SNPs that were deemed significant in this new discovery GWAS. 330 
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Results  331 

Simulation study 332 

When is winner’s curse bias most prominent? 333 

A simulation study in which a simple correlation structure was imposed on the set of 334 

N = 1,000,000 SNPs was first executed, as described in ‘Materials and methods’. Before 335 

application of the Winner’s Curse correction methods to the sets of summary statistics, an 336 

attempt to gain an insight into the simulation scenarios in which Winner’s Curse bias is most 337 

prominent was made. This was done by computing the average number of significant SNPs, 338 

the average naïve MSE of significant SNPs and the average proportion of significant SNPs 339 

that had significantly overestimated effect sizes in each setting with respect to two 340 

significance thresholds, 5 × 10-8 and 5 × 10-4. A SNP is defined as being significantly 341 

overestimated or as having a significantly more extreme effect size estimate if it satisfies the 342 

condition: 343 

 |�̂�𝑖| > |𝛽𝑖| + 1.96 ∙ se(�̂�𝑖)
̂  (15) 

Thus, the proportion of significant SNPs that are significantly overestimated is considered to 344 

be representative of the proportion of significant SNPs with effect size estimates that greatly 345 

suffer from Winner’s Curse bias. As detailed in S1 Table, it was clear that as sample size was 346 

increased from 30,000 to 300,000, this proportion of significant SNPs decreased. The other 347 

two parameters which played key roles in defining the various simulated genetic architectures 348 

were heritability and polygenicity. It was observed that the proportion of significantly 349 

overestimated significant SNPs decreased when heritability was increased from 0.3 to 0.8, 350 

but when the value representing trait polygenicity was increased from 0.001 to 0.01, this 351 

proportion decreased.  352 
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In fact, it was also noted that as the number of significant SNPs increased, both the 353 

MSE of significant SNPs and the proportion of these that were significantly overestimated 354 

decreased. This can be clearly seen in S1 Fig. This indicates that as the number of samples in 355 

a study and as the number of SNPs passing the significance threshold increases, bias induced 356 

by Winner’s Curse will be less of an issue among significant SNPs. In terms of genetic 357 

architecture characteristics, these results suggest that the presence of Winner’s Curse bias in 358 

the estimated effect sizes of significant SNPs should be of a greater concern when 359 

investigating traits with lower heritability or traits which have a larger proportion of effect 360 

SNPs.  361 

Evaluation of performance at p < 5 × 10-8 362 

With respect to the evaluation of methods, we focus on the results of computing the 363 

quantity ‘change in RMSE over all significant SNPs due to method implementation’ for each 364 

method, with obtaining a negative value being desirable. These results are provided in S2 and 365 

S5 Tables. At a threshold of 5 × 10-8, several observations were notable. Firstly, for scenarios 366 

in which sample size has been designated the greater value of 300,000, the effect of applying 367 

the methods is on a much smaller scale to those scenarios with sample sizes of 30,000. This is 368 

evident from the large difference in the values on the y-axis between plots (A) and (B) of Fig 369 

1. This observation ties in with the fact that the magnitude of Winner's Curse bias is greater at 370 

n = 30,000. At this 5 × 10-8 significance threshold, the conditional likelihood methods are 371 

seen to perform poorly, especially when sample sizes are increased to 300,000. In most 372 

instances, these methods provide worse association estimates than the naïve approach, often 373 

increasing the RMSE. The reason for this observation is over-correction of estimated effect 374 

sizes, especially those that lie close to the significance threshold.  375 
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Fig 1. Estimated change in RMSE of significant SNPs at threshold 5 × 10-8 for each method and 376 

simulation setting, with a simple correlation structure imposed on the set of SNPs. The estimated 377 

change in RMSE of significant SNPs at a threshold of 5 × 10-8 (y-axis), as defined by Eq (13), is 378 

plotted for each correction method (x-axis), for each of the eight simulation settings. This figure 379 

corresponds to simulation settings in which a simple correlation structure has been imposed on the set 380 

of SNPs. Two four-panel plots, (A) and (B), are shown in the figure, in which (A) contains results 381 

related to settings with a sample size of 30,000 and (B) contains results for sample sizes of 300,000. 382 

The rows of these multi-panel plots represent heritability and the columns represent the proportion of 383 

effect SNPs. Each panel contains a boxplot for each correction method. As 100 sets of summary 384 

statistics were simulated for each simulation setting, an individual boxplot displays the distribution of 385 

estimated change in RMSE values obtained across the 100 sets with respect to a particular method and 386 

setting. The solid black line in each panel, representing no change in RMSE, is included in order to 387 

highlight which methods consistently provide negative values for the estimated change in RMSE. 388 

These methods are considered to be the best performing Winner’s Curse correction methods.  389 

 390 

The novel bootstrap method is one of the most consistent methods at providing less 391 

biased SNP-trait association estimates at this threshold. In all situations depicted, it has one of 392 
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the largest negative values for the change in RMSE of significant SNPs and on average, 393 

improves the MSE by 26% across the 8 settings, as shown in S4 Table. FIQT tends to 394 

perform in a somewhat similar manner to this bootstrap method. With respect to the empirical 395 

Bayes method and its variations, for sample sizes of 300,000, the best performing versions 396 

were the original empirical Bayes method, ‘EB-gam-nb’ and ‘EB-scam’. Note that the 397 

original empirical Bayes method is the form most similar to that proposed in Ferguson et al. 398 

