
Tissue Forge: Interactive Biological and1

Biophysics Simulation Environment2

T.J. Sego1*

James P. Sluka2

Herbert M. Sauro3

James A. Glazier2

1Department of Medicine

University of Florida, Gainesville, FL, USA

2Department of Intelligent Systems Engineering and

The Biocomplexity Institute

Indiana University, Bloomington, IN, USA

3Department of Bioengineering

University of Washington, Seattle, WA, USA

*Corresponding author

P.O. Box 100225

Gainesville, FL, 32611, USA

Email: timothy.sego@medicine.ufl.edu

3

November 27, 20224

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


Abstract5

Tissue Forge is an open-source interactive environment for particle-6

based physics, chemistry and biology modeling and simulation. Tissue7

Forge allows users to create, simulate and explore models and virtual8

experiments based on soft condensed matter physics at multiple scales,9

from the molecular to the multicellular, using a simple, consistent in-10

terface. While Tissue Forge is designed to simplify solving problems in11

complex subcellular, cellular and tissue biophysics, it supports applica-12

tions ranging from classic molecular dynamics to agent-based multicel-13

lular systems with dynamic populations. Tissue Forge users can build14

and interact with models and simulations in real-time and change simu-15

lation details during execution, or execute simulations off-screen and/or16

remotely in high-performance computing environments. Tissue Forge pro-17

vides a growing library of built-in model components along with support18

for user-specified models during the development and application of cus-19

tom, agent-based models. Tissue Forge includes an extensive Python API20

for model and simulation specification via Python scripts, an IPython con-21

sole and a Jupyter Notebook, as well as C and C++ APIs for integrated22

applications with other software tools. Tissue Forge supports installations23

on 64-bit Windows, Linux and MacOS systems and is available for local24

installation via conda.25

1 Author Summary26

Tissue Forge is a physics-based modeling and simulation software environment27

for research problems in physics, chemistry and biology. Tissue Forge supports28

modeling at a wide range of scales, from as small as the sub-nanometer, to29

as large as hundreds of micrometers, using particle-based models. It provides30

rich features for simulation development and application at all stages of model-31

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


based research, like real-time simulation visualization and interactivity, and32

off-screen batch execution, rendering, and GPU acceleration. Users can employ33

built-in models to represent a wide variety of physical processes, like chemical34

reactions, fluid convection and intercellular adhesion, or define their own models35

for agent- and rule-based modeling. Tissue Forge is open-source, free and easy to36

install, supports simulation development in C, C++ and Python programming37

languages, and can be used as integrated software or in an interactive IPython38

console and Jupyter Notebook. Tissue Forge also provides a dedicated space39

for application-specific and user-contributed modeling and simulation features,40

and developers are welcome to contribute their custom features for distribution41

in future releases.42

2 Introduction43

Computational modeling and simulation are key components of modern bio-44

logical research. Simulations codify knowledge into computable representations45

that can challenge and validate our understanding of complex biological pro-46

cesses. A well defined model not only explains currently available data but also47

predicts the outcomes of future experiments. Biological computer simulations48

can address a wide range of length scales and employ numerous numerical and49

simulation technologies. Scales include that of the atomic bond length to model50

small molecules, proteins and other biological macromolecules, the macromolec-51

ular scale to model protein aggregates, the subcellular and cellular scales to52

model cells and aggregates of cells, the tissue scale to model long-range in-53

teraction between cell aggregates that give rise to organ-level behaviors, the54

whole-body scale where organs interact, and the population scale where indi-55

viduals interact with each other and their environment. At various biological56

scales, models can represent biological objects as either discrete or as numeri-57

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


cally aggregated populations, and so different mathematical and computational58

approaches are used to simulate behaviors at each scale. When spatiality is59

explicitly modeled, molecular dynamics (MD) simulations are often used at the60

atomic and macromolecular scales and spatial agent-based models are used at61

the higher scales. Often, discrete biological objects (molecules, cells, cell aggre-62

gates) are appropriately modeled as discrete objects at a particular scale, and63

then as numerically aggregated populations at higher scales using continuous64

dynamics like ordinary differential equations (ODEs) and partial differential65

equations (PDEs), which then describe the dynamics of a population of ob-66

jects. For example, modeling at the multicellular scale can represent molecules67

of a given chemical species as densities or amounts, and at the molecular level68

as discrete molecules. While population models can have significant explana-69

tory value, biology is intrinsically spatial. Emergent biological properties and70

behaviors arise in part because of the spatial relationships of their components.71

Population models sacrifice this aspect of biological organization.72

In the subcellular, cellular and multicellular modeling domain, most spa-73

tiotemporal agent-based biological simulation tools only support one cellular74

dynamics simulation methodology, and focus on a particular problem domain75

with a particular length scale. For example, CompuCell3D (CC3D) [1] and76

Morpheus [2] implement cell model objects using the Cellular Potts model77

(CPM)/ Glazier-Graner-Hogeweg (GGH) formalism [3], and only support78

Eulerian, lattice-based models, while others like PhysiCell [4] and CHASTE79

[5] support modeling cells with Lagrangian, lattice-free, particle-based center80

models as simple, point-like cell particles. Lattice-free, particle-based methods81

can be extended to include subcellular detail using the Subcellular Element82

Model [6], which could support modeling the spatial complexity of cell shape,83

cytoskeleton and extracellular matrix. Extending the CPM/GGH to include84

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


cellular compartments [7] allows representation of subcellular components like85

the nucleus, critical molecular species or regions with specific properties but86

does not support specific representation of macromolecular machinery. Typi-87

cally, modelers who are interested in subcellular and cellular detail must use88

and adapt general-purpose MD simulation tools like LAMMPS [8], HOOMD-89

blue [9], NAMD [10] or GROMACS [11]. For example, Shafiee et al., customized90

LAMMPS to model cells as clusters of particles to simulate spheroid fusion dur-91

