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Abstract 
We present the first biochemical-free technology for Real-time In Silico Enrichment of RNA species 
(RISER).  RISER classifies RNA species from direct RNA nanopore signals, without the need for 
basecalling or a reference, and communicates with the sequencing hardware in real-time to enact 
in silico targeted RNA sequencing.  We illustrate RISER for the enrichment and depletion of coding 
and non-coding RNA, demonstrating a 3.4-3.6x enrichment and 6.2-6.7x depletion of non-coding 
RNA in live sequencing experiments. 

 

Main 
Nanopore technology enables the sequencing of RNA at single-molecule resolution.  The nucleotide 
sequence of the RNA molecule can be inferred through analysis of the current fluctuations caused 
by the RNA transiting the nanopore1.  To enable the translocation of RNA through the pore, standard 
library preparation protocols for nanopore direct RNA sequencing (DRS) ligate an adaptor and 
attach a “motor” protein to the 3’ end of transcripts that are natively or artificially 3’-polyadenylated 
(poly(A)+) RNA2.  The resultant libraries therefore typically contain a medley of RNA species including 
messenger RNA (mRNA) and long non-coding RNAs (lncRNAs), amongst others2. 

Such a mixture can be detrimental to studies where only a specific RNA species is of interest, since 
unwanted RNAs consume the available working time of the nanopores and thus limit sequencing 
capacity.  This is especially problematic for lncRNAs, which generally have a low yet highly tissue-
specific expression pattern that can be obscured by the highly abundant mRNA or mistaken for 
noise in RNA expression measurements3.  Compounding this issue are the practical limitations of 
the DRS system, such as slow RNA translocation speed (~70 bases per second (bps) compared to 
200-450 bps for DNA), pore inactivation during the run, and the possible degradation of RNA in the 
flow cell. Overall, these factors decrease read throughput across the run1.  It is therefore imperative 
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that for each nanopore the available sequencing time is concentrated on the RNA species of interest 
for the entire duration of the run to maximize the sequencing depth of relevant transcripts. 

Thus far, efforts to target RNA sequencing have been limited to biochemical approaches3,4, which 
require time-consuming and expensive specialized experimental protocols.  They are also restricted 
in their applicability to a pre-determined set of specific transcripts or species.  For example, 
CaptureSeq relies on the design of custom probes to hybridize against the transcripts of interest5, 
thus requiring prior definition of targets.  Similarly, Mt-Clipping is designed to specifically cleave the 
3’ polyA tail in mitochondrial RNAs4 (mtRNA).  No approach supports enrichment or depletion of an 
entire class of RNA such as mRNAs or non-coding RNAs.  Furthermore, biochemical treatment has 
been shown to induce RNA degradation and reduce integrity, compromising the quality, length and 
content of the resultant reads3,4,6. 

A key advantage of Oxford Nanopore Technologies (ONT) sequencing platforms is the opportunity 
to control sequencing per molecule by reversing the voltage across the pore to eject the resident 
molecule.  This functionality can be effectuated computationally via the ONT ReadUntil application 
programming interface (API), which allows third-party software to retrieve data from, and send 
commands to, individual pores in the sequencing hardware in real-time7.  “Read until” control has 
thus far only been deployed for DNA sequencing and decisions have been founded on the 
comparison of partially sequenced molecules against user-defined targets7.  This requires real-time 
basecalling and mapping to a reference, which are both compute- and memory-intensive.  Although 
efforts have been made to optimize the mapping step8 or make decisions from the signal directly9,10, 
they are yet to be demonstrated for DRS.  Additionally, the need for the user to define a set of 
targets precludes the opportunity to discover novel transcripts.  This is of critical relevance for non-
model organisms that lack an annotation reference or generally for organisms and samples without 
a genome reference of sufficient quality. 

To address these limitations, we have developed RISER to enable the real-time in silico enrichment 
of RNA species during DRS (Fig. 1a).  We have applied this technology to the problem of enriching 
protein-coding and non-coding RNAs.  Since DRS always sequences RNA in the 3’ to 5’ direction, 
the start of the nanopore signal for every transcript corresponds to the 3’ untranslated region (UTR) 
for protein coding RNAs, or the 3’ end for non-coding RNAs.  We hypothesized that due to the 
differences in molecular composition in the 3’ end of protein-coding RNAs11,12, the DRS signals from 
the 3’ end would be sufficient to directly discriminate between coding and non-coding RNA species. 

We prioritized real-time requirements in the design of RISER given the unique challenges in applying 
“read until” technology to DRS.  DRS generally produces shorter reads than DNA sequencing2,13 
and potential formation of RNA structures on the trans-side of the pore may block ejection if enough 
of the molecule has transited.  These constraints exacerbate the urgency of the reject operation for 
maximal efficiency.  Thus, the input signal used to make the decision has to be short yet contain 
sufficient information for a correct decision.  We found that the first four seconds of the signal 
(corresponding to approximately the first 280nt of a transcript from the 3’ end) provide a good 
balance between input signal length and percentage of assessable reads (Fig. 1b).  Longer inputs 
increased the number of reads that would escape through the pore before a decision can be made. 
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Figure 1: RISER identifies RNA species directly from raw nanopore signals.  a, RISER classifies 
RNA molecules using the start of the nanopore signal, then sends an accept or reject decision to 
the sequencing hardware depending on the user-defined target RNA species.  We show the specific 
application to the classification of coding and non-coding RNAs.  b, Percentage of reads in training 
set with raw signals long enough to be assessed by RISER (y-axis) for each candidate input signal 
length expressed in seconds (x-axis).  c-e, Model performance on the test set for each candidate 
input signal length (x-axes), color-coded by the three convolutional network architectures: “vanilla” 
convolutional neural network (CNN) (cyan), residual network (ResNet) (dark green), temporal 
convolutional network (TCN) (dark yellow).  We show the accuracy (c), ratio of true positive rate 
(TPR) to false positive rate (FPR) for both coding (upper panel) and non-coding (lower panel) targets 
(d) and mean prediction time per batch (e).  f, Neural network architecture for the CNN model 
selected to implement RISER.  The model takes as input 4 seconds from the start of the raw 
nanopore signal, after the sequencing adapter and polyA tail have been processed, and outputs 
the probabilities that the signal corresponds to a coding or non-coding RNA. 
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To model the local signal patterns in the 3’ end, we tested deep neural networks with convolutions, 
since they are particularly suitable for learning local temporal dependencies in time series14. We 
trained and tuned a “vanilla” convolutional neural network (CNN), a residual network (ResNet) and 
temporal convolutional network (TCN), then tested each on the binary classification coding/non-
coding for a range of input signal lengths.  All three models had the highest accuracy (Fig. 1c) and 
area under the receiver operating characteristic curve (AUROC) (Ext. Data Fig. 1a) at input signal 
lengths of 4s and 5s.  Moreover, at these signal lengths, they also showed a higher ratio of (TPR) to 
false positive rate (FPR) for both coding and non-coding targets (Fig. 1d).  This ratio provides a 
better estimate of the simultaneous maximization of accepted on-target molecules and rejected off-
target molecules than the individual TPR, FPR and precision metrics (Ext. Data Figs. 1b-d).  This 
further justified the selection of an input signal length of 4s.  Finally, the CNN was approximately 
twice as fast as both the ResNet and TCN (Fig. 1e), while also achieving high accuracy and 
TPR:FPR for the 4s input.  Thus, the CNN was selected as RISER’s architecture (Fig. 1f). 