(6) which also includes a restriction on the tails of the distribution of z-statistics. With the 399 

lower sample size, all variations perform very similarly. However, the empirical Bayes 400 

variants ‘EB-df’ and ‘EB-gam-po’ performed less well overall. In the case of ‘EB-gam-po’, 401 

this might be partly due to convergence problems that sometimes occurred in obtaining the 402 

poisson regression fit. In general, we advise caution in utilizing the empirical Bayes results in 403 

the context of convergence warnings from R. 404 

Evaluation of performance at p < 5 × 10-4 405 

A lower threshold of 5 × 10-4 was also investigated. Less emphasis is placed on the 406 

results obtained at this threshold as it is possible that many false positives are detected here, 407 

i.e. many SNPs that in fact have a true effect size of zero pass the significance threshold, 408 

although lower thresholds may be useful for the construction of polygenic risk scores. 409 

Therefore, as these Winner’s Curse correction methods are all considered to be shrinkage 410 

methods, improvements in the RMSE over all significant SNPs would be expected. However, 411 

as can be seen in S3 Fig, positive values are witnessed at this threshold when sample sizes are 412 

large. However, these positive values most often occur for the conditional likelihood methods 413 

which seem to be the worst performers overall. It seems here that the most consistent and best 414 

performing methods are the bootstrap method, the original empirical Bayes method and the 415 

empirical Bayes method which uses shape constrained additive models (SCAMs). These 416 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518299
http://creativecommons.org/licenses/by/4.0/


20 
 

methods all reduce the MSE of significant SNPs at this threshold by an average of at least 417 

32%, as shown in S7 Table.  418 

Additional simulations in absence of Linkage Disequilibrium 419 

In order to demonstrate potential performance of the Winner’s Curse methods in the 420 

context of SNP-trait associations from genome-wide arrays with lower SNP density or LD-421 

pruned datasets, we also examined the less complex situation in which SNPs are independent. 422 

The results of these extra simulations are shown in S4-S11 Figs and described in depth in the 423 

supplementary material. In this setting, with a normal effect size distribution, the most 424 

consistent methods in terms of reducing the RMSE of significant SNPs were the original 425 

empirical Bayes method and ‘EB-gam-nb’, the variation of the empirical Bayes method 426 

which employs smoothing splines and assumes a negative binomial count distribution. Just as 427 

was observed in the simulations with linkage disequilibrium, the conditional likelihood 428 

methods perform poorly and often result in an increase in the evaluation metric in comparison 429 

to the naïve approach, while the proposed bootstrap method continued to exhibit competitive 430 

performance.  431 

Empirical analysis  432 

The results of an initial exploration of the six UK Biobank sets of summary statistics 433 

are detailed in Table 1. From trait to trait, there is a large difference in the number of SNPs 434 

with p-values lower than the genome-wide significance threshold of 5 × 10-8. Values for the 435 

proportion of these SNPs with significantly overestimated effect sizes in each discovery 436 

GWAS are included. A comparison of BMI and height GWASs at the 5 × 10-8 threshold tends 437 

to indicate that as the number of significant SNPs increases, the proportion that are 438 

significantly overestimated decreases. This trend is even more apparent at the larger threshold 439 

of 5 × 10-4, and as stated above, was also clearly observed in the simulated data.  440 
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Table 1. The number of significant SNPs at two significance thresholds, 5 × 10-8 and 5 × 10-4, 441 

with proportions that indicate the extent of Winner’s Curse bias for each data set.  442 

GWAS No. sig. 

SNPs 

(5 × 10-8) 

Prop. sig. 

SNPs with 

smaller 

replication 

estimate  

(5 × 10-8) 

Prop. sig. SNPs 

significantly 

overestimated 

(5 × 10-8) 

No. sig. 

SNPs  

(5 × 10-4) 

Prop. sig. 

SNPs with 

smaller 

replication 

estimate  

(5 × 10-4) 

Prop. sig. SNPs 

significantly 

overestimated 

(5 × 10-4) 

BMI 1 6,908 0.7135 0.2251 94,173 0.8365 0.3386 

BMI 2 7,951 0.8009 0.3202 98,351 0.8455 0.3604 

T2D 1 31 0.0645a 0.0645 5,832 0.9830 0.8433 

T2D 2 76 1 0.1579 5,507 0.9951 0.8397 

Height 1 70,020 0.6444 0.1829 257,000 0.6940 0.2095 

Height 2 70,634 0.6824 0.1772 268,497 0.7179 0.2406 

Table 1 details an intial exploration of the six UK Biobank data sets. The number of significant SNPs 443 

identified for each data set at two significance thresholds, 5 × 10-8 and 5 × 10-4, is provided in the 444 

table. The table also contains the proportion of these significant SNPs that were seen to have smaller 445 

estimated effect sizes, in terms of absolute value, in their respective replication GWAS. The final 446 

column for each threshold provides the proportion of significant SNPs that have significantly 447 

overestimated effect sizes. The estimated effect size of a SNP has been defined as significantly 448 

overestimated according to Eq (15), but in which the true effect size is replaced by the estimated 449 

effect size obtained in the corresponding replication GWAS. These values give an indication of the 450 

extent of Winner’s Curse bias present for each data set and threshold. 451 

aWhen the first T2D data set was used for the discovery GWAS, most of the 31 significant SNPs had 452 

larger estimated effect sizes in the replication data set. Discussion of this atypical observation is 453 

included in the main text. 454 

 455 

The problem of Linkage Disequilibrium in real data  456 

Naturally, the results of engagement with real data sets are more complex than those 457 

of the simulation study. For example, it was noted that for BMI, in one instance, all 458 

significant SNPs which had a z-value greater than 15 in the discovery GWAS had association 459 
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estimates in the replication GWAS which were in fact greater. This observation can be 460 

clearly seen in S12 Fig in which z-statistics are plotted against estimated bias for each data 461 

set, with estimated bias of SNP i defined as: 462 

 bias�̂� = �̂�disc,𝑖 − �̂�rep,𝑖 (16) 