ing spheroid-dependent bioprinting [12].92

Most MD simulation tools are designed to parse and execute models that are93

theoretically well defined and MD simulation specifications and engines tend to94

be well optimized for computational performance. Most assume a fixed numbers95

of objects within a model and do not support runtime object creation, destruc-96

tion or modification. Many do not support real-time simulation visualization97

and user interactivity. In addition, extending these modeling environments with98

custom modeling and simulation features requires software development in C99

or C++ code. Results can be post-processed after execution, though this re-100

quires developing a pipeline of model development, simulation execution and101

data generation using a simulation tool, and data visualization and analysis102

using different visualization tools (e.g., The Visualization Toolkit [13]) or a gen-103

eral purpose programming language like Python, which significantly increases104

user effort to produce useful results. To reduce user effort required to produce105

publishable simulation results and analysis, some simulation tools provide real-106

time simulation visualization and limited simulation interaction (e.g., CC3D107

and Morpheus). Cell simulation tools with real-time visualization are often108

implemented as stand-alone programs, rather than as portable libraries that109

support integration with other modeling environments. This lack of software110

interoperability also complicates using simulation tools with other specialized111

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


software libraries (e.g., optimization tools) in advanced computational work-112

flows for solving difficult biological problems such as reverse-engineering model113

parameters, interrogation of mechanisms, or Bayesian modeling of populations.114

This paper presents Tissue Forge, an open-source, real-time, modeling and115

simulation environment for interactive biological and biophysics modeling appli-116

cations over a broad range of scales. Tissue Forge is designed to address many117

of the aforementioned issues and challenges. Tissue Forge enables agent-based,118

spatiotemporal computational modeling at scales from the molecular to the mul-119

ticellular. It is designed for ease of use by modelers, research groups and collab-120

orative scientific communities with expertise ranging from entry- to advanced-121

level programming proficiency. It supports all stages of model-supported re-122

search, from initial model development and validation to large-scale virtual ex-123

periments. Here we describe the philosophy, mathematical formalism and basic124

features of Tissue Forge. To demonstrate its usefulness across multiple disci-125

plines in the physical and life sciences, we also present representative examples126

of advanced features at a variety of target scales.127

3 Overview128

Tissue Forge seeks address some of the limitations of current modeling pack-129

ages by providing a spatiotemporal modeling and simulation environment that130

supports multiple lattice-free, particle-based methods for agent-based model-131

ing. It simplifies research by supporting representation of a wide range of scales132

encountered in biophysics, chemistry and biological applications. Tissue Forge133

supports the development, testing and deployment of models in large-scale, high-134

performance simulation, performed by users with a wide range of expertise and135

coding proficiency in multiple programming languages.136

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


3.1 Problem Domain137

Simulation of complex systems, particularly in biological problems, is difficult138

for a number of reasons. Difficulties exist for both the domain knowledgeable139

modeler and the modeling tool developer. Problems in cell biology and bio-140

physics applications often require representations of objects and processes at141

multiple scales, which resolve to spatiotemporal, agent-based models with com-142

plex rules and decision making using embedded models of internal agent state143

dynamics (e.g., chemical networks). Since such models are experimentally or144

empirically determined and highly diverse, their implementation requires flexi-145

ble, robust model and simulation specification. Likewise, the spatial scale itself146

presents the challenge of choosing an appropriate mathematical framework for147

creating model objects and processes (e.g., whether to model a cell with com-148

plex shape or simply as a sphere). Often, the modeler must learn a new software149

tool for each spatial scale they wish to model. In addition, the model features150

and computational performance of a particular software tool can be limited151

by the underlying mathematical framework, unpermissive or demanding object152

definitions, or the need for efficient use of computing resources.153

Tissue Forge addresses these issues by providing an agent-based, spatiotem-154

poral modeling and simulation framework built on a flexible, particle-based155

formalism. Particles, which are the fundamental agents of any Tissue Forge156

simulation, are suitable basic objects in model construction because they mini-157

mally constrain a model description. A Tissue Forge particle is an instance of a158

categorical descriptor called a ”particle type,” and is a discrete agent that has159

a unique identity, occupies a position at each moment in time and has velocity160

and mass or drag. Tissue Forge imposes no further restrictions on what physical161

or abstract object a particle represents. This framework has the theoretical and162

computational flexibility to enable agent-based, spatiotemporal computational163

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


models across a broad range of scales. An instance of a particle could represent164

an atom, or a cell, or a multicellular aggregate. Tissue Forge accommodates165

models with both pre- and user-defined particle behaviors and interactions, the166

creation and deletion of particles at runtime, and consistent object modeling at167

multiple scales.168

Interactive and Batch Execution. Tissue Forge supports the efficient de-169

velopment agent-based models of complex systems. In general, the development170

of a computational model involving multiple interacting agents requires iterative171

cycles of model development, execution, analysis, and refinement. During model172

exploration, refinement and validation, modelers can benefit from a simulation173

environment that allow them to observe, interact with, and refine a simulation as174

it executes (i.e., real-time simulation and visualization). However, computation-175

ally intensive investigations of developed models (e.g., characterizing emergent176

mechanisms or the effects of system stochasticity, systems with large numbers of177

objects) require efficient high-performance computing utilization and batch ex-178

ecution. Tissue Forge supports both interactive and batch operation, providing179

both rapid and intuitive model development and high-performance simulation180

execution, so that modelers do not need to find and learn multiple software tools181

or settle for a tool that is either, but not both, feature rich or computationally182

efficient. Its interactive simulation mode is a stand-alone application with real-183

time visualization and user-specified events. Its batch mode leverages available184

resources in high-performance computing environments such as computing clus-185

ters, supercomputers, and cloud-based computing, and exports simulation data186

and high-resolution images. In batch mode, Tissue Forge can be included in187

workflows to carry out modeling task such as model fitting or simulation of188

replicates and populations.189

Open Science Support. Development and dissemination of models that190

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


leverage interdisciplinary knowledge and previous modeling projects require ro-191

