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5 Abstract

6 Tissue Forge is an open-source interactive environment for particle-
7 based physics, chemistry and biology modeling and simulation. Tissue
8 Forge allows users to create, simulate and explore models and virtual
9 experiments based on soft condensed matter physics at multiple scales,
10 from the molecular to the multicellular, using a simple, consistent in-
11 terface. While Tissue Forge is designed to simplify solving problems in
12 complex subcellular, cellular and tissue biophysics, it supports applica-
13 tions ranging from classic molecular dynamics to agent-based multicel-
1 lular systems with dynamic populations. Tissue Forge users can build
15 and interact with models and simulations in real-time and change simu-
16 lation details during execution, or execute simulations off-screen and/or
17 remotely in high-performance computing environments. Tissue Forge pro-
18 vides a growing library of built-in model components along with support
19 for user-specified models during the development and application of cus-
20 tom, agent-based models. Tissue Forge includes an extensive Python API
21 for model and simulation specification via Python scripts, an IPython con-
2 sole and a Jupyter Notebook, as well as C and C++ APIs for integrated
23 applications with other software tools. Tissue Forge supports installations
2% on 64-bit Windows, Linux and MacOS systems and is available for local
2 installation via conda.

» 1 Author Summary

27 Tissue Forge is a physics-based modeling and simulation software environment
s for research problems in physics, chemistry and biology. Tissue Forge supports
2 modeling at a wide range of scales, from as small as the sub-nanometer, to
s as large as hundreds of micrometers, using particle-based models. It provides

a1 rich features for simulation development and application at all stages of model-
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» based research, like real-time simulation visualization and interactivity, and
13 off-screen batch execution, rendering, and GPU acceleration. Users can employ
s built-in models to represent a wide variety of physical processes, like chemical
35 reactions, fluid convection and intercellular adhesion, or define their own models
s for agent- and rule-based modeling. Tissue Forge is open-source, free and easy to
s install, supports simulation development in C, C++ and Python programming
s languages, and can be used as integrated software or in an interactive IPython
3 console and Jupyter Notebook. Tissue Forge also provides a dedicated space
o for application-specific and user-contributed modeling and simulation features,
a1 and developers are welcome to contribute their custom features for distribution

2 in future releases.

s 2 Introduction

« Computational modeling and simulation are key components of modern bio-
s logical research. Simulations codify knowledge into computable representations
s that can challenge and validate our understanding of complex biological pro-
« cesses. A well defined model not only explains currently available data but also
s predicts the outcomes of future experiments. Biological computer simulations
2 can address a wide range of length scales and employ numerous numerical and
so simulation technologies. Scales include that of the atomic bond length to model
51 small molecules, proteins and other biological macromolecules, the macromolec-
s ular scale to model protein aggregates, the subcellular and cellular scales to
53 model cells and aggregates of cells, the tissue scale to model long-range in-
s« teraction between cell aggregates that give rise to organ-level behaviors, the
ss  whole-body scale where organs interact, and the population scale where indi-
ss  viduals interact with each other and their environment. At various biological

s scales, models can represent biological objects as either discrete or as numeri-
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s cally aggregated populations, and so different mathematical and computational
so approaches are used to simulate behaviors at each scale. When spatiality is
s explicitly modeled, molecular dynamics (MD) simulations are often used at the
&1 atomic and macromolecular scales and spatial agent-based models are used at
2 the higher scales. Often, discrete biological objects (molecules, cells, cell aggre-
3 gales) are appropriately modeled as discrete objects at a particular scale, and
& then as numerically aggregated populations at higher scales using continuous
s dynamics like ordinary differential equations (ODEs) and partial differential
s equations (PDEs), which then describe the dynamics of a population of ob-
o7 jects. For example, modeling at the multicellular scale can represent molecules
e of a given chemical species as densities or amounts, and at the molecular level
e as discrete molecules. While population models can have significant explana-
7 tory value, biology is intrinsically spatial. Emergent biological properties and
7 behaviors arise in part because of the spatial relationships of their components.
22 Population models sacrifice this aspect of biological organization.