This finding is of course contrary to what is expected. However, these SNPs with z-values 463 

greater than 15 were all in strong linkage disequilibrium and thus, represented a single 464 

independent signal. It can be seen in Table 1 that a similar result was noted when the first 465 

T2D data set was used as the discovery GWAS. When using a significance threshold of 5 × 466 

10-8, most of the 31 significant SNPs had larger estimated effect sizes in the replication 467 

GWAS than in the discovery GWAS. In these cases, we need to be careful not to over-468 

generalize or interpret the results of applying a Winner’s Curse correction, given that there 469 

may be very few independent association signals at p < 5 × 10-8. 470 

Evaluation of performance at p < 5 × 10-8 471 

As stated in ‘Materials and methods’, the methods were evaluated using the estimated 472 

MSE of SNPs which passed the chosen significance threshold. Using the threshold of 5 × 10-473 

8, the estimated MSE for each method and GWAS combination are displayed in Table 2 474 

while Fig 2 provides a corresponding illustration of these values. In this figure, the light blue 475 

bar as well as the black dotted horizontal line mark the estimated MSE obtained using the 476 

naïve approach, i.e. when no Winner’s Curse correction method has been applied and the raw 477 

effect estimates are used. This provides a standard to which the performance of each method 478 

can be directly compared with, in which it is desired that method application will result in an 479 

estimated MSE less than this approach. Similar to the section above describing the results of 480 

the simulation study, the poor performance of the conditional likelihood methods is evident. 481 
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In 5 out of the 6 independent instances, it was observed that at least one of these methods had 482 

a greater estimated MSE than that of the naïve approach.  483 

Table 2. Estimated MSE of significant SNPs at threshold 5 × 10-8 for each method and data set. 484 

GWAS BMI 1 BMI 2 T2D 1 T2D 2 Height 1 Height 2 

naive 0.00065 0.00148 0.00641 0.00358 0.00142 0.00206 

CL1 0.00167 0.00162 0.00811 0.00217 0.00457 0.00408 

CL2 0.00071 0.00065 0.01004 0.00116 0.00285 0.00239 

CL3 0.00108 0.00103 0.00903 0.00159 0.00355 0.00303 

EB 0.00036 0.00058 0.02354 0.00371 0.00109 0.00146 

EB df=7 0.00031 0.00077 0.00701 0.00251 0.00189 0.00179 

EB scam 0.00033 0.00058 0.00719 0.00252 0.00116 0.00141 

EB gam-po 0.00029 0.00061 0.00706 0.00194 0.0014 0.00153 

EB-gam-nb 0.00031 0.00059 0.00703 0.0033 0.00118 0.00145 

boot 0.00034 0.00057 0.02103 -0.0003 0.00111 0.00148 

FIQT 0.00039 0.00056 0.0239 -0.0013 0.00115 0.00149 

Table 2 provides values for the estimated MSE of significant SNPs, as defined by Eq (14), using a 485 

threshold of 5 × 10-8, for each Winner’s Curse correction method and UK Biobank data set. The first 486 

row of values represents the estimated MSE obtained if the unadjusted estimated effect sizes of the 487 

discovery GWAS are used and no correction method has been applied. This is followed by rows 488 

which are representative of the use of different correction methods, i.e. the conditional likelihood 489 

based methods, the empirical Bayes method and its variations, the proposed bootstrap method and 490 

FIQT, respectively. As it is desirable to obtain lower estimated MSE values upon application of a 491 

method, values which are greater than their corresponding naïve value have been shaded in grey. The 492 

light green shaded cells highlight the method which resulted in the lowest estimated MSE value for 493 

each data set.  494 

Fig 2. Estimated MSE of significant SNPs at threshold 5 × 10-8  for each method and data set. 495 

The estimated MSE of significant SNPs at a threshold of 5 × 10-8 (x-axis), as defined by Eq (14), is 496 

plotted for each correction method (y-axis), for each of the six data sets. The estimated MSE obtained 497 

for the naïve approach, when no Winner’s Curse correction method is applied, is included, 498 

represented by the darker green bar. The dashed black line also represents this value, in order to 499 

highlight which methods provide estimated MSE values greater or less than that of the naïve 500 

approach. All estimated MSE values plotted here are provided in Table 2. 501 
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 502 