bust support for scientific communication, collaboration, training and reuse.192

Tissue Forge provides a declarative model specification for many basic aspects of193

particle-based models and simulations (e.g., particle type definitions, particle in-194

teractions and stochastic motion via generalized force and potential definitions)195

with robust support for procedural specification of complex, agent-based models196

particular to specific applications. Tissue Forge also supports model sharing and197

collaborative development by providing built-in support for exporting and im-198

porting simulations and model object states to and from human-readable string199

data (using JSON format). In support of collaborative, community-driven and200

application-specific development of models, the Tissue Forge code base provides201

a designated space in which developers can implement features in customized202

Tissue Forge builds. Extending the Tissue Forge API with custom interfaces203

requires minimal effort in all supported software languages. Developers are also204

welcome to submit their custom features to the public Tissue Forge code repos-205

itory for future public release as built-in features, or to design their software206

applications using Tissue Forge as an external software library. Along with exe-207

cuting scripted simulations specified in C, C++ and Python programming lan-208

guages, Tissue Forge also supports collaboration, training and scientific commu-209

nication through its Python API support for interactive simulations in Jupyter210

Notebooks. Tissue Forge simplifies robust model construction and simulation211

development through expressive model specification (e.g., process arithmetic),212

a flexible event system for implementing model-specific rules (e.g., agent rules)213

and simulation-specific runtime routines (e.g, importing and exporting data),214

and a simple, intuitive simulation control interface (e.g., switching between in-215

teractive and off-screen execution).216

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


3.2 Concepts217

Tissue Forge updates the trajectory of a particle in time by calculating the218

net force acting on the particle. Forces determine the trajectory of a particle219

according to the dynamics of the particle type. Tissue Forge currently supports220

Newtonian and Langevin (overdamped) dynamics, which can be individually221

specified for each particle type of a simulation.222

For Newtonian dynamics, the position ri of the ith particle is updated ac-223

cording to its acceleration, which is proportional to its mass mi and the total224

force fi exerted on it,225

fi = mi
d2ri
dt2

, (1)

226

and for Langevin (overdamped) dynamics, mi is the drag coefficient and the227

particle velocity is proportional to the total force,228

fi = mi
dri
dt

. (2)

229

Tissue Forge supports three broad classes of force-generating interaction,230

fi =
∑
j ̸=i

(
F impl
ij + F bond

ij

)
+ F expl

i . (3)

231

F impl
ij is the force due to implicit interactions between the ith and jth particles,232

F bond
ij is the force due to bonded interactions between the ith and jth particles,233

and F expl
i is the explicit force acting on the ith particle. Implicit interactions234

result automatically from interaction potentials between pairs of particles of235

given types. Bonded interactions act between specific pairs of individual par-236

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


ticles (Figure 1A). Explicit forces act on particles through explicitly-defined237

force descriptions and do not necessarily represent inter-particle interactions238

(e.g., gravity, internal noise, system thermal equilibrium). Tissue Forge provides239

built-in force- and potential-based definitions, supports user-specified definitions240

for both, and permits applying an unlimited number of executable Tissue Forge241

force and potential objects to individual particles and particle types.242

Figure 1: Examples of Tissue Forge modeling features. A: Five superimposed
snapshots of a double pendulum implemented in Tissue Forge. Bonded interac-
tions (represented as green cylinders) explicitly describe the interaction between
a particular pair of particles, while a constant force acts on the blue particles
in the downward direction. The red particle is fixed. B: Four Tissue Forge
clusters representing biological cells, each consisting of ten particles whose color
demonstrates cluster membership. Potentials describe particle interactions by
whether they are in the same cluster (i.e., intracellular) or different clusters i.e.,
intercellular. C: Tissue Forge simulation of chemical flux during fluid droplet
collision. Each particle represents a portion of fluid that carries an amount of
a diffusive chemical, the amount of which varies from zero (blue) to one (red).
When two droplets carrying different initial chemical amounts collide, resulting
droplets tend towards homogeneous chemical distributions.

Implicit interactions are defined in Tissue Forge using potential functions and243

applied according to the types of two interacting particles. The force between244

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


the ith and jth interacting particles resulting from their implicit interactions245

is calculated as the sum of each kth potential U impl
ijk that defines the implicit246

interaction,247

F impl
ij = − ∂

∂ri

∑
k

U impl
ijk . (4)

248

Bonded interactions are defined in Tissue Forge using potential functions and249

are applied according to the identities of two interacting particles. The force250

between the ith and jth interacting particles resulting from their bonded in-251

teractions is calculated as the sum of each kth potential U bond
ijk that defines the252

bonded interaction,253

F bond
ij = − ∂

∂ri

∑
k

U bond
ijk . (5)

254

Explicit forces can be defined on the basis of particle type or on individual par-255

ticles. The force on the ith particles resulting from external forces is calculated256

as the sum of each kth explicit force F expl
ik ,257

F expl
i =

∑
k

F expl
ik . (6)

Since Tissue Forge enables the implementation and execution of models at258

different length scales, particles in a simulation may represents objects with259

a wide variety of possible behaviors. A particle could be atomic and subject260

to energy-conserving, implicit interactions (e.g., Coulomb, Morse or Lennard-261

Jones potentials) as in classic MD. Particles can also represent portions of ma-262

terial that constitute larger objects (e.g., a portion of cytoplasm) and can carry263

quantities of materials within them (e.g., convection of a solute chemical in a264

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


portion of a fluid, Figure 1C). Tissue Forge provides built-in features to enable265

particle-based modeling and simulation of fluid flow based on transport dissipa-266

tive particle dynamics (tDPD) and smooth particle hydrodynamics, including267

a predefined tDPD potential U tDPD
ij that can be applied when describing the268

interactions of a simulation,269

−
∂U tDPD

ij

∂ri
= FC

ij + FD
ij + FR

ij , (7)

