1	The worldwide allometric relationship in anatomical structures for plant roots
2	Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao,
3	De-Liang Kong*
4	
5	College of forestry, Henan Agricultural University, Zhengzhou 450002, China
6	
7	*Corresponding author:
8	Email: deliangkong1999@126.com; <u>deliangkong@henau.edu.cn;</u>
9	Tel: 0371-63558070
10	
11	Email for coauthors:
12	Yue Zhang: zhangyue5724@163.com
13	JingJing Cao: caojingjingcjj@126.com
14	QingPei Yang: yangqingpei1992@126.com
15	MingZuo Wu: wumingzuo@henau.edu.cn
16	Yong Zhao: zhaoyonghnnd@163.com
17	

18 Abstract

19	The anatomical structures, i.e., the cortex and stele, are fundamental for the absorptive
20	function of plant roots. Unraveling how the allometric structures are assembled in
21	absorptive roots is essential for our understanding the plant ecology, physiology and
22	responses to global environmental changes. In this review study, we first compile a
23	globally largest dataset on key root structural traits, i.e., root diameter, cortex
24	thickness and stele radius across 512 species. Using this largest dataset, we confirm
25	an allometric relationship of absorptive root structures in a previous study using a
26	much smaller species pool, i.e., the cortex thickness increased much faster than the
27	stele radius with increasing root diameter. The allometric relationship is further
28	validated within and across different plant growth forms (woody, grass, and liana
29	species), mycorrhiza types (arbuscular mycorrhiza, ectomycorrhiza, and orchid
30	mycorrhizas), phylogenetic gradients (from ferns to Orchidaceae of primitive
31	angiosperms), and environmental change scenarios (e.g., the elevation of atmospheric
32	CO ₂ concentration and nitrogen fertilization), supporting the universal allometric
33	relationship in plant roots. We then summarized recent proceedings as well as possible
34	issues on mechanisms underlying the root allometric relationship. The ecological and
35	evolutionary implications for this allometric relationship in roots are also discussed.
36	Finally, we propose several directions that should be stressed in future studies
37	regarding the allometric relationship in plant roots.
38	

39 Key words: allometric relationship, root dimeter, cortex thickness, stele radius

40 **1. Introduction**

Plant roots play a crucial role in plant growth, vegetation dynamics, ecosystem 41 functioning like productivity formation, nutrient cycle and their responses to 42 environmental changes (Carmona et al., 2021; Laughlin et al., 2021; Chandregowda et 43 al., 2022; Encinas-Valero et al., 2022; Hong et al., 2022). Compared to studies on plant 44 above-ground organs such as leaves and stems that have undergone enormous 45 proceedings (Wright et al., 2004; Diaz et al., 2016; Joswig et al., 2022), our 46 understanding of plant roots remains in its infancy. The core function of plant roots is 47 48 to absorb soil water and nutrients, which is undertaken by a few terminal root branch orders, i.e., absorptive roots, mainly bearing primary root tissues (Guo et al., 2008b). 49 Generally, the absorptive function is depicted by a range of traits in root morphology, 50 51 physiology, anatomy, chemistry, mechanics and microbial symbiosis (McCormack et al., 2017; Wambsganss et al., 2021; Wen et al., 2022; Yan et al., 2022). Among these 52 root traits, root diameter seems like the most important one given that it is closely 53 54 associated with a suite of other root traits as well as mycorrhizal fungi apart from its well-known feature of easily measured and great inter-specific variation (Eissenstat et 55 al., 2015; Li et al., 2018; Bergmann et al., 2020; Wen et al., 2022). Furthermore, root 56 diameter is the phylogenetically most conservative root trait, suggesting that the great 57 inter-specific variation could largely be an evolutionarily imprint from the geological 58 environmental change such as atmospheric CO₂ decline since the Cretaceous (Comas 59 et al., 2012; Chen et al., 2013; Pineiro et al., 2020; Lugli et al., 2021). 60

61 The absorption function of plant roots is essentially determined by root anatomical

structures. Generally, absorptive roots are composed of two cylindrical components, 62 i.e., cortex and stele. The cortex directly takes part in the absorption of water and 63 64 nutrients and indirectly acquire these resources by associations with mycorrhizal fungi (Brundrett, 2002; Ma et al., 2018; Rich et al., 2021). The stele is responsible for 65 transporting water and nutrients upward to stems and leaves, and the stele supply energy 66 demanding of the roots with leaf photosynthate. Theoretically, the change in root 67 diameter is mainly derived from the size variations of the cortex and stele, while how 68 the cortex and stele are coordinated with the shifts of root diameter has not been 69 70 uncovered until 2014 when two research groups independently found an allometric relationship between the cortex and stele (Gu et al., 2014; Kong et al., 2014), i.e., the 71 cortex thickness increased linearly and much faster than the stele radius with increasing 72 73 root diameter. Later, this allometric relationship was reported in many studies, and was synthesized by Kong et al. (2019) who reported a global existence of the allometric 74 relationship in root cortex and stele across 204 plant species. 75 76 Uncovering of the allometry relationship paves a new way for our understanding of the form-function relationship in roots and plant evolution and adaptation to 77 environmental changes (McCormack et al., 2017; Kong et al., 2019; Bergmann et al., 78 2020; Zhou et al., 2022). Since the global recognition of the allometric relationship 79 between root cortex and stele in 2019, mounting studies have focused on root 80 anatomical traits for one hand, and for the other hand we also note that some early 81

82 studies on Orchidaceae and vine root anatomy were neglected in Kong et al. (2019).

