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Abstract

Fluorescence lifetime imaging microscopy (FLIM) has become a standard tool in

the quantitative analysis of sub-cellular environments. However, quantitative FLIM

analyses face several challenges. First, spatial correlations between pixels are often ig-

nored as signal from individual pixels is analyzed independently thereby limiting spatial

resolution. Second, existing methods deduce photon ratios instead of absolute lifetime

maps. Next, the number of lifetime components contributing to the signal is unknown,

while excited state lifetimes with <1 ns difference are difficult to discriminate. Finally,
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existing analyses require high photon budgets, and often cannot rigorously propagate

experimental uncertainty into values over lifetime maps and number of components in-

volved. To overcome all of these challenges simultaneously and self-consistently at once,

we propose the first doubly nonparametric framework. That is, we learn the number of

fluorescent species (through beta-Bernoulli process priors) and absolute lifetime maps

of these species (through Gaussian process priors) by leveraging information from pulses

not leading to observed photon. We benchmark our algorithm using a broad range of

synthetic and experimental data and demonstrate its robustness across a number of

scenarios including cases where we recover lifetime differences between components as

small as 0.3 ns with merely 1000 photons.

Keywords: FLIM, Fluorescence, Imaging, Lifetime, Confocal, Resolution, Bayesian, Gaus-

sian processes, Beta-Bernoulli

Among many fluorescence microscopy techniques1–6, fluorescence lifetime imaging mi-

croscopy1,2 (FLIM) has been pivotal in probing details and interactions within sub-cellular

environments, fluids and solid materials7–26. For example, FLIM has been employed in de-

ducing nanoscale maps of optical8,10–12, thermodynamic13–20, and chemical parameters21–25.

Furthermore, FLIM is relevant to the health sciences27–29 where its sensitivity has been crit-

ical in detecting lifetime differences between protonated and unprotonated NAD, an impor-

tant marker for cancer metabolism24,30. What is more, FLIM has also been employed in the

field of drug discovery to monitor drug activity within complex biological environments31,32.

In typical FLIM experiments, data consist of a series of photon arrival times, following

laser pulses, whose statistics are dictated by the present number of fluorescing species and

excited state lifetime. Photon arrival times can then be decoded to learn the number of

species (or, alternatively, the number of lifetime components) as well as their associated

lifetimes. In imaging across regions of space, we may also decode the corresponding lifetime

maps.
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Here, we assume that the input arrival times (the FLIM data) are collected using a

scanning confocal setup. In this setup, a pulsed laser, often with a Gaussian waist, scans the

sample at a constant speed over uniformly spaced horizontal trajectories where the spacing

defines the pixel size. The excited fluorophores then emit photons with a random delay

drawn from a distribution characteristic of the fluorophore species, Fig. 1a. Moreover,

the recorded arrival times are further contaminated by instrumental noise. That is: 1) the

detector delay in recording the arrival times; and 2) the unknown exact time of excitation

due to the finite breadth of excitation pulses. Together, these are often modeled using a

Gaussian distribution, termed the instrumental response function (IRF). The exponential

waiting time for de-excitation from each lifetime component and the effects of the IRF thus

result in two layers of stochasticity in reported photon arrival times given by the convolution

of the exponential and IRF distributions.

To learn the number of lifetime components as well as their associated lifetimes from

FLIM data, the community relies either on model-free methods, such as phasor-based ap-

proaches33–36 and neural networks37–39, or model-based methods such as FLIM data analysis

techniques. For instance, model-based techniques include: time correlated single photon

counting (TCSPC) histogram fitting to extract lifetimes from photon arrival histograms

via least square fitting40–42; photon-by-photon likelihood maximization43–45; construction

of Bayesian posteriors over lifetimes warranted by the data46–52; and classic deconvolution

methods53–55.

In spite of this progress in FLIM data analysis, only one such technique does not assume

a number of lifetime components a priori while propagating unavoidable error induced by

the stochastic processes above over those numbers of components that may be warranted

by the data56. Even so, this technique is limited to a single pixel (i.e., single illuminated

confocal spot) and therefore cannot leverage spatial correlations across pixels to extract high

resolution lifetime maps required to smoothly and quantitatively interpolate lifetime maps

between and below pixel areas.
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While heuristics exist to deduce the number of lifetime components57, these do not prop-

agate error and rely on data pre-processing which fundamentally limits the ability of these

methods to separate close lifetimes. Indeed, other existing techniques, save the one above,

require prior knowledge of the number of lifetime components37–44,46–50,58 while, when ana-

lyzing images, analyze them in a spot-by-spot spatially decorrelated manner33,34,42,47–49,56.

The above motivates the reason why it is important to avoid data pre-processing (such

as histogram fitting by TCSPC) in order to learn the number of components (as opposed to

specifying them by hand) while simultaneously deducing their spatial lifetime maps. To be

clear, even hypothesized single lifetime components may further split into multiple compo-

nents on the basis of the chemical environments to which they are exposed within a cell59,60.

What is more, these components may have similar lifetimes and exist in spatially overlapping

regions further highlighting the importance of propagating error and accounting for spatial

correlation across pixels while satisfying the underlying Poisson emission statistics.

To compensate for the loss of information in data pre-processing, multiple methods

therefore require large photon budgets that otherwise carry the risk of specimen photo-

damage38,42,49. Here, by contrast, our objective is to simultaneously deduce: 1) the number

of lifetime components present within a given FLIM dataset; while 2) learning absolute

lifetime maps with sub-nanosecond temporal resolution, i.e., distinguishing lifetimes with

sub-nanosecond difference, and interpolating lifetime maps below sub-pixel for each lifetime

component determined in the first point. We do so by leveraging the spatial correlations

between pixels and information within pulses (termed empty pulses) that do not lead to any

photon observation. We develop a framework within the Bayesian paradigm precisely to

propagate all sources of errors over items 1-2 above.

Yet, since the number of lifetime components, and their associated maps are unknown,

we must operate within a Bayesian nonparametric framework illustrated in Fig. 1 which is,

in fact, doubly nonparametric.
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Figure 1: A cartoon illustration of a typical FLIM experiment and how the BNP-FLIM
algorithm works. (a) Every spot in the specimen is illuminated by a train of laser pulses,
designated by pink spikes, where a fraction of them lead to the detection of photons, shown by
curly arrows. The photon arrival times, ∆tk, are recorded and used in FLIM analysis to infer
the number of lifetime components as well as their associated spatial maps and corresponding
lifetimes. (b) The sets of photons drawn from all spots is arranged into a two dimensional
pixel array representing the raw FLIM data. (c) The Bayesian nonparametric FLIM (BNP-
FLIM) algorithm models the input data (nominally) assuming an infinite number of lifetime
components. To each lifetime component is associated an nominally infinite number of
candidate spatial maps for how the component is distributed. Eventually, as shown in (c),
our method determines: 1) which lifetime component are warranted by the data (for which
the associated Bernoulli variable, b, is found to be unity) and what its lifetime is; and 2) its
associated lifetime map. In the case shown in (c), only the second and mth components are
warranted by the data and have a non-zero associated Bernoulli variable b (i.e., b2 = bm = 1).
The map determined for the first component (with b1 = 0) is thus immaterial.

To be precise, we invoke the beta-Bernoulli process prior61–63 over each candidate com-

ponent. That is, we associate a binary weight, b ∈ {0, 1}, to each map where non-zero

weights are ascribed to those lifetime maps warranted by