270

where the interaction between the ith and jth fluid-like particles is a sum of a271

conservative force FC
ij , a dissipative force FD

ij and a random force FR
ij acting on272

the ith particle.273

To support treating particles as constituents of larger objects, Tissue Forge274

provides a special type of particle, a cluster, whose elements can consist of con-275

stituent particles or other clusters. Clusters provide a convenient way to define276

implicit interactions that only occur between particles within the same cluster277

(e.g., intracellular interactions), called bound interactions, and those that only278

occur between particles from different clusters (e.g., intercellular interactions),279

called unbound interactions (Figure 1B).280

To allow particles to carry embedded quantities, Tissue Forge supports at-281

taching to each particle a vector of states that can evolve during a simulation.282

The values of the states can evolve according to laws defined between pairs of283

particle types for inter-particle transport (e.g., diffusion), which Tissue Forge284

automatically applies during simulation, or according to local, intra-particle re-285

actions. The time evolution of a state vector Ci attached to the ith particle286

is,287

dCi

dt
= Qi =

∑
j ̸=i

QT
ij +QR

i , (8)

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


288

where the rate of change of the state vector attached to the ith particle is equal289

to the sum of the transport fluxes QT
ij between the ith and each nearby jth290

particle and the local reactions QR
i .291

3.3 Basic Features292

Tissue Forge supports model and simulation specification using classes, objects293

and functions typical to object-oriented concepts in C, C++ and Python pro-294

gramming languages. In Python, custom Tissue Forge particle types can be295

defined by creating Python classes and specifying class attributes (Listing 1).296

297

1 # Get the Tissue Forge Python library298

2 import tissue_forge as tf299

3 # Specify a particle type with a particular radius300

4 class OscType(tf.ParticleTypeSpec):301

5 radius = 0.5302
303

Listing 1: Importing the Tissue Forge library and declaring a particle type in

Python. Comments are shown in green.

Tissue Forge allows specification of particle types without an initialized Tis-304

sue Forge runtime. However, initializing the Tissue Forge runtime, which in305

Python only requires a call to a single module-level function, permits retrieving306

template executable particle types that can be used to create particles (List-307

ing 2). When a particle of a particular particle type is created, the particle308

inherits all attributes of its type (e.g., mass), which can in turn be modified309

for the particular particle at any time during simulation. Initializing the Tissue310

Forge runtime requires no user-specified information, in which case a default311

configuration is provided, but explicit initialization provides a number of cus-312

tomization options to tailor a simulation to a particular problem (e.g., domain313

size, interaction cutoff distance).314

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


315

1 # Initialize with a 10 x10x10 domain and cutoff distance of 3316

2 tf.init(dim=[10, 10, 10], cutoff =3)317

3 # Get the oscillator type and create two particles318

4 osc_type = OscType.get() # a particle type319

5 osc_part1 = osc_type ([4, 5, 5]) # particle 1: x,y,z coords320

6 osc_part2 = osc_type ([6, 5, 5]) # particle 2: x,y,z coords321

7 # Change the radius of one of the particles322

8 osc_part2.radius = 0.25323
324

Listing 2: Initializing a Tissue Forge simulation, retrieving an executable

particle type and creating particles in Python.

Users specify and apply interactions, whether using built-in or custom poten-325

tial functions or explicit forces, by creating Tissue Forge objects that represent326

processes (e.g., a force object), called process objects, and applying them cate-327

gorically by predefined ways that processes can act on objects (e.g., by type pairs328

for implicit interactions). Tissue Forge calls applying a process to model objects329

binding, which Tissue Forge applies automatically during simulation execution330

according to the model objects and process. For example, users can specify an331

implicit interaction between particles to two types by creating a potential object332

and binding it to the two particle types (Listing 3).333

334

1 # Create a harmonic potential object335

2 pot = tf.Potential.harmonic(k=1, r0=1.5)336

3 # Bind the harmonic potential to pairs of337

4 # particles of the oscillator type338

5 tf.bind.types(pot , osc_type , osc_type)339
340

Listing 3: Creating a Tissue Forge potential and binding it to particles by type

in Python.

Tissue Forge provides fine-grained simulation control, where each integra-341

tion step can be explicitly executed, with other user-defined tasks accomplished342

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


between executing simulation steps (e.g., exporting simulation data). For in-343

teractive execution, Tissue Forge simulations are usually executed using a basic344

run function, which executes an event loop that (1) integrates the universe, (2)345

processes user input (e.g., keyboard commands), (3) updates simulation visual-346

ization, and (4) executes an event system with user-defined events. The Tissue347

Forge event system allows users to insert instructions into the event loop via348

user-defined functions (Listing 4). Events can be executed at arbitrary fre-349

quencies, can automatically retrieve simulation data (e.g., a randomly selected350

particle of a specific type), and can change qualities of individual particles (e.g.,351

change the radius of a particular particle based on its environment).352

353

1 # Define an event that prints the time and particle x-coordinate354

2 def my_event(e: tf.event.TimeEvent):355

3 print(’Time:’, tf.Universe.time)356

4 print(’p1 x position:’, osc_part1.position.x())357

5 print(’p2 x position:’, osc_part2.position.x())358

6 # Register the event for execution at every simulation step359

7 tf.event.on_time(period=tf.Universe.dt, invoke_method=my_event)360

8 # Run the simulation361

9 tf.run()362
363

Listing 4: Creating a Tissue Forge event and running an interactive simulation

in Python.