73 In the subcellular, cellular and multicellular modeling domain, most spa-
7 tiotemporal agent-based biological simulation tools only support one cellular
7 dynamics simulation methodology, and focus on a particular problem domain
s with a particular length scale. For example, CompuCell3D (CC3D) [1] and
77 Morpheus [2] implement cell model objects using the Cellular Potts model
7z (CPM)/ Glazier-Graner-Hogeweg (GGH) formalism [3], and only support
n  Eulerian, lattice-based models, while others like PhysiCell [4] and CHASTE
s [5] support modeling cells with Lagrangian, lattice-free, particle-based center
&1 models as simple, point-like cell particles. Lattice-free, particle-based methods
&2 can be extended to include subcellular detail using the Subcellular Element
53 Model [6], which could support modeling the spatial complexity of cell shape,

s cytoskeleton and extracellular matrix. Extending the CPM/GGH to include
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s cellular compartments [7] allows representation of subcellular components like
s the nucleus, critical molecular species or regions with specific properties but
& does not support specific representation of macromolecular machinery. Typi-
ss cally, modelers who are interested in subcellular and cellular detail must use
s and adapt general-purpose MD simulation tools like LAMMPS [8], HOOMD-
o blue [9], NAMD [10] or GROMACS [11]. For example, Shafiee et al., customized
o LAMMPS to model cells as clusters of particles to simulate spheroid fusion dur-
» ing spheroid-dependent bioprinting [12].

03 Most MD simulation tools are designed to parse and execute models that are
o theoretically well defined and MD simulation specifications and engines tend to
os  be well optimized for computational performance. Most assume a fixed numbers
o of objects within a model and do not support runtime object creation, destruc-
o7 tion or modification. Many do not support real-time simulation visualization
e and user interactivity. In addition, extending these modeling environments with
o custom modeling and simulation features requires software development in C
wo  or C++ code. Results can be post-processed after execution, though this re-
1w quires developing a pipeline of model development, simulation execution and
102 data generation using a simulation tool, and data visualization and analysis
103 using different visualization tools (e.g., The Visualization Toolkit [13]) or a gen-
s eral purpose programming language like Python, which significantly increases
105 user effort to produce useful results. To reduce user effort required to produce
s publishable simulation results and analysis, some simulation tools provide real-
07 time simulation visualization and limited simulation interaction (e.g., CC3D
s and Morpheus). Cell simulation tools with real-time visualization are often
ws  implemented as stand-alone programs, rather than as portable libraries that
o support integration with other modeling environments. This lack of software

m  interoperability also complicates using simulation tools with other specialized
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u2  software libraries (e.g., optimization tools) in advanced computational work-
s flows for solving difficult biological problems such as reverse-engineering model
us  parameters, interrogation of mechanisms, or Bayesian modeling of populations.
115 This paper presents Tissue Forge, an open-source, real-time, modeling and
us  simulation environment for interactive biological and biophysics modeling appli-
7 cations over a broad range of scales. Tissue Forge is designed to address many
us of the aforementioned issues and challenges. Tissue Forge enables agent-based,
e spatiotemporal computational modeling at scales from the molecular to the mul-
1o ticellular. It is designed for ease of use by modelers, research groups and collab-
121 orative scientific communities with expertise ranging from entry- to advanced-
12 level programming proficiency. It supports all stages of model-supported re-
123 search, from initial model development and validation to large-scale virtual ex-
e periments. Here we describe the philosophy, mathematical formalism and basic
s features of Tissue Forge. To demonstrate its usefulness across multiple disci-
126 plines in the physical and life sciences, we also present representative examples

12z of advanced features at a variety of target scales.

» 3  Overview

120 Tissue Forge seeks address some of the limitations of current modeling pack-
1o ages by providing a spatiotemporal modeling and simulation environment that
1 supports multiple lattice-free, particle-based methods for agent-based model-
12 ing. It simplifies research by supporting representation of a wide range of scales
133 encountered in biophysics, chemistry and biological applications. Tissue Forge
13 supports the development, testing and deployment of models in large-scale, high-
135 performance simulation, performed by users with a wide range of expertise and

s coding proficiency in multiple programming languages.
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w 3.1 Problem Domain

s Simulation of complex systems, particularly in biological problems, is difficult
130 for a number of reasons. Difficulties exist for both the domain knowledgeable
1 modeler and the modeling tool developer. Problems in cell biology and bio-
w1 physics applications often require representations of objects and processes at
12 multiple scales, which resolve to spatiotemporal, agent-based models with com-
w3 plex rules and decision making using embedded models of internal agent state
1 dynamics (e.g., chemical networks). Since such models are experimentally or
us empirically determined and highly diverse, their implementation requires flexi-
us ble, robust model and simulation specification. Likewise, the spatial scale itself
w7 presents the challenge of choosing an appropriate mathematical framework for
us creating model objects and processes (e.g., whether to model a cell with com-
1o plex shape or simply as a sphere). Often, the modeler must learn a new software
10 tool for each spatial scale they wish to model. In addition, the model features
151 and computational performance of a particular software tool can be limited
12 by the underlying mathematical framework, unpermissive or demanding object
153 definitions, or the need for efficient use of computing resources.

