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 2 

ABSTRACT 21 

Determining the identities, frequencies, and memberships of ecotypes in 22 

Prochlorococcus and other superabundant microbes (SAMs) is essential to studies of 23 

their evolution and ecology.  This is challenging, however, because the extremely 24 

large population sizes of SAMs likely cause violations of foundational assumptions 25 

made by standard methods used in molecular evolution and phylogenetics.  Here we 26 

present a tree-free likelihood method to identify ecotypes, which we define as 27 

populations with genome sequences whose high similarity is maintained by 28 

purifying selection.  We applied the method to 96 genomes of the superabundant 29 

marine cyanobacterium Prochlorococcus and find that this sample is comprised of 30 

about 24 ecotypes, substantially more than the five major ecotypes that are 31 

generally recognized.  The method presented here may prove useful with other 32 

superabundant microbes. 33 
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INTRODUCTION 35 

With densities of up to 106/ml of seawater and a global census size of some 1027 36 

cells, the cyanobacterium Prochlorococcus marinus is the Earth’s most abundant 37 

photosynthetic organism (1).  It is also among the most ecologically important:  38 

these microbes are responsible for some 10% of atmosphere’s oxygen (2).   39 

 The taxon Prochlorococcus encompasses multiple ecotypes that are 40 

distinguished by physiology, genomic features, and the environments in which they 41 

live (e.g. (3-11)).  The number, frequencies, and memberships of these ecotypes, 42 

however, is not well understood.  This situation is partly the result of the differing 43 

criteria used to delimit the ecotypes and estimate their phylogenetic relations:  44 

nucleotide or amino acid identity (e.g. (3, 7, 12)), physiology (13, 14), likelihood (15-45 

17), neighbor joining (7, 18), parsimony (19), and the frequency of recombination 46 

(20). 47 

 Having accurate definitions for the ecotypes is important for several reasons.  48 

It is of great interest to predict how Prochlorococcus and other superabundant 49 

photosynthetic microbes will respond to climate change.  The accuracy of current 50 

models (1, 21-23) might be increased by explicitly recognizing the ecological and 51 

physiological substructure of Prochlorococcus (14).  Understanding the molecular 52 

evolution of Prochlorococcus depends on appropriate definitions of genetic 53 

populations, but studies have used widely differing ones (12, 19, 24, 25). 54 

 Defining ecotypes in superabundant microbes presents several novel 55 

challenges.  Current methods in molecular evolution and phylogeny assume that a 56 

certain class of genomic sites (e.g. synonymous site) evolve as selectively neutral, 57 
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and that each nucleotide variant descend from of a unique mutation.  If there are 58 

selectively neutral mutations occurring at some genomic sites, however, the vast 59 

coalescence times implied by the huge population size suggest that these sites may 60 

be mutationally saturated, and all trace of phylogenetic history has been erased.  61 

There is further the question of whether effectively neutral mutations (that is, with 62 

Ne s << 1) even exist in the genome of an organism with the population size of 63 

Prochlorococcus (18).  A recent study suggests Ne may in fact be only on the order of 64 

107, or the number of cells than can be found in 10 ml of seawater (26).  That 65 

conclusion, however, was based on the assumption that some sites in the genome 66 

are selectively neutral.  Clearly there is need for molecular tools that are appropriate 67 

to the biology of SAMs. 68 

 Some intuition about the implications of the extreme population size is gained 69 

from Figure 1.  It shows how nucleotide diversity (π) varies with population size, 70 

selection, and drift.  These are results from a toy model that is described in 71 

Supplemental Information 1.  Although it is far too simplified to rely on for 72 

quantitative results, the qualitative outcomes are informative.  For most of life on 73 

Earth, the product of population size and the per-base mutation rate (Ne µ) is much 74 

smaller than 1.  In that realm, the evolution of a mutation will either be largely 75 

dominated by mutation and drift (if Ne s << 1) or by mutation and selection (if Ne s 76 

>> 1).  Standard methods for inferring the genetic boundaries of species and their 77 

phylogenetic relations rely on mutations in the first category (e.g. refs. (27, 28)).  78 

But when Ne µ is much greater than 1, sites whose evolution is dominated by 79 

mutation and drift no longer occur.  Instead, allele frequencies are either 80 
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determined by mutation rates alone (if Ne s is sufficiently small) or a balance 81 

between mutation and selection (if not).  In either event, we do not have the class of 82 

mutations required by standard methods that aim to delimit populations and 83 

species, and to estimate the phylogenetic relations between them.   84 

 In this paper we introduce a new model for delimiting ecotypes in 85 

superabundant microbes that we call TreeFree.  We use it to analyze 96 whole 86 

genome sequences and 101 internal transcribed spacer (ITS) sequences sampled 87 

from Prochlorococcus by Kashtan et al. (18).  The basis for our approach is an 88 

operational definition of an ecotype as a population whose individuals experience 89 

such similar selection pressures that they have very similar genomes and (by 90 

implication) ecological function.  This view of ecotypes has some similarity to 91 

Cohan’s definition (29), but ours does not require periodic selective sweeps to 92 

homogenize the genetic variation within ecotypes since that can be accomplished by 93 

purifying selection alone.   94 

 The core assumption is that each ecotype is characterized by a reference 95 

genome sequence, and the rare departures from that sequence result from 96 

deleterious mutation (and sequencing errors).  Under this hypothesis, any variation 97 

maintained by some form of balancing selection in effect results in multiple 98 

ecotypes that coexist by some form of niche partitioning.   99 

 Our method uses a likelihood approach to estimate the number of ecotypes 100 

and their frequencies, and there is an explicit model for the sources of genetic 101 

variation within ecotypes (mutation and sequencing error).  No attempt is made to 102 

estimate the phylogenetic relations between the ecotypes:  the method is tree-free.  103 
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The reference sequences for all the ecotypes appear in the likelihood function, but 104 

since those are not our main concern we average over uncertainties in those 105 

sequences using Markov Chain Monte Carlo (MCMC) (30).   106 

 We note that the term “ecotype” has been used in ways that differ from our 107 

definition by researchers working on Prochlorococcus and other microbes.  In this 108 

paper, an ecotype refers to a group of cells that our analyses suggest belong to the 109 

same genetic unit (as described above).  We use “clade” to refer to the groups of 110 

genomes recognized by Kashtan et al. (18).  (Later we will introduce “population” to 111 

refer to other levels of clustering.) 112 

 To learn how results from TreeFree compare with those from conventional 113 

methods used to infer species boundaries with genomic data, we also analyzed the 114 