During simulation execution, including during execution of user-defined events,364

Tissue Forge objects are available for accessing and manipulating simulation,365

universe and system information. The Python code described in this section366

generates the Tissue Forge simulation depicted in Figure 2 (see Supplementary367

Materials S2), and also prints the current simulation time and x-coordinate of368

both particles at every simulation step. This simulation can be executed as a369

Python script or in an IPython console.370

In a Jupyter Notebook, this code executes the same simulation but generates371

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


Figure 2: Tissue Forge simulation of a simple oscillator with two particles in-
teracting via a harmonic potential. Tissue Forge helps to orient the user by
drawing a yellow box around the simulation domain, a white grid along the xy
plane at the center of the domain, and an orientation glyph at the bottom right
to demonstrate the axes of the simulation domain with reference to the camera
view, where red points in the x direction, green in the y direction and blue in
the z direction.

an additional user interface, which provides widgets for interactive simulation372

controls, e.g., for pausing and resuming the simulation, and choosing predefined373

camera views (Figure 3). When running Tissue Forge from a Python script or374

IPython console, the interface supports mouse control (e.g., click and drag to375

rotate) and predefined and user-defined keyboard commands (e.g., space bar376

to pause or resume the simulation). In interactive contexts like IPython and377

Jupyter Notebooks, the Tissue Forge event loop recognizes user commands is-378

sued ad hoc during simulation, allowing on-the-fly modification of the simulation379

state, which is especially useful during model development and interrogation380

(e.g., when testing the effects of the timing of an event).381

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


Figure 3: Sample use of the Python API to specify an interactive simulation of
convection of a species near a species sink in a Python script (left) and in an
interactive Jupyter Notebook (right).

3.4 Sample Modeling Applications382

Beyond the provided catalogue of built-in potentials, potential arithmetic (e.g.,383

a potential object as the sum of two potential objects) and support for user-384

specified custom potentials, Tissue Forge provides process objects for binding385

potential-based process between specific particles (i.e., a bonded interaction).386

Bonded interactions are a key component of MD modeling. Tissue Forge pro-387

vides a number of bond-like processes to apply potentials for various types of388

bonded interactions. Each bonded interaction has a representative object that389

contains information about the bonded interaction (e.g., which particles, what390

potential) that Tissue Forge uses to implement it during simulation. Currently,391

Tissue Forge provides the Bond for two-particle bonded interactions (where the392

potential is a function of the Euclidean distance between the particles, Figure393

4, top left), the Angle for three-particle bonded interactions (where the potential394

is a function of the angle between the vector from the second to first particles395

and the vector from the second and third particles, Figure 4, top middle), and396

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


Dihedral (torsion angle) for four-particle bonded interactions (where the poten-397

tial depends on the angle between the plane formed by the first, second and398

third particles and the plane formed by the second, third and fourth particles,399

Figure 4, top right). Like particles, all bonded interactions can be created and400

destroyed at any time during simulation, and bonded interactions can also be401

assigned a dissociation energy so that the bond is automatically destroyed when402

the potential energy of the bond exceeds its dissociation energy.403

Figure 4: Molecular modeling and simulation with Tissue Forge. A: Classes
of bonded interactions, where a measured property of the bond (length l for
Bonds, angle θ for Angles, and planar angle ϕ for Dihedrals) is used as input
to a potential function. B: Detailed view of thymine (left) and adenine (right)
molecules constructed from Tissue Forge objects. Bonds shown as green cylin-
ders, angles as blue arcs, and dihedrals as gold planes. C: Real-time simulation
of a cloud of thymine and adenine molecules interacting via long-range poten-
tials in a neutral medium.

Tissue Forge supports combining aspects of object-oriented programming404

with primitive Tissue Forge objects to define complex model objects for use in405

simulations. When modeling the dynamics of biomolecules, each particle can406

represent an atom, the atomic properties of which are defined through the Tissue407

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


Forge particle type. Definitions of particular biomolecules, such as nucleobases408

like thymine and adenine (Figure 4B) can then be designed using generic Python409

(or other supported language) classes that construct an instance of a biomolecule410

by assembling Tissue Forge particles and bonded interactions according to ex-411

perimental data. Tissue Forge facilitates the construction and deployment of412

software infrastructure to develop interactive simulations of biomolecular sys-413

tems and processes (Figure 4C, see Supplementary Materials S3).414

Particle-based methods are also useful for coarse-grained modeling of sub-415

cellular components, where the atoms of individual biomolecules, biomolecular416

complexes, or even organelles are omitted and instead represented by a sin-417

gle particle that incorporates the aggregate behavior of its constituents (e.g.,418

subcellular-element models). Tissue Forge supports coarse-grained subcellular419

modeling at various resolutions from the molecular to cellular scales, where a420

particle can represent a whole molecule, complex, or portion of an organelle or421

cytoplasm, to which coarse-grained properties (e.g., net charge or phosphory-422

lation state) and processes (e.g., pumping of a solute, metabolism of a small423

molecule) can be applied.424

For example, a particle can represent a portion of a lipid bilayer, in which425

case a sheet of such particle with appropriate binding and periodic boundary426

conditions can represent a section of a cell membrane. The Tissue Forge sim-427

ulation domain can describe representative local spatial dynamics of the cell428

interface with its surrounding environment. Tissue Forge supports particle-429

based convection, providing a straightforward way to simulate a coarse-grained430

model of active transport at the cell membrane. Tissue Forge provides addi-431

tional transport laws to model active pumping of species into or out of particles.432

To model transport at the cell membrane, these transport laws support imple-433

menting coarse-grain models of membrane-bound complexes like ion channels,434

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


which create discontinuities in concentrations of target species across the cell435

membrane (Figure 5, see Supplementary Materials S4).436

Figure 5: Active pumping of a diffusive species across a deformable membrane
separating two fluid-filled compartments. A: Cut-plane views during simulation
of two fluid-filled compartments separated by a deformable membrane, where
each fluid is uniformly initialized with an initial concentration of a species. Par-
ticle color indicates species concentration with red as high, yellow and green as
intermediate, and blue as low concentration. The membrane contains a particle
that actively pumps the species from the lower to the upper compartment. B:
Three-dimensional view of initial simulation state. C: Measurements of total
species amounts in the lower (blue, circles), upper (red, triangles) and both
(green, diamonds) compartments (left-hand vertical axis), and in the channel
(magenta, squares, right-hand axis), during simulation.