154 Tissue Forge addresses these issues by providing an agent-based, spatiotem-
155 poral modeling and simulation framework built on a flexible, particle-based
155 formalism. Particles, which are the fundamental agents of any Tissue Forge
157 simulation, are suitable basic objects in model construction because they mini-
155 mally constrain a model description. A Tissue Forge particle is an instance of a
10 categorical descriptor called a ”particle type,” and is a discrete agent that has
10 a unique identity, occupies a position at each moment in time and has velocity
10 and mass or drag. Tissue Forge imposes no further restrictions on what physical
12 or abstract object a particle represents. This framework has the theoretical and

13 computational flexibility to enable agent-based, spatiotemporal computational
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1« models across a broad range of scales. An instance of a particle could represent
s an atom, or a cell, or a multicellular aggregate. Tissue Forge accommodates
166 models with both pre- and user-defined particle behaviors and interactions, the
17 creation and deletion of particles at runtime, and consistent object modeling at
s multiple scales.

160 Interactive and Batch Execution. Tissue Forge supports the efficient de-
o velopment agent-based models of complex systems. In general, the development
i of a computational model involving multiple interacting agents requires iterative
2 cycles of model development, execution, analysis, and refinement. During model
3 exploration, refinement and validation, modelers can benefit from a simulation
e environment that allow them to observe, interact with, and refine a simulation as
ws it executes (i.e., real-time simulation and visualization). However, computation-
ws  ally intensive investigations of developed models (e.g., characterizing emergent
w7 mechanisms or the effects of system stochasticity, systems with large numbers of
ws  objects) require efficient high-performance computing utilization and batch ex-
o ecution. Tissue Forge supports both interactive and batch operation, providing
10 both rapid and intuitive model development and high-performance simulation
11 execution, so that modelers do not need to find and learn multiple software tools
12 or settle for a tool that is either, but not both, feature rich or computationally
183 efficient. Its interactive simulation mode is a stand-alone application with real-
18+ time visualization and user-specified events. Its batch mode leverages available
15 resources in high-performance computing environments such as computing clus-
186 ters, supercomputers, and cloud-based computing, and exports simulation data
1i7 - and high-resolution images. In batch mode, Tissue Forge can be included in
18 workflows to carry out modeling task such as model fitting or simulation of
189 replicates and populations.

190 Open Science Support. Development and dissemination of models that
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11 leverage interdisciplinary knowledge and previous modeling projects require ro-
12 bust support for scientific communication, collaboration, training and reuse.
13 Tissue Forge provides a declarative model specification for many basic aspects of
e particle-based models and simulations (e.g., particle type definitions, particle in-
s teractions and stochastic motion via generalized force and potential definitions)
s with robust support for procedural specification of complex, agent-based models
17 particular to specific applications. Tissue Forge also supports model sharing and
108 collaborative development by providing built-in support for exporting and im-
199 porting simulations and model object states to and from human-readable string
20 data (using JSON format). In support of collaborative, community-driven and
20 application-specific development of models, the Tissue Forge code base provides
22 a designated space in which developers can implement features in customized
203 Tissue Forge builds. Extending the Tissue Forge API with custom interfaces
24 requires minimal effort in all supported software languages. Developers are also
25  welcome to submit their custom features to the public Tissue Forge code repos-
26 itory for future public release as built-in features, or to design their software
27 applications using Tissue Forge as an external software library. Along with exe-
28 cuting scripted simulations specified in C, C++ and Python programming lan-
20 guages, Tissue Forge also supports collaboration, training and scientific commu-
210 nication through its Python API support for interactive simulations in Jupyter
au Notebooks. Tissue Forge simplifies robust model construction and simulation
22 development through expressive model specification (e.g., process arithmetic),
23 a flexible event system for implementing model-specific rules (e.g., agent rules)
2 and simulation-specific runtime routines (e.g, importing and exporting data),
25 and a simple, intuitive simulation control interface (e.g., switching between in-

25 teractive and off-screen execution).
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x 3.2 Concepts

a8 Tissue Forge updates the trajectory of a particle in time by calculating the
29 net force acting on the particle. Forces determine the trajectory of a particle
20 according to the dynamics of the particle type. Tissue Forge currently supports
21 Newtonian and Langevin (overdamped) dynamics, which can be individually
2 specified for each particle type of a simulation.

