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Abstract

Epistasis is central in many domains of biology, but it has not yet proven useful for complex traits.
This is partly because complex trait epistasis involves polygenic interactions that are poorly captured in
current models. To address this gap, we develop a new model called Epistasis Factor Analysis (EFA).
EFA assumes that polygenic epistasis can be factorized into interactions between a few latent pathways,
or Epistasis Factors (EFs). We mathematically characterize EFA and use simulations to show that EFA
outperforms current epistasis models when its assumptions approximately hold. Applied to predicting
yeast growth traits, EFA outperforms the additive model for several traits with large epistasis heritability
and uniformly outperforms the standard epistasis model, which we replicate in a second dataset. We
also apply EFA to four traits in the UK Biobank and find statistically significant evidence for epistasis
in male testosterone. Moreover, we find that the inferred EFs partly recover known biological pathways.
Our results demonstrate that realistic statistical models can identify meaningful epistasis in complex
traits, indicating that epistatic models have promise for precision medicine and characterizing the biology
underlying GWAS results.

Introduction

Epistasis refers to interactions between genetic effects on a trait. Epistasis is central in many domains of
biology, including rare human disorders [1–3], protein evolution [4, 5], natural selection [6, 7], and functional
genomics [8]. Statistical models of epistasis can be useful for characterizing genetic architecture [9–16],
improving genomic selection [17, 18], and unbiasedly screening for unknown genomic mechanisms [19–22]. In
striking contrast, it remains debated if epistasis matters in complex traits [23–25]. This is primarily because
complex trait biology remains poorly understood, severely limiting experimental characterization of complex
trait epistasis.

Unbiased genome-wide statistical tests for epistasis could fill this gap in our understanding of complex traits.
However, modelling epistasis in complex traits is challenging because they are affected by a large number of
genetic variants (Figure 1a). Although studies have identified some examples of epistasis in complex traits
[26–28], they have not explained significant missing heritability [29, 30] nor shed much light on complex
trait biology. We hypothesize this is partly due to shortcomings in current models of complex trait epistasis.
Specifically, prior studies have used an unrealistic and under-powered model that assumes each epistatic
interaction effect is completely independent of additive effects and other interaction effects (Figure 1b,
[31–33]).

Here, we develop a new complex trait epistasis model called Epistasis Factor Analysis (EFA). EFA assumes
a “coordinated” form of epistasis where SNP-SNP interactions are structured by interactions between a few
latent pathways, which we call Epistasis Factors (EFs) (Figure 1c, [33, 34]). EFA simultaneously estimates
EFs and their interactions solely from GWAS data. The inferred EFs can be validated with known genomic
annotations and used to discover novel biological pathways underlying GWAS results. Additionally, EFA
can improve prediction over additive models, which we demonstrate in simulations and two multi-trait yeast
datasets. Finally, we show that EFA has power to detect statistically significant epistasis in complex human
traits and, furthermore, that the inferred EFs partly recover known biological pathways. Our work shows
that epistasis can matter in complex traits if we use more realistic models.
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Figure 1: Three genetic architectures consistent with a typical GWAS. (a) Additive: Each SNP has an
independent effect on the phenotype, Y . (b) Uncoordinated: Each SNP interacts randomly with all other
loci. (c) Coordinated: SNPs can be grouped into a few interacting pathways. EFA uses the P1xP2 interaction
to improve statistical power to detect epistasis and to sort GWAS loci into biologically meaningful pathways.

Epistasis Factor Analysis

Nearly all complex trait studies assume the additive model, and it remains debated whether epistasis matters
in complex traits [24, 25]. However, this debate has largely been predicated on an “uncoordinated” model
of epistasis that assumes the epistasis effects are completely random–independent of both additive effects
and other epistasis effects [30, 31, 35]. Uncoordinated epistasis is not interpretable, realistic, or statistically
supported [30]. In contrast, we recently proposed a more realistic “coordinated” model of epistasis where
epistasis and additive effects are structured by latent pathways (Figure 1c, [33]). Coordination is motivated
by known forms of epistasis in simpler traits, such as genetic modifiers of a Mendelian gene [2].