To enable in silico targeted real-time RNA sequencing during DRS, we integrated RISER with the 
ReadUntil API.  Prior to the RNA transcript signal, DRS signals retrieved from the API start with an 
adapter and a variable length polyA tail (Ext. Data Fig. 2a).  We tested whether trimming a fixed 
amount from the start of each signal would allow accurate classification while also being efficient 
to execute in real-time.  We expected this approach to work since the convolution operation is 
translation-invariant, thus the relevant components of the input signal will be recognized by the 
feature maps if they are present anywhere along the signal, regardless of their absolute position. 
Indeed, we found that trimming a fixed length of 2.2s from the start of the signals achieved a similar 
accuracy to trimming the exact signal length corresponding to the adapter and polyA tail (Ext. Data 
Figs. 2b and 2c). 

To evaluate the RISER model’s capacity to generalize to new samples, we tested an independent 
dataset from HeLa cells that had not been used for training, hyperparameter tuning or architecture 
selection.  RISER achieved an accuracy of 88% as well as high precision (≥ 0.86) and TPR (≥ 0.86) 
with low FPR (≤ 0.14) for both coding and non-coding targets (Fig. 2a) and an AUROC of 0.96 (Fig. 
2b). We next utilized the “playback” feature of the ONT MinKNOW software, which allows signals 
recorded from a previous sequencing run to be replayed as though they were being generated in 
real-time7. For testing, we replayed a sequencing run from a cancer cell line that had not been used 
for model development or evaluation.  Since the playback functionality cannot mimic molecule 
ejection from the pore, it cannot be used for estimating enrichment directly.  Instead, when a reject 
command is issued, the signal being replayed is prematurely terminated and so read length can be 
used as a proxy measure of enrichment potential.  The expectation is that on-target reads will be 
significantly longer than off-target reads, which is the effect that we observed for RISER (Ext. Data 
Fig. 3). 
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Figure 2: RISER enables real-time enrichment of RNA species. a-b, RISER model performance 
on a non-live independent experiment of poly(A)+ RNA from HeLa cells.  We show precision, TPR 
and FPR color-coded by target class (dark pink: coding, dark blue: non-coding) (a) and area under 
the receiver operating characteristic (AUROC) curve (b).  c-h, RISER model performance during live 
sequencing of poly(A)+ RNA from HeLa cells, using a MinION flow cell split into three RISER target 
classes: coding, non-coding, and none (i.e., control).  The RISER target class is color-coded using 
a dark color scheme (dark pink: coding, dark blue: non-coding, grey: control), while the mapped 
RNA species is color-coded using a light color scheme (light pink: coding, light blue: non-coding). 
c, The distribution of read lengths for the mapped RNA species when the RISER target class was 
coding (left panel) and non-coding (right panel).  Outliers were not included.  For both targets, the 
read lengths of the mapped RNA species were compared using a Wilcoxon rank sum test with 
continuity correction (H1: on-target > off-target) (p-value < 2.22E-16 for both target classes).  d, 
Sequencing coverage per base for an example protein-coding RNA (upper panel), mtRNA (middle 
panel) and lncRNA (lower panel).  The reference positions (x-axes) are ordered 3’ to 5’. We indicate 
the position 280nt upstream of the 3’ end, which approximately corresponds to the RISER input 
length. e, The distribution of the proportion of transcript covered by each sequenced read. f, The 
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enrichment of each mapped RNA species, calculated as the proportion of reads that RISER 
accepted through the pore for each mapped RNA species, relative to the proportions in the control 
where RISER was not used. g, The enrichment of lncRNA and mtRNA; calculation performed as in 
(f). h, Available pores as a percentage of the initial number of available pores, as recorded during 
the 1.5-hourly pore scans across the 24h duration of the sequencing run. 

 

RISER was then run live during MinION sequencing of poly(A)+ RNA from HeLa cells.  The flow cell 
channels were split into three groups to simultaneously test the following conditions: (1) coding as 
the RISER target class, (2) non-coding as the RISER target class, and (3) no RISER as a control.  
We found that RISER significantly reduced the length of off-target reads (Fig. 2c).  Notably, the 
coverage per base for off-target transcripts drops off approximately 280nt upstream of the 3’ end 
of the transcripts, corresponding to the point of the RISER reject decision (Fig. 2d).  This is 
consistent with our observation that RISER reduces the coverage of transcripts not belonging to 
the target class (Fig. 2e).  Furthermore, among the reads that RISER accepted through the pore, 
the target RNA species was enriched while the off-target species was depleted.  The largest impact 
was seen for non-coding RNA reads, which were depleted by a factor of 6.7x relative to the control 
run when the target class was coding and enriched by over 3.5x when the target class was non-
coding (Fig. 2f).  Importantly, we also found RISER enriched lncRNA reads by 2.2x and depleted 
mtRNA reads by 33x (Fig. 2g).  Finally, we observed that RISER did not impact the percentage of 
available pores after 24h of sequencing (Fig. 2h).  The same split flow cell experiments performed 
on poly(A)+ RNA from HEK293 cells recapitulated the same effects of RISER on read length, 
transcript coverage, enrichment in terms of reads and pore availability (Ext. Data Fig. 4).  We also 
observed an enrichment of on-target and depletion of off-target nucleotides for both HeLa and 
HEK293 experiments (Ext. Data Fig. 5). 

While the flow cell splitting approach negated the effect of inter-flow cell variability, we also tested 
RISER at a broader scale using a whole flow cell per condition.  Three technical replicates for each 
cell line were sequenced for 24h each.  One replicate was run without RISER as a control, while the 
remaining two replicates were sequenced in parallel with RISER to target coding and non-coding 
RNAs, respectively.  For both target classes, the effect of RISER on read length, transcript coverage, 
and enrichment in terms of reads (Ext. Data Fig. 6) and nucleotides (Ext. Data Fig. 7) were 
consistent with those observed with the flow cell splitting approach. 

It is important to sequence as much on-target RNA as quickly as possible, since the theoretical 
maximum number of on-target reads that can be sequenced is fixed by the sample composition.  
This is a key motivation for using RISER rather than bioinformatically discarding off-target reads 
post-sequencing.  As the standard DRS protocol selects for poly(A)+ RNA, which is already enriched 
for mRNA (coding), RISER has a greater opportunity to affect the relative proportion of non-coding 
RNAs.  Improvements in the sequencing hardware or library preparation to increase throughput, 
RNA stability or abundance of target RNA within the library are likely to magnify the benefits of 
targeted DRS using RISER. 

RISER could be further improved through additional knowledge of the interactions between the 
pore and the RNA molecule and how this is influenced by the voltage polarity and amplitude.  
Knowing how pore efficiency decreases with more voltage switches could be used to optimize the 
frequency of reject commands per pore.  Moreover, further understanding of the formation of RNA 
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secondary structures during translocation would help to predict the success of ejection per 
transcript.  At present, the risk of pore blockage is mitigated in RISER by limiting the number of 
reject commands to one per molecule. 

In summary, RISER is the first technology for real-time in silico enrichment of RNA species.  RISER 
alleviates the limitations of biochemical enrichment while also exploiting the capabilities of 
ReadUntil technology without the need for any form of target reference, to provide a level of 
sequencing control that is not possible with any existing biochemical or computational method.  By 
operating directly on the raw signal, RISER obviates the need for basecalling or mapping and their 
associated computational expense.  Importantly, RISER enables the enrichment of lowly expressed 
non-coding RNAs that are difficult to detect in an unbiased sequencing experiment.  We have 
shown during multiple live sequencing experiments that RISER successfully rejects reads that do 
not belong to the target RNA class, freeing the pore to spend more time sequencing the target.  
Moreover, RISER’s modular design (Ext. Data Figs. 8 & 9) facilitates easy adaptations of each 
software component, opening up a broad range of possible applications, such as the enrichment 
or depletion of other RNA classes, or the identification of RNA from different organisms.  Finally, 
RISER is freely available to use through a simple and intuitive command-line tool (Supp. Notes 1 
and 2) to empower RNA researchers with biochemical-free, real-time targeted RNA sequencing. 