Kashtan data using Bayesian Phylogenetics and Phylogeography (BPP), a Bayesian 115 

method for delimiting species (or in our case, ecotypes) using the multispecies 116 

coalescent model (31, 32).  As with other methods in molecular phylogenetics, BPP 117 

makes assumptions we suspect may be violated by Prochlorococcus.  Notably, BPP 118 

assumes that genomic sites that differ between species (or ecotypes) are not 119 

mutationally saturated, and that there is strong recombination between sites. 120 

 Results from our new method suggest that there are many more ecotypes than 121 

are generally recognized by the community of Prochlorococcus workers and by BPP.  122 

We estimate that this sample of 96 genomes comprises about 24 ecotypes.  Our 123 

method is many times more computationally efficient than BBP, and it can 124 

accommodate sequences of 1 Mb or more.  This tool may be useful for exploring the 125 

ecological diversity in other superabundant microbes. 126 
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 127 

METHODS 128 

The data 129 

This study was inspired by Kashtan et al. (18), who collected partial genome 130 

sequences from 96 Prochlorococcus cells that were sampled from 2 ml of seawater 131 

at 60 m depth at a site in the mid-Atlantic during three dates in 2008 and 2009.  In 132 

addition, we analyzed the RNA ITS (549 bp) that was sequenced from those 96 cells 133 

and from an additional five cells.  134 

 The genomes of Prochlorococcus ecotypes differ dramatically in their size and 135 

composition due to variation in the presence or absence of “flexible” genes.  Since 136 

our method relies on sequence alignment, we focused exclusively on the 1 Mb “core” 137 

genome that is shared among all ecotypes and consists of about 1 400 genes.  There 138 

are 307 432 SNPs.  Of these, an unusually high fraction (21%) are triallelic or 139 

quadallelic, which is not surprising given the presence of multiple ecotypes.  140 

 141 

TreeFree 142 

We call our new method TreeFree because it estimates the genetic boundaries of 143 

ecotypes without estimating their phylogeny.   At the heart of the algorithm is a 144 

model that calculates the probability of the observed genome sequences given four 145 

sets of parameters:  the number and frequencies of ecotypes, the assignment of each 146 

genome in the sample to an ecotype, the reference genome sequence for each 147 
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ecotype, and the frequency of minor alleles at sites within ecotypes that result from 148 

deleterious mutation and sequencing error.  Our main interest is in the first of these.   149 

 Given this model, one strategy might be to search for the parameters that 150 

maximize the likelihood (that is, the maximum likelihood estimates).  Unfortunately, 151 

that strategy is not practical because of the very large number of parameters, 152 

notably the reference genome sequences for all the ecotypes.  For example, a 153 

statistical model for a dataset with 10 ecotypes with genomes that have 105 SNPs 154 

has 106 parameters to estimate.  We therefore use Markov Chain Monte Carlo to 155 

sample the parameter space and obtain posterior probability densities for the 156 

parameters of interest.  A technical challenge here is that we need to compare the 157 

likelihoods for models that include different numbers of ecotypes and therefore 158 

different numbers of parameters.  159 

 The following two sections outline the likelihood model and the MCMC 160 

algorithm.  Details are given in Supplemental Information 2. 161 

 162 

The likelihood model.  The essence of the likelihood model is simple.  For each 163 

genomic sequence in the sample, we consider the probability that it belongs to each 164 

proposed ecotype.  For each of those ecotypes, we calculate the probability of the 165 

observed sequence, which is determined by the numbers of sites at which that 166 

sequence does and does not agree with the reference sequence for that ecotype.  167 

The probabilities for membership in each ecotype are added together to give the 168 

total likelihood for that sequence.  The likelihoods for each sequence in the sample 169 

are multiplied together to arrive at the likelihood for all of the data, given the 170 
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parameters.  This last step assumes that the individual genomes are independent 171 

samples. 172 

 We greatly simplify this model by making two strong assumptions.  First, we 173 

assume that within an ecotype, the minor allele at each site has the same frequency 174 

q.  This assumption is plausible if purifying selection is sufficiently strong that the 175 

great majority of genomic sites fall into the mutation-selection domain shown in 176 

Figure 1 and if most minor alleles result from sequencing error rather than 177 

deleterious mutation.  The latter assumption seems plausible since the sequencing 178 

error in these data is estimated to be 10–4 per base pair (18) while the spontaneous 179 

mutation rate in Prochlorococcus is on the order of 10–10 per base pair (26, 33). 180 

 Under these assumptions, the likelihood of the data is 181 

 182 

  L  =  ∏ ∑ ��
�
��� �1 �  �	���  ��� � ���	


��  , (1) 183 

 184 

where n is the number of sequences in the sample, J is the proposed number of 185 

ecotypes, fj is the frequency of ecotype j, Ki is the total number of SNPs in sequence i, 186 

and mij is the total number of matches across all genomic sites between the alleles in 187 

sequence i and those in the reference genome of ecotype j.  Further details are given 188 

in Supplemental Information 2. 189 

 190 

The MCMC implementation. We infer the ecotype structure in a way similar to the 191 

implementation of structure (34).  For a given number of ecotypes, we alternate 192 

between Metropolis-Hastings steps in order to optimize the vector of ecotype 193 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.517206doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.517206


 10

frequencies and Gibbs steps to estimate the reference sequences for all the ecotypes 194 