Here, we introduce a new coordinated epistasis model to identify these latent pathways that we call Epistasis
Factor Analysis (EFA). EFA makes two key assumptions on the nature of epistasis in complex traits:

A1: SNP effects are mediated through a few distinct pathways

A2: These pathways interact

A1 and A2 are biologically motivated. For example, the pathways in A1 could reflect distinct causal tissues
[36, 37], core genes [38, 39], or heritable exposures like smoking [40]. In accordance with A2, causal tissues
might signal each other, core genes might encode proteins that physically interact, or an exposure’s effect
may depend on underlying genetic risk.

The key idea in EFA is to share information between additive effects and epistasis effects. On one hand,
leveraging additive signals greatly improves power to detect epistasis. On the other hand, leveraging epistasis
enables unbiasedly partitioning SNPs into pathways, which is impossible in the additive model without
external data or biological annotations.

Concretely, the EFA model is:

yi “ Pi1 ` Pi2 ` λPi1Pi2 ` εi; Pik :“
ÿ

j

GijUjk (1)

where Pik is the level of EF k for sample i, Ujk is the weight of SNP j on EF k, and λ is the interaction
between EFs. We call this Epistasis Factor Analysis because it implicitly makes a low-rank factorization
to the genome-wide epistasis matrix (Methods). We generalize to K ą 2 EFs in the Methods, and we
theoretically characterize EFA in the Supplement. In practice, G will typically contain dozens of SNPs
that have been pre-screened based on their additive effects. We fit U and λ as fixed effects using maximum
likelihood (Methods).

EFA recovers latent pathways and improves prediction in simulations

We performed simulations to characterize EFA as a function of additive heritability (h2
add), epistasis heritabil-

ity (h2
epi), and the fraction of epistasis heritability due to coordinated vs uncoordinated effects (Methods).
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Figure 2: Simulations characterize the accuracy of polygenic epistasis estimates. Accuracy is quantified
by the squared correlation between estimated and true pairwise SNP epistasis effects, ω (a,c,e) or between
estimated and true EFs, U (b,d). Simulations under the EFA model vary the fraction of heritability due to
additive vs epistasis effects (a,b). Partial coordination is simulated by combining epistasis effects from the
EFA model with uncoordinated epistasis effects (c,d). Other forms of coordination are simulated using the
EFA˚ model with K ě 2 (e), which is a more general version of EFA (Methods).

We define broad-sense heritability as H2 :“ h2
add ` h2

epi, and always use H2 “ 0.5. We compared EFA to
uncoordinated epistasis estimates fit either by fixed or random effects (Methods). We evaluated estimation
accuracy for the pairwise SNP-SNP interactions, ωjj1 (see (3) in the Methods), and for the EFs, Ujk. EFA
directly fits EFs and implicitly fits ω (Methods). Uncoordinated methods directly fit ω, and we derive
uncoordinated EFs post hoc using PCs of the estimated ω matrix (Methods).

We first simulated from the EFA model in (1) with N “ 1, 000 samples and M “ 20 SNPs. As expected, EFA
outperforms uncoordinated estimates of ω across the range of h2

epi (Figure 2a). EFA’s gain is greatest when

h2
add " h2

epi, illustrating how EFA’s epistasis estimates borrow strength from additive effects. Analogously,

EFA improves additive effect estimates over standard additive models when h2
epi " h2

add (Supplementary
Figure 1), though this scenario is not likely in practice. EFA also substantially outperforms uncoordinated
estimates of EFs (Figure 2b); however, all methods perform similarly when h2

add « 0 or h2
epi « 0, because

coordination essentially vanishes in these situations.

We next fix h2
add “ h2

epi “ 25% and vary the level of coordination by adding in uncoordinated epistasis effects
(Methods). As expected, EFA’s performance decays as coordination weakens, while the uncoordinated
estimates remain stable (Figure 2c). Nonetheless, EFA always outperforms uncoordinated estimates of the
EFs because EFA specifically targets the coordinated component of epistasis (Figure 2d).

We next simulated and fit K ą 2 EFs using a generalization of EFA called EFA˚ (Methods). As expected,
ω estimates were more accurate when fitting EFA˚ with the true value of K (Figure 2e), though the base
EFA model was robust to modest misspecification of K. However, the uncoordinated model performed better
for K “ 10 and much better for K “ 8, which is equivalent to uncoordinated epistasis [33]. We did not
consider EF estimation accuracy because EFs are not identified for K ą 2 (Supplement).