 

Methods 

Model development 

Raw signal data 

MinION DRS reads from human heart as well as HEK293, GM24385 and HeLa cell lines were used 
for training and evaluating the model (Supp. Table 1).  The HeLa dataset was reserved as an 
independent test set, while the remaining datasets (heart, HEK293-A, HEK293-B and GM24385) 
were used for developing the model and are hereafter referred to as the “model development 
datasets”. 

GM24385 sequencing 

The lymphoblastoid cell line (LCL) GM24385 (received from Corielle Institute) was grown in 
RPMI1640 media (Gibco) supplemented with 15% Hi-FCS and 2 mM L-Glutamine in 6-well plates 
(Coning) under 5% CO2. Cells were harvested at a density of 106 cells/ml. Cell pellet collection was 
performed by transferring GM24385 cell suspension into 15 ml conical centrifuge tubes (Falcon) 
and centrifuging at 500×g for 10 minutes at room temperature.   

To isolate RNA from the cytoplasmic and nuclei fractions, 107 cells were lysed in 200 µl of the non-
denaturing lysis buffer containing 25 mM HEPES-KOH (pH 7.6 at 25°C), 50 mM KCl, 5.1 mM MgCl2, 
2 mM DTT, 0.1 mM EDTA, 5% v/v glycerol, 2× Complete EDTA-free protease inhibitor and 0.5% 
v/v Igepal CA-630. Cells were resuspended in the lysis buffer through pipetting and RNasin Plus 
(Promega) was immediately added to the final concentration of 1 U/µl. Cell lysis was completed by 
passing the lysate 4× through a 20-gauge needle followed by passing it 4× through a 27-gauge 
needle. The cell lysate was then centrifuged at 1,000× g for 5 minutes at 4°C. The supernatant was 
transferred into a new 1.5 ml tube and mixed with 350 µl of the RA1 lysis buffer, followed by RNA 
isolation using columns (Macherey Nagel) to obtain the cytoplasmic RNA fraction. The pelleted 
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nuclei were resuspended in 1 ml of ice-cold sterile PBS and 50 µl counted using cell counter 
(Beckman-Coulter). The nuclei suspension was spun again at 1,000× g for 5 minutes at 4°C, the 
supernatant aspirated and 6.6×106 nuclei were lysed in 700 µl of the RA1 RNA lysis buffer and 
isolated using columns (Macherey Nagel). RNA isolated from the cytoplasmic fraction was eluted 
from the columns in 80 µl, and from nuclei in 120 µl of RNase-free water and stored at -80°C. 

For in vitro polyadenylation, ~9 µg of the RNA in 94 µl of deionised water or 25 mM HEPES-KOH 
(pH 7.6 at 25°C), 0.1 mM EDTA (HE) buffer were first denatured by incubating at 65°C for 3 minutes 
and immediately chilling in ice. The solution was then supplemented with 12 µl of 10× E. coli Poly(A) 
Polymerase buffer (New England Biolabs), 8 µl of 1 mM ATP and mixed. To the resultant solution, 
3 µl of 40 U/µl RNasin Plus (Promega) and 3 µl of 5 U/µl E. coli Poly(A) Polymerase (New England 
Biolabs) were added and mixed, and the resultant mixture incubated at 37°C for 30 minutes.  The 
eluate from in vitro polyadenylated RNA was further purified following the protocol previously 
described15  for RNA cleanup with SPRI beads. 

The DRS flow cell priming and library sequencing protocol was followed as previously described16.  
Two DRS runs for the nuclei RNA libraries and one DRS run for the cytoplasmic RNA library were 
conducted on a MinION Mk1B with R9.4.1 flow cells, for 44h, 29h and 72h, respectively, following 
the procedure previously described15.  Version 20.10.3 of the MinKNOW software was used. 

 

Data preparation 

Fast5 files were basecalled, mapped and the mappings filtered as previously described15.  Reads 
were then split by biotype into protein-coding and non-coding (all other biotypes) classes, with 
pseudogenes removed to ensure there were no common sequences between the two classes.  For 
the model training and tuning datasets, each class was further split randomly into 80% training and 
20% testing groups.  To resolve class imbalance, the majority class (protein-coding) was 
undersampled to achieve a 50/50 class balance in each of the train and test sets so that the model 
was trained in an unbiased way. 

The start of the raw nanopore signals were then trimmed using BoostNano17 to remove the portions 
of signal that correspond to the sequencing adapter and polyA tail.  The first n seconds (s) of the 
remaining transcript segment of signal was then extracted and normalized using median absolute 
deviation with outlier smoothing.  Reads with transcript signal lengths less than n were discarded.  
For the model development datasets, 20% of the training data was reserved for hyperparameter 
tuning.  For n = 4, the training and validation sets contained 1,073,720 and 268,428 signals, 
respectively. 

Input signal length evaluation 

The optimal input signal length n was determined by assessing the tradeoff between signal length 
and percentage of assessable reads.  For this comparison we computed the percentage of reads 
in the training dataset that had a transcript signal length greater than or equal to the candidate input 
signal lengths of {1-6,9}s.  

Candidate neural network architectures 

Convolutional neural networks capture spatial structure in the input by using convolutions, which 
are computed as the dot product between a filter (also known as a “kernel”, which is a matrix of 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.518281doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518281
http://creativecommons.org/licenses/by/4.0/


 9 

learnable weights) and a portion of the input the same size as the filter (a “local receptive field”).  
The filter acts as a feature detector and by “sliding” the same filter across the input to produce a 
feature map, feature detection becomes translation invariant, i.e., the same feature can be found 
anywhere along the input length.  The use of multiple filters (“channels”) in each layer allows 
different features to be detected, while the use of multiple layers in the network allows hierarchies 
of features to be learned18. 

We explored variants of two convolutional architectures that have shown strong performance for 
1D sequence modelling tasks; the Residual Neural Network (ResNet)19  and Temporal Convolutional 
Network (TCN)20 also comparing these against a “vanilla” convolutional network (CNN).  For each 
architecture, we systematically tuned the hyperparameter configuration.  All models were trained 
using binary cross-entropy loss and Adam optimization for up to 100 epochs (within a 48-hour time 
limit), after which their accuracy was evaluated on the validation set (Supp. Table 2).  All models 
were built, trained and tested using PyTorch (v1.9.0)21 with a single NVIDIA Tesla V100 graphics 
processing unit (GPU) 

Residual network hyperparameter optimization 

The ResNet architecture was designed19 to overcome convergence issues when training deep 
networks.  This was achieved by adding shortcut connections to the network, which directly 
propagate unmodified inputs to subsequent layers.  The effect is a reduced backpropagation 
distance to mitigate gradient update instability, enabling the training of much deeper networks and 
the extraction of richer feature hierarchies than was previously possible19. 

We explored 33 variants of the following general ResNet architecture; the input vector was fed into 
a feature extractor layer composed of a 1D convolution with kernel size k and stride of 3 followed 
by batch normalization, rectified linear unit (ReLU) activation (𝑓(𝑥) = max(0, 𝑥)) and max pooling 
(which computes the maximum value in each local receptive field to downsample the feature maps) 
with a kernel size and stride of 2.  Following were l residual layers, with each layer i (i=0,...,l-1) 
containing b = {bi } residual blocks using c = {ci} channels.  Residual blocks were either “bottleneck” 
or “basic” types, implemented as described in He et al. (2016)19. 

To determine the optimal values of k, l, b, c and block type we experimented with ResNet-34 and 
ResNet-50 architectures19 along with variants of these with fewer channels per layer to reduce 
overfitting.  We also tested the SquiggleNet architecture22 in its original form, before systematically 
varying each hyperparameter to find the optimal configuration for this new domain.  We found that 
the basic block outperformed the bottleneck block and networks with a more gradual increase to a 
larger number of channels converged to a better loss minimum.  To test the boundaries of this 
observation, we reduced b to 1 for every layer, set c0 = 20, ci = ⌊ci-1*1.5⌋ and l = 10, which was the 
maximum number of layers possible before the feature vectors became smaller than the receptive 
field.  We also set k = 19 as in SquiggleNet.  We found that this configuration achieved the highest 
accuracy on the validation set, trained using a batch size of 32 and initial learning rate of 0.001. 