At the coarsest scale of target applications, Tissue Forge provides support437

for particle-based modeling of multicellular dynamics. Tissue Forge provides a438

number of modeling features to support multicellular modeling at resolutions at439

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


or near the multicellular scale, where a particle can represent an individual cell,440

or a part of a cell. Overdamped dynamics describe the highly viscous, fluid-441

like collective motion of particle-based model cells, where short-range, implicit442

interactions can represent volume exclusion and contact-mediated intercellular443

interactions (e.g., adhesion), long-range, implicit interactions can represent in-444

tercellular signaling via soluble signaling, and particle state vectors can describe445

the intracellular state.446

For example, particle-based model descriptions have been previously used to447

describe cells as a set of particles (e.g., a Tissue Forge cluster, Figure 1B) when448

modeling the process of spheroid fusion in tissue bioprinting, where cohesive449

cell shape is maintained by Lennard-Jones and harmonic potentials between450

particles of the same cell, and intercellular adhesion occurs by a Lennard-Jones451

potential between particles of different cells [12]. In a simpler model, repre-452

senting each cell as a single particle and intercellular interactions with a single453

Morse potential can also produce emergent fusion of spheroids like those used454

in bioprinting of mineralized bone (i.e., about 12.5k cells per spheroid, Figure455

6) [14]. When coupled with modeling diffusive transport and uptake like the456

scenario demonstrated in Figure 5, a Tissue Forge-based framework for the sim-457

ulation of nutrient availability during spheroid-dependent biofabrication could458

support detailed modeling of spheroid viability in large tissue constructs [15].459

4 Discussion460

The Tissue Forge modeling and simulation framework allows users to interac-461

tively create, simulate and explore models at biologically relevant length scales.462

Accessible interactive simulation is key to increasing scientific productivity in463

biomodeling, just as simulation environments are fundamental to other fields of464

modern engineering. Tissue Forge supports both interactive runs with real-time465

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


Figure 6: Simulating fusion of multicellular, homotypic spheroids. A: Spheroids
of 12.5k cells each were individually pre-assembled, as in typical bioprinting
practice. B: Two spheroids (green and blue) placed in close proximity fuse
over time, as measured by the neck diameter along the y (blue circles) and z
(red triangles) directions, which grows over time. The neck diameter along a
direction is measured as the largest distance along the direction between any
two particles at the mid-plane. Insets show the simulation at times 1, 50, 100,
150 and 200.

visualization for model development, and headless execution for data generation466

and integrated applications. In addition, Tissue Forge supports user-specified467

model features (e.g., custom particle types, forces and potentials) and scheduled468

and keyboard-driven simulation events, with intuitive user interfaces, in multiple469

programming languages and frameworks, supporting beginner- to expert-level470

programmers and beginner- to expert-level biomodelers.471

Tissue Forge is open-source and freely available under the LGPL v3.0 license472

(https://github.com/tissue-forge/tissue-forge). Pre-built binaries are473

available in C, C++ and Python on 64-bit Windows, MacOS and Linux sys-474

tems via conda (https://anaconda.org/tissue-forge/tissue-forge). On-475

line documentation provides information on project philosophy, installation,476

walk-throughs, examples (in Jupyter Notebooks, https://github.com/tissue-forge/477

tissue-forge/tree/main/examples/py/notebooks) and API documentation478

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://github.com/tissue-forge/tissue-forge
https://anaconda.org/tissue-forge/tissue-forge
https://github.com/tissue-forge/tissue-forge/tree/main/examples/py/notebooks
https://github.com/tissue-forge/tissue-forge/tree/main/examples/py/notebooks
https://github.com/tissue-forge/tissue-forge/tree/main/examples/py/notebooks
https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


for all supported languages. It has automated build updates to maintain syn-479

chronization between software versions and documented features (https://480

tissue-forge-documentation.readthedocs.io), including details on features481

not described in this paper (e.g., species transport, boundary conditions). Tis-482

sue Forge’s transparent development cycle, with automated continuous integra-483

tion and continuous delivery, rapidly and reliably delivers the latest features to484

users (https://dev.azure.com/Tissue-Forge/tissue-forge). Instructions485

for installing Tissue Forge are available in the Supplementary Materials S1.486

Tissue Forge applies the abstraction of a particle to support modeling ap-487

plications over a wide range of scales, ranging from sub-nanometer to hundreds488

of micrometers and beyond. It supports future development and integration489

of advanced numerical and computational methods for incorporating and/or490

generating biological information with increasingly greater detail. Tissue Forge491

provides a designated space for development of application-specific models and492

methods by both the development team and user community, and so is free to493

grow and evolve into other computational domains with significant relevance and494

impact to a number of scientific communities. To this end, we are preparing a495

followup manuscript that demonstrates advanced modeling and simulation fea-496

tures, detailed model construction in specific applications, and relevant features497

that are currently under development. Tissue Forge features under develop-498

ment include improvements to core Tissue Forge simulation capability (e.g.,499

multi-GPU support and libRoadRunner [16] integration for network dynamics500

modeling), additional modeling features (e.g., new built-in potentials and forces,501

support for improper angles in MD modeling), enhanced user experience (e.g.,502

a graphical event interface), and additional modeling methodologies and solvers503

(e.g., vertex and subcellular element models).504

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://tissue-forge-documentation.readthedocs.io
https://tissue-forge-documentation.readthedocs.io
https://tissue-forge-documentation.readthedocs.io
https://dev.azure.com/Tissue-Forge/tissue-forge
https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