223 For Newtonian dynamics, the position r; of the ith particle is updated ac-
24 cording to its acceleration, which is proportional to its mass m,; and the total

25  force f; exerted on it,

226
27 and for Langevin (overdamped) dynamics, m; is the drag coefficient and the

28  particle velocity is proportional to the total force,

d’l"i
fi= mz%

229

20 Tissue Forge supports three broad classes of force-generating interaction,

fi=) (FZJW - Fg.""d) + F (3)
i
2
23 Fii]mp ! is the force due to implicit interactions between the ith and jth particles,
233 Fig(’”d is the force due to bonded interactions between the ith and jth particles,
x  and FS'P " is the explicit force acting on the ith particle. Implicit interactions

25 result automatically from interaction potentials between pairs of particles of

26 given types. Bonded interactions act between specific pairs of individual par-

10
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o ticles (Figure 1A). Explicit forces act on particles through explicitly-defined
28 force descriptions and do not necessarily represent inter-particle interactions
20 (e.g., gravity, internal noise, system thermal equilibrium). Tissue Forge provides
20 built-in force- and potential-based definitions, supports user-specified definitions
2 for both, and permits applying an unlimited number of executable Tissue Forge

a2 force and potential objects to individual particles and particle types.

A ¢

p
<

Figure 1: Examples of Tissue Forge modeling features. A: Five superimposed
snapshots of a double pendulum implemented in Tissue Forge. Bonded interac-
tions (represented as green cylinders) explicitly describe the interaction between
a particular pair of particles, while a constant force acts on the blue particles
in the downward direction. The red particle is fixed. B: Four Tissue Forge
clusters representing biological cells, each consisting of ten particles whose color
demonstrates cluster membership. Potentials describe particle interactions by
whether they are in the same cluster (i.e., intracellular) or different clusters i.e.,
intercellular. C: Tissue Forge simulation of chemical flux during fluid droplet
collision. Each particle represents a portion of fluid that carries an amount of
a diffusive chemical, the amount of which varies from zero (blue) to one (red).
When two droplets carrying different initial chemical amounts collide, resulting
droplets tend towards homogeneous chemical distributions.

23 Implicit interactions are defined in Tissue Forge using potential functions and

a4 applied according to the types of two interacting particles. The force between

11
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25 the ith and jth interacting particles resulting from their implicit interactions
us is calculated as the sum of each kth potential U.i;zp ! that defines the implicit

?

7 interaction,

248
29 Bonded interactions are defined in Tissue Forge using potential functions and
0 are applied according to the identities of two interacting particles. The force
1 between the ¢th and jth interacting particles resulting from their bonded in-
22 teractions is calculated as the sum of each kth potential U, g"kfld that defines the

»3  bonded interaction,

0
Fbond [ﬂ)ond
i - _67’!’1' E ijk (5)
k

254
»s  Explicit forces can be defined on the basis of particle type or on individual par-
6 ticles. The force on the ith particles resulting from external forces is calculated

s as the sum of each kth explicit force F; " L

_Fiexpl — Z Fiekxpl. (6)
k

258 Since Tissue Forge enables the implementation and execution of models at
»0  different length scales, particles in a simulation may represents objects with
x0 a wide variety of possible behaviors. A particle could be atomic and subject
21 to energy-conserving, implicit interactions (e.g., Coulomb, Morse or Lennard-
22 Jones potentials) as in classic MD. Particles can also represent portions of ma-
23 terial that constitute larger objects (e.g., a portion of cytoplasm) and can carry

¢ quantities of materials within them (e.g., convection of a solute chemical in a

12
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265 portion of a fluid, Figure 1C). Tissue Forge provides built-in features to enable
xs particle-based modeling and simulation of fluid flow based on transport dissipa-
267 tive particle dynamics ((DPD) and smooth particle hydrodynamics, including
s a predefined tDPD potential U;}D PD that can be applied when describing the

x%e interactions of a simulation,

tDPD
_ouT

_ pC D R
o Fij + Fij + Fj, (7)

270
on where the interaction between the ith and jth fluid-like particles is a sum of a

2 conservative force Fg,

a dissipative force FWD and a random force Fff acting on
213 the ith particle.

274 To support treating particles as constituents of larger objects, Tissue Forge
s provides a special type of particle, a cluster, whose elements can consist of con-
o stituent particles or other clusters. Clusters provide a convenient way to define
o7 implicit interactions that only occur between particles within the same cluster
2 (e.g., intracellular interactions), called bound interactions, and those that only
29 occur between particles from different clusters (e.g., intercellular interactions),
20 called unbound interactions (Figure 1B).