Temporal convolutional network hyperparameter optimization 

Designed specifically for sequence modelling, TCNs20 operate on input sequences using dilated 
causal convolutions; causality is to ensure predictions are based only on past information, while 
dilation allows the receptive field (RF) size to increase exponentially with network depth.  When the 
network is sized appropriately, the last timestep in the final layer has the entire input sequence as 
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its RF. Thus, classification predictions can be made using the last value in each channel.  Residual 
connections are also employed to increase the depth and hence “memory” of the network.  Bai et 
al. (2018) showed the TCN is more efficient and has greater memory than equivalent-capacity 
recurrent networks20.  

We tested 23 TCN models following the architecture described by Bai et al (2018)20  to identify the 
optimal hyperparameter configuration, under the constraint that the last layer’s RF covered the 
entire input length.  As such, the number of layers l, kernel size k and dilation base d were varied 
such that: 

𝑅𝐹 = 1 + 202!(𝑘 − 1)
"

#$%

≥ 12048 

The number of channels per layer c was also varied, with the observation that more channels 
significantly increased training time and network size and so for practical reasons was set at or 
below 256.  Dropout was used to regularize the network and was another hyperparameter r that 
was optimized.  The best model had parameters l = 10, k = 11, d = 2, c = 32, r = 0.05, trained using 
a batch size of 32 and initial learning rate of 0.0001. 

 

“Vanilla” convolutional neural network hyperparameter optimization 

We also tested 26 “vanilla” CNNs, hypothesizing that a simpler architecture may be more efficient 
yet still accurate.  Each model was a variation of the following architecture: the input vector was 
fed into l convolutional layers, each of which was composed of b blocks of a 1D convolution with a 
stride of 1 and kernel size k followed by ReLU activation.  Each layer ended with a max pooling 
layer with a kernel size and stride of 2.  The number of channels ci in layer i (i=0,...,l-1) was also 
configured, increasing with network depth to capture higher-level, more complex features.  The 
extracted features were then passed to a classifier f, which was either a simple 2-layer fully 
connected network with ReLU activation, a global average pooling (GAP) layer or global average 
pooling followed by a fully connected layer (GAP_FC).  The model with highest accuracy on the 
validation set had the parameters l = 12, b = 1, k = 3, f = GAP_FC and c0 = 20, ci = ⌊ci-1*1.5⌋ and was 
trained using a batch size of 32 and initial learning rate of 0.0001. 

Evaluation of candidate models 

The ResNet, TCN and CNN models with the highest accuracy on the validation set were then 
evaluated on the reserved testing set, which comprised all test reads from the model development 
datasets.  The performance metrics used were accuracy (percentage of correct predictions), true 
positive rate (TPR) (fraction of the positive class predicted correctly), false positive rate (FPR) 
(fraction of the negative class predicted incorrectly), precision (fraction of correct positive 
predictions) and area under the receiver operating characteristic (AUROC) (a holistic measure that 
considers TPR and FPR across all classification thresholds).  TPR, FPR and precision were each 
calculated considering protein-coding as the target class, as well as non-coding as the target class, 
to assess classifier performance in both usage scenarios.  We also computed the mean inference 
time per batch of test data (b = 32).  Each model was evaluated for each of the candidate input 
signal lengths of {1-6,9}s, except for the CNN which could not handle an input signal length of 1s, 
while the receptive field of the TCN was insufficient to test an input signal length of 9s.  Testing was 
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conducted on a single-usage computer with 12 CPUs (Intel® Xeon® Platinum 8268) and one GPU 
(NVIDIA® Tesla® V100). 

 

RISER software design 

Integration with the ReadUntil API 

The ONT ReadUntil API provides an interface to each pore in the sequencing hardware, allowing 
the user to request raw current data or reverse the pore voltage during sequencing to reject a 
molecule.  Data is streamed in chunks of 1s by default, which get accumulated per read until RISER 
has received a long enough signal.  RISER then discards the first portion of the signal corresponding 
to the sequencing adapter and 3’ polyA tail, before passing the remaining 4s’ worth of signal 
(equivalent to ~280nt) to the neural network model, which predicts the RNA class.  If the prediction 
matches the target class specified by the user, then RISER allows the RNA to complete sequencing, 
otherwise it submits a reject (“unblock”) request to the API. 

If a reject request fails (e.g., due to secondary structure formation on the trans-side of the pore that 
prevents reversal through the pore), it is preferable to allow the molecule to complete translocation 
in the forward direction.  This circumvents repeated futile ejection attempts that may potentially 
damage the pore.  Therefore, RISER is made to only request rejection a maximum of once per 
molecule.  To balance the frequency of reject requests with the frequency of data streaming, the 
request interval was set to 1s, the same as the chunk size.  The RISER code is comprised of 
independent software components responsible for data preprocessing, ReadUntil API access, 
model inference and enrichment logic to facilitate ease of maintaining, modifying, or extending the 
code for different applications (Ext. Data Figs. 8 & 9).  Further, we encapsulated access to the 
ReadUntil API with a wrapper class so that if ONT were to update or replace the API, any affected 
code is isolated. 

Strategy for trimming sequencing adapter and polyA tail 

We selected the sequencing adapter and polyA tail “trim length” based on the distribution of trim 
lengths computed by BoostNano17 for the training dataset.  We trimmed the start of every signal in 
our independent test set by each of the trim length distribution quartiles (Ext. Data Fig. 2b) and 
compared RISER’s performance with using the exact trim length (computed by BoostNano) per 
signal.  Performance metrics were accuracy, AUROC, precision, TPR and FPR for both coding and 
non-coding targets (Ext. Data Fig. 2c).  Importantly, the training dataset included reads from both 
natively and synthetically polyadenylated RNAs, so the selected trim length is useful regardless of 
sample preparation method. 

Command-line tool 

We developed a simple command-line tool to run RISER (Supp. Note 1).  This should be executed 
on the same computer as MinKNOW, during a sequencing run.  The user must specify the RNA 
species to enrich for (currently either “coding” or “noncoding”) as well as the duration to run RISER 
for, which will be generally less or equal to the MinKNOW run. If RISER stops earlier, the MinKNOW 
run will continue without enrichment. RISER run can be set to stop later. While this does not cause 
an error, RISER will not receive any data during this additional time.  After MinKNOW finishes the 
first mux scan, RISER should be started.  Advanced users also have the option of specifying their 
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own model, an alternative signal input length or an alternative trim length for removing the polyA 
tail and sequencing adapter. 

While RISER is running, it will output real-time progress updates to the console window from which 
it was run (Supp. Note 2).  This includes a summary of the settings used, as well as a summary of 
the sequencing decisions made for each batch of reads received.  A more detailed version of this 
information is written to a log file (Supp. Note 3).  In addition, a .csv file will be generated that lists, 
for each read, its sequencing channel, the probability that RISER predicted it was coding or non-
coding and the final accept or reject decision made (Supp. Table 5). 

A “reject_all” script is provided to users to test that the communication with the ReadUntil API is 
working before they use RISER for a real sequencing run, similar to the “unblock-all” script provided 
by ReadFish7. This test can be performed while replaying a bulk FAST5 file with MinKNOW. 

 

Testing on independent HeLa sample 

The RISER model performance was evaluated using the reserved HeLa dataset, which was 
prepared as described in “Data Preparation”.  The resulting test set comprised 394,036 reads 
evenly split between protein-coding and non-coding classes.  Performance was measured using 
accuracy, TPR, FPR, precision and AUROC.  TPR, FPR and precision were each calculated 
considering both protein-coding and non-coding as the target class. 