5 Conclusion505

Tissue Forge supports biological, chemical and physics research by providing506

an interactive modeling and simulation environment for particle-based model507

development, execution and sharing, including integration with applications in508

multiple programming languages. The Tissue Forge Python API supports in-509

teractive modeling as a standalone application or in a Jupyter Notebook, while510

the Tissue Forge C and C++ APIs support development of compiled and inte-511

grated applications for advanced and compute-intensive projects. Tissue Forge512

supports modeling applications over a broad range of scales, from the molecu-513

lar to the multicellular and beyond, and adopts a robust architecture to grow514

according to the needs of target scientific communities.515

6 Acknowledgments516

Funding for Tissue Forge is provided by NIBIB U24 EB028887 (HMS, JAG,517

TJS, JPS). TJS and JAG acknowledge funding from grants NSF 2120200, NSF518

2000281, NSF 1720625, NIH R01 GM122424. JPS acknowledges additional519

funding from the EPA STAR RD840027 and NSF 2054061. This research was520

supported in part by Lilly Endowment, Inc., through its support for the Indiana521

University Pervasive Technology Institute.522

7 Author Contributions523

Conceptualization: TJS, JPS, HMS, JAG524

Data Curation: TJS525

Formal Analysis: TJS526

Funding Acquisition: TJS, JPS, HMS, JAG527

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


Investigation: TJS528

Methodology: TJS, JPS, HMS, JAG529

Project Administration: TJS, HMS, JAG530

Resources: TJS, JPS, HMS, JAG531

Software: TJS532

Supervision: TJS, HMS, JAG533

Validation: TJS534

Visualization: TJS535

Writing – Original Draft Preparation: TJS, JPS, HMS, JAG536

Writing – Review Editing: TJS, JPS, HMS, JAG537

8 Supplementary Materials538

S1 Installing Tissue Forge. Instructions for installing pre-built Tissue Forge539

binaries.540

S2 oscillator.ipynb. Jupyter Notebook that simulates a simple oscillator with541

two particles.542

S3 dna.py. Python script that constructs adenine and thymine nucleobases on543

the basis of individual atoms using Tissue Forge particles.544

S4 membrane.ipynb. Jupyter Notebook that simulates a neighborhood at a545

deformable membrane separating two fluids and active transport between546

them.547

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


References548

1. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, and549

Glazier JA. Multi-Scale Modeling of Tissues Using CompuCell3D. Meth-550

ods in cell biology 2012; 110:325–66. doi: 10.1016/B978-0-12-388403-551

9.00013- 8. Available from: https://www.ncbi.nlm.nih.gov/pmc/552

articles/PMC3612985/ [Accessed on: 2022 Jun 17]553

2. Starruß J, Back W de, Brusch L, and Deutsch A. Morpheus: a user-friendly554

modeling environment for multiscale and multicellular systems biology.555

Bioinformatics 2014 May; 30:1331–2. doi: 10.1093/bioinformatics/556

btt772. Available from: https://doi.org/10.1093/bioinformatics/557

btt772 [Accessed on: 2022 Jun 17]558

3. Graner F and Glazier JA. Simulation of biological cell sorting using a559

two-dimensional extended Potts model. Physical Review Letters 1992560

Sep; 69. Publisher: American Physical Society:2013–6. doi: 10 . 1103 /561

PhysRevLett.69.2013. Available from: https://link.aps.org/doi/10.562

1103/PhysRevLett.69.2013 [Accessed on: 2022 Jun 17]563

4. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, and Macklin564

P. PhysiCell: An open source physics-based cell simulator for 3-D multi-565

cellular systems. en. PLOS Computational Biology 2018 Feb; 14. Pub-566

lisher: Public Library of Science:e1005991. doi: 10.1371/journal.pcbi.567

1005991. Available from: https://journals.plos.org/ploscompbiol/568

article?id=10.1371/journal.pcbi.1005991 [Accessed on: 2022 Jun569

17]570

5. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A,571

Davit Y, Dunn SJ, Fletcher AG, Harvey DG, Marsh ME, Osborne JM,572

Pathmanathan P, Pitt-Francis J, Southern J, Zemzemi N, and Gavaghan573

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1016/B978-0-12-388403-9.00013-8
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612985/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612985/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612985/
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1103/PhysRevLett.69.2013
https://doi.org/10.1103/PhysRevLett.69.2013
https://doi.org/10.1103/PhysRevLett.69.2013
https://link.aps.org/doi/10.1103/PhysRevLett.69.2013
https://link.aps.org/doi/10.1103/PhysRevLett.69.2013
https://link.aps.org/doi/10.1103/PhysRevLett.69.2013
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1371/journal.pcbi.1005991
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991
https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