83 Further, despite the worldwide mycorrhizal associations in terrestrial plants, we know

84	little about whether and how the allometric relationship in absorptive roots varies
85	among mycorrhizal types with contrasting mycorrhizal structures and functioning
86	(e.g., arbuscular mycorrhiza (AM) vs. ectomycorrhiza (EM)) (Brundrett, 2002; Martin
87	et al., 2017) Additionally, no studies to date have explored how the environmental
88	changes affect the above allometric relationship in roots. Therefore, it is necessary to
89	further test the generality of the root allometric relationship using a much larger
90	species pool than that in Kong et al. (2019).
91	To fulfill this purpose, in this review paper, we made a thorough screening of the
92	data on the cortex thickness and the stele radius of absorptive roots in Web of Science,
93	Google Scholar, FRED 3.0 and CNKI (China's national knowledge infrastructure)
94	using keywords included "cortex", "stele", "anatomic structure", "allometric
95	relationship", "root diameter". Our searching yielded 3,676,679 papers and reports.
96	We then refined these results according to additional criteria: (1) the study must be an
97	empirical rather than a review or perspective; (2) the data on root diameter and stele
98	radius were accessible. We also included some unpublished data (supplementary dada
99	2) on root anatomical traits which were measured at the same sites and following the
100	same procedures as our previous study (Kong et al., 2014). Finally, our dataset
101	included 32 empirical studies (supplementary data 1) with a total of 698 observations
102	of 512 species at 41 sites (Fig. 1). Specifically, the dataset included 271 woody
103	species and 241 non-woody species (78 grass, 92 herb, 37 fern and 28 Orchidaceae
104	species). In addition, 13 liana species were included in the dataset. For the same
105	species appearing in different studies, we used the average value of the root traits

106	across species as the trait value of this species. For some studies with only the data of
107	the stele radius and root diameter, we use the difference between the root diameter
108	and stele radius (equal to the thickness of tissues outside the stele including the
109	epidermis, exodermis and cortex, i.e., tToS, as a proxy approximate to the cortex
110	thickness (Kong et al., 2019). For the studies with root trait data displayed in figures
111	or only photos on root anatomical structures presented, we digitalized the root trait
112	data using the software "SigmaScan Pro software (V5.0, SPSS Inc., Chicago, USA)"
113	and the software "IMAGE J (NIH Image, Bethesda, MD, USA)", respectively.
114	Overall, in this review we aim to: (1) test the generality of the allometric
115	relationship between root cortex and stele within and across different plant growth
116	forms, mycorrhizal types and environmental treatments; (2) summarize mechanisms
117	and implications for such allometric relationship; (3) propose important directions for
118	future studies regarding the root allometric relationship.
119	2. Generality of the allometric relationship in absorptive roots
120	The allometric relationship between the cortex and the stele still held across the 698
121	observations and 512 species of root anatomical structures (Table 1; Fig. 2a, 2b). For
122	the 26 studies with root anatomical structures examined in at least three species, the
123	allometric relationship in absorptive roots existed in most of the studies, while only
124	four studies seemed exceptional (Table 2; Fig. 3; Supplementary data 1).
125	The allometric relationship in absorptive roots also occurred in different plant
126	growth forms. For example, the thickness of tToS in woody species increases 7.6-fold
127	faster than the stele radius with increasing root diameter, and the slope difference

128	(3.3-fold) is much lower in non-woody species (Table 1; Fig. 4), This allometric
129	relationship is very similar to that reported by Kong et al. (2019) using less than half
130	of the species number as in our study Within the non-woody species, the allometric
131	relationship was found in each of the fern grass, herb, and Orchidaceae (Fig. 5).
132	Interestingly, we observed a 5.1-fold difference of the slope in the root allometric
133	relationship in Orchidaceae species while the slope difference is much lower in other
134	three non-woody groups (Table 1). Finally, for the vine species, both the woody and
135	non-woody ones, followed the allometric manner in building their absorptive roots
136	(Supplementary Table 1;Supplementary Fig. 2a, 2b, 2c).
137	Among the dominant mycorrhizal types, the allometric relationship between root
138	cortex and stele was observed in AM (Fig. 6a), regardless of being woody or non-
139	woody of the plants (Fig. 7a, 7b), and the dual mycorrhizas of AM & EM plants but
140	not in EM plants (Table 1; Fig. 6b, 6c). While we do note a significant allometric
141	relationship in broadleaf EM trees but not in coniferous EM trees (Table 2; Fig. 8).
142	Therefore, it is likely that the inclusion of such coniferous EM trees could lead to the
143	overall no root allometric relationship across the EM plants. Considering only six
144	coniferous EM plant species included in our dataset, we can not rule out the
145	possibility of the root allometric relationship in other coniferous EM trees.
146	Nevertheless, the contrasting root allometric relationships between broadleaf and
147	coniferous EM trees may reflect the interior difference of the two types of EM plants
148	in root structures and functioning (Guo et al., 2008b; Chen et al., 2016). the
149	coniferous EM trees usually have vascular conduits (tracheid and sieve cells) with

150	much lower matter (water and photosynthates) transport efficiency relative to the
151	more efficient conduits (vessels and sieve tubes) in broadleaf EM plants (Guo et al.,
152	2008b). It is likely that with the shift of root diameter across coniferous EM trees,
153	some unknown strategies could be adopted rather than only change the size of the
154	stele to increase matter transport efficiency; this, as such, results in no root allometric
155	relationship in the coniferous EM plants. Finally, we show for the first time that the
156	root allometric relationship still exists in another important mycorrhizal type, i.e., the
157	Orchid mycorrhiza (OM) plants (Table 2; Fig. 5d), usually bearing much thicker
158	absorptive roots (up to 4.6mm) (Zhu et al., 2016) than most of the AM and EM plants.
159	Root anatomical structures have also been measured sparsely under different
160	environmental change scenarios (e.g., soil nitrogen or phosphorus fertilization,
161	increase of atmospheric CO2 concentration and seasonality in rainfall) (Table 1; Fig.
162	9), which provides an opportunity to test the consistency of the root allometric
163	relationship. Although the root allometric relationship in some scenarios does not hold
164	statistically (Fig. 9), this is apparently due to the inclusion of a few species with
165	"exceptionally" large or small size of root cortex and stele or the inclusion of some
166	species with "exceptional" responses to the environmental changes (e. g., Fig. 9a2, a3,
167	b2, b3, d2, d3). Overall, our results suggested a relative insensitiveness of the root
168	allometric relationship to the environmental changes. Interestingly, we note that the
169	cortex thickness increases slower and the stele radius increases faster with increasing
170	root diameter in the rainy season compared with that in the dry season, consequently
171	causing an equal rather than allometric increase rate of the cortex thickness and stele

172 ra	dius in the ra	iny season	(Fig.	$9d_{2}$,	d3). I	t is wor	thwhile to	test the	generality	of such
--------	----------------	------------	-------	------------	--------	----------	------------	----------	------------	---------

- 173 impact on the root allometric relationship by rainfall seasonality and uncover the
- 174 underlying mechanisms in future studies.
- 175 Together, the wide existence of the allometric relationship between root cortex
- and stele across different climatic zones (tropical, sub-tropical and temperate),
- 177 ecosystem types (forests, grasslands, deserts and mangroves), mycorrhizal types (AM,
- some EM, AM&EM, OM), phylogenetic gradients (from ferns to Orchidaceae), and
- 179 environmental change scenarios support the universal rule of the allometric
- 180 relationship by which the root anatomical structures are assembled.