We next varied the number of SNPs, M , and sample size, N (Supplementary Figure 3). Across all N
and M , EFA always outperforms uncoordinated estimates. Performance for all methods decays as M grows
because each individual SNP effect is smaller. This illustrates why modelling epistasis in complex traits is
difficult. Likewise, all methods improve as N grows.
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Figure 3: Phenotype prediction accuracy in simulations. (a) varies the fraction of heritability due to additive
vs epistasis effects. (b) varies the fraction of epistasis effects due to coordinated pathway-level interactions
vs uncoordinated random interactions.

Finally, we asked if EFA can improve phenotype prediction. We first simulated from EFA’s model and found
that EFA performed well, with prediction R2 near the theoretical limit of H2 (Figure 3a). EFA always
outperformed the fixed-effect uncoordinated model, and EFA outperformed the random effect uncoordinated
model except when epistasis was absent. (We derive the predictions from the uncoordinated random effect
model in the Supplement.) We then fixed h2

epi “ h2
add “ .25 and varied the fraction of epistasis due to

coordination, as above. Results were similar to ω estimation accuracy: when epistasis is mostly coordinated,
EFA is optimal, but EFA performs poorly when epistasis is uncoordinated (Figure 3b). Overall, EFA
improves estimation of latent pathways in all our tests and improves prediction when epistasis is sufficiently
strong and coordinated.

EFA improves prediction in complex yeast traits

We next asked if EFA could improve genetic prediction in complex traits. We studied 46 complex yeast traits
measured on 1008 samples, where each trait was growth rate on a different medium [13]. These traits have
varying levels of epistasis heritability, as defined by the difference between the phenotypic similarity of clones
(H2) and the additive heritability estimated from genotype data (h2). We measured prediction accuracy by
the squared correlation between predicted and observed phenotypes using 10-fold cross-validation. For each
trait, this yielded 30-70 clumped+thresholded SNPs (r2 ă 0.2, Methods).

We first compared EFA to the additive model and found that EFA significantly improved prediction accuracy
for 6/46 traits (p ă .05, paired t-test, Methods, Supplementary Table 1). These 6 traits all had large
epistasis heritability (Figure 4a). More generally, the difference between R2

EFA and R2
add correlated with

the epistasis heritability (Spearman’s ρ “ 0.48, p ă 0.001). This is consistent with our simulations showing
that EFA can outperform additive predictions when h2

epi is high. We next compared EFA to uncoordinated
epistasis predictions using fixed effects and found that EFA was superior for all 46 traits, regardless the level
of h2 and H2 (Figure 4b).

Next, we compared EFA to additive and epistasis random effects models. Unlike fixed effect models, including
EFA, random effect models can fit the whole genome without LD pruning, which is often a major advantage
for prediction in complex traits [18, 42, 43]. Nonetheless, EFA significantly outperforms both additive and
uncoordinated epistasis random effect models for 7/46 traits (p ă .05). We also compared the two random
effect models, and we found that the uncoordinated epistasis model significantly outperformed the additive
model for 9 traits (p ă .05). Intriguingly, these 9 traits only overlap 1 of the 7 traits where EFA outperforms
the additive random effect model, suggesting that the degree of coordination varies across traits.

Finally, we evaluated replication in a second dataset from the same group with 4390 samples measured on
20 of the above 46 traits [14]. We replicated the superiority of EFA over the additive model for all 3 traits
where EFA beat the additive model previously (p ă .05; the other 3/6 traits were not measured in the second
dataset). Further, at this larger sample size, we find 4 additional traits where EFA significantly outperforms
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Figure 4: Prediction accuracy in complex yeast traits. Each point is a trait with narrow- and broad-sense
heritability estimates from [41]. (a) EFA significantly outperforms the additive model for 6/46 traits from
Bloom et al 2013 data. (c) EFA significantly outperforms the additive model for 7/20 traits from Bloom et
al 2015 data. (b,d) EFA always outperforms the uncoordinated fixed-effect epistasis model.

the additive fixed effect model (Figure 4c, Supplementary Table 2). We also replicate that EFA always
outperforms the uncoordinated fixed effects model (Figure 4d). Overall, EFA improves prediction over the
additive model for some complex traits, and the utility of EFA will likely grow with larger sample sizes.

EFA detects epistasis and uncovers biological pathways in complex human traits

We applied EFA to complex human traits in UK Biobank. We studied the four traits with extensively
characterized GWAS in [44]: urate, insulin-like growth factor 1 (IGF1), and testosterone in males and females.
We used the top 100 LD-pruned GWAS hits for each trait (all 77 for female testosterone, Methods).