281 To allow particles to carry embedded quantities, Tissue Forge supports at-
x taching to each particle a vector of states that can evolve during a simulation.
23 The values of the states can evolve according to laws defined between pairs of
2« particle types for inter-particle transport (e.g., diffusion), which Tissue Forge
s automatically applies during simulation, or according to local, intra-particle re-

26 actions. The time evolution of a state vector C; attached to the ith particle

287 iS7

dC;
" =Q¢=§Q£+Qf’, (8)
NE)

13
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288
29 where the rate of change of the state vector attached to the ith particle is equal
20 to the sum of the transport fluxes Q;"; between the ith and each nearby jth

2 particle and the local reactions QF.

» 3.3 Basic Features

23 Tissue Forge supports model and simulation specification using classes, objects
2« and functions typical to object-oriented concepts in C, C++ and Python pro-
25 gramming languages. In Python, custom Tissue Forge particle types can be

26 defined by creating Python classes and specifying class attributes (Listing 1).

297

281|# Get the Tissue Forge Python library

2992| import tissue_forge as tf

303 # Specify a particle type with a particular radius
3014 class OscType(tf.ParticleTypeSpec):

302 5 radius = 0.5
303

Listing 1: Importing the Tissue Forge library and declaring a particle type in

Python. Comments are shown in green.

304 Tissue Forge allows specification of particle types without an initialized Tis-
s sue Forge runtime. However, initializing the Tissue Forge runtime, which in
36 Python only requires a call to a single module-level function, permits retrieving
w07 template executable particle types that can be used to create particles (List-
28 ing 2). When a particle of a particular particle type is created, the particle
w0 inherits all attributes of its type (e.g., mass), which can in turn be modified
s for the particular particle at any time during simulation. Initializing the Tissue
sn  Forge runtime requires no user-specified information, in which case a default
sz configuration is provided, but explicit initialization provides a number of cus-
a3 tomization options to tailor a simulation to a particular problem (e.g., domain

se  size, interaction cutoff distance).

14
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315

361 | # Initialize with a 10x10x10 domain and cutoff distance of 3
3172| tf.init (dim=[10, 10, 10], cutoff=3)
3183| # Get the oscillator type and create two particles

3191| osc_type = OscType.get() # a particle type

3205 osc_partl = osc_type([4, 5, 5]) # particle 1: x,y,z coords
216| osc_part2 = osc_type([6, 5, 5]) # particle 2: x,y,z coords
327| # Change the radius of one of the particles

s238 osc_part2.radius = 0.25

Listing 2: Initializing a Tissue Forge simulation, retrieving an executable

particle type and creating particles in Python.

325 Users specify and apply interactions, whether using built-in or custom poten-
a6 tial functions or explicit forces, by creating Tissue Forge objects that represent
27 processes (e.g., a force object), called process objects, and applying them cate-
2 gorically by predefined ways that processes can act on objects (e.g., by type pairs
2o for implicit interactions). Tissue Forge calls applying a process to model objects
s0  binding, which Tissue Forge applies automatically during simulation execution
sn  according to the model objects and process. For example, users can specify an
s implicit interaction between particles to two types by creating a potential object

s and binding it to the two particle types (Listing 3).

334

3351|# Create a harmonic potential object

3362 pot = tf.Potential.harmonic(k=1, r0=1.5)
3373|# Bind the harmonic potential to pairs of
3384 | # particles of the oscillator type

3395 tf.bind.types (pot, osc_type, osc_type)

Listing 3: Creating a Tissue Forge potential and binding it to particles by type

in Python.

31 Tissue Forge provides fine-grained simulation control, where each integra-

a2 tion step can be explicitly executed, with other user-defined tasks accomplished

15
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ss  between executing simulation steps (e.g., exporting simulation data). For in-
sa  teractive execution, Tissue Forge simulations are usually executed using a basic
us  run function, which executes an event loop that (1) integrates the universe, (2)
us  processes user input (e.g., keyboard commands), (3) updates simulation visual-
wr ization, and (4) executes an event system with user-defined events. The Tissue
us  Forge event system allows users to insert instructions into the event loop via
s user-defined functions (Listing 4). Events can be executed at arbitrary fre-
30 quencies, can automatically retrieve simulation data (e.g., a randomly selected
31 particle of a specific type), and can change qualities of individual particles (e.g.,

32 change the radius of a particular particle based on its environment).
353

3541|# Define an event that prints the time and particle x-coordinate

52| def my_event(e: tf.event.TimeEvent):

356 3 print (’Time:’, tf.Universe.time)
357 4 print (’pl x position:’, osc_partl.position.x())
358 5 print(’p2 x position:’, osc_part2.position.x())

35906| # Register the event for execution at every simulation step
07| tf.event.on_time (period=tf.Universe.dt, invoke_method=my_event)
618| # Run the simulation

3620| tf.run ()
363

Listing 4: Creating a Tissue Forge event and running an interactive simulation

in Python.