181 **3. Mechanisms of the root allometric relationship**

Currently, two theories have been proposed in explaining why the allometric 182 183 relationship between the cortex and stele is formed. One is the nutrient absorptiontransportation balance theory (Kong et al., 2017) and the other is the carbon supply-184 consumption balance theory (Kong et al., 2021; Colombi et al., 2022) (Fig. 10). Both 185 theories run according to the principle of functional balance of the matter (nutrients, 186 photosynthates) transport within root tissues as well as the physical law of fluid 187 transport in the conduits, namely the "Hagen-Poiseuille law" (Jensen et al., 2016). Here, 188 we only outline the two theories and readers can refer to the original papers for details 189 of the theories. 190

191 There are two parallel vascular systems in root steles, i.e., vessels responsible for 192 transporting water and nutrients upward to stems and leaves and sieves responsible for 193 meeting the carbon demanding of the root. According to the Hagen-Poiseuille law, both

volumetric flow rates in the conduits (i.e., water and nutrient transportation via vessels 194 and photosynthate transportation via sieves) scale to the fourth power of the root radius; 195 196 while even the maximum nutrient absorption (via mycorrhizal fungi in the cortex) and carbon consumption (via the cortex) scale less than the twice power of root radius. In 197 this case, only a much faster increase of the cortex thickness than the stele radius with 198 increasing root diameter (i.e., the allometric relationship) can lead to a balance between 199 the nutrient absorption (via mycorrhizal fungi in the cortex) and the nutrient 200 transportation (via vessels in the stele) and a balance between the carbon supply (via 201 202 sieves in the stele) and carbon consumption (via the cortex).

Nevertheless, we should also keep in mind of some important limitations of the 203 above two theories. Firstly, the *nutrient absorption-transportation balance* theory holds 204 205 on a prerequisite of a universal association of plant roots with mycorrhizal fungi, while there are still a lot of species with no mycorrhizal associations (Vander et al., 2015; 206 Brundrett and Tedersoo, 2018; Correia et al., 2018). Secondly, the two theories seem 207 running independently although they are based on two interconnected vascular 208 conducts, i.e., vessels and sieves. It is also interesting to learn about how the above two 209 theories are linked with leaves, the important sink of nutrients and the source of carbon. 210 Thirdly, empirical evidence is urgently needed to test the prediction of the above 211 functional balance that underlies the root allometric relationship. 212

213

4. Implication of the root allometric relationship

215 4.1 Relationship with the "root economics spectrum"

216	Traditionally, root economic spectrum is considered to be the core trait dimension in
217	roots which conveys a trade-off between nutrient uptake and conservation (Freschet et
218	al., 2010; Reich, 2014; Kramer-Walter et al., 2016). It has been widely recognized that
219	a positive correlation between root diameter and root life span (i.e., conservation of
220	nutrient) (Guo et al., 2008a; Gu et al., 2017; Liese et al., 2019) and a negative
221	correlation between root nutrient uptake and root tissue density (RTD) (Zadworny et
222	al., 2017; Stock et al., 2021). If the trade-off exists between root nutrient uptake and
223	conservation, there should be a positive correlation between RTD and root diameter.
224	However, besides such a prediction, many studies also found a negative or no
225	relationship between RTD and root diameter (Weemstra et al., 2016; Kong et al.,
226	2019; Han and Zhu, 2021). Based on the universal allometric relationship between
227	root cortex and stele, we predict a negative and non-linear relationship between RTD
228	and root diameter, and this prediction has been verified using a global root trait
229	dataset (Kong et al., 2019). Therefore, the formation of the root allometric
230	relationship may not support the existence of the widely acknowledged root economic
231	spectrum.
222	

233 **4.2 Plant evolution and adaptation to environment**

The evolution of angiosperms is closely related to the decline of atmospheric CO₂ concentration since the mid-Cretaceous (Beerling and Berner, 2005; Gerhart and Ward, 2010). For example, the reduction of atmospheric CO₂ concentration often lowers leaf photosynthesis, consequently causing "carbon starvation" to plants. To

238	survive in this carbon limitation condition, plants tend to increase stomatal
239	conductance to compensatively improve leaf CO ₂ fixation (Zhou et al., 2013; Holtta et
240	al., 2017). However, large stomatal conductance will enhance the transpiration water
241	loss, as such causing physiological drought to plants (Khan et al., 2007; Wang et al.,
242	2018). The surge of leaf vein density in angiosperms since the mid-Cretaceous, hence
243	resulting more efficient water supply to the mesophyll cell for photosynthesis, can be
244	considered as evidence for plant adaptation to the physiological drought (Baraloto et
245	al., 2010; Feild et al., 2011; Baird et al., 2021; Yan et al., 2022).
246	Coordinated with the evolutionary change in leaves, thinning of the absorptive
247	roots is regarded as an adaptation to the physiological drought caused by the decline
248	of atmospheric CO ₂ concentration (Fig. 11a) (Comas et al., 2012; Chen et al., 2013;
249	Ma et al., 2018). Alongside the thinning of the absorptive roots, the much faster
250	decrease of the cortex thickness than the stele radius means effectively reducing the
251	resistance of water and nutrients entering the root tissues for one hand and for the
252	other hand effectively reducing the carbon consumption by root cortex (Fig. 11b).
253	Therefore, the allometrically structured roots are much beneficial for plants to survive
254	under the carbon and water limited environment. From this point of view, the
255	allometric relationship in absorptive roots is insightful for our understanding of how
256	the roots, whole plants and even the ecosystems respond and adapt to the geological
257	and the on-going environmental changes.
258	