 

Testing in simulated sequencing environment 

We used a bulk FAST5 file from a sequencing run of poly(A)+ selected RNA from an REH cancer cell 
line for playback testing.  Using the default MinKNOW (v21.11.9, core v4.5.4) run settings, we 
replayed the bulk file 3 times for 6 hours per condition: (1) without RISER (as a control), (2) with 
RISER targeting the coding class, and (3) with RISER targeting the non-coding class.  Testing was 
performed on a desktop computer running Ubuntu 18.04 with one NVIDIA® GeForce® GTX 1650 
GPU and python v3.6.9. 

The sequenced reads were basecalled using Guppy with options “--flowcell FLO-MIN106 --kit 
SQK-RNA002”, then mapped to the reference transcriptome (GRCh38.p13 release 34) by minimap2 
(v2.17)23 with options “-ax map-ont --secondary=no -t 15”.  For each of the RISER runs, the 
distributions of read lengths for mapped coding and non-coding RNAs were compared using a 
Wilcoxon rank sum test with continuity correction (H1: on-target > off-target).  Reads that mapped 
to the GENCODE “protein-coding” biotype were considered as “coding” RNAs, while reads that 
mapped to the GENCODE biotypes “Mt_rRNA”, “Mt_tRNA”, “miRNA”, “misc_RNA”, “rRNA”, 
“scRNA”, “snRNA”, “snoRNA”, “ribozyme”, “sRNA”, “scaRNA” and “lncRNA” were considered as 
“non-coding” RNAs. 
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Testing during live MinION sequencing runs 

Sample preparation 

HeLa cells (human cervical cancer) and HEK293 (human embryonic kidney) cells were purchased 
from American Type Culture Collection (ATCC). HeLa cells were confirmed via short tandem repeat 
(STR) profiling with CellBank Australia. HeLa cells were grown in DMEM medium (Gibco) 
supplemented with 10% fetal bovine serum (FBS) and 1× antibiotic-antimycotic solution 
(Sigma).  HEK293 cells were supplier-certified and grown in DMEM media supplemented with 10% 
FBS.  Cells were cultured following the protocol described in 15. Cell cultures were propagated in a 
1:3 split, with replenishment of media every 4 days.  HeLa and HEK293 culture, cell pellet collection, 
cell lysis, polyadenylated RNA extraction and RNA cleanup with SPRI beads were performed as 
described previously15. 

MinION sequencing 

The flow cell priming and library sequencing protocol were performed as described previously15.  
Nanopore sequencing was performed using an ONT MinION Mk1B with R9.4.1 flow cells, for 24 
hours per run.  Four runs were conducted for each of the HeLa and HEK293 cell lines.  The flow cell 
was prepared and loaded as previously described15.  For each run, the default settings for the 
MinKNOW software (v22.05.5, core v5.1.0) were used.  The SQK-RNA002 kit was selected and the 
bulk file output was turned on. 

RISER usage 

The four HeLa runs were conducted as follows: (1) with RISER targeting the noncoding class, (2) 
with RISER targeting the coding class, (3) without RISER (as a control), and (4) the flow cell channels 
were split into three groups to simultaneously test three RISER target classes: coding, non-coding, 
and no target (control), and thereby remove the effect of inter-flow cell variability.  The four HEK293 
runs were performed the same way, however the split flow cell was run first. In each run, RISER 
was executed after the first MUX scan was completed.  To target the coding class RISER was run 
with options “--target coding --duration 24”, while to target the noncoding class RISER was run 
with options “--target noncoding --duration 24”.  For the split flow cell run, the channel numbers 
divisible by 3 were used to target the coding class, the channel numbers with remainder 1 when 
divided by 3 were used as a control without RISER, while remaining channels were used to target 
the noncoding class.  Since there are 512 channels in the MinION flow cell, this approach assigns 
170 channels per condition with 2 channels leftover.  Reads from the additional channels were 
discarded bioinformatically after the run to achieve an equal number of channels per condition.  All 
runs were performed on a computer running Ubuntu 20.04 with one NVIDIA GeForce GTX 1650 Ti 
GPU and python v3.8.10. 

 

Analysis 

Data preprocessing 

Reads were first basecalled using Guppy with options “--flowcell FLO-MIN106 --kit SQK-RNA002”, 
then mapped to the reference transcriptome (GRCh38.p13 release 34) by minimap2 (v2.17)23 with 
options “-ax map-ont -uf --secondary=no -t 15”.  To retain only primary alignments to the forward 
strand, alignments were filtered using samtools24 with option “-F 2324”. 
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Transcript coverage (the fraction of the mapped transcript covered by the alignment) for each of 
the remaining alignments was then computed by parsing the alignment CIGAR string.  Alignment 
matches (“M”), sequence matches (“=”) and sequence mismatches (“X”) were summed to compute 
the length of the aligned part of the transcript.  Coverage was obtained by dividing this alignment 
length by the transcript length. 

The remainder of analyses were performed using the sequence lengths output by Guppy, the 
filtered alignments, the computed transcript coverage and the decisions .csv file output by RISER.  
For all analyses, reads that mapped to the GENCODE “protein-coding” biotype were considered 
as “coding” RNAs, while reads that mapped to the GENCODE biotypes “Mt_rRNA”, “Mt_tRNA”, 
“miRNA”, “misc_RNA”, “rRNA”, “scRNA”, “snRNA”, “snoRNA”, “ribozyme”, “sRNA”, “scaRNA” and 
“lncRNA” were considered as “non-coding” RNAs. 

Split flow cell analysis 

For each of the three split flow cell conditions, the distributions of the lengths of reads assessed by 
RISER for mapped coding and non-coding RNAs were compared using a Wilcoxon rank sum test 
with continuity correction (H1: on-target > off-target).  Outliers were excluded. To plot the per-base 
transcript coverage for each of the example protein-coding, lncRNA and mtRNA transcripts, the 
read depth for each split flow cell condition was computed at each reference position using 
samtools (v1.10) depth (with default options).  Percentage depth at each reference position was 
then calculated by dividing read depth by the total number of reads in the relevant condition. On 
the other hand, to obtain the transcript coverage per read, for each of the three split flow cell 
conditions, the distributions of transcript coverage per read for mapped coding and non-coding 
RNAs were computed. 

Read enrichment was calculated as follows. The proportions of coding and non-coding reads were 
computed as the number of reads in each class divided by the total number of reads in both classes, 
considering reads that RISER accepted through the pore.  Relative enrichment was computed by 
dividing the proportions by those in the control condition.  Relative enrichment was also computed 
for lncRNAs and mtRNAs using the same approach. Nucleotide enrichment was calculated 
similarly. The proportions of coding and non-coding nucleotides were computed as the sum of read 
lengths in each class divided by the sum of read lengths in both classes.  This was calculated for 
reads that RISER accepted through the pore, as well as for all sequenced reads.  Relative 
enrichment was computed by dividing the proportions by those in the control condition.  Relative 
enrichment was also computed for lncRNA and mtRNA using the same approach, considering 
reads that RISER accepted through the pore. 

The analysis of available pores over time was done as follows. During each MinION run, MinKNOW 
conducted a pore scan every 1.5 hours to assess pore health.  The number of available pores found 
in each pore scan was extracted from the “pore_scan_data_[run_id].csv” file output by MinKNOW 
by counting the number of “single_pore” entries per scan for the channels in each condition.  We 
then computed the number of available pores as a percentage of pores available in the first pore 
scan. 

Flow cell per condition analysis 

For the runs that used a whole flow cell per condition, we repeated the above analyses: (1) read 
length distributions, (2) transcript coverage per read, (3) enrichment in terms of reads and 
nucleotides for coding RNA, non-coding RNA, lncRNA and mtRNA.  However, we did not need to 
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split reads into conditions based on channel number and instead considered reads from all 
channels in each flow cell. 