On real data, the original empirical Bayes method proposed by Ferguson et al. (6) 503 

performed poorly, sometimes failing to adjust estimated associations downwards. This 504 
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observation motivated the proposal of possible modifications as mentioned in ‘Materials and 505 

methods’. These suggested improvements, in particular the inclusion of the shape-constrained 506 

additive models and the use of the generalized additive model, resulted in slightly more 507 

consistent reductions in MSE over significant SNPs. In fact, taking all six data sets into 508 

account, it is ‘EB-scam’ and ‘EB-gam-po’, which tend to be the best performing methods, 509 

having an average improvement on estimated MSE of greater than 29.4% over the naïve 510 

approach.  511 

However, as stated previously, we must be cautious when using the first T2D data set 512 

to evaluate methods, and also when using the second T2D data set. The problem with linkage 513 

disequilibrium and very few independent signals is common to both data sets. In Fig 2 for the 514 

first T2D data set, it is witnessed that all methods result in greater estimated MSE values than 515 

the naïve approach, with the original empirical Bayes method, bootstrap and FIQT clearly 516 

greatly shrinking the estimated effect sizes of significant SNPs away from those larger 517 

replication effect sizes. Therefore, if we exclude these two T2D data sets and re-compute the 518 

average improvement in estimated MSE for each method, it is our proposed bootstrap method 519 

which is seen to be the dominant method with an average improvement of approximately 520 

40.2%.  521 

Evaluation of performance at p < 5 × 10-4 522 

This evaluation procedure was repeated using a larger significance threshold of 5 × 523 

10-4. The results of which can be found summarised in S8 Table and Fig 3. At this threshold, 524 

for all 6 data sets, all of the methods produce estimated MSE values less than the naïve 525 

approach. Each version of the empirical Bayes method along with the bootstrap and FIQT 526 

lead to an average improvement in estimated MSE of between 65 and 70% with the 527 
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implementation of the empirical Bayes algorithm which incorporates shape constrained 528 

additive models (SCAMs) having the greatest average improvement of just over 70%.  529 

Fig 3. Estimated MSE of significant SNPs at threshold 5 × 10-4 for each method and data set. The 530 

estimated MSE of significant SNPs at a threshold of 5 × 10-4 (x-axis), as defined by Eq (14), is 531 

plotted for each correction method (y-axis), for each of the six data sets. The estimated MSE obtained 532 

for the naïve approach, when no Winner’s Curse correction method is applied, is included, 533 

represented by the darker green bar. The dashed black line also represents this value, in order to 534 

highlight which methods provide estimated MSE values greater or less than that of the naïve 535 

approach. The estimated MSE values plotted here are provided in S6 Table. 536 
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 537 

Discussion 538 
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In this article, we investigated the problem of Winner’s Curse bias which results in 539 

the estimated effect sizes of significant SNPs often being greater than their true values. Our 540 

work concentrated on methods that could be used to reduce this bias in settings in which only 541 

summary statistics of the GWAS that discovered these SNP-trait associations were available. 542 

We chose to focus on this particular situation as Winner’s Curse correction methods which 543 

only require GWAS summary data tend to be very computational efficient and furthermore, 544 

this summary data is often much easier to access than individual-level data.  545 

We performed a thorough evaluation and comparison of these methods using both 546 

simulated and real data sets. Our simulation study considered a wide range of genetic 547 

architectures including data sets in which a simple correlation structure had been imposed on 548 

the set of SNPs as well as data sets of independent SNPs. In addition, three UKBB real data 549 

sets were used for method evaluation purposes. As well as assessing currently published 550 

correction methods, we also explored several possible modifications that could be made in 551 

order to improve these methods. In particular, we looked at a number of variations of the 552 

empirical Bayes method and proposed an additional approach which uses the parametric 553 

bootstrap in order to establish suitable corrections for the estimated effect size of each SNP. 554 

The estimated mean squared error (MSE) was chosen as an appropriate metric in order to 555 

compare the methods. Due to the notable lack of software for implementation of Winner’s 556 

Curse correction methods, we developed an R package, ‘winnerscurse’, as an accompaniment 557 

to the work described in this paper. This allows users to apply all methods discussed here, as 558 

well as the proposed modifications, to their sets of GWAS summary data.  559 

As a first step in both our simulation study and engagement with real data, we 560 

computed the proportion of significant SNPs that were significantly overestimated and 561 

observed the common trend that as the number of SNPs passing the significance threshold 562 

increased, the proportion of those that were significantly overestimated decreased. This aligns 563 
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with the postulation that as sample sizes increase, Winner’s Curse bias becomes less of a 564 

concern although it still exists. However, caution must be taken when working with real data 565 

sets, especially those of binary traits, in which a very small number of SNPs have been 566 

deemed significant at a certain threshold. In this instance, it may be that the significant SNPs 567 

are representative of only one or two independent signals. For example, in our first T2D data 568 

set, while using a threshold of 5 × 10-8, we witnessed 93.5% of significant SNPs having 569 

greater replication effect size estimates than those obtained in the discovery GWAS. 570 