We first asked if EFA could detect statistically significant epistasis. Because EFA is a complex latent
variable model, it is not straightforward to implement traditional hypothesis tests, such as likelihood ratio
tests. Instead, we use a new nonparametric test based on the R2 between SNP-SNP epistasis estimates
(ω) from independent halves of the samples. We test significance using an empirical null distribution that
is generated by permuting phenotypes (Methods). We show that this is a calibrated test of epistasis by
performing simulations under the additive model (Supplementary Figure 6). We also apply this same
nonparametric testing approach to test uncoordinated epistasis estimates and to Epistasis Factors.

EFA identified significant epistasis in male testosterone (p “ 0.022, Figure 5a). The EFs for male testos-
terone were also significant (p “ 0.040, Supplementary Figure 7). By contrast, the uncoordinated epistasis
estimates were not significant in male testosterone (p ą 0.05, Supplementary Figure 7), consistent with
prior studies that did not identify epistasis in this trait [44]. In urate and IGF1, by contrast, the unco-
ordinated estimates were significant (p “ 0.004, 0.017) while EFA’s estimates were not (Supplementary
Figure 7). This is surprising because a prior study did not detect uncoordinated epistasis in these traits

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.29.518075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518075
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: EFA identifies statistically and biologically significant epistasis in male testosterone. (a) EFA
pathways replicate between two random halves of the UKB male individuals in testosterone. (b) Across 100
random sample splits, EFA replicates better than expected by chance based on permuted phenotypes. (c)
Steroid synthesis and metabolism genes (defined by [44] are enriched in EF1 in male testosterone.

[30], though that study used a different test and a different model (genome-wide random effects).

We next combined evidence across 100 random 50-50 splits (Methods). This improved power and gave
even stronger support for EFA in male testosterone (p “ 0.0003, paired t-test, Figure 5b, Methods). The
p-values for the EFs also grew stronger (p “ 0.012, Supplementary Figure 10). The uncoordinated model
remained insignificant (Supplementary Figure 11).

We next assessed robustness to dominance and LD using simulations. First, we simulated a dominance
model without any epistasis between distinct SNPs (Supplement, Supplementary Figure 6). Under
strong dominance (h2

dom “ 1%, [30, 45]), the uncoordinated model is about 10-fold inflated (FPR=57% at
nominal 5% level) and EFA is about 3-fold inflated (FPR=16%). Both are expected: EFA does not assume
dominance is absent (unlike our prior Even-Odd test [33]), but it does emphasize inter-SNP epistasis more
than the uncoordinated model. Under more realistic levels of dominance (h2

dom “ 0.1%), both tests are
roughly calibrated (Supplementary Figure 6). Second, we simulated an additive model with unobserved
causal variants in LD with measured variants. Our simulation meets the necessary condition for ‘phantom’
epistasis in [46] (Supplement). We do not observe any bias from LD in EFA (Supplementary Figure 6).
Nonetheless, other forms of LD could potentially cause bias in EFA. Overall, the polygenic nature of EFA
mitigates bias from LD and dominance, which can severely bias SNP-level epistasis tests [18, 47–50].

As epistasis can be scale-dependent [51], we next tested robustness by quantile-normalizing the phenotypes
(Supplementary Figure 9). This eliminated the significance of EFA for male testosterone, though urate
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and female testosterone became significant. These discrepancies could reflect either false positives or false
negatives from overly-conservative scaling [33].

We next asked if the male testosterone EFs capture meaningful biology by comparing to the known biological
pathways defined in [44]. Specifically, we used a hypergeometric test for enrichment of the top 15 SNPs per
EF in each predefined biological pathway (relative to the other 85 GWAS SNPs, Table 1). EF1 is strongly
enriched in “steroid synthesis and metabolism” (p “ 0.0002). This enrichment is driven by SNPs assigned
to the genes UGT1A8, SRD5A2, UGT2B15, UGT2B17, and AKR1C4, which live on different chromosomes
(2, 4, and 10). We confirmed that this enrichment is robust if we instead use the top 10 or 20 SNPs per
EF (Supplementary Table 3). The results are also robust if we increase the window size used to assign
SNPs to genes, or if we further prune SNPs such that none are assigned to the same gene (p “ 0.004,
Supplementary Table 7).