(see (35)).   195 

 We initiate that algorithm with J (the number of ecotypes) equal to n (the 196 

sample size), so that each genome is initially assigned to a different ecotype.  We 197 

then decrement the number of ecotypes by one, removing the ecotype that causes 198 

the smallest change in the likelihood when it is omitted. After iterating this process 199 

down to a single ecotype, we take the maximum likelihood achieved within each 200 

Gibbs step.  This likelihood is compared with the maximum likelihood reached in the 201 

previous Gibbs step using a likelihood ratio test.  These steps are repeated until only 202 

a single ecotype remains.  We then count the number of times that a Gibbs step 203 

results in a significant decrease in the likelihood (at p < 0.05).  This number is our 204 

estimate for the number of ecotypes in the sample. 205 

 The logic behind this algorithm is as follows.  Whenever removing an ecotype 206 

causes a significant drop in the likelihood, we expect that this potential ecotype is in 207 

fact a real ecotype.  Conversely, if removing an ecotype does not cause the likelihood 208 

to drop significantly, we interpret reject that potential ecotype as being a real one. 209 

 We found that using subsets of the genome produces smaller estimates of the 210 

numbers of ecotypes.  This behavior is expected because the sensitivity of the 211 

likelihood scales with the length of the sequences.   212 

 213 

Data analyzed.  We found it was not feasible to run TreeFree on the full sequences.  214 

We therefore analyzed the first 1% of the genome, and the first 10% of the genome.  215 
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Comparisons between these two analyses show how sensitive our method is to the 216 

amount of data. 217 

 218 

BPP 219 

We compared the results from our method with those obtained from Bayesian 220 

Phylogenetics and Phylogeography (BPP), a Bayesian method for delimiting species 221 

(or in our case, ecotypes) using the multispecies coalescent model (31, 32).  We 222 

applied this method to the genomes sequenced from single cells of Prochlorococcus 223 

by Kashtan et al. (18). Ninety of these genomes come from what they refer to as 224 

ecotype cN2.   225 

 The BPP analysis proceeds as follows: 226 

1. Each genome is assigned to a small “population” that is a priori assumed 227 

to belong to only one ecotype.  A rooted “guide tree” is provided that 228 

gives an initial phylogeny for these populations.  For this purpose, we 229 

used the phylogeny proposed by ref. (18) (see Fig. 2).   230 

2. BPP uses a Markov Chain Monte Carlo (MCMC) algorithm that considers 231 

jumps to different guide tree topologies. A reversible-jump MCMC 232 

algorithm considers changes to ecotype delimitations by merging and 233 

splitting tips of the guide tree. This process iterates many times. 234 

3. BPP outputs posterior probability distributions for several quantities, 235 

notably the total number of ecotypes and the assignments of each 236 

genotype to an ecotype. 237 
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  BPP is unable to run using the entire whole genome data set.  We therefore 238 

ran it on three subsets of the sequences: about 10% of the core genome (163 kb, n = 239 

96), about 0.1% of the core genome (1.63 kb, n = 96), and the rRNA ITS sequences 240 

(549 bp, n = 101 sequences).  Below we report the results from 12 distinct analyses 241 

that differ in the dataset used (a proportion of the core genome or the entire ITS 242 

region), the sequences that were included, and the assignment of sequences to 243 

populations (see Supplemental Information Table SI 3.1). 244 

 For many of our analyses, we focused on one or more ecotypes, initiating BPP 245 

with two or more prior populations from each ecotype. We then observed if BPP 246 

assigned these prior populations to their own ecotypes or merged several 247 

populations into the same ecotype. A more thorough discussion of our BPP 248 

implementation is included in the Supplemental Information 3, and details of 12 249 

selected analyses are given in Supplemental Information Tables SI 3.1 and SI 3.2. 250 

 251 

RESULTS 252 

Results from TreeFree 253 

Both TreeFree and BPP are Bayesian methods, so rather than providing single point 254 

estimates of parameters they return the probabilities associated with all possible 255 

outcomes.  For brevity, in the text we will refer to the result that has the highest 256 

posterior probability.  As described above, we used TreeFree to analyze subsets of 257 

0.1% and 10% of the sites in the core genome from all 96 individuals.  Using 0.1% of 258 

the sites, the number of ecotypes with the highest posterior probability was about 7, 259 
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while with 10% of the sites it was about 24 ecotypes.  More details of the results are 260 

presented in Figure 2 and Supplemental Information 4.    261 

 Notably, the 24 ecotypes identified in the larger dataset are not perfect subsets 262 

of the 7 ecotypes found using the smaller dataset.  This suggests that additional 263 

sequence data are required not only to resolve ecotypes on finer scales, but also to 264 

determine whether ecotypes have been robustly identified.  This outcome is not 265 

entirely surprising since smaller subsets of the genome can leave out genes that are 266 

critical to ecological differences between the ecotypes.  267 

 268 

BPP Results 269 

We conducted three main categories of analyses.  First, we analyzed three 270 

subsets of the whole genome sequences: 100%, 10%, and 0.1% (Table 3.1, rows 1-271 

3).  Due to the computational limits of BPP, we could not analyze the full genome 272 

sequences of all 96 cells at once.  Our analysis of the full genomes of nine individuals 273 

(four from clade C1, four from C2, and one from cN1-C9) identified three ecotypes 274 

which corresponded to Kashtan et al.’s three clades (Table 3.1, row 3).   In order to 275 

analyze all 96 single-cell sequences at once, we restricted our analysis to either 10% 276 

or 0.1% of the full genomes.  Here we initiated BPP by dividing each major clade into 277 

2 populations.  Both analyses estimated that the sequences belonged to between 13 278 

and 14 ecotypes, with the 10% analysis placing slightly more weight on larger 279 

numbers of ecotypes and the 0.1% placing more weight on smaller numbers (Table 280 

3.1, rows 1-2). Second, we analyzed the 549 bp of the ITS rRNA sequences from 101 281 

genomes. We divided the four largest Kashtan clades (C1, C2, C3, and C4) into 282 
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multiple prior populations, and initiated BPP with the neighbor joining tree 283 

estimated by Kashtan et al. (2014) (shown in Figure 3).  BPP merged the 284 

populations within each clade, resulting in 14 ecotypes (Fig 3;  Supplemental Table 285 