 

Data availability 
Nanopore DRS signals for human heart were obtained from the European Nucleotide Archive (ENA) 
under accession number PRJEB4041025.  Nanopore DRS signals for HEK293 cells were obtained 
from the ENA under accession number ENA PRJEB4087226 and from the NCBI Gene Expression 
Omnibus (GEO) under accession number TBD15.  Nanopore DRS signals for HeLa cells were 
obtained from the NCBI GEO under accession number GSE21176216.  Nanopore DRS signals 
generated in this study have been deposited at NCBI GEO under accession number TBD. 

 

Code availability 
RISER is freely available from https://github.com/comprna/riser under the GNU General Public 
License v3.0. 
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Extended Data 
 

Extended Data Figure 1: Evaluation of candidate RISER models.  a-d, Model performance on 
the test set for each candidate input signal length (x-axes) in seconds, color-coded by three 
convolutional network architectures: ”vanilla” convolutional neural network (CNN) (cyan), residual 
network (ResNet) (dark green), temporal convolutional network (TCN) (dark yellow).  We show the 
AUROC (a), true positive rate (TPR) (b), false positive rate (FPR) (c) and precision (d) for both coding 
(upper panel) and non-coding (lower panel) targets. 
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Extended Data Figure 2: Removal of the sequencing adapter and polyA tail from the nanopore 
signal.  a, Example DRS signal from the 3’ to 5’ direction with boundaries between the sequencing 
adapter and polyA tail (black) and between the polyA tail and RNA transcript (pink) shown.  b, 
Distribution of the number of signal values (x-axis) comprising the adapter and polyA tail for the 
training dataset, with quartiles highlighted.  c, Model performance on the test set to classify coding 
or non-coding RNA when signals were trimmed at the exact boundary between the polyA tail and 
RNA transcript (pink), as well as by each candidate fixed trim length: quartile 1 (Q1) (orange), quartile 
2 (Q2) (green) and quartile 3 (Q3) (blue). 
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Extended Data Figure 3: RISER reduces the length of off-target reads in a MinKNOW playback 
run using.  The distribution of read lengths for the mapped RNA species when the RISER target 
class was coding (left panel) and non-coding (right panel) in a playback of an REH cancer cell line 
sample.  The mapped RNA species is color-coded (light pink: coding, light blue: non-coding).  For 
both targets, the read lengths of the mapped RNA species were compared using a Wilcoxon rank 
sum test with continuity correction (H1: on-target > off-target) (p-value < 2.22E-16 for both target 
classes).  Outliers were not included. 
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Extended Data Figure 4: RISER enables real-time enrichment of RNA species in HEK293 cells. 
a-f, RISER performance during real-time sequencing of poly(A)+ RNA from HEK293 cells, using a 
MinION flow cell split into three RISER target classes: coding, non-coding, and none (i.e., 
control).  The RISER target class is color-coded using a dark color scheme (dark pink: coding, dark 
blue: non-coding, grey: control), while the mapped RNA species is color-coded using a light color 
scheme (light pink: coding, light blue: non-coding). a, The distribution of read lengths for the 
mapped RNA species when the RISER target class was coding (left panel) and non-coding (right 
panel).  For both targets, the read lengths of the mapped RNA species were compared using a 
Wilcoxon rank sum test with continuity correction (H1: on-target > off-target) (p-value < 2.22E-16 
for both target classes).  b, Sequencing coverage per base for an example protein-coding RNA 
(upper panel), mtRNA (middle panel) and lncRNA (lower panel).  The reference positions (x-axes) 
are ordered 3’ to 5’. We indicate the position 280nt upstream of the 3’ end, which approximately 
corresponds to the RISER input length. c, The distribution of the proportion of transcript covered 
by each sequenced read. d, The enrichment of each mapped RNA species, calculated as the 
proportion of reads that RISER accepted through the pore for each mapped RNA species, relative 
to the proportions in the control where RISER was not used. e, The enrichment of lncRNA and 
mtRNA, calculated using the same approach as (d). f, Available pores as a percentage of the initial 
number of available pores, as recorded during the 1.5 hourly pore scans across the 24h duration of 
the sequencing run.  
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Extended Data Figure 5: RISER enriches the nucleotide sequencing depth of the target RNA 
species.  Relative nucleotide enrichment (y-axes) achieved by RISER during real-time sequencing 
of poly(A)+ RNA from HeLa cells (a-c) and HEK293 cells (d-f), using a MinION flow cell split into 
three RISER target classes: coding, non-coding, and none (i.e., control).  The mapped RNA species 
is color-coded (light pink: coding, light blue: non-coding, lime green: lncRNA, dark green: mtRNA.  
a,d, The enrichment of each mapped RNA species, calculated as the proportion of nucleotides that 
RISER accepted through the pore for each mapped RNA species, relative to the proportions in the 
control where RISER was not used.  b,e, The enrichment in terms of nucleotides of lncRNA and 
mtRNA, calculated using the same approach as (a,d).  c,f, The enrichment of each mapped RNA 
species, calculated as the proportion of all sequenced nucleotides for each mapped RNA species, 
relative to the proportions in the control where RISER was not used. 
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Extended Data Figure 6: Enrichment and depletion of RNA species using a whole flow cell 
per condition.  RISER performance during real-time sequencing of poly(A)+ RNA from HeLa cells 
(a-d) and HEK293 cells (e-h), using a MinION flow cell per condition: coding as the RISER target 
class, non-coding as the RISER target class, and no RISER as a control.  The mapped RNA species 
is color-coded (light pink: coding, light blue: non-coding, lime green: lncRNA, dark green: mtRNA.  
a,e, The distribution of read lengths for the mapped RNA species when the RISER target class was 
coding (left panel) and non-coding (right panel).  For both targets, the read lengths of the mapped 
RNA species were compared using a Wilcoxon rank sum test with continuity correction (H1: on-
target > off-target) (p-value < 2.22E-16 for both target classes).  b,f, The distribution of the 
proportion of transcript covered by each sequenced read.  c,g, The enrichment of each mapped 
RNA species, calculated as the proportion of reads that RISER accepted through the pore for each 
mapped RNA species, relative to the proportions in the control where RISER was not used. d,h, 
The enrichment of lncRNA and mtRNA, calculated using the same approach as (c,g). 
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Extended Data Figure 7: RISER enriches the nucleotide sequencing depth of the target RNA 
species when tested using a whole flow cell per condition.  RISER performance during real-
time sequencing of poly(A)+ RNA from HeLa cells (a-c) and HEK293 cells (d-f), using a MinION flow 
cell per condition: coding as the RISER target class, non-coding as the RISER target class, and no 
RISER as a control.  The mapped RNA species is color-coded (light pink: coding, light blue: non-
coding, lime green: lncRNA, dark green: mtRNA.  a,d, The enrichment of each mapped RNA 
species, calculated as the proportion of nucleotides that RISER accepted through the pore for each 
mapped RNA species, relative to the proportions in the control where RISER was not used.  b,e, 
The enrichment in terms of nucleotides of lncRNA and mtRNA, calculated using the same approach 
as (a,d).  c,f, The enrichment of each mapped RNA species, calculated as the proportion of all 
sequenced nucleotides for each mapped RNA species, relative to the proportions in the control 
where RISER was not used. 
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Extended Data Figure 8: Class diagram for the RISER software using unified modelling 
language (UML) notation.  Each box represents a class and contains three sections: name, 
attributes, and method definitions.  Attributes and method definitions have assigned access 
privileges, with ”+” and ”-" indicating public and private visibility, respectively.  Arrows denote 
associations between classes, i.e., the class at the arrow's tail has an instance of the class at the 
tip of the arrow.  For simplicity, logging, csv writing functionality and optional method parameters 
have not been shown.  Only methods in the ONT ReadUntilClient (v3.0.0) that have been utilized by 
RISER are shown. 
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Extended Data Figure 9: Sequence diagram for the RISER software using unified modelling 
language (UML) notation.  The diagram illustrates the timeline (top-to-bottom) of interactions 
between RISER components during a targeted sequencing run.  Each blue box represents an object 
(class instance), with vertical blue lifelines extending beneath them.  The white vertical bars denote 
when an object is busy (either executing a task or awaiting a message).  Arrows denote synchronous 
messages (the sender requires a reply before continuing), with solid arrows representing messages 
from the sender to the receiver and dotted arrows denoting the return message from receiver to 
sender.  Conditional functionality is enclosed within an “opt” rectangle, with the condition listed in 
square brackets.  Loops are also enclosed within a “loop” rectangle, with the loop condition listed 
in square brackets. 
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Supplementary Information 
 