DJ. Chaste: An Open Source C++ Library for Computational Physiol-574

ogy and Biology. en. PLOS Computational Biology 2013 Mar; 9. Pub-575

lisher: Public Library of Science:e1002970. doi: 10.1371/journal.pcbi.576

1002970. Available from: https://journals.plos.org/ploscompbiol/577

article?id=10.1371/journal.pcbi.1002970 [Accessed on: 2022 Jun578

17]579

6. Sandersius SA and Newman TJ. Modeling cell rheology with the Sub-580

cellular Element Model. en. Physical Biology 2008 Apr; 5:015002. doi:581

10.1088/1478-3975/5/1/015002. Available from: https://iopscience.582

iop.org/article/10.1088/1478-3975/5/1/015002 [Accessed on: 2022583

Aug 18]584

7. Fortuna I, Perrone GC, Krug MS, Susin E, Belmonte JM, Thomas GL,585

Glazier JA, and Almeida RMC de. CompuCell3D Simulations Reproduce586

Mesenchymal Cell Migration on Flat Substrates. en. Biophysical Journal587

2020 Jun; 118:2801–15. doi: 10 . 1016 / j . bpj . 2020 . 04 . 024. Avail-588

able from: https://www.sciencedirect.com/science/article/pii/589

S0006349520303490 [Accessed on: 2022 Jun 17]590

8. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM,591

Crozier PS, ’t Veld PJ in, Kohlmeyer A, Moore SG, Nguyen TD, Shan R,592

Stevens MJ, Tranchida J, Trott C, and Plimpton SJ. LAMMPS - a flexible593

simulation tool for particle-based materials modeling at the atomic, meso,594

and continuum scales. en. Computer Physics Communications 2022 Feb;595

271:108171. doi: 10.1016/j.cpc.2021.108171. Available from: https:596

//www.sciencedirect.com/science/article/pii/S0010465521002836597

[Accessed on: 2022 Jun 17]598

9. Anderson JA, Glaser J, and Glotzer SC. HOOMD-blue: A Python package599

for high-performance molecular dynamics and hard particle Monte Carlo600

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/10.1371/journal.pcbi.1002970
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002970
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002970
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002970
https://doi.org/10.1088/1478-3975/5/1/015002
https://iopscience.iop.org/article/10.1088/1478-3975/5/1/015002
https://iopscience.iop.org/article/10.1088/1478-3975/5/1/015002
https://iopscience.iop.org/article/10.1088/1478-3975/5/1/015002
https://doi.org/10.1016/j.bpj.2020.04.024
https://www.sciencedirect.com/science/article/pii/S0006349520303490
https://www.sciencedirect.com/science/article/pii/S0006349520303490
https://www.sciencedirect.com/science/article/pii/S0006349520303490
https://doi.org/10.1016/j.cpc.2021.108171
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


simulations. en. Computational Materials Science 2020 Feb; 173:109363.601

doi: 10.1016/j.commatsci.2019.109363. Available from: https://602

www.sciencedirect.com/science/article/pii/S0927025619306627603

[Accessed on: 2022 Jun 17]604

10. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E,605

Chipot C, Skeel RD, Kalé L, and Schulten K. Scalable molecular dynamics606

with NAMD. en. Journal of Computational Chemistry 2005; 26. eprint:607

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20289:1781–802. doi:608

10.1002/jcc.20289. Available from: https://onlinelibrary.wiley.609

com/doi/abs/10.1002/jcc.20289 [Accessed on: 2022 Jun 17]610

11. Hess B, Kutzner C, Spoel D van der, and Lindahl E. GROMACS 4: Algo-611

rithms for Highly Efficient, Load-Balanced, and Scalable Molecular Sim-612

ulation. Journal of Chemical Theory and Computation 2008 Mar; 4.613

Publisher: American Chemical Society:435–47. doi: 10.1021/ct700301q.614

Available from: https://doi.org/10.1021/ct700301q [Accessed on:615

2022 Jun 17]616

12. Shafiee A, McCune M, Forgacs G, and Kosztin I. Post-deposition bioink617

self-assembly: a quantitative study. en. Biofabrication 2015 Nov; 7. Pub-618

lisher: IOP Publishing:045005. doi: 10.1088/1758-5090/7/4/045005.619

Available from: https://doi.org/10.1088/1758-5090/7/4/045005620

[Accessed on: 2022 Jun 17]621

13. Schroeder W, Avila L, and Hoffman W. Visualizing with VTK: a tutorial.622

IEEE Computer Graphics and Applications 2000 Sep; 20. Conference623

Name: IEEE Computer Graphics and Applications:20–7. doi: 10.1109/624

38.865875625

14. Sego TJ, Prideaux M, Sterner J, McCarthy BP, Li P, Bonewald LF, Ekser626

B, Tovar A, and Jeshua Smith L. Computational fluid dynamic analysis627

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1016/j.commatsci.2019.109363
https://www.sciencedirect.com/science/article/pii/S0927025619306627
https://www.sciencedirect.com/science/article/pii/S0927025619306627
https://www.sciencedirect.com/science/article/pii/S0927025619306627
https://doi.org/10.1002/jcc.20289
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289
https://doi.org/10.1021/ct700301q
https://doi.org/10.1021/ct700301q
https://doi.org/10.1088/1758-5090/7/4/045005
https://doi.org/10.1088/1758-5090/7/4/045005
https://doi.org/10.1109/38.865875
https://doi.org/10.1109/38.865875
https://doi.org/10.1109/38.865875
https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/


of bioprinted self-supporting perfused tissue models. en. Biotechnology and628

Bioengineering 2020; 117. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.27238:798–629

815. doi: 10.1002/bit.27238. Available from: https://onlinelibrary.630

wiley.com/doi/abs/10.1002/bit.27238 [Accessed on: 2022 Jun 17]631

15. Sego TJ, Kasacheuski U, Hauersperger D, Tovar A, and Moldovan NI. A632

heuristic computational model of basic cellular processes and oxygenation633

during spheroid-dependent biofabrication. en. Biofabrication 2017 Jun;634

9. Publisher: IOP Publishing:024104. doi: 10.1088/1758-5090/aa6ed4.635

Available from: https://doi.org/10.1088/1758-5090/aa6ed4 [Ac-636

cessed on: 2022 Jun 17]637

16. Somogyi ET, Bouteiller JM, Glazier JA, König M, Medley JK, Swat MH,638

and Sauro HM. libRoadRunner: a high performance SBML simulation and639

analysis library. Bioinformatics 2015 Oct; 31:3315–21. doi: 10.1093/640

bioinformatics/btv363. Available from: https://doi.org/10.1093/641

bioinformatics/btv363 [Accessed on: 2022 Jun 17]642

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518300doi: bioRxiv preprint 

https://doi.org/10.1002/bit.27238
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27238
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27238
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27238
https://doi.org/10.1088/1758-5090/aa6ed4
https://doi.org/10.1088/1758-5090/aa6ed4
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/

	Author Summary
	Introduction
	Overview
	Problem Domain
	Concepts
	Basic Features
	Sample Modeling Applications

	Discussion
	Conclusion
	Acknowledgments
	Author Contributions
	Supplementary Materials