SI 3.1, row 4).  These are largely consistent with the ecotypes and clades recognized 286 

by Kashtan et al., but two of the clades are split into a pair of ecotypes.  Second, we 287 

used a random guide tree.  BPP then merged the populations further, resulting in 10 288 

ecotypes (Supplemental Information Table SI 3.1, row 5).  289 

 Finally, we ran BPP on a reduced number of single-cell ITS sequences. By 290 

including fewer individuals in the analysis, we were able to initialize BPP with a 291 

larger number of populations, each with fewer individuals. These analyses allowed 292 

us to test the extent to which BPP over-split populations. When we assigned each of 293 

the 13 individuals in clade C3 to its own initial population, BPP merged all of them 294 

into a single ecotype.  Similar outcomes obtained with other initial populations, with 295 

the exception that one initialization led to multiple ecotypes within clade C1 296 

(Supplemental Information SI 3.1, rows 8 – 12). 297 

Overall, the ecotypes returned by BPP are largely consistent with the clades 298 

identified by Kashtan et al. (18) using neighbor joining.  There are big differences, 299 

however, in the topology of the trees estimated by BPP using 10% of the sequences 300 

and neighbor joining using the whole genomes (Figure 4).  301 

 302 
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Comparing TreeFree and BPP 303 

The most important difference between the results from TreeFree and BPP is the 304 

number of ecotypes estimated.  Using 10% of the sequences, TreeFree estimates that 305 

there are roughly twice as many as does BPP (about 24 vs. about 12).   306 

 The two methods also disagreed on some of the assignments of the genomes to 307 

ecotypes (Figure 5). For example, TreeFree subdivided the C1 clade while BPP did 308 

not, and TreeFree cleanly divided the cN1-C9 and cN1 clades into separate ecotypes, 309 

rather than lumping them together.  On the other hand, TreeFree lumped the UC and 310 

C5 clades into a single ecotype, which BPP did not. 311 

 312 

DISCUSSION 313 

Our findings suggest that the number of ecotypes in Prochlorococcus may be 314 

substantially larger than are commonly recognized.  Early biochemical work 315 

suggested that Prochlorococcus had two ecotypes adapted to high and low light (36).  316 

The arrival of genome sequences, larger sample size, and additional environmental 317 

data lead to the recognition of six ecotypes (37), and many later studies accepted 318 

that conclusion.  More recent work has subdivided these further.  Kashtan et al. 319 

(2014) analyzed a sample of 1 381 sequences of the ITS.  Using a cutoff of 99% 320 

sequence identity, they found that depending on the season between 130 and 200 321 

“backbone subpopulations” coexisted in their samples.  Further, by subsampling 322 

different numbers of those sequences they showed that the true number of these 323 

subpopulations was certainly much larger. 324 
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 Based on a new method called TreeFree, our analysis suggests the presence of 325 

about 24 ecotypes in the 96 whole genome sequences sampled by Kashtan et al. 326 

(2014).  The method, which was designed to delimit ecotypes using genomic data 327 

from superabundant microbes, is based on an explicit statistical model.  Our model 328 

makes the strong assumption that the effective strength of selection, Ne s, is much 329 

larger than one at all sites in the genome.  While that assumption is plausible in the 330 

case of Prochlorococcus, we currently have no direct way to test it directly.  Our 331 

conclusions are therefore provisional until the arrival of new statistical methods 332 

that can estimate quantities from patterns of molecular variation in superabundant 333 

microbes. 334 

 Properly defining ecotypes in Prochlorococcus could open up a new field of 335 

molecular evolution.  The combined census population size estimated for 336 

Prochlorococcus is so vast that even ecotypes that are quite rare may have 337 

population sizes many orders of magnitude larger than those of abundant 338 

eukaryotes such as Drosophila.  As we suggested in the Introduction, this situation 339 

could put Prochlorococcus in an unexplored region of population genetics parameter 340 

space.  If Ne µ is much larger than 1 throughout the genome, all sites will be 341 

mutationally saturated.  That situation could free Prochlorococcus of most adaptive 342 

constraints.  Adaptive sweeps of point mutations cease to occur because every 343 

possible mutation occurs many time in each generation, and most adaptation may 344 

happen by selection on standing variation (38).  If Ne s is much larger than one at all 345 

sites, then no mutations evolve as if neutral, and genetic drift is virtually banished as 346 
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an evolutionary force.  This situation would represent a strange and fascinating new 347 

world for evolutionary genetics.  348 
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 468 

FIGURE 1  The dependance of nucleotide diversity (π) on the scaled strength of 469 

selection (Nes) and mutation rate (Neµ).  The results are based on the toy model 470 

described in detail in Supplemental Information 1.  The population size of 471 

Prochlorococcus is so vast that it may lie outside the region of parameter space 472 

assumed by existing phylogenetic methods. 473 
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 475 

FIGURE 2  The log likelihood of ecotype partitions calculated by TreeFree using 10% 476 

of the genome.  Moving to the right, in each Gibbs step the number of ecotypes is 477 

decreased by one, resulting in a decrease in the likelihood.  Steps in which the 478 

decrease is significant (p < 0.05 by a likelihood ratio test) are indicated by the 479 

circles. 480 
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 482 

FIGURE 3  Left:  The most probable phylogenetic tree estimated by BPP using 10% 483 

of the genome sequences.  The ecotypes it identified are consistent with the clades 484 

identified by Kashtan et al. (18)  with the exception of clades C3 and C5, which BPP 485 

subdivided into two ecotypes.  For brevity, Kashtan et al.’s clades c9301-C8 and 486 

cN1-C9 are shown here as C8 and C9.  Ecotypes UC1, UC2, and UC5 are represented 487 

by only a single genome.  Other ecotypes are represented by between 2 and 53 488 

genomes;  ecotype C1 is by far the most abundant.  Right:  The posterior 489 

distributions of probabilities for the numbers of ecotypes estimated by BPP using 490 

the ITS sequence alone, 0.1% of the genomes, and 10% of the genomes. 491 
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 493 