Fortunately, as sample sizes increase in the future and different diseases have greater 571 

numbers of true signals captured by their respective sets of significant SNPs, this issue will 572 

only be seen to present itself in rare circumstances. 573 

With respect to method performance, it was clear that the conditional likelihood 574 

methods performed poorly as in most instances, especially for p < 5 × 10-8, these methods 575 

resulted in greater values for the estimated MSE among significant SNPs than the naïve 576 

approach. The other considered methods behaved much more similarly to the extent that we 577 

cannot state that there is a clear advantage of one method over another. Thus, the choice of 578 

which method a user should apply to their set of GWAS summary statistics in order to correct 579 

for Winner’s Curse is dependent on personal preference. However, it is advised that when 580 

doing so, the possible limitations of the chosen method are understood well. Notably, the 581 

empirical Bayes methods have a clear theoretical advantage, but their performance can be 582 

restricted due to inaccurate estimation of the extreme tails of the z-statistic distribution. This 583 

estimation difficulty is particularly problematic when the existence of strong linkage 584 

disequilibrium results in clusters of associations in the tails. These clusters can be falsely 585 

detected as local modes in the distribution by automatic fitting algorithms. Some progress on 586 

improving estimation in the tails has been made here with the proposal of modifications that 587 

employ generalized additive models or shape constrained additive models. However, these 588 
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adaptations have not resulted in large enough improvements in order to claim objective 589 

superiority of the empirical Bayes methods over other approaches such as the bootstrap 590 

method or FIQT. In a setting in which the distribution of effect sizes is asymmetric, methods 591 

like the empirical Bayes and bootstrap, where the correction rule is not a function of absolute 592 

value 𝑧-statistics, possess the potential to perform better than FIQT and conditional 593 

likelihood methods. In spite of this fact, no tangible evidence of improved performance over 594 

FIQT was observed on the real data sets that we examined.  595 

With both our set of simulations and real data analysis, we have aimed to be as 596 

comprehensive as possible as it is possible that differing method performance results may 597 

occur under differing genetic architectures, but this is an obviously difficult task. Informing 598 

these simulations appropriately is particularly challenging, especially when attempting to 599 

define the true effect size distribution. However, under the assumption of independent SNPs, 600 

we also investigated scenarios which had a bimodal or skewed distribution of effect sizes, as 601 

described in the supplementary material. Furthermore, for simulations involving correlated 602 

SNPs, we have assumed a very simplistic linkage disequilibrium (LD) structure in which the 603 

minor allele frequencies have been simulated independently of this LD structure. In contrast, 604 

the use of real data permitted the analysis of method performance in a realistic setting where 605 

a large degree of LD exists. However, this was limited to only three UKBB data sets. In the 606 

case of the binary trait T2D, it must be noted that due to the very small number of significant 607 

SNPs at p < 5 × 10-8, the results are deemed rather questionable here.   608 

Due to space considerations, Winner’s Curse correction methods which require both a 609 

discovery and replication GWAS in order to make suitable adjustments to estimated effect 610 

sizes have not been examined in this manuscript, even though several of these methods have 611 

been implemented in our developed R package, ‘winnerscurse’. Furthermore, computation of 612 

standard errors of the adjusted estimated effect sizes have not been considered here. 613 
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However, for methods such as the empirical Bayes, bootstrap and FIQT, the R package, 614 

‘winnerscurse’, utilizes the parametric bootstrap in order to obtain these standard errors. This 615 

package can also be used to provide confidence intervals for estimated effect sizes which 616 

have been corrected for Winner’s Curse using the conditional likelihood methods. In two-617 

sample Mendelian randomization, it is known that as this Winner’s Curse bias can be present 618 

in the estimated SNP-exposure associations, the causal estimate will then suffer from bias. 619 

Thus, the Winner’s Curse correction methods explored in this paper can also be potentially 620 

used as plug-in corrections for two-sample MR. In addition, these methods could prove 621 

beneficial in the computation of polygenic risk scores, in order to reduce the effect of 622 

Winner’s Curse bias there.  623 
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Supporting information 670 

S1 Fig. Number of significant SNPs at threshold 5 × 10-8 plotted against the proportion of those 671 

SNPs with significantly overestimated effect sizes, for each simulation setting with a simple 672 

correlation structure imposed on the set of SNPs. For 100 iterations of each of the eight simulation 673 

settings, the number of significant SNPs using a significance threshold of 5 × 10-8 (x-axis) is plotted 674 

against the number of these SNPs with significantly overestimated effect sizes (y-axis). The estimated 675 

effect size of a SNP has been defined as significantly overestimated according to Eq (15) in the main 676 

text. This figure corresponds to simulation settings in which a simple correlation structure has been 677 

imposed on the set of SNPs. These 8 different simulated genetic architectures are defined by 678 

combinations of three parameters, sample size n, heritability h2 and polygenicity π. The parameter 679 

values that have been chosen for each simulated scenario are shown in the table, while the legend at 680 

the bottom of the plot indicates which colour corresponds to which scenario. 681 

S2 Fig. Z-statistics plotted against bias for each simulation setting, with a simple correlation 682 

structure imposed on the set of SNPs. For a single example of each of the eight simulation settings, 683 
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z-statistics (x-axis) are plotted against bias (y-axis). The z-statistic of a SNP is defined as its estimated 684 

effect size divided by the standard error of that estimated effect size while the bias of a SNP is defined 685 

as its true effect size subtracted from its estimated effect size. This figure corresponds to simulation 686 

settings in which a simple correlation structure has been imposed on the set of SNPs. These 8 687 

different simulated genetic architectures are defined by combinations of three parameters, sample size 688 

n, heritability h2 and polygenicity π. The parameter values that have been chosen for each simulated 689 

setting are shown in the subtitle of each plot. In each plot, the dark red dashed vertical line represents 690 

the z-statistic corresponding to a p-value of 5 × 10-8 and thus, any points outside these two dark red 691 

lines are SNPs with p-values passing the genome-wide significance threshold of 5 × 10-8. In a similar 692 

manner, the light red dashed vertical line represents the greater significance threshold of 5 × 10-4. The 693 

dark grey points highlight SNPs that have p-values less than 5 × 10-4 and have significantly 694 