364 During simulation execution, including during execution of user-defined events,
s Lissue Forge objects are available for accessing and manipulating simulation,
6 universe and system information. The Python code described in this section
w7 generates the Tissue Forge simulation depicted in Figure 2 (see Supplementary
s Materials S2), and also prints the current simulation time and z-coordinate of
w0 both particles at every simulation step. This simulation can be executed as a
s Python script or in an IPython console.

a7 In a Jupyter Notebook, this code executes the same simulation but generates

16


https://doi.org/10.1101/2022.11.28.518300
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.28.518300; this version posted November 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2: Tissue Forge simulation of a simple oscillator with two particles in-
teracting via a harmonic potential. Tissue Forge helps to orient the user by
drawing a yellow box around the simulation domain, a white grid along the xy
plane at the center of the domain, and an orientation glyph at the bottom right
to demonstrate the axes of the simulation domain with reference to the camera
view, where red points in the = direction, green in the y direction and blue in
the z direction.

s an additional user interface, which provides widgets for interactive simulation
sz controls, e.g., for pausing and resuming the simulation, and choosing predefined
s camera views (Figure 3). When running Tissue Forge from a Python script or
ws  IPython console, the interface supports mouse control (e.g., click and drag to
s rotate) and predefined and user-defined keyboard commands (e.g., space bar
s to pause or resume the simulation). In interactive contexts like IPython and
sis Jupyter Notebooks, the Tissue Forge event loop recognizes user commands is-
se - sued ad hoc during simulation, allowing on-the-fly modification of the simulation
s state, which is especially useful during model development and interrogation

s (e.g., when testing the effects of the timing of an event).
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Figure 3: Sample use of the Python API to specify an interactive simulation of
convection of a species near a species sink in a Python script (left) and in an
interactive Jupyter Notebook (right).

w» 3.4 Sample Modeling Applications

s Beyond the provided catalogue of built-in potentials, potential arithmetic (e.g.,
s« a potential object as the sum of two potential objects) and support for user-
s specified custom potentials, Tissue Forge provides process objects for binding
s potential-based process between specific particles (i.e., a bonded interaction).
sv - Bonded interactions are a key component of MD modeling. Tissue Forge pro-
s vides a number of bond-like processes to apply potentials for various types of
0 bonded interactions. Each bonded interaction has a representative object that
30 contains information about the bonded interaction (e.g., which particles, what
s potential) that Tissue Forge uses to implement it during simulation. Currently,
32 Tissue Forge provides the Bond for two-particle bonded interactions (where the
33 potential is a function of the Euclidean distance between the particles, Figure
3¢ 4, top left), the Angle for three-particle bonded interactions (where the potential
35 is a function of the angle between the vector from the second to first particles

w6 and the vector from the second and third particles, Figure 4, top middle), and
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307 Dihedral (torsion angle) for four-particle bonded interactions (where the poten-
w8 tial depends on the angle between the plane formed by the first, second and
s third particles and the plane formed by the second, third and fourth particles,
wo  Figure 4, top right). Like particles, all bonded interactions can be created and
a1 destroyed at any time during simulation, and bonded interactions can also be
a2 assigned a dissociation energy so that the bond is automatically destroyed when

w3 the potential energy of the bond exceeds its dissociation energy.

Figure 4: Molecular modeling and simulation with Tissue Forge. A: Classes
of bonded interactions, where a measured property of the bond (length [ for
Bonds, angle 6 for Angles, and planar angle ¢ for Dihedrals) is used as input
to a potential function. B: Detailed view of thymine (left) and adenine (right)
molecules constructed from Tissue Forge objects. Bonds shown as green cylin-
ders, angles as blue arcs, and dihedrals as gold planes. C: Real-time simulation
of a cloud of thymine and adenine molecules interacting via long-range poten-
tials in a neutral medium.