FIGURE 4  The relationship between the phylogenetic tree estimated by BPP using 494 

10% of the data and the neighbor joining tree estimated by Kashtan et al. (18) using 495 

the whole genomes. 496 
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 498 

FIGURE 5  The relationship between the ecotypes estimated by TreeFree and BPP 499 

using 10% of the sequences.  At left are the phylogeny and ecotypes estimated by 500 

BPP (see Figs. 3 and 4).  To the right of the tips of the tree, each vertical rectangle 501 

represents one of the genomes sequenced by Kashtan et al. (188), color coded to 502 

show to which of the 24 ecotypes they most likely belong according to TreeFree. 503 
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SI 1:  Toy model used for Figure 1 519 

 520 

 Here we calculate the expected molecular diversity, π, at a site evolving under 521 

mutation, selection, and drift.  The model is highly simplified and not intended to 522 

accurately capture the relevant biology.  Further, π by no means gives a complete 523 

description of a site’s evolution.  The point of these calculations is simply to show 524 

that sites with the properties assumed by classical phylogenetic methods do not 525 

occur when population sizes are so large that Ne µ >> 1. 526 

 The model is of a biallelic locus in a haploid population with constant size N.  527 

Mutation between the alleles is symmetric at rate µ.  The relative fitnesses of the 528 

alleles are 1 :: 1 + s.  We assume the classic Wright-Fisher model of drift. 529 

 Wright (1, 2) found that the stochastic equilibrium distribution of allele 530 

frequencies is 531 

 532 

   
��	 �   ��� �� � 	 
�

√
 ��� �� �� �
�

�


��� �,   ��
� ����

 
��1 � �	������� exp�����2� � 1	� , (A1.1) 533 

 534 

where ���. , . 	�  is the regularized confluent hypergeometric function (3).  The 535 

expected molecular diversity is then 536 

 537 

    E[π]  =  � 2 ��1 � �	 
��	 ���
�   =   � � ����� ��

� ����� ��  , (A1.2) 538 

where 539 

  � �   2 �� μ � �
� ,   � �   2 �� μ � �

� , 540 

 541 

and In(z) is the modified Bessel function of the first kind (3).  Figure 1 in the main 542 

text is based on Equation (A1.2). 543 
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SI 2:  The TreeFree algorithm 545 

 546 

 Our goal is the inference of the frequencies of ecotypes present in our sample 547 

and the genome sequences of those ecotypes.  As Prochlorococcus has an 548 

extraordinarily large population size (4), we hypothesize that the frequencies of 549 

genotypes within an ecotype are determined by a mutation-selection balance, with 550 

most sites in most genomes carrying the reference allele for its ecotype.  551 

Accordingly, we designed an algorithm which clusters the genotypes into ecotypes 552 

based on sequence similarity in a manner similar to structure (5).  The algorithm is 553 

described in the following, and is summarized with pseudocode in the last section of 554 

this appendix. 555 

 As in the main text, we use the following notation to describe our 556 

implementation: 557 

 558 
X Data matrix of genome sequences, with Xik equal to the allele observed 559 

at the kth site in the ith sequence. 560 

J  Number of ecotypes in the model 561 

G Reference sequences for the ecotypes, with Gjk equal to the allele at the 562 

kth site in the jth ecotype 563 

f Vector of estimated ecotype frequencies, with fj equal to the frequency 564 

of the jth ecotype 565 

K  Total number of SNPs in the sample 566 
mij  Number of sites at which the allele at site i and ecotype j  567 

q  Minor allele frequency at all sites 568 

 569 

 We begin by assuming that each genotype in the sample comes from a different 570 

ecotype, and that the reference genome sequence for that ecotype is exactly equal to 571 

the sequence of that genotype.  (This is the value of G with the highest likelihood.) 572 

 We then decrease the number of ecotypes (J) to force multiple genotypes to be 573 

clustered within ecotypes, then use an iterative method to approximate the highest 574 

likelihood value of G given J.  This scheme is composed of two alternating step.  First, 575 

a Metropolis-Hastings MCMC step is used to adjust the frequencies of the ecotypes 576 

(the fj).  Second, a Gibbs MCMC step updates the ecotype genome sequences G, 577 

conditioned on their frequencies. These steps are described in more detail in the 578 

following section.  579 

 580 

S2.1 Metropolis-Hastings MCMC  581 

 We use the Metropolis-Hastings MCMC algorithm to explore the space of 582 

possible frequency vectors.  We start with a vector f(0) in which all ecotypes are 583 

equally frequent (i.e., the entries of f(0) are all equal to 1/N).  Next we generate a 584 

sequence of frequency vectors f(1) , f(2) , . . . , f(n) using the following rules.  Per the 585 

Metropolis-Hastings algorithm, we pick a proposed vector f(n+1) near to f(n), then 586 

decide whether or not to accept or reject the proposal with probability proportional 587 
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to the product of the ratio of likelihoods and the probability of sampling one f vector 588 

given the other. Formally, holding G (the genome sequencies for the ecotypes) fixed, 589 

we compute:  590 

 591 

    �   ��� | ���

��
��� | �����  !  ������ ����

��

�����

� ������ . (A2.1) 592 

 593 

In this equation the likelihood terms are the same as in Equation (1) of the main 594 

text, and "#$�	 �� %$�	�	 is the probability that we accept the proposed frequency 595 

vector f(n+1).  We sample these proposals from a Dirichlet distribution: 596 

 597 
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  , (A2.2) 598 

 599 

where Γ�. 	 is the gamma function.  We accept a proposed frequency vector f(n+1) 600 

with probability  , and retain the current vector f(n) with probability (1 –  ). 601 