Trait Biological Pathway # SNPs in EF1 # SNPs in EF2 # SNPs total

IGF-1

Downstream signaling 1 (p “ 0.403) 0 (p “ 1.000) 3
Growth horm. secr. 2 (p “ 0.114) 1 (p “ 0.499) 4
IGF-1 secretion 1 (p “ 0.499) 1 (p “ 0.499) 4
IGF-1 serum balance 0 (p “ 1.000) 3 (p “ 0.074) 7
Ras signaling 0 (p “ 1.000) 1 (p “ 0.581) 5

Urate
Solute transport 2 (p “ 0.710) 6 (p “ 0.010) ‹ 15
Purine metabolism 0 (p “ 1.000) 0 (p “ 1.000) 2

Testosterone (male)
Steroid synthesis & metabolism 5 (p ă 0.001) ‹ 0 (p “ 1.000) 6
HPG signaling 1 (p “ 0.564) 0 (p “ 1.000) 5
Serum homeostasis 0 (p “ 1.000) 0 (p “ 1.000) 3

Testosterone (female)
Serum homeostasis 0 (p “ 1.000) 0 (p “ 1.000) 1
Steroid synthesis & metabolism 1 (p “ 0.795) 0 (p “ 1.000) 7

Table 1: Epistasis Factors are enriched in predefined biological pathways from [44]. p-values are from a
hypergeometric test of the top 15 EF SNPs in each biological pathway.

We next tested pathway enrichment in the other three traits. We found that EF2 in urate is enriched in
SNPs associated with “solute transport” (p “ 0.010, Table 1). However, this primarily reflects a single locus
with large effect (SLC2A9, Supplementary Figure 12). In particular, restricting to one SNP per gene
eliminates this enrichment (p “ 0.89). While this EF signal for urate could reflect biologically meaningful
cis-trans epistasis [33, 39], it could also merely reflect subtle LD with unmeasured additive and/or dominance
effects [30]. Altogether, EFA is capable of finding biologically meaningful epistasis within and between loci,
but the former is more susceptible to statistical false positives.

Discussion

Despite strong evidence for epistasis in other domains of biology, it remains unclear if epistasis is important
in complex traits. We have introduced a model to address this gap called Epistasis Factor Analysis (EFA).
In contrast to existing uncoordinated models of polygenic epistasis, which lack biological motivation, EFA
assumes a structured form of polygenic epistasis implied by pathway-level interactions (Figure 1C). We
showed that EFA outperforms additive predictions in several yeast traits, which we replicated in a second
dataset. Additionally, we found that EFA can identify epistasis in complex human traits where standard
models fail and, furthermore, that EFA can learn Epistasis Factors which unbiasedly recover known biological
pathways. Broadly, these successes show that epistasis has promise for characterizing the biology underlying
GWAS hits, which remain largely inscrutable.

Several other polygenic epistasis models have been developed for complex traits. The best-studied models,
which we call “uncoordinated” [33], assume that all SNP-SNP epistasis effects are independent of each other
and of additive effects [31]. While uncoordinated models are mathematically rigorous, they are biologically
implausible and statistically under-powered [30]. Nonetheless, one surprise in our study was the success
of uncoordinated models in both yeast prediction and complex human traits. We attribute the former to
our use of random effect predictions, as the fixed effect predictions are uniformly poor. The latter is due
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either to our novel nonparametric test or our restriction to GWAS loci [24, 52], which implicitly assumes
a connection between additive and epistasis effects. These results show the importance of complex trait
epistasis completely independently of our EFA model.

More recent polygenic epistasis models make simplifying assumptions to improve power and interpretation.
For example, autosome-sex interactions represent a particular form of epistasis that strongly affects many
complex traits [53–56], and interactions between a locus (or region) with a polygenic background can identify
epistasis hubs [57–62]. EFA instead assumes that polygenic epistasis is driven by interactions among a few
latent polygenic pathways. We and others have previously argued for this latent pathway model [33, 34],
but EFA is the first approach to explicitly identify these latent pathways. BANN [63] is conceptually similar
to EFA in that it models complex traits as epistatic compositions of simpler components. In contrast, the
EFA pathways are fewer, more polygenic, and do not require prior biological annotations.