404 Tissue Forge supports combining aspects of object-oriented programming
a5 with primitive Tissue Forge objects to define complex model objects for use in
w6 simulations. When modeling the dynamics of biomolecules, each particle can

w07 represent an atom, the atomic properties of which are defined through the Tissue
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w8 Forge particle type. Definitions of particular biomolecules, such as nucleobases
o like thymine and adenine (Figure 4B) can then be designed using generic Python
a0 (or other supported language) classes that construct an instance of a biomolecule
a1 by assembling Tissue Forge particles and bonded interactions according to ex-
a2 perimental data. Tissue Forge facilitates the construction and deployment of
as  software infrastructure to develop interactive simulations of biomolecular sys-
as  tems and processes (Figure 4C, see Supplementary Materials S3).

a1 Particle-based methods are also useful for coarse-grained modeling of sub-
a6 cellular components, where the atoms of individual biomolecules, biomolecular
a7 complexes, or even organelles are omitted and instead represented by a sin-
as  gle particle that incorporates the aggregate behavior of its constituents (e.g.,
a9 subcellular-element models). Tissue Forge supports coarse-grained subcellular
20 modeling at various resolutions from the molecular to cellular scales, where a
a1 particle can represent a whole molecule, complex, or portion of an organelle or
w22 cytoplasm, to which coarse-grained properties (e.g., net charge or phosphory-
w23 lation state) and processes (e.g., pumping of a solute, metabolism of a small
w24 molecule) can be applied.

s For example, a particle can represent a portion of a lipid bilayer, in which
26 case a sheet of such particle with appropriate binding and periodic boundary
w27 conditions can represent a section of a cell membrane. The Tissue Forge sim-
s ulation domain can describe representative local spatial dynamics of the cell
a0 interface with its surrounding environment. Tissue Forge supports particle-
a0 based convection, providing a straightforward way to simulate a coarse-grained
s model of active transport at the cell membrane. Tissue Forge provides addi-
a2 tional transport laws to model active pumping of species into or out of particles.
a3 'To model transport at the cell membrane, these transport laws support imple-

s menting coarse-grain models of membrane-bound complexes like ion channels,
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ss which create discontinuities in concentrations of target species across the cell

16 membrane (Figure 5, see Supplementary Materials S4).

A Time 0 Time 500 Time 1000 Time 1500 Time 2000

Upper

S
(94

o
ey

w
L
2 3
(=% Q
©» 1000 0.5 2
g —e— Lower i
— ©
= —a— Upper °
[«}] —_
£ —o— Total 2
T 500 025 €
8 —m— Channel 8
= O
(@]
0
0 500 1000 1500 2000
Simulation time

Figure 5: Active pumping of a diffusive species across a deformable membrane
separating two fluid-filled compartments. A: Cut-plane views during simulation
of two fluid-filled compartments separated by a deformable membrane, where
each fluid is uniformly initialized with an initial concentration of a species. Par-
ticle color indicates species concentration with red as high, yellow and green as
intermediate, and blue as low concentration. The membrane contains a particle
that actively pumps the species from the lower to the upper compartment. B:
Three-dimensional view of initial simulation state. C: Measurements of total
species amounts in the lower (blue, circles), upper (red, triangles) and both
(green, diamonds) compartments (left-hand vertical axis), and in the channel
(magenta, squares, right-hand axis), during simulation.

437 At the coarsest scale of target applications, Tissue Forge provides support
s for particle-based modeling of multicellular dynamics. Tissue Forge provides a

a0 number of modeling features to support multicellular modeling at resolutions at
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a0 or near the multicellular scale, where a particle can represent an individual cell,
a or a part of a cell. Overdamped dynamics describe the highly viscous, fluid-
w2 like collective motion of particle-based model cells, where short-range, implicit
w3 interactions can represent volume exclusion and contact-mediated intercellular
ws  interactions (e.g., adhesion), long-range, implicit interactions can represent in-
s tercellular signaling via soluble signaling, and particle state vectors can describe
wus the intracellular state.

aa7 For example, particle-based model descriptions have been previously used to
ws  describe cells as a set of particles (e.g., a Tissue Forge cluster, Figure 1B) when
w0 modeling the process of spheroid fusion in tissue bioprinting, where cohesive
a0 cell shape is maintained by Lennard-Jones and harmonic potentials between
1 particles of the same cell, and intercellular adhesion occurs by a Lennard-Jones
2 potential between particles of different cells [12]. In a simpler model, repre-
3 senting each cell as a single particle and intercellular interactions with a single
e Morse potential can also produce emergent fusion of spheroids like those used
5 in bioprinting of mineralized bone (i.e., about 12.5k cells per spheroid, Figure
w6 6) [14]. When coupled with modeling diffusive transport and uptake like the
w7 scenario demonstrated in Figure 5, a Tissue Forge-based framework for the sim-
sss ulation of nutrient availability during spheroid-dependent biofabrication could

10 support detailed modeling of spheroid viability in large tissue constructs [15].