259 **5. Future directions**

260 **5.1 Differences of the root allometric relationship among studies**

261	Studies to date always concentrate on the general pattern of the root allometric
262	relationship, i.e., a much larger slope of the cortex thickness vs. root diameter
263	regression than the slope of the stele radius vs. root diameter regression, while ignore
264	the great difference of the above allometry, that is, the slope difference ranging from
265	the minimum 1.2-fold to the maximum 15.7-fold across studies (Table 2). We are still
266	unclear about mechanisms accounting for such huge difference in the root allometric
267	relationship. This is a fascinating question that could stimulate far-reaching outcomes
268	in this filed.
269	5.2 Examining root anatomical structures in more species
270	The global establishment of the allometric relationship between root cortex and stele
271	relies on about 500 plant species, much smaller than the total vascular plant species
272	number (about 390,000) on the earth (Cantwell-Jones et al., 2022). Even in the global
273	root trait dataset, such as FRED 3.0 (Iversen et al., 2021), the measurements of root
274	anatomical traits are far less than the measurements of other root traits such as root
275	diameter and root tissue density. Therefore, it is necessary to measure root anatomical
276	structures in more plant species, especially the families with a large number of species
277	like Orchidaceae with over 20, 000 species.
278	5.3 Effects of environmental changes on the root allometric relationship
279	By far, only four studies are available for our evaluation on how environmental changes

environmental change scenarios are considered and no interactions among these factors

280

alter the allometric relationship in absorptive roots. Moreover, only a few

have been examined in these studies. Apart from the studies under controlled environments, we need to pay more attention to plants growing in naturally stressful conditions such as alpine forests, deserts, and coast environments in high salinity. Comparison of the root allometric relationship under the controlled and the natural conditions could be instructive for our understanding and prediction of vegetation dynamics under global climate change.

288

289 **5.4 Linking the root allometric relationship with plant above-ground organs**

290 Plant growth and evolution depends on the functional coordination between plant above- and below-ground organs (Aritsara et al., 2022; Weigelt et al., 2021; Zhou et 291 al., 2022). In the framework of the root allometric relationship, the faster increase of 292 293 the cortex thickness than stele radius could be accompanied with a faster supply of leaf photosynthate to the roots. We know little about how plants with thick absorptive 294 roots assign their leaf traits to meet functional balance of water, nutrients and carbon 295 296 between roots and leaves. Another interesting question is how the root allometric relationship can be coordinated with plant reproductive organs like flowers, fruits and 297 seeds given that the reproductive organs usually compete with roots for 298 photosynthates and with leaves for water and nutrients. Therefore, linking the root 299 allometric relationship with plant above-ground organs could pave a new way for our 300 understanding of the co-evolution within plants and between plants and animals for 301 302 pollination or seed dispersal.

305 Author Contributions

- 306 Y.Z. and D.K. conceived the ideas of this review paper, D.K. and Y.Z. performed the
- data analysis, Y.Z. wrote the first draft of this manuscript and Y.Z., D.K., J.C., Q.Y.,
- 308 M.W., and Y.Z. all contributed to the editing and revision of the final version of the
- 309 manuscript.

310

311 Acknowledgements

- 312 We are grateful for Oscar J. Valverde-Barrantes and WenHua Xiang for their
- assistance in data collection work. This study was funded by the National Natural
- Science Foundation of China (32171746, 42077450, 31870522 and 31670550), and
- the Scientific Research Foundation of Henan Agricultural University (30500854),
- 316 Research Funds for overseas returnee in Henan Province, China.
- 317

318 **References**

- Aritsara, A.N.A., Wang, S., Li, B.N., et al., 2022. Divergent leaf and fine root "pressure-volume
 relationships" across habitats with varying water availability. Plant Physiol. 2-14.
- Baird, A.S., Taylor, S.H., Pasquet-Kok, J., et al., 2021. Developmental and biophysical determinants of
 grass leaf size worldwide. Nature. 592, 242-+.
- Baraloto, C., Paine, C.E.T., Poorter, L., et al., 2010. Decoupled leaf and stem economics in rain forest
 trees. Ecol Lett. 13, 1338-1347.
- Beerling, D.J., Berner, R.A., 2005. Feedbacks and the coevolution of plants and atmospheric CO₂. Proc
 Natl Sci. U. S.A. 102, 1302-1305.
- 327 Beerling, D.J., Franks, P.J., 2010. The hidden cost of transpiration. Nature. 464, 495-496.
- Bergmann, J., Weigelt, A., van Der Plas. F., et al., 2020. The fungal collaboration gradient dominates the
 root economics space in plants. Sci Adv. 6, 1193-1208.
- Brundrett, M.C., 2002. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275-304.
- Brundrett, M.C., Tedersoo, L., 2018. Evolutionary history of mycorrhizal symbioses and global host
 plant diversity. New Phytol. 220, 1108-1115.
- Cantwell-Jones, A., Ball, J., Collar, D., et al., 2022. Global plant diversity as a reservoir of micronutrients
 for humanity. Nat Plants. 8, 225-+.
- Carmona, C.P., Bueno, C.G., Toussaint, A., et al., 2021. Fine-root traits in the global spectrum of plant
 form and function. Nature. 597, 683-687.

- Chandregowda, M.H., Tjoelker, M.G., Pendall, E., et al., 2022. Root trait shifts towards an avoidance
 strategy promote productivity and recovery in C-3 and C-4 pasture grasses under drought. Funct
 Ecol. 36, 1754-1771.
- Chen, W.L., Koide, R.T., Adams, T.S., et al., 2016. Root morphology and mycorrhizal symbioses together
 shape nutrient foraging strategies of temperate trees. Proc Natl Sci. U. S.A. 113, 8741-8746.
- Chen, W.L., Zeng, H., Eissenstat, D.M., et al., 2013. Variation of first-order root traits across climatic
 gradients and evolutionary trends in geological time. Glob Ecol Biogeogr. 22, 846-856.
- Iversen C.M., McCormack M.L., Baer J.K., et al., 2021. Fine-Root Ecology Database (FRED): A Global
 Collection of Root Trait Data with Coincident Site, Vegetation, Edaphic, and Climatic Data,
 Version 3.
- Colombi, T., Chakrawal, A., Herrmann, A.M., 2022. Carbon supply-consumption balance in plant roots:
 effects of carbon use efficiency and root anatomical plasticity. New Phytol. 233, 1542-1547.
- Comas, L.H., Mueller, K.E., Taylor, L.L., et al., 2012. Evolutionary patterns and biogeochemical
 significance of angiosperm toot traits. Int J Plant Sci. 173, 584-595.
- Correia, M., Heleno, R., Vargas, P., et al., 2018. Should I stay or should I go? Mycorrhizal plants are
 more likely to invest in long-distance seed dispersal than non-mycorrhizal plants. Ecol Lett. 21,
 683-691.
- Diaz, S., Kattge, J., Cornelissen, J.H.C., et al., 2016. The global spectrum of plant form and function.
 Nature. 529, 167-+.
- Eissenstat, D.M., Kucharski, J.M., Zadworny, M., et al., 2015. Linking root traits to nutrient foraging in
 arbuscular mycorrhizal trees in a temperate forest. New Phytol. 208, 114-124.
- Encinas-Valero, M., Esteban, R., Hereş, A.M., et al., 2022. Holm oak decline is determined by shifts in
 fine root phenotypic plasticity in response to belowground stress. New Phytol. 235, 2237-2251.
- Feild, T.S., Brodribb, T.J., Iglesias, A., et al., 2011. Fossil evidence for Cretaceous escalation in
 angiosperm leaf vein evolution. Proc Natl Sci. U. S.A. 108, 8363-8366.
- Freschet, G.T., Cornelissen, J.H.C., Van Logtestijn, R.S.P., et al., 2010. Evidence of the 'plant economics
 spectrum' in a subarctic flora. J Ecol. 98, 362-373.
- Gerhart, L.M., Ward, J.K., 2010. Plant responses to low CO₂ of the past. New Phytol. 188, 674-695.
- Gu, J.C., Wang, Y., Fahey, T.J., et al., 2017. Effects of root diameter, branch order, soil depth and season
 of birth on fine root life span in five temperate tree species. Eur J Forest Res. 136, 727-738.
- Gu, J.C., Xu, Y., Dong, X.Y., et al., 2014. Root diameter variations explained by anatomy and phylogeny
 of 50 tropical and temperate tree species. Tree Physiol. 34, 415-425.
- Guo, D.L., Mitchell, R.J., Withington, J.M., et al., 2008a. Endogenous and exogenous controls of root
 life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates.
 J Ecol. 96, 737-745.
- Guo, D.L., Xia, M.X., Wei, X., et al., 2008b. Anatomical traits associated with absorption and
 mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree
 species. New Phytol. 180, 673-683.
- Han, M.G., Zhu, B., 2021. Linking root respiration to chemistry and morphology across species. Glob
 Change Biol. 27, 190-201.
- Holtta, T., Lintunen, A., Chan, T., et al., 2017. A steady-state stomatal model of balanced leaf gas
 exchange, hydraulics and maximal source-sink flux. Tree Physiol. 37, 851-868.
- Hong, Y., Zhou, Q., Hao, Y., et al., 2022. Crafting the plant root metabolome for improved microbeassisted stress resilience. New Phytol. 234, 1945-1950.

- Jensen, K. H., Berg-Sørensen, K., Bruus, H., et al., 2016. Sap flow and sugar transport in plants. Rev
 Mod Phys. 88, 035007.
- Joswig, J.S., Wirth, C., Schuman, M.C., et al., 2022. Climatic and soil factors explain the twodimensional spectrum of global plant trait variation. Nat Ecol Evol. 6, 36-+.
- Khan, H.U.R., Link, W., Hocking, T.J., et al., 2007. Evaluation of physiological traits for improving
 drought tolerance in faba bean (Vicia faba L.). Plant Soil. 292, 205-217.
- Kong, DL., Wang, J., Zeng, H., et al., 2014. Leading dimensions in absorptive root trait variation across
 96 subtropical forest species. New Phytol. 203, 863-872.
- Kong, DL., Wang, J., Wu, H., et al., 2019. Nonlinearity of root trait relationships and the root economics
 spectrum. Nat Commun. 10, 2203.
- Kong, DL., Wang, J., Zeng, H., et al., 2017. The nutrient absorption-transportation hypothesis:
 optimizing structural traits in absorptive roots. New Phytol. 213, 1569-1572.
- Kong, DL., Wang, J.J., Valverde-Barrantes, O.J., et al., 2021. A framework to assess the carbon supply consumption balance in plant roots. New Phytol. 229, 659-664.
- Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., et al., 2016. Root traits are multidimensional:
 specific root length is independent from root tissue density and the plant economic spectrum. J
 Ecol. 104, 1299-1310.
- Laughlin, D.C., Mommer, L., Sabatini, F.M., et al., 2021. Root traits explain plant species distributions
 along climatic gradients yet challenge the nature of ecological trade-offs. Nat Ecol Evol. 5,
 1123-+.
- Li, X., Dong, J.L., Chu, W.Y., et al., 2018. The relationship between root exudation properties and root
 morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO₂
 concentrations. Plant Soil. 425, 415-432.
- Liese, R., Leuschner, C., Meier, I.C., 2019. The effect of drought and season on root life span in temperate
 arbuscular mycorrhizal and ectomycorrhizal tree species. J Ecol. 107, 2226-2239.
- Lugli, L.F., Rosa, J.S., Andersen, K.M., et al., 2021. Rapid responses of root traits and productivity to
 phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230,
 116-128.
- 409 Ma, ZQ., Guo, DL., Xu, X., et al., 2018. Evolutionary history resolves global organization of root
 410 functional traits. Nature. 555, 94-97.
- Martin, F.M., Uroz, S., Barker, D.G., 2017. Ancestral alliances: Plant mutualistic symbioses with fungi
 and bacteria. Science. 356, eaad4501
- McCormack, M.L., Guo, D.L., Iversen, C.M., et al., 2017. Building a better foundation: improving roottrait measurements to understand and model plant and ecosystem processes. New Phytol. 215,
 27-37.
- Pineiro, J., Ochoa-Hueso, R., Drake, J.E., et al., 2020. Water availability drives fine root dynamics in
 aEucalyptuswoodland under elevated atmospheric CO(2)concentration. Funct Ecol. 34, 23892402.
- Reich, P.B., 2014. The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. J Ecol. 102,
 275-301.
- Rich, M.K., Vigneron, N., Libourel, C., et al., 2021. Lipid exchanges drove the evolution of mutualism
 during plant terrestrialization. Science. 372, 864-+.
- Stock, S.C., Koester, M., Boy, J., et al., 2021. Plant carbon investment in fine roots and arbuscular
 mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. Sci Total Environ.

425	781, 146748.
426	Van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., et al., 2015. Mycorrhizal ecology and evolution:
427	the past, the present, and the future. New Phytol. 205, 1406-1423.
428	Wambsganss, J., Freschet, G.T., Beyer, F., et al., 2021. Tree species mixing causes a shift in fine-root soil
429	exploitation strategies across European forests. Funct Ecol. 35, 1886-1902.
430	Wang, X.X., Du, T.T., Huang, J.L., et al., 2018. Leaf hydraulic vulnerability triggers the decline in
431	stomatal and mesophyll conductance during drought in rice. J Exp Bot. 69, 4033-4045.
432	Weemstra, M., Mommer, L., Visser, E.J., et al., 2016. Towards a multidimensional root trait framework:
433	a tree root review. New Phytol. 211, 1159-1169.
434	Weigelt, A., Mommer, L., Andraczek, K., et al., 2021. An integrated framework of plant form and
435	function: the belowground perspective. New Phytol. 232, 42-59.
436	Wen, Z.H., White, P.J., Shen, J.B., et al., 2022. Linking root exudation to belowground economic traits
437	for resource acquisition. New Phytol. 233, 1620-1635.
438	Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spectrum. Nature. 428,
439	821-827.
440	Yan, H., Freschet, G.T., Wang, H.M., et al., 2022. Mycorrhizal symbiosis pathway and edaphic fertility
441	frame root economics space among tree species. New Phytol. 234, 1639-1653.
442	Zadworny, M., McCormack, M.L., Zytkowiak, R., et al., 2017. Patterns of structural and defense
443	investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and
444	latitudinal gradient in Europe. Glob Change Biol. 23, 1218-1231.
445	Zhou, M., Guo, Y.M., Sheng, J., et al., 2022. Using anatomical traits to understand root functions across
446	root orders of herbaceous species in a temperate steppe. New Phytol. 234, 422-434.
447	Zhou, Y.M., Jiang, X.J., Schaub, M., et al., Ten-year exposure to elevated CO2 increases stomatal number
448	of Pinus koraiensis and P. sylvestriformis needles. Eur J Forest Res. 132, 899-908.
449	Zhu L.Q., Xu Y.X., Zhao L.J., et al., 2016. anatomical structure and environmental adaptability of
450	Cymbidium cyperifolium in karst area. Guihaia. 36, 1179-1185+1164.
451	

453 **Table 1.** The relationships between root dimeter (RD) and the cortex thickness (CT) and the stele radius (SR) for different plant forms and different environmental

454 treatments. *Slope* (*RD-CT*): the slope for the regression of the cortex thickness with root diameter; *Slope* (*RD-SR*) the slope for the regression of the stele radius with root

455 diameter; *Slope* $_{(RD-CT)}$ / *Slope* $_{(RD-SR)}$: ratio of the *Slope* $_{(RD-CT)}$ to the *Slope* $_{(RD-SR)}$; Slope comparison: the statistical test of the difference between the above two slopes 456 using standardized major axis method.

Species			The	Slope (RD-CT)	Slope (RD-SR)	Slope	Slope
class			number of			(RD-CT)/Slope	comparison
			species			(RD-SR)	
	Measurement		698	0.44***	0.15***	2.93	***
Species	All species		512	0.40***	0.12***	3.33	***
level	Woody		271	0.53***	0.07***	7.57	***
	Non-woody	Fern + grass + herb +Orchidaceae	241	0.39***	0.12***	3.25	***
		Fern	37	0.31***	0.17***	1.82	***
		Grass	78	0.39***	0.19***	2.05	***
		Herb	92	0.38***	0.11***	3.45	***
		Orchidaceae	28	0.41***	0.08***	5.12	***
Mycorrh	AM	Woody + non-woody	217	0.53***	0.07***	7.57	***
iza		Woody	197	0.53***	0.07***	7.57	***
type		Non-woody	212	0.35***	0.18***	1.94	***
	EM	Coniferous +broadleaf	20	0.19ns	0.21***	-	-
		Coniferous	6	0.11ns	0.22ns	-	-
		Broadleaf	14	0.58***	0.10***	5.80	***
	AM&EM		13	0.33**	0.13**	2.54	**
	ОМ		28	0.41***	0.08***	5.13	***
Different	Control +CO ₂ increase		17	0.27***	0.18***	1.50	**
treatmen	Control		17	0.26***	0.18***	1.44	-

ts	CO ₂ increase	17	0.28***	0.18***	1.56	*	
	Control + N increase	14	0.46***	0.11***	4.18	***	
	Control	14	0.52*	0.09ns	-	-	
	N increase	14	0.43***	0.11***	3.91	***	
	Control + P increase	14	0.53***	0.08**	6.63	***	
	Control	14	0.52***	0.09ns	-	-	
	P increase	14	0.54***	0.07ns	-	-	
	Dry + rainy season	8	0.25***	0.20***	1.25	-	
	Dry season	8	0.42***	0.12*	3.50	*	
	Rainy season	8	0.24***	0.21*	1.14	-	

***, ** and * indicate significant levels at p <0.001, p < 0.01, and p < 0.05, and ns indicates no significance (p > 0.05). The *Slope* $_{(RD-CT)}$ / *Slope* $_{(RD-SR)}$ and the Slope comparison are denoted by "-" when either of the above slopes is statistically different.

461 **Table 2.** The allometric relationships between root dimeter (RD) and the cortex thickness (CT) and the stele radius (SR) in each of the 26 studies with more than 3

462 plant species examined. See supplementary data 1 for the details of these studies. *Slope* (RD-CT): the slope for the regression of the cortex thickness with root diameter;

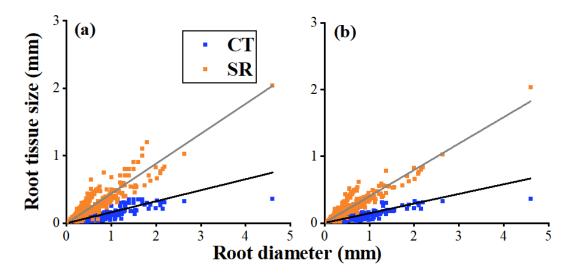
463 Slope (RD-SR): the slope for the regression of the stele radius with root diameter; Slope (RD-CT)/ Slope (RD-SR): ratio of the Slope (RD-SR); Slope

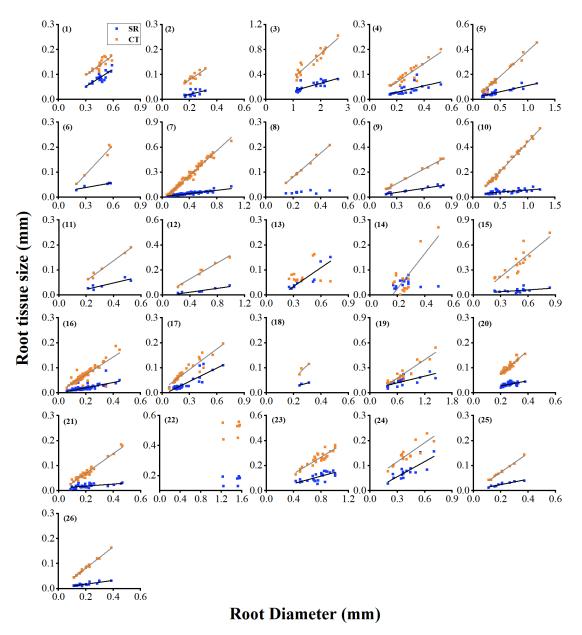

464 comparison: the statistical test of the difference between the above two slopes using standardized major axis metho

Study	The number of species	Slope (RD-CT)	Slope (RD-SR)	Slope (RD-CT)/ Slope (RD-SR)	Slope comparison
1	19	0.27***	0.23***	1.17	-
2	14	0.37***	0.13*	2.85	*
3	20	0.39***	0.12***	3.25	***
4	23	0.37***	0.14***	2.64	**
5	27	0.40***	0.10***	4.00	***
6	5	0.39**	0.07*	5.57	**
7	96	0.75***	0.10***	7.50	***
8	9	0.47***	0.03ns	-	-
9	12	0.39***	0.11***	3.55	***
10	7	0.32***	0.08**	4.00	**
11	34	0.47***	0.03***	15.67	***
12	6	0.40***	0.13*	3.08	**
13	12	0.06ns	0.25***	-	-
14	15	0.70***	0.004ns	-	-
15	16	0.89***	0.08*	11.13	***
16	91	0.35***	0.11***	3.18	***
17	34	0.27***	0.18***	1.50	**
18	3	0.52ns	0.14ns	-	-
19	18	0.37***	0.13***	2.85	***
20	42	0.48***	0.10***	4.80	***
21	32	0.39***	0.04***	9.75	***

22	8	0.09ns	0.05ns	-	-	
23	26	0.33***	0.15***	2.20	**	
24	16	0.25***	0.20***	1.25	-	
25	10	0.39***	0.11***	3.55	***	
26	17	0.42***	0.08***	5.25	***	

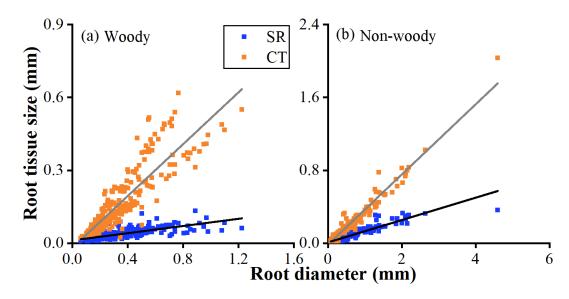
465 ***, ** and * indicate significant levels at p < 0.001, p < 0.01, and p < 0.05, and ns indicates no significance (p > 0.05). The Slope (RD-CT)/ Slope (RD-SR) and the Slope comparison are denoted by "-" when either of the above slopes is statistically different.




470 **Fig. 1** A global map of 32 studies reporting data of the cortex and the stele in absorptive roots.

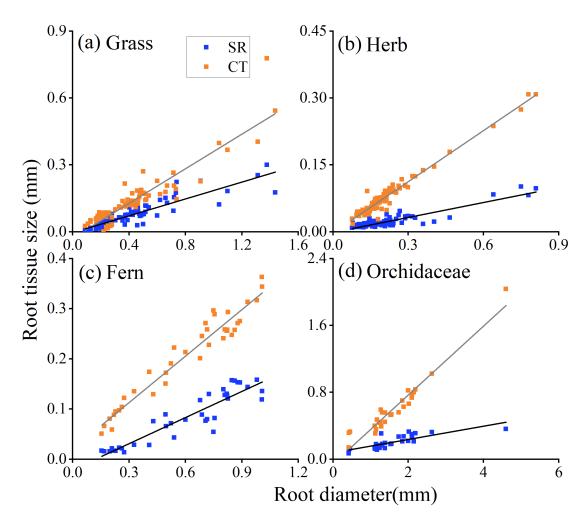
471 Each study is represented by a red circle, and the size of the circle is proportional to the species

472 number included in the studies.


474 Fig. 2 The Allometric relationship between the root cortex and the stele across 698 observation (a)
475 and 512 species (b), CT: cortex thickness; SR: stele radius.

476

Fig. 3 The Allometric relationship between the root cortex and the stele in 26 studies with more
than three plant species examined. See supplementary data 1 and 2 for detailed information of these

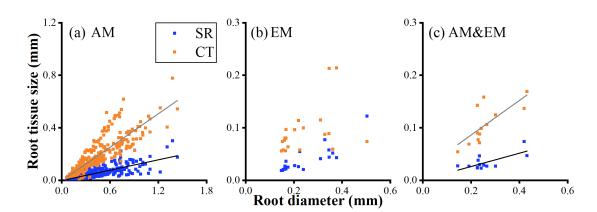
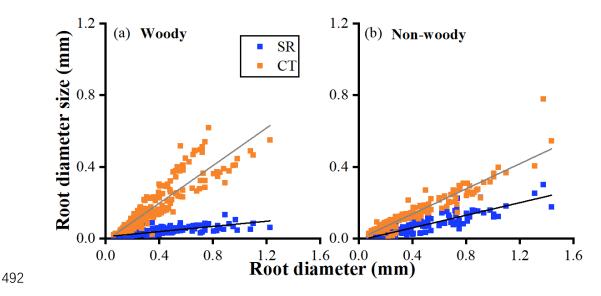
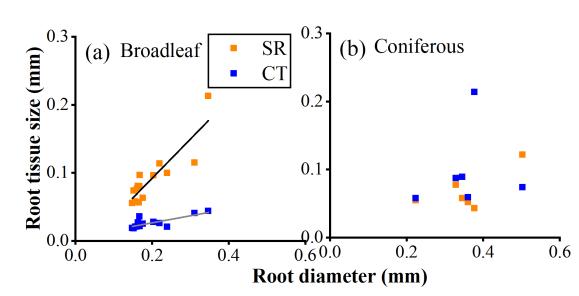

479 studies. CT: cortex thickness; SR: stele radius.

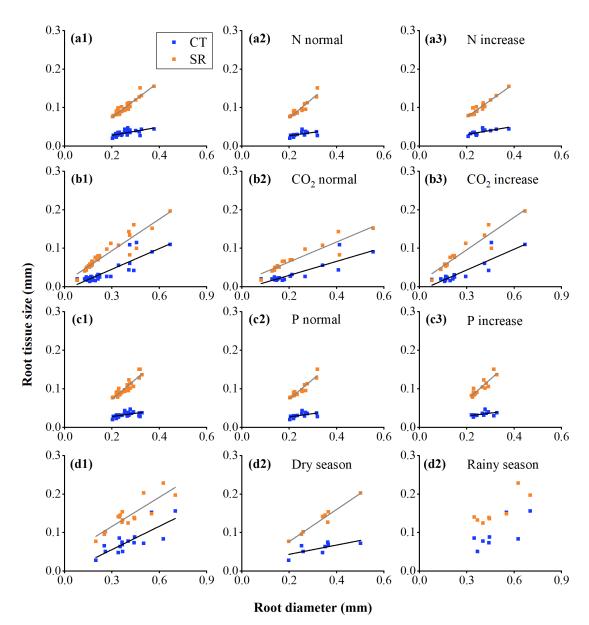
481 Fig. 4 The Allometric relationship between the root cortex and the stele in woody (a) and non-

482 woody (b) species. CT: cortex thickness; SR: stele radius.

484

485 Fig. 5 The allometric relationship between the root cortex and stele in grass (a), herb (b), fern (c)
486 and Orchidaceae (d). CT: cortex thickness, SR: stele radius.


Fig. 6 The allometric relationship between the root cortex and the stele in different mycorrhizal
plants. AM: Mycorrhizae (a); EM: Ectomycorrhizae (b); AM&EM: dual mycorrhizas of AM
and EM (c); CT: cortex thickness, SR: stele radius.

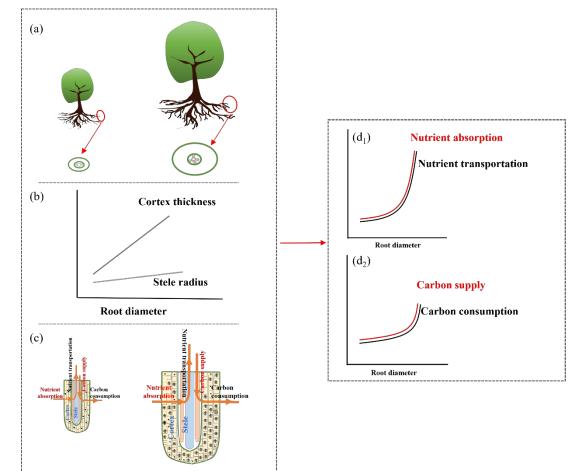
493 Fig. 7 The allometric relationship between the root cortex and the stele in woody AM plants (a)
494 and non-woody AM plants (b). CT: cortex thickness, SR: stele radius.

497 Fig. 8 The allometric relationship between the root cortex and the stele in broadleaf EM plants (a)
498 and coniferous EM plants (b). CT: cortex thickness, SR: stele radius.

500

501 **Fig. 9** The allometric relationship between the root cortex and the stele under different

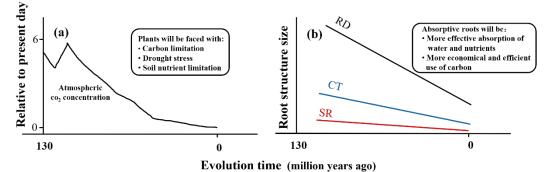
502 environmental treatments. Nitrogen (N) deposition: control + N deposition (a₁), control (a₂) and N

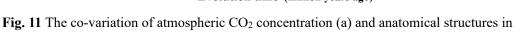

503 increase (a₃); elevation of atmospheric CO_2 concentration: control + CO_2 increase (b₁), control

504 (b₂), CO₂ increase (b₃); phosphorus (P) fertilization: control + P increase (c₁), control (c₁), P

505 increase (c₁); seasonality: dry season + rain season (d₁), dry season (d₂), rain season (d₃). CT:

506 cortex thickness, SR: stele radius.





508

Fig. 10 Mechanisms for the allometric relationship between the cortex and the stele in 509 absorptive roots. For simplicity, we presented two plant species with a thin and a thick 510 absorptive root, respectively, followed by the cross-sectional area of the roots (a). The 511 cortex section is indicated by the area between the two green circles; the inner green 512 513 circle, the stele; blue circles, the vessels; orange circles, the sieves. Different functions 514 of the root anatomical structures are shown in the longitudinal section model of the roots (b)The change in the size of the cortex and stele with the shift of root diameter 515 across species is shown in (c): cortex, sites for the symbiosis with mycorrhizal fungi 516 (i.e., the intermingled lines in the cortical cells) and carbon consumption; vessels, 517 transport for the water and nutrients; sieves, transport for carbohydrates. The 518 allometric relationship between the root cortex and stele is considered to meet the 519 520 balance between nutrient absorption (via mycorrhizal fungi in the cortex) and nutrient transportation (via the stele) (d_1) and between carbon supply (via the stele) and carbon 521 consumption (via the cortex) (d_2) . The conceptual models in (d_1) and (d_2) are redrawn 522 from Kong et al. (2017) and Kong et al. (2021). 523

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.29.518307; this version posted November 30, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

be absorptive roots (b) since the Cretaceous. The pattern for the change of atmospheric CO₂

527 concentration is redrawn from the study by Beerling et al. (2010). The resulting environmental

528 changes and the adaptive responses of the roots are presented as inlets in this figure. RD:

529 absorptive root diameter; CT: cortex thickness, SR: stele radius.

524