 By initializing our MCMC sampler with the value of G that maximizes the 602 

likelihood, we minimize the burn-in phase phase for each following value of J.  To 603 

encourage the sampler to sample away from vectors with zero-valued entries, we 604 

bounded sampled values from below at a frequency of one individual per million, 605 

well below our expected resolution given our sample size. 606 

 607 

S2.2 Gibbs MCMC  608 

 To optimize the matrix of reference sequences, G, we will use a different MCMC 609 

algorithm, the Gibbs sampler.  It is well suited for dealing with the categorical nature 610 

of the ecotype genome sequences. 611 

 We sample the elements of G one at a time.  For each element, we calculate the 612 

likelihood for all four possible bases, and choose among these proposals with 613 

probabilities proportional to their likelihoods. 614 

 To minimize the numerical burden, we observe that the likelihood (see 615 

Equation 1) can be written as:  616 

 617 

  ' �   �� ∏ ∑ �� (��&
& )

����
���

�

��  . (A2.3) 618 

 619 

This formulation is convenient because mij can only change by one when a base in a 620 

reference sequence is changed.  We can further reduce computation by fixing the 621 

ecotype j.  Then the likelihoods for all possible alleles at all the sites in that ecotype 622 

are given by 623 

 624 

  '�  *   ∏ +�� (� � &
& )

���  �   ∑ ��'��(� (��&
& )

�
���  ,�


��  . (A2.4) 625 

 626 

This is useful because the second of the two terms inside the square brackets is 627 

constant with j fixed.  Consequently, that term can be calculated once and used for 628 
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all the sites within ecotype j.  629 

 630 

S2.3 Transitions Between Models  631 

 After each set of M-H and Gibbs MCMC steps, we decrement J to force 632 

clustering of the samples into fewer ecotypes. To define the starting point for the 633 

next set of MCMC steps, we remove the ecotype which has the smallest effect on the 634 

total likelihood when we reapportion its frequency proportionally to the inverse of 635 

the Hamming distance between that ecotype and the remaining ecotypes.  That is, to 636 

remove ecotype j we set  637 

 638 

  G(J − 1)  =  G(J) \ Gj   639 

   (A2.5) 640 

  641 

�

�����  �   �


��� -�., /	
#∑ -�0, /	) (� 1 (∑ �)

�����	) )
 

 642 

where D(i, j) is the Hamming distance between ecotypes i and j.  We calculated the 643 

likelihood with each ecotype removed, and finally removed the ecotype which 644 

resulted in the smallest change to the likelihood. 645 

 646 

S2.4 Estimating the number of ecotypes 647 

 Our parameter space is too rich to use standard information criterion tests 648 

such as AIC and BIC to choose between alternative estimates of f and G.  We 649 

therefore use a simple likelihood ratio test.  At each Gibbs step, we found the 650 

maximum likelihood among all of the Metropolis-Hastings steps.  We then compared 651 

these likelihoods among successive Gibbs steps using a likelihood ratio test a 652 

difference in the number of parameters equal to the sequence length.  Each step 653 

resulting in a significant drop in the likelihood (at p < 0.05) indicates that a true 654 

ecotype has been removed. 655 

 The rational for this procedure is as follows.  Consider when there are in fact J 656 

“true” ecotypes, but we are at the Gibbs step with J + 1 potential ecotypes.  In that 657 

case, one of the potential ecotypes is comprised of individuals that in fact belong to 658 

one of the J true ecotypes.  We then expect that its reference sequence will be very 659 

similar to that true ecotype.  Consequently, assigning the individuals in that 660 

potential ecotypes to its true ecotype will result in a small and insignificant drop in 661 

likelihood.  Conversely, when a Gibbs step removes a true ecotype, we expect the 662 

drop in likelihood to be significant.  Thus the number of Gibbs steps that result in 663 

significant drops in likelihood provides an estimate of the number of real ecotypes 664 

in the sample. This sequential pruning of "centers" of potential ecotype is analogous 665 

to the “mean shift” procedure that is widely used in pattern recognition (6).   666 

 667 

 668 

S2.5 The TreeFree algorithm 669 
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Input:  X, the set of sampled individual genomes 670 

G Z X 671 

J Z N 672 
fi  Z 1/N  673 

while J > 1 do  674 

f  Z  arg max
f L(f | X, G) Optimize f using M-H MCMC (Section S2.1) 675 

G Z arg max
G
 L(G | X, f) Optimize G using Gibbs MCMC (Section S2.2) 676 

J Z arg maxj L(X | f \ fJ}, G \ Gj}) Determine which ecotype’s removal results in 677 

smallest decrease in likelihood (Section 1.3). 678 
G Z G \ Gj  679 

J Z J – 1 680 
f Z f \ fj  Reapportion the frequency lost by removing the 681 

ecotype 682 

end  683 

return {f, G} 684 
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SI 3:  Details of the BPP Methods 686 

 687 

 Bayesian Phylogenetics and Phylogeography (BPP) is a Bayesian Markov Chain 688 

Monte Carlo (MCMC) method for sequence-based species (here, ecotype) 689 

delimitation under the multispecies coalescent model (7, 8). 690 

 In BPP, the user assigns individuals to populations, the finest feasible division 691 

of individuals into ecotypes, and provides a guide tree which serves as a preliminary 692 

phylogeny for these populations. BPP may join multiple populations into a single 693 

ecotype or call a single population an ecotype, but it will never split a population 694 

into multiple ecotypes. BPP has four major categories of analysis, each defined by 695 

whether the guide tree and ecotype delimitation are fixed. The analysis we 696 

conducted (called A11, or unguided species delimitation) conducts joint ecotype 697 

delimitation and ecotype tree inference, meaning that neither is fixed (8). It does 698 

this inference through a two-step MCMC algorithm. One step, nearest-neighbor 699 

interchange, is used to move between ecotype phylogenies while holding the 700 

delimitation constant. The second, reversible-jump MCMC, is used to consider 701 

changes to the ecotype delimitations by joining and splitting nodes in the population 702 

phylogeny. This process may join two sister populations into a single ecotype, but it 703 

will never split a single population into multiple ecotypes. See Yang and Rannala (8) 704 

for more details on this method.  705 

 We used subsets of the whole genome sequences because use of the entire 706 

dataset was computationally prohibitive.  We subsetted the data in twelve different  707 

ways. Nine of these used the intergenic transcribed spacer sequences (549 bp), one 708 

used 10% of all the whole genome sequences (162 kbp), one used 0.1% of all the 709 

whole genome sequences (1.6 kbp), and one used the whole genome sequences 710 

from only 9 individuals (1.6 Mbp). Details and results of these analyses are in Table 711 