overestimated effect sizes, as defined by Eq (15) in the main text. 695 

S3 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-4 for each method and 696 

simulation setting, with a simple correlation structure imposed on the set of SNPs. The estimated 697 

change in RMSE of significant SNPs at a threshold of 5 × 10-4 (y-axis), as defined by Eq (13) in the 698 

main text, is plotted for each correction method (x-axis), for each of the eight simulation settings. This 699 

figure corresponds to simulation settings in which a simple correlation structure has been imposed on 700 

the set of SNPs. 701 

S4 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-8 for each method and 702 

simulation setting, assuming a quantitative trait, independent SNPs and a normal effect size 703 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-8 (y-axis), 704 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 705 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 706 

settings in which it is assumed that the trait of interest is quantitative, SNPs are independent and the 707 

effect sizes follow a normal distribution. 708 
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S5 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-4 for each method and 709 

simulation setting, assuming a quantitative trait, independent SNPs and a normal effect size 710 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-4 (y-axis), 711 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 712 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 713 

settings in which it is assumed that the trait of interest is quantitative, SNPs are independent and the 714 

effect sizes follow a normal distribution.  715 

S6 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-8 for each method and 716 

simulation setting, assuming a quantitative trait, independent SNPs and a bimodal effect size 717 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-8 (y-axis), 718 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 719 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 720 

settings in which it is assumed that the trait of interest is quantitative, SNPs are independent and the 721 

effect sizes follow a bimodal distribution. Note that for this simulation set-up, the alternative 722 

variations of the empirical Bayes method have been excluded and only 50 sets of summary statistics 723 

were simulated for each setting. 724 

S7 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-4 for each method and 725 

simulation setting, assuming a quantitative trait, independent SNPs and a bimodal effect size 726 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-4 (y-axis), 727 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 728 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 729 

settings in which it is assumed that the trait of interest is quantitative, SNPs are independent and the 730 

effect sizes follow a bimodal distribution. Note that for this simulation set-up, the alternative 731 

variations of the empirical Bayes method have been excluded and only 50 sets of summary statistics 732 

were simulated for each setting. 733 
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S8 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-8 for each method and 734 

simulation setting, assuming a quantitative trait, independent SNPs and a skewed effect size 735 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-8 (y-axis), 736 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 737 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 738 

settings in which it is assumed that the trait of interest is quantitative, SNPs are independent and the 739 

effect sizes follow a skewed distribution. Note that for this simulation set-up, the alternative variations 740 

of the empirical Bayes method have been excluded and only 50 sets of summary statistics were 741 

simulated for each setting. 742 

S9 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-4 for each method and 743 

simulation setting, assuming a quantitative trait, independent SNPs and a skewed effect size 744 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-4 (y-axis), 745 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 746 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 747 

settings in which it is assumed that the trait of interest is quantitative, SNPs are independent and the 748 

effect sizes follow a skewed distribution. Note that for this simulation set-up, the alternative variations 749 

of the empirical Bayes method have been excluded and only 50 sets of summary statistics were 750 

simulated for each setting.  751 

S10 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-8 for each method 752 

and simulation setting, assuming a binary trait, independent SNPs and a normal effect size 753 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-8 (y-axis), 754 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 755 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 756 

settings in which it is assumed that the trait of interest is binary, SNPs are independent and the effect 757 

sizes follow a normal distribution. Note that for this simulation set-up, the alternative variations of the 758 

empirical Bayes method have been excluded and only 50 sets of summary statistics were simulated 759 

for each setting. 760 
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S11 Fig. Estimated change in RMSE of significant SNPs at threshold 5 × 10-4 for each method 761 

and simulation setting, assuming a binary trait, independent SNPs and a normal effect size 762 

distribution. The estimated change in RMSE of significant SNPs at a threshold of 5 × 10-4 (y-axis), 763 

as defined by Eq (13) in the main text, is plotted for each correction method (x-axis), for each of the 764 

eight simulation settings with a selection coefficient of zero. This figure corresponds to simulation 765 

settings in which it is assumed that the trait of interest is binary, SNPs are independent and the effect 766 

sizes follow a normal distribution. Note that for this simulation set-up, the alternative variations of the 767 

empirical Bayes method have been excluded and only 50 sets of summary statistics were simulated 768 

for each setting. 769 

S12 Fig. Z-statistics plotted against bias for each real data set. For each of the six real data sets, z-770 

statistics (x-axis) are plotted against estimated bias (y-axis). The z-statistic of a SNP is defined as its 771 

estimated effect size divided by the standard error of that estimated effect size while the estimated 772 

bias of a SNP is defined by Eq (15) in the main text. The title of each plot (A)-(F) indicates which 773 

real data set the plot relates to. In each plot, the dark red dashed vertical line represents the z-statistic 774 

corresponding to a p-value of 5 × 10-8 and thus, any points outside these two dark red lines are SNPs 775 

with p-values passing the genome-wide significance threshold of 5 × 10-8. In a similar manner, the 776 

light red dashed vertical line represents the greater significance threshold of 5 × 10-4. The dark grey 777 

points highlight SNPs that have p-values less than 5 × 10-4 and have significantly overestimated effect 778 

sizes. The estimated effect size of a SNP has been defined as significantly overestimated according to 779 