« 4 Discussion

w1 The Tissue Forge modeling and simulation framework allows users to interac-
w2 tively create, simulate and explore models at biologically relevant length scales.
w3 Accessible interactive simulation is key to increasing scientific productivity in
s biomodeling, just as simulation environments are fundamental to other fields of

w5 modern engineering. Tissue Forge supports both interactive runs with real-time
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Figure 6: Simulating fusion of multicellular, homotypic spheroids. A: Spheroids
of 12.5k cells each were individually pre-assembled, as in typical bioprinting
practice. B: Two spheroids (green and blue) placed in close proximity fuse
over time, as measured by the neck diameter along the y (blue circles) and z
(red triangles) directions, which grows over time. The neck diameter along a
direction is measured as the largest distance along the direction between any
two particles at the mid-plane. Insets show the simulation at times 1, 50, 100,
150 and 200.

w6 visualization for model development, and headless execution for data generation
w7 and integrated applications. In addition, Tissue Forge supports user-specified
w8 model features (e.g., custom particle types, forces and potentials) and scheduled
w0 and keyboard-driven simulation events, with intuitive user interfaces, in multiple
a0 programming languages and frameworks, supporting beginner- to expert-level
an programmers and beginner- to expert-level biomodelers.

an Tissue Forge is open-source and freely available under the LGPL v3.0 license
w3 (https://github.com/tissue-forge/tissue-forge). Pre-built binaries are
as available in C, C++ and Python on 64-bit Windows, MacOS and Linux sys-
w5 tems via conda (https://anaconda.org/tissue-forge/tissue-forge). On-
a  line documentation provides information on project philosophy, installation,
a7 walk-throughs, examples (in Jupyter Notebooks, https://github.com/tissue-forge/

ws tissue-forge/tree/main/examples/py/notebooks) and API documentation
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a0 for all supported languages. It has automated build updates to maintain syn-
w0 chronization between software versions and documented features (https://
w1 tissue-forge-documentation.readthedocs.io), including details on features
w2 not described in this paper (e.g., species transport, boundary conditions). Tis-
a3 sue Forge’s transparent development cycle, with automated continuous integra-
«  tion and continuous delivery, rapidly and reliably delivers the latest features to
w5 users (https://dev.azure.com/Tissue-Forge/tissue-forge). Instructions
w5 for installing Tissue Forge are available in the Supplementary Materials S1.

ag7 Tissue Forge applies the abstraction of a particle to support modeling ap-
a8 plications over a wide range of scales, ranging from sub-nanometer to hundreds
a0 of micrometers and beyond. It supports future development and integration
w0 of advanced numerical and computational methods for incorporating and/or
w1 generating biological information with increasingly greater detail. Tissue Forge
w2 provides a designated space for development of application-specific models and
23 methods by both the development team and user community, and so is free to
ws  grow and evolve into other computational domains with significant relevance and
w5 impact to a number of scientific communities. To this end, we are preparing a
a6 followup manuscript that demonstrates advanced modeling and simulation fea-
a7 tures, detailed model construction in specific applications, and relevant features
w8 that are currently under development. Tissue Forge features under develop-
wo  ment include improvements to core Tissue Forge simulation capability (e.g.,
so  multi-GPU support and libRoadRunner [16] integration for network dynamics
sn  modeling), additional modeling features (e.g., new built-in potentials and forces,
s support for improper angles in MD modeling), enhanced user experience (e.g.,
s a graphical event interface), and additional modeling methodologies and solvers

s (e.g., vertex and subcellular element models).
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« o Conclusion

s Lissue Forge supports biological, chemical and physics research by providing
so7 an interactive modeling and simulation environment for particle-based model
s development, execution and sharing, including integration with applications in
so0o  multiple programming languages. The Tissue Forge Python API supports in-
sio teractive modeling as a standalone application or in a Jupyter Notebook, while
su  the Tissue Forge C and C++ APIs support development of compiled and inte-
sz grated applications for advanced and compute-intensive projects. Tissue Forge
sz supports modeling applications over a broad range of scales, from the molecu-
siu lar to the multicellular and beyond, and adopts a robust architecture to grow

sis  according to the needs of target scientific communities.
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