S3.1. For all but the analyses of the ITS data, we used the same set of fundamental 712 

BPP parameters (Table S3.2). For the analyses of the ITS data, we sought to test the 713 

limits of BPP on prokaryotic data. We did this by changing the following: which 714 

individuals we included in our analysis (the entire population, only individuals from 715 

a single clade, individuals from a few disparate clades, etc.), how we assigned 716 

individuals to populations (large populations, every individual in its own 717 

population, etc.), and the guide tree (realistic or very scrambled). 718 

 Two parameters that we never altered are the priors for �2�� (the species 719 

divergence times expressed in mutations per base) and �3�� (the average proportion 720 

of sites that are different between two randomly selected individuals in a population 721 

expressed in substitutions per site).  We estimated the expected values of these 722 

distributions based on information from Kashtan et al. (p. 16 of their Supplemental 723 

Materials of ref. (9)).  They estimated 3 � 0.05 from a coalescent simulation of 724 

neutral evolution of the largest Prochlorococcus ecotype. This 3 value corresponded 725 

to a time to most recent common ancestor of 2.5 ! 10* generations, given 6 �726 

10���mutations per base per generation. We used this information to estimate the 727 

age of the root:  2 7 �2.5 8 10* generations) ! (10–10 mutations / base / 728 

generation	 � 0.025 mutations / base (9). Consequently, we selected parameters 729 
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for the inverse-gamma prior for 2� and 3� such that 9
2�� � 0.025 and 9
3�� � 0.05. 730 

The important BPP parameters are described in Table S3.2. 731 

732 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.517206doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.517206


 34

Table SI 3.1  Results of Twelve BPP Analyses 733 

Each row describes a different BPP analysis. The first column shows the data used 734 

(ITS data or a subset of the whole genome sequence data) and the number of 735 

individual cells included. The second column gives the sequence length for the data 736 

analyzed. The third column describes how the cells were allocated into prior 737 

populations for the BPP analysis.  (Recall that these prior populations can be 738 

merged but not subdivided by BPP; see Appendix 3 for more details.)  See Figure 2 739 

for a depiction of the guide tree used for all analyses unless otherwise noted and the 740 

definitions of the original clades (e.g., C1, c9301-C8, etc.). The final two columns give 741 

the results of each analysis: the posterior probability assigned to each number of 742 

possible ecotypes, and the ecotype delimitation with the highest posterior 743 

probability. The ecotype with the highest posterior probability is indicated as a list 744 

of ecotypes, with the plus sign indicating that two prior populations have been 745 

merged into one ecotype in the final delimitation. Note that the single ecotype 746 

delimitation with the highest posterior probability does not necessarily align with 747 

the highest posterior probability number of ecotypes, which accounts for all 748 

possible delimitations with a given number of ecotypes. See Figure 3 for the full 749 

posterior probability distributions for the analyses in rows 1, 2, and 4.mess 750 

 751 

 752 
Row Data 

Analyzed  

(n = # of 

cells) 

Sequence 

Length 

(bp) 

Description of 

Prior Population 

Assignment 

# of 

Ecotypes  

(Post. 

Prob.) 

Ecotype delimitation with 

highest posterior probability 

(+ indicates ecotype merging) 

1 10% of 

whole 

genome 

(n=96) 

162,677 Split all large 

clades in half (e.g., 

C1 = C1, C1A)  

13 (0.34), 

14 (0.34), 

15 (0.20) 

13 ecotypes: C1+C1A, C2+C2A, 

UC6, UC1, C3, C3A, C5, C5A, 

UC2, UC5, C4+C4A, c9301-C8, 

cN1-C9 

2 0.1% of 

Whole 

Genome 

(n=96) 

1,627 Split all large 

clades in half (e.g., 

C1 = C1, C1A) 

12 (0.19), 

13 (0.31), 

14 (0.28) 

14 ecotypes: C1, C1A, C2+C2A, 

UC6, UC1, C3, C3A, C5, C5A, 

UC2, UC5, C4+C4A, c9301-C8, 

cN1-C9 

3 100% of 

whole 

genome 

(n=9) 

1,650,354 9 individuals: 2 

from each of C1, 

C1A, C2, and C2A; 

CN1-C9 

3 (0.47), 4 

(0.35) 

3 ecotypes: C1+C1A, C2+C2A, 

cN1-C9 

4 ITS 

(n=101) 

549 Split all large 

clades except C5 in 

half (e.g., C1 = C1, 

C1A) 

11 (0.15), 

12 (0.20), 

13 (0.21), 

14 (0.16)  

14 ecotypes: C1+C1A, C2+C2A, 

UC6, UC1, C3+C3A, C5, UC7, 

UC2, UC5, C4+C4A, MIT2, 

c9301-C8, cN1-C9, MIT 

5 ITS 

(n=101) 

549 Same as above, but 

with very 

scrambled guide 

tree 

11 (0.16), 

12 (0.19), 

13 (0.18), 

14 (0.14) 

10 ecotypes: C1+C1A, C2+C2A, 

UC6+UC1+C5+UC2+C4+C4A, 

C3+C3A, UC7, UC5, MIT2, 

c9301-C8, cN1-C9, MIT 

6 ITS 

(n=64) 

549 Assign every cell 

from C1, C2 to own 

population (64 

total) 

Error   

7 ITS 

(n=55) 

549 Assign every cell 

from C1 to own 

Error   
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population (55 

total) 

8 ITS 

(n=13) 

549 Assign every cell 

from C3 to own 

population (1 

through 13) 

1 (0.995) 1 ecotype: 

1+2+3+4+5+6+7+8+9+10+11+

12+13 

9 ITS 

(n=64) 