Supplementary Table 1:  MinION DRS datasets used in this study for model development and 
evaluation. The HEK293-B dataset was composed by taking the second and third biological 
replicates for both the METTL3 knockout and wild-type samples in ENA PRJEB40872 and 
combining all technical replicates. Only data from HeLa WT cells was used from GSE211762. 

Dataset ID Cell line / 
tissue type 

Accession # Sequencing 
kit 

Flow cell Pore Used for 
training? 

Heart Human 
heart 

ENA 
PRJEB4041025 

SQK-
RNA002 

FLO-
MIN106 

R9.4.1 Yes 

HEK293-A HEK293 TBD 15 SQK-
RNA002 

FLO-
MIN106 

R9.4.1 Yes 

HEK293-B HEK293 ENA 
PRJEB4087226 
 

SQK-
RNA002 

FLO-
MIN106 

R9.4.1 Yes 

GM24385 GM24385 TBD SQK-
RNA002 
(modified) 

FLO-
MIN106 

R9.4.1 Yes 

HeLa HeLa GSE21176216  SQK-
RNA002 

FLO-
MIN106 

R9.4.1 No 
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Supplementary Table 2: Hyperparameter optimization results for ResNet.  “O” and “A” denote the “bottleneck” and “basic” residual block 
types, respectively, defined in 19. 

Input 
signal 
length 

Batch 
size 

Learning 
rate Block type 

Num. 
layers 
(l) 

Kernel 
size (k) Blocks (b) Channels (c) 

Num. 
trainable 
params 

Val. 
accuracy 
(%) 

4s 32 0.001 O 4 13 2,2,2,2 20,30,45,67 75,374 76.44 

4s 1000 0.001 O 4 13 2,2,2,2 20,30,45,67 75,374I  75.26 

4s 32 0.001 O 4 19 2,2,2,2 16,24,36,54 49,086 76.23 

4s 16 0.001 O 4 19 2,2,2,2 20,30,45,67 75,494 76.67 

4s 32 0.0001 O 4 19 2,2,2,2 20,30,45,67 75,494 75.41 

4s 32 0.001 O 4 19 2,2,2,2 20,30,45,67 75,494 76.59 

4s 32 0.001 O 4 19 2,2,2,2 20,30,45,67 24,990 74.68 

4s 1000 0.0001 O 4 19 2,2,2,2 20,30,45,67 75,494 73.18 

4s 1000 0.001 O 4 19 2,2,2,2 20,30,45,67 75,494 75.41 

4s 32 0.001 O 4 19 2,2,2,2 20,40,80,160 278,602 76.8 

4s 32 0.001 O 4 19 2,2,2,2 32,48,72,108 191,562 76.75 

4s 32 0.001 O 4 19 2,2,2,2 32,64,128,256 708,418 77.08 

4s 1000 0.001 O 4 19 2,2,2,2 32,64,128,256 708,418 76.07 

4s 32 0.001 O 4 19 2,3,4,2 20,30,45,67 106,154 77.08 

4s 1000 0.001 O 4 19 2,3,4,2 20,30,45,67 106,154 75.92 

4s 32 0.001 O 4 19 3,4,23,3 20,30,45,67 379,514 78.75 

4s 32 0.001 O 4 19 3,4,6,3 128, 256, 512, 1024 7,670,402 77.73 

4s 32 0.001 O 4 19 3,4,6,3 20,30,45,67 166,844 78.1 
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4s 32 0.001 O 4 19 3,4,6,3 256, 512, 1024, 2048 30,596,354 77.43 

4s 32 0.001 O 4 19 3,4,6,3 32,64,128,256 487,394 77.94 

4s 32 0.001 O 4 19 3,4,6,3 64, 128, 256, 512 1,928,258 78.16 

4s 32 0.001 O 4 25 2,2,2,2 20,30,45,67 75,614 76.56 

4s 1000 0.001 O 4 25 2,2,2,2 20,30,45,67 75,614 75.35 

4s 32 0.001 O 5 19 2,2,2,2,2 20,30,45,67,100 168,384 78.09 

4s 1000 0.001 O 5 19 2,2,2,2,2 20,30,45,67,100 168,384 76.8 

4s 32 0.001 O 6 19 2,2,2,2,2,2 20,30,45,67,100,150 375,684 79.32 

4s 32 0.001 O 7 19 2,2,2,2,2,2,2 20,30,45,67,100,150,225 840,384 80.16 

4s 32 0.001 A 4 19 2,2,2,2 20,30,45,67 102,120 78.23 

4s 1000 0.001 A 4 19 2,2,2,2 20,30,45,67 102,120 77.14 

4s 32 0.001 A 4 19 3,4,6,3 32,64,128,256 2,041,090 79.76 

4s 32 0.001 A 4 19 3,4,6,3 64, 128, 256, 512 8,139,266 79.36 

4s 32 0.0001 A 10 19 1,1,1,1,1,1,1,1,1,1 20,30,45,67,100,150,225,337,505,757 5,869,558 80.17 

4s 32 0.001 A 10 19 1,1,1,1,1,1,1,1,1,1 20,30,45,67,100,150,225,337,505,757 5,869,558 81.12 
 

 

Supplementary Table 3. Hyperparameter optimization results for the Temporal Convolutional Network (TCN). 

Input signal 
length 

Batch 
size 

Learning 
Rate 

Num. layers 
(l) 

Num. channels 
(c) 

Kernel size 
(k) 

Dilation base 
(d) 

Dropout 
(r) 

# Trainable 
Params 

% Val 
Accuracy 

4s 32 0.0001 5 128 7 6 0.2 1,102,210 77.7 

4s 32 0.0001 5 128 7 8 0.2 1,102,210 76.07 
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4s 32 0.0001 6 128 7 4 0.2 1,348,610 77.54 

4s 32 0.0001 7 128 7 3 0.2 1,595,010 76.97 

4s 32 0.0001 9 16 15 2 0.2 68,338 76.48 

4s 32 0.0001 10 16 7 2 0 37,314 76.35 

4s 32 0.0001 10 16 7 2 0.05 37,314 76.56 

4s 32 0.0001 10 16 7 2 0.1 37,314 76.29 

4s 16 0.0001 10 16 7 2 0.2 37,314 74.89 

4s 32 0.00001 10 16 7 2 0.2 37,314 72.46 

4s 32 0.0001 10 16 7 2 0.2 37,314 75.17 

4s 32 0.001 10 16 7 2 0.2 37,314 72.89 

4s 32 0.0001 10 16 9 2 0.2 47,074 76.03 

4s 32 0.0001 10 16 11 2 0.2 56,834 76.72 

4s 32 0.0001 10 32 7 2 0.2 147,330 76.49 

4s 32 0.0001 10 32 11 2 0.05 225,282 78.9 

4s 32 0.0001 10 64 7 2 0.2 585,474 77.37 

4s 32 0.0001 10 64 11 2 0.05 897,026 78.59 

4s 16 0.0001 10 128 7 2 0.2 2,334,210 76.7 

4s 32 0.0001 10 128 7 2 0.2 2,334,210 75.76 

4s 32 0.0001 11 16 5 2 0.2 30,450 73.68 

4s 32 0.0001 12 16 3 2 0.2 21,538 71.23 

4s 32 0.0001 12 128 3 2 0.2 1,319,170 75.59 
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Supplementary Table 4: Hyperparameter optimization results for the “vanilla” Convolutional Neural Network (CNN).  The classifier “fc” 
denotes a 2-layer fully connected network with ReLu activation, “gap” denotes a global average pooling layer and “gap_fc” denotes a global 
average pooling layer followed by a single fully connected layer. 