There are several limitations to our approach. First, EFA does not scale to genome-wide genotypes. In
practice, we pre-screen SNPs based on additive signals, which enriches for SNPs with epistasis effects [24, 52].
Second, our epistasis tests are polygenic and thus do not establish epistasis for any given SNP. In the future,
sparse models (Bayesian or frequentist) could test which SNPs affect which EFs. Third, statistical interaction
tests are susceptible to false positives from phenotype scaling [33, 51, 64, 65] and/or LD with unmeasured
causal variants [18, 47–50]. Indeed, the EFA signals in UKB depend on phenotype scale, and the biological
EF enrichment in urate is driven by a single large-effect gene. Nonetheless, coordination is robust to modest
rescaling [33] and we always prune SNPs in LD. Furthermore, these caveats do not affect our conclusion
that EFA can add value for prediction and biological characterization beyond additive and uncoordinated
models.

There are several potential extensions to EFA that may prove useful. First, EFA could jointly model multiple
traits that partly share latent pathways. This would add power to detect shared pathways and provide a
richer model of pleiotropy than genetic correlation, which is overly simplistic [66–70]. Second, EFA could
be extended to complex disorders using a generalized linear model framework, which could identify limiting
disease pathways [34] and/or etiologically distinct disease subtypes [55]. However, binary traits will have
lower power to detect epistasis and more severe scale dependence [71]. Third, we have used SNPs in G, but
more powerful and/or interpretable genetic features could be used, such as imputed gene expression [72, 73],
copy number variants [27, 28, 74], or polygenic scores for secondary traits [75] or exposures [40]. EFA could
also incorporate non-genetic variables such as epigenomic marks, medical image-derived features [76], disease
symptoms, or electronic health records. Ultimately, we hope that the EFA model and its strong results in
practice will provide solid groundwork for further study of epistasis in complex traits.

Code availability

A python implementation of EFA is available at: https://github.com/tangdavid/efa. This link also
contains the code for all analyses in this paper, though the UKB analysis is not fully reproducible because
the raw data is not public.

Data availability

We downloaded the first yeast data set from http://genomics-pubs.princeton.edu/YeastCross_BYxRM/

data/cross.Rdata and the second yeast dataset from https://static-content.springer.com/esm/art%

3A10.1038%2Fncomms9712/MediaObjects/41467_2015_BFncomms9712_MOESM729_ESM.zip

This research has been conducted using the UK Biobank Resource under application number 30397.
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Methods

Mathematical description of Epistasis Factor Analysis

Epistasis Factor Analysis (EFA) aims to find a low-dimensional representation of polygenic epistasis that is
both statistically powerful and biologically interpretable. The EFA model is:

y “ GU 1K ` ppGUq ‚ pGUqq vecpΛq ` ε, (2)

where y is a quantitative trait measured on N samples, G is an N ˆ M matrix of genotypes at M SNPs, U
is an M ˆK matrix of SNP effects on each of K pathways, Λ is a symmetric K ˆK matrix of pathway-level
interactions, ‚ is the face-splitting product (A ‚B is a matrix where each column is an element-wise product
of a column of A and a column of B), and ε is independent and identically distributed (i.i.d.) Gaussian
noise.

Intuitively, each column of U represents the SNP weights on a different latent pathway (or EF), and P,k :“
GU,k is an individual’s genetic level of the k-th EF. Λkk1 represents the pathway-level interaction between EFs
k and k1. When Λkk1 ą 0, pathways k and k1 interact synergistically, meaning that the magnitude of their
combined phenotypic effect exceeds the sum of their individual effects. The reverse is true for antagonistic
pathways where Λkk1 ă 0.

In the main text, we call this general model EFA˚ and focus instead on the special case where (i) K “ 2
and (ii) Λ11 “ Λ22 “ 0. We focus on this special case for simplicity and also because it is identified, i.e.,
the estimated EFs and their interactions are meaningful. In contrast, the general EFA˚ model in (2) is not
identified without further assumptions, such as that U is sparse. We prove these facts and comprehensively
characterize the theoretical properties of EFA in the Supplement. We also note that most factor models,
including PCA, are not identified without additional assumptions. We also calculate the level of coordinated
Epistasis under EFA in the Supplement [33].