549 C1 (n=55) split 

into 5 populations 

(A,B,C,D,E); C2 

(n=9) 

2 (0.945), 

3 (0.05) 

2 ecotypes: A+B+C+D+E, C2 

10 ITS 

(n=64) 

549 C1 (n=55) split 

into 2 pops (A,C); 

C2 (n=9) 

2 (0.94), 3 

(0.06) 

2 ecotypes: A+C, C2 

11 ITS 

(n=64) 

549 C1 (n=55) split 

into 3 populations 

(A,C,E); C2 (n=9)  

2 (0.94), 3 

(0.06) 

2 ecotypes: A+C+E, C2 

12 ITS 

(n=77) 

549 C1 (n=55) split 

into 3 populations 

(C1, 10C1A, C1B); 

C2 (n=9); C3 

(n=13) 

3 (0.13), 4 

(0.38), 5 

(0.50) 

5 ecotypes: C1A, C1B, C1, C2, 

C3 

 753 

  754 
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Table SI 3.2  BPP Parameters 755 

Typical parameter values used to run BPP analyses. Note that the mean of θ and τ_s 756 

(root age) prior distributions were informed by the neutral coalescent simulation 757 

run by Kashtan et al. (9) which sought to mimic characteristics of Prochlorococcus 758 

(section 6.2 of the Supplemental Information of ref. (9)). E[θ] = 0.05, E[τ_s] = 0.025 759 

mutations/base. 760 

 761 

Code in BPP Ctl File Meaning 

Speciesdelimitation = 1 1 2 1  First “1” means species assignments are not given by the 

user. Subsequent values specify rjMCMC algorithm and 

parameters. 

Speciestree = 1 0.4 0.2 0.1 First “1” means the given species tree is used as the guide 

tree in the rjMCMC run for species delimitation. Subsequent 

values are parameters. 

Speciesmodelprior = 3 Each number of species is assigned an equal prior 

probability; probability divided uniformly among compatible 

models of species delimitation. (Best choice when many 

populations; avoids biasing towards many species) 

Cleandata = 0 Includes columns with ambiguity data in the likelihood 

calculation 

Thetaprior = 3 0.1 

 (θ~IG(3, 0.1), AE[θ]=0.05) 

Theta parameters estimated (rather than being integrated 

out using conjugate prior) according to an inverse gamma 

prior 

Tauprior = 3 0.05  

(τs~IG(3, 0.05)AE[τs]=0.025) 

Specifies inverse gamma prior for τs, the divergence time 

parameter for the root in the species tree. 

finetune = 1: .01 .02 .03 .04 .05 .01 

.01 

First “1” specifies to automatically adjust MCMC step lengths. 

Subsequent values are initial step lengths for various 

parameters. 

  762 
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SI 4:  Results of TreeFree  763 

 764 

The sample IDs and clade assignment of Prochlorococcus genomes from Kashtan et 765 

al. (9).  The last two columns show the ecotype to which TreeFree assigned each 766 

genome with highest posterior probability based on either 10% or 0.1% of the 767 

sequences. 768 

 769 

Sample ID Clade 10%  0.1% 

526B17 C1 4 0 

526B19 UC 4 0 

526B22 C1 4 0 

526D20 C1 4 0 

526K3 C1 4 0 

526N5 C5 4 0 

526N9 C1 4 0 

527E14 C2 22 0 

527E15 C3 9 0 

527G5 C1 4 0 

527I9 C1 0 0 

527L15 C1 4 0 

527L16 C1 20 0 

527L22 c9301 10 2 

527N11 C1 1 0 

527P5 C1 23 0 

528J14 C2 22 0 

528J8 cN1 8 0 

528K19 C1 1 0 

528N17 C4 11 0 

528N20 C1 13 0 

528N8 C1 18 0 

528O2 UC 4 6 

528P14 c9301 10 2 

528P18 C3 2 5 

529B19 C1 16 0 

529C4 C1 3 0 

529D18 C3 2 5 

529J11 C1 4 0 

529J15 C3 9 5 

529J16 C1 4 0 

529O19 C1 0 0 

495D8 UC 4 0 

495G23 UC 4 0 

495I8 C1 4 0 
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495K23 C1 7 0 

495L20 C3 2 5 

495N16 C1 20 0 

495N3 C4 5 0 

495N4 C1 18 0 

495P20 UC 6 0 

496A2 C3 2 5 

496E10 C1 7 0 

496G15 C2 4 0 

496M6 UC 4 0 

496N4 C1 13 0 

497E17 cN1 8 0 

497I20 C1 4 0 

497J18 C3 9 5 

497N18 UC 22 0 

498A3 c9301 10 3 

498B22 C2 22 0 

498B23 C4 11 0 

498C16 C2 22 0 

498F21 C1 12 0 

498G3 C1 4 0 

498I20 C5 4 1 

498J20 C1 4 0 

498L10 C1 13 0 

498M14 C1 4 0 

498N4 C3 2 5 

498N8 C2 22 0 

498P15 C1 14 0 

498P3 C1 16 0 

518A17 C3 2 5 

518A6 C3 2 5 

518D8 C1 15 0 

518E10 C1 4 0 

518I6 C5 4 4 

518J7 C3 2 5 

518K17 C1 16 0 

518O7 C1 4 0 

519A13 UC 4 0 

519B7 C4 5 0 

519C7 C1 17 0 

519D13 C1 1 0 

519E23 C1 21 0 

519G16 C3 2 5 
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519L21 C1 4 0 

519O11 C1 20 0 

519O21 c9301 10 2 

520B18 C1 0 0 

520D2 C1 19 0 

520E22 C1 7 0 

520F22 C2 22 0 

520K10 cN1 8 0 

520M11 C2 22 0 

521A19 C1 1 0 

521B10 C1 23 0 

521C8 C3 2 0 

521K15 C1 21 0 

521M10 C1 16 0 

521N3 C1 18 0 

521N5 C1 4 0 

521O20 C1 20 0 

521O23 C1 0 0 

 770 
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