Input 
signal 
length 

Batch 
size 

Learning 
rate 

Num. 
layers (l) 

Blocks 
per layer 
(b) Channels (c) 

Kernel 
size (k) 

Classifier 
(f) 

# Trainable 
params 

% Val 
accuracy 

4s 32 0.001 4 1 20,30,45,67 3 fc 206,674,703 69.74 

4s 32 0.001 4 1 20,30,45,67 3 gap 15,253 70.08 

4s 32 0.001 4 1 20,30,45,67 3 gap_fc 15,523 70.15 

4s 32 0.001 4 1 20,30,45,67 5 gap_fc 25,223 72 

4s 32 0.001 4 1 20,30,45,67 7 gap_fc 35,193 72.08 

4s 32 0.001 4 1 20,30,45,67 11 gap_fc 55,133 73.45 

4s 32 0.001 4 1 32,64,128,256 3 gap_fc 130,114 70.79 

4s 32 0.001 4 2 20,30,45,67 3 gap_fc 38,857 72.05 

4s 32 0.001 4 4 20,30,45,67 3 gap_fc 86,065 50 

4s 32 0.0001 4 4 20,30,45,67 3 gap_fc 86,065 73.9 

4s 32 0.001 5 1 20,30,45,67,100 3 gap_fc 35,519 72.21 

4s 32 0.001 6 1 20,30,45,67,100,150 3 gap_fc 80,769 74.12 

4s 32 0.001 7 1 20,30,45,67,100,150,225 3 gap_fc 182,394 50 

4s 32 0.0001 7 1 20,30,45,67,100,150,225 3 gap_fc 182,394 76.51 

4s 32 0.001 8 1 20,30,45,67,100,150,225,337 3 gap_fc 410,430 50 

4s 32 0.0001 8 1 20,30,45,67,100,150,225,337 3 gap_fc 2,069,942 79.38 

4s 32 0.0001 8 1 20,40,80,160,320,640,1280,2560 3 gap_fc 13,116,682 78.99 

4s 32 0.0001 8 1 32,64,128,256,512,1024,2048,4096 3 gap_fc 33,568,834 79.29 
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4s 32 0.001 10 1 20,20,30,30,45,45,67,67,100,100 3 gap_fc 89,223 50 

4s 32 0.001 10 1 20,30,45,67,100,150,225,337,505,757 3 gap_fc 2,069,942 50 

4s 32 0.0001 10 1 20,30,45,67,100,150,225,337,505,757 3 gap_fc 2,069,942 79.35 

4s 32 0.0001 10 2 20,30,45,67,100,150,225,337,505,757 3 gap_fc 5,169,924 50 

4s 32 0.00001 10 2 20,30,45,67,100,150,225,337,505,757 3 gap_fc 5,169,924 50 

4s 32 0.000001 10 2 20,30,45,67,100,150,225,337,505,757 3 gap_fc 5,169,924 50 

4s 32 0.0000001 10 2 20,30,45,67,100,150,225,337,505,757 3 gap_fc 5,169,924 50 

4s 32 0.0001 12 1 20,30,45,67,100,150,225,337,505,757,1135,1702 3 gap_fc 10,447,564 80.22 
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Supplementary Note 1: RISER command structure. 

usage: riser.py [-h] -t  -d  [-c] [-m] [-p] [-s] 
 
optional arguments: 
-h, --help         show this help message and exit 
-t , --target RNA species to enrich for. This must be either 

{coding, noncoding}. (required) 
-d , --duration    Length of time (in hours) to run RISER for. This 

should be the same as the MinKNOW run length. 
(required) 

-c , --config      Config file for model hyperparameters. (default: 
model/cnn_best_model.yaml) 

-m , --model       File containing saved model weights. (default: 
model/cnn_best_model.pth) 

-p , --polya Number of values to remove from the start of the raw 
signal to exclude the polyA tail and sequencing 
adapter signal from analysis. (default: 6481) 

-s , --secs Number of seconds of transcript signal to use for 
decision. (default: 4) 

 
 

Supplementary Note 2: RISER output files - Console output. 

Using cuda device 
Usage: riser.py -t noncoding -d 48 
All settings used (including those set by default): 
--target        : Species.NONCODING 
--duration_h    : 48 
--config_file   : models/cnn_best_model.yaml 
--model_file    : models/cnn_best_model.pth 
--polyA_length  : 6481 
--secs          : 4 
Client is running. 
Batch of 110 reads received: 59 long enough to assess, 46 of which were 
rejected (took 0.3148s) 
Batch of  93 reads received: 29 long enough to assess, 21 of which were 
rejected (took 0.1376s) 
Batch of 107 reads received: 32 long enough to assess, 24 of which were 
rejected (took 0.1568s) 
... 
 

Supplementary Note 3: RISER output files - Log file. 

2022-08-23T11:56:29 [RISER] INFO: Using cuda device 
2022-08-23T11:56:31 [RISER] INFO: Usage: riser.py --target noncoding --
duration 24 
2022-08-23T11:56:31 [RISER] INFO: All settings used (including those set 
by default): 
2022-08-23T11:56:31 [RISER] INFO: --target        : Species.NONCODING 
2022-08-23T11:56:31 [RISER] INFO: --duration_h    : 24 
2022-08-23T11:56:31 [RISER] INFO: --config_file   : 
defaults/cnn_best_model.yaml 
2022-08-23T11:56:31 [RISER] INFO: --model_file    : 
defaults/cnn_best_model.pth 
2022-08-23T11:56:31 [RISER] INFO: --polyA_length  : 6481 
2022-08-23T11:56:31 [RISER] INFO: --secs          : 4 
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2022-08-23T11:56:31 [RISER] INFO: Client is running. 
2022-08-23T11:56:32 [RISER] INFO: Batch of   0 reads received:  0 long 
enough to assess,  0 of which were rejected (took 0.0000s) 
2022-08-23T11:56:33 [RISER] INFO: Batch of 268 reads received:  0 long 
enough to assess,  0 of which were rejected (took 0.0013s) 
2022-08-23T11:56:34 [RISER] INFO: Batch of 284 reads received:  0 long 
enough to assess,  0 of which were rejected (took 0.0014s) 
2022-08-23T11:56:35 [RISER] INFO: Batch of 262 reads received:  0 long 
enough to assess,  0 of which were rejected (took 0.0015s) 
... 
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Supplementary Table 5:  RISER output files - CSV file. 

read_id channel probability_noncoding probability_coding prediction target decision 

075391a9-2816-45b0-aebb-
12b1f398fcd3 204 0.83 0.17 NONCODING CODING REJECT 

afcbd456-1843-4322-85d2-
7f001ef0dc01 

176 0.24 0.76 CODING CODING ACCEPT 

d8de6be4-4a01-42dc-b8ab-
77abc8f818e1 

373 0.36 0.64 CODING CODING ACCEPT 

02cdeae6-3d5d-4615-bc61-
7d5dd9a7217c 

91 0.79 0.21 NONCODING CODING REJECT 

4460c783-4663-4666-be4d-
c52590fdff31 

293 0.26 0.74 CODING CODING ACCEPT 

… … … … … … … 
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