EFA is a special case of the standard pairwise polygenic epistasis model that underlies many epistasis models
for complex traits:

yi “
ÿ

j

Gijβj `
ÿ

j,j1

GijGij1ωjj1 ` εi (3)

where βj is the additive effect of SNP j, and ωjj1 is the epistatic interaction between SNPs j and j1. The
pathway-level interaction model in EFA can be directly connected with this SNP-level epistasis model by
the linked factorization of the SNP-level additive and epistasis effects:

β “
ÿ

k

U,k; ω “ UΛUT

We estimate the parameters of EFA using maximum likelihood. We numerically optimize the log-likelihood
with gradient decent based on automatic differentiation. We use multiple random initializations of the
optimization to account for non-convexity in the likelihood.

Uncoordinated models of polygenic epistasis

We compare EFA with other polygenic models in simulations and real data analyses. All comparison methods
are special cases of the overarching polygenic pairwise epistasis model in (3).

First, we compare to the standard additive model, which ignores epistasis by setting ωjj1 “ 0 for all j, j1.
Because we mostly study scenarios with M ă N , we primarily fit the additive model with fixed effects (by
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ordinary least squares). The predictions from this model are then essentially Polygenic Risk Scores (PRS).
We also fit the additive model with random effects (assuming each βj is i.i.d. Gaussian) in the real yeast
analysis, enabling us to fit the full genome-wide data without any pruning.

Second, we compare to the standard pairwise epistasis model in (3) fit with fixed-effects. Because this model
has OpM2q parameters, jointly fitting all pairwise epistasis effects is often noisy or even impossible. Instead,
we fit each pairwise interaction ωjj1 one-at-a-time (for j ď j1) while controlling for additive fixed effects
(note that only ωjj1 ` ωj1j is identified).

Third, we compare to the uncoordinated random effect model for pairwise epistasis [31]. This model assumes
that ωjj1 are drawn i.i.d. Gaussian. This assumption simplifies computation because the ω can be easily
marginalized out of the likelihood. We fit the variance components (one for β and one for ω) with maximum
likelihood. We derive the best linear unbiased predictors (BLUPs) for both ω and for phenotype prediction
in the Supplement.

Finally, we also develop a novel approach to estimate latent pathways from uncoordinated estimates by
applying PCA to the estimated ω matrix. This is a naive baseline approach that only involves post-processing
uncoordinated estiamtes. In contrast, EFA directly learns pathways, linking the low dimensional components
of ω with the additive effects.

Simulations

We use a polygenic simulation framework that is fully described in the Supplement. In brief, we simulate
under the EFA model (2) with independent SNPs. The latent pathways, U,k, are drawn from i.i.d. Gaussians
with variance chosen to give the appropriate additive heritability (recall that the additive effect is related to
the latent pathways by β “

ř

k U,k). The upper triangular entries of Λ are also drawn fro i.i.d. Gaussians
with variance chosen to give the appropriate epistasis heritability. The pairwise polygenic epistasis effects
are then generated by ω “

ř

k,k1 λkk1U,kU
T
,k1 .

We also simulate partly coordinated epistasis by adding i.i.d. Gaussian random variables to each entry
of a coordinated ω. By varying the relative contribution of these effects, we can interpolate between the
EFA model (coordinated) and the classical random effect model (uncoordinated). By choosing the relative
variances of the different components appropriately, we are able to simulate the standard additive model,
the standard uncoordinated model, and the coordinated EFA model.

Finally, we use two alternative simulation frameworks for evaluating the calibration of our non-parametric
sample splitting test with respect to LD and dominance that we described fully in the Supplement.

Yeast data

We downloaded genotype and phenotype data for prototrophic haploid segregants from a cross between a
laboratory strain and a wine strain of yeast [13]. This dataset consisted of 46 quantitative traits for 1,008
samples genotyped at 11,623 unique markers. We standardized each phenotype and SNP to mean 0 and
variance 1. To account for linkage disequilibrium in fixed effect models, we clumped+thresholded variants
using threshold of r2 ă 0.2, minimum distance of 250 kb, and marginal additive p ă 0.05 using PLINK
1.9 [77]. We performed clumping+thresholding separately on each cross-validated fold to avoid bias from
overfitting [78].

Additionally, we downloaded a second yeast growth trait dataset from the same group with a larger sample
size (N “ 4390) [14]. This second dataset contained 20/46 of the growth phenotypes in the first dataset,
and it included 28,220 unique genotype markers for each sample. We preprocessed this dataset in the same
way as above.