Eq (15) in the main text, but in which the true effect size is replaced by the estimated effect size 780 

obtained in the corresponding replication GWAS. 781 

S1 Table. The average number and MSE of significant SNPs at two significance thresholds, 5 × 782 

10-8 and 5 × 10-4, with proportions that indicate the extent of Winner’s Curse bias for each 783 

simulation scenario. S1 Table details an initial exploration of the various simulation scenarios. The 784 

values provided in the table are averages obtained across 100 simulated sets of summary statistiscs for 785 

each scenario. The top portion of the table shows the values of the parameters which define each 786 

simulation scenario, i.e. sample size, heritability and polygenicity (proportion of effect SNPs). This 787 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518299
http://creativecommons.org/licenses/by/4.0/


38 
 

table corresponds to simulation settings in which a simple correlation structure has been imposed on 788 

the set of SNPs. The number of significant SNPs identified for each scenario at two significance 789 

thresholds, 5 × 10-8 and 5 × 10-4, is provided, as well as the naive MSE of these significant SNPs, as 790 

defined by Eq (15) in the main manuscript. The table also contains the proportion of significant SNPs 791 

that were seen to have a larger estimated effect size than their true effect size, in terms of absolute 792 

value. The final row for each threshold provides the proportion of significant SNPs that have 793 

significantly overestimated effect sizes. The estimated effect size of a SNP has been defined as 794 

significantly overestimated according to Eq (15) in the main text. This metric gives an indication of 795 

the extent of Winner’s Curse bias present for each simulation scenario and threshold. 796 

S2 Table. Estimated change in RMSE of significant SNPs at threshold 5 × 10-8 for each method 797 

and simulation setting. S2 Table provides values for the estimated change in RMSE of significant 798 

SNPs, as defined by Eq (14) in the main manuscript, for each Winner’s Curse correction method and 799 

simulation scenario. This table corresponds to simulation settings in which a simple correlation 800 

structure has been imposed on the set of SNPs. The top portion of the table shows the values of the 801 

parameters which define each simulation scenario, i.e. sample size, heritability and polygenicity 802 

(proportion of effect SNPs). As described in the main manuscript, 100 sets of summary statistics were 803 

simulated for each scenario and the correction methods were applied to each set. Thus, the values 804 

shown in the remaining portion of the table are the average estimated change in RMSE of significant 805 

SNPs due to method implementation across each of these 100 sets. As it is the change in RMSE that 806 

has been computed, it is desirable to obtain a negative change, i.e. the RMSE computed upon 807 

application of the correction method is smaller than that of the naïve approach. Thus, positive values 808 

in the table have been shaded in grey, indicating poor performing methods. The light green shaded 809 

cells highlight the method which, on average, resulted in the greatest reduction in RMSE for each 810 

simulated scenario.  811 

S3 Table. Estimated change in MSE of significant SNPs at threshold 5 × 10-8 for each method 812 

and simulation setting. S3 Table provides values for the estimated change in MSE of significant 813 

SNPs, as defined by Eq (14) in the main manuscript, for each Winner’s Curse correction method and 814 
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simulation scenario. This table corresponds to simulation settings in which a simple correlation 815 

structure has been imposed on the set of SNPs. The top portion of the table shows the values of the 816 

parameters which define each simulation scenario, i.e. sample size, heritability and polygenicity 817 

(proportion of effect SNPs). As described in the main manuscript, 100 sets of summary statistics were 818 

simulated for each scenario and the correction methods were applied to each set. Thus, the values 819 

shown in the remaining portion of the table are the average estimated change in MSE of significant 820 

SNPs due to method implementation across each of these 100 sets. As it is the change in MSE that has 821 

been computed, it is desirable to obtain a negative change, i.e. the MSE computed upon application of 822 

the correction method is smaller than that of the naïve approach. Thus, positive values in the table 823 

have been shaded in grey, indicating poor performing methods. The light green shaded cells highlight 824 

the method which, on average, resulted in the greatest reduction in MSE for each simulated scenario. 825 

S4 Table. Estimated relative change in MSE of significant SNPs at threshold 5 × 10-8 for each 826 

method and simulation setting, with a simple correlation structure imposed on the set of SNPs. 827 

S4 Table provides values for the estimated relative change in MSE of significant SNPs for each 828 

Winner’s Curse correction method and simulation scenario. This table corresponds to simulation 829 

settings in which a simple correlation structure has been imposed on the set of SNPs. The top portion 830 

of the table shows the values of the parameters which define each simulation scenario, i.e. sample 831 

size, heritability and polygenicity (proportion of effect SNPs). As described in the main manuscript, 832 

100 sets of summary statistics were simulated for each scenario and the correction methods were 833 

applied to each set. Thus, the values shown in the remaining portion of the table are the average 834 

estimated relative change in MSE of significant SNPs due to method implementation across each of 835 

these 100 sets. As it is the relative change in MSE that has been computed, it is desirable to obtain a 836 

negative change, i.e. the MSE computed upon application of the correction method is smaller than 837 

that of the naïve approach. Thus, positive values in the table have been shaded in grey, indicating poor 838 

performing methods. The light green shaded cells highlight the method which, on average, resulted in 839 

the greatest relative reduction in MSE for each simulated scenario. As the final column contains the 840 

mean of each row, it shows that the bootstrap method has the greatest average estimated relative 841 
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reduction in MSE. This value of -0.2608 suggests that on average, the bootstrap method improves the 842 

MSE of significant SNPs by ≈26.08%.  843 

S5 Table. Estimated change in RMSE of significant SNPs at threshold 5 × 10-4 for each method 844 

and simulation setting. S5 Table provides values for the estimated change in RMSE of significant 845 

SNPs, as defined by Eq (14) in the main manuscript, for each Winner’s Curse correction method and 846 

simulation scenario, when a significance threshold of 5 × 10-4 is used. This table corresponds to 847 

simulation settings in which a simple correlation structure has been imposed on the set of SNPs. The 848 

top portion of the table shows the values of the parameters which define each simulation scenario, i.e. 849 

sample size, heritability and polygenicity (proportion of effect SNPs). As described in the main 850 

manuscript, 100 sets of summary statistics were simulated for each scenario and the correction 851 

methods were applied to each set. Thus, the values shown in the remaining portion of the table are the 852 

average estimated change in RMSE of significant SNPs due to method implementation across each of 853 

these 100 sets. As it is the change in RMSE that has been computed, it is desirable to obtain a 854 

negative change, i.e. the RMSE computed upon application of the correction method is smaller than 855 

that of the naïve approach. Thus, positive values in the table have been shaded in grey, indicating poor 856 

performing methods. The light green shaded cells highlight the method which, on average, resulted in 857 

the greatest reduction in RMSE for each simulated scenario. 858 

S6 Table. Estimated change in MSE of significant SNPs at threshold 5 × 10-4 for each method 859 

and simulation setting, with a simple correlation structure imposed on the set of SNPs. S6 Table 860 

provides values for the estimated change in MSE of significant SNPs, as defined by Eq (14) in the 861 

main manuscript, for each Winner’s Curse correction method and simulation scenario, when a 862 

significance threshold of 5 × 10-4 is used. This table corresponds to simulation settings in which a 863 

simple correlation structure has been imposed on the set of SNPs. The top portion of the table shows 864 

the values of the parameters which define each simulation scenario, i.e. sample size, heritability and 865 

polygenicity (proportion of effect SNPs). As described in the main manuscript, 100 sets of summary 866 

statistics were simulated for each scenario and the correction methods were applied to each set. Thus, 867 

the values shown in the remaining portion of the table are the average estimated change in MSE of 868 
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significant SNPs due to method implementation across each of these 100 sets. As it is the change in 869 

MSE that has been computed, it is desirable to obtain a negative change, i.e. the MSE computed upon 870 

application of the correction method is smaller than that of the naïve approach. Thus, positive values 871 

in the table have been shaded in grey, indicating poor performing methods. The light green shaded 872 

cells highlight the method which, on average, resulted in the greatest reduction in MSE for each 873 

simulated scenario.  874 

S7 Table. Estimated relative change in MSE of significant SNPs at threshold 5 × 10-4 for each 875 

method and simulation setting, with a simple correlation structure imposed on the set of SNPs. 876 

S7 Table provides values for the estimated relative change in MSE of significant SNPs for each 877 

Winner’s Curse correction method and simulation scenario, when a significance threshold of 5 × 10-4 878 

is used. This table corresponds to simulation settings in which a simple correlation structure has been 879 

imposed on the set of SNPs. The top portion of the table shows the values of the parameters which 880 

define each simulation scenario, i.e. sample size, heritability and polygenicity (proportion of effect 881 

SNPs). As described in the main manuscript, 100 sets of summary statistics were simulated for each 882 

scenario and the correction methods were applied to each set. Thus, the values shown in the remaining 883 

portion of the table are the average estimated relative change in MSE of significant SNPs due to 884 

method implementation across each of these 100 sets. As it is the relative change in MSE that has 885 

been computed, it is desirable to obtain a negative change, i.e. the MSE computed upon application of 886 

the correction method is smaller than that of the naïve approach. Thus, positive values in the table 887 

have been shaded in grey, indicating poor performing methods. The light green shaded cells highlight 888 

the method which, on average, resulted in the greatest relative reduction in MSE for each simulated 889 

scenario. As the final column contains the mean of each row, it shows that the original empirical 890 

Bayes method has the greatest average estimated relative reduction in MSE, when a significance 891 

threshold of 5 × 10-4 is used. This value of -0.3338 suggests that on average, this form of the empirical 892 

Bayes method improves the MSE of significant SNPs by ≈33.38%.  893 

S8 Table. Estimated MSE of significant SNPs at threshold 5 × 10-4 for each method and data set. 894 

S8 Table provides values for the estimated MSE of significant SNPs, as defined by Eq (14) in the 895 
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main manuscript, using a threshold of 5 × 10-4, for each Winner’s Curse correction method and UK 896 

Biobank data set. The first row of values represents the estimated MSE obtained if the unadjusted 897 

estimated effect sizes of the discovery GWAS are used and no correction method has been applied. 898 

This is followed by rows which are representative of the use of different correction methods, i.e. the 899 

conditional likelihood based methods, the empirical Bayes method and its variations, the proposed 900 

bootstrap method and FIQT, respectively. As it is desirable to obtain lower estimated MSE values 901 

upon application of a method, values which are greater than their corresponding naïve value have 902 

been shaded in grey. The light green shaded cells highlight the method which resulted in the lowest 903 

estimated MSE value for each data set. 904 

S1 File. Text Supplement. This file contains a more detailed description of the various proposed 905 

modifications to the empirical Bayes method, the simulation process and the evaluation of method 906 

performance using simulated data sets of independent SNPs.  907 
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