We evaluated phenotype prediction accuracy with 10-fold cross validation, using the same 10 folds across all
methods so we could test for differential prediction accuracy with paired t-tests.
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UK Biobank data

We studied four traits in UK Biobank that were previously extensively characterized [44]: urate, IFG1,
male testosterone, and female testosterone. The latter two traits are defined as testosterone levels measures
in males or females. We analyzed white British individuals in the UK Biobank after removing related
individuals identified by UKB. We studied the top 100 LD-pruned GWAS hits from [44], or all 77 GWAS
hits for female testosterone. Prior to fitting EFA, we regressed out sex, age, batch, assessment center, and
the top 10 genotype PCs.

To test statistical significance, we split the individuals into two halves and fit EFA on each. We then
evaluate the squared correlation between estimated epistasis effect matrices (i.e., ω). We define an empirical
null distribution for this metric by randomly permuting the residuals from the additive model within each
half of the data, which we repeat 1000 times. It is important to regress out additive effects before permuting
the phenotypes so that individuals are exchangeable. This is our first permutation test.

Second, to account for the arbitrary choice of seed, we repeat this procedure on 100 different seeds. For
each seed, we evaluate one permutation of the samples, giving a comparable null distribution. We test for
significant epistasis by asking if the real data have stronger epistasis than the permuted data across 100
seeds using a 1-sided, paired t-test. To assess robustness to phenotype scale, we repeat the entire process
after first scaling the phenotype to match the quantiles of a normal distribution.

To test biological significance, we used the annotations of GWAS hits to biological pathways provided in
[44]. We assigned SNPs to the epistasis factors by (1) polarizing SNPs to have positive additive effect sizes
and (2) choosing the largest 15 effects on each pathway. To test robustness, we also evaluate results using 10
or 20 SNPs per pathway (Supplementary Table 3-7). We calculate p-values for enrichment of biological
pathways in epistasis factors with a hypergeometric test.

References
[1] Cutting, G. R. Modifier genes in mendelian disorders: the example of cystic fibrosis.

Ann. N. Y. Acad. Sci. 1214, 57–69 (2010).

[2] Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application.
Nat. Rev. Genet. 16, 45–56 (2015).

[3] Timberlake, A. T. et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare
SMAD6 and common BMP2 alleles. Elife 5 (2016).

[4] Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Sci. 25, 1204–1218 (2016).

[5] Bakerlee, C. W., Nguyen Ba, A. N., Shulgina, Y., Rojas Echenique, J. I. & Desai, M. M. Idiosyncratic
epistasis leads to global fitness-correlated trends. Science 376, 630–635 (2022).

[6] Corbett-Detig, R. B., Zhou, J., Clark, A. G., Hartl, D. L. & Ayroles, J. F. Genetic incompatibilities
are widespread within species. Nature 504, 135–137 (2013).

[7] Barton, N. H. How does epistasis influence the response to selection? Heredity (Edinb.) 118, 96–109
(2017).

[8] Lin, X. et al. Nested epistasis enhancer networks for robust genome regulation. Science 377, 1077–1085
(2022).

[9] Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms
that affect gene expression in yeast. Nature 436, 701–703 (2005).

[10] Shao, H. et al. Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis.
Proc. Natl. Acad. Sci. U. S. A. 105, 19910–19914 (2008).

[11] Sittig, L. J. et al. Genetic background limits generalizability of genotype-phenotype relationships.
Neuron 91, 1253–1259 (2016).

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.29.518075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518075
http://creativecommons.org/licenses/by-nc-nd/4.0/


[12] Huang, W. et al. Epistasis dominates the genetic architecture of drosophila quantitative traits.
Proc. Natl. Acad. Sci. U. S. A. 109, 15553–15559 (2012).

[13] Bloom, J. S., Ehrenreich, I. M., Loo, W. T., Lite, T.-L. V. & Kruglyak, L. Finding the sources of
missing heritability in a yeast cross. Nature 494, 234–237 (2013).

[14] Bloom, J. S. et al. Genetic interactions contribute less than additive effects to quantitative trait variation
in yeast. Nature communications 6, 8712 (2015).

[15] Mackay, T. F. C. Epistasis and quantitative traits: using model organisms to study gene–gene interac-
tions. Nature Reviews Genetics 15, 22–33 (2014).

[16] Forsberg, S. K. G., Bloom, J. S., Sadhu, M. J., Kruglyak, L. & Carlborg, Ö. Accounting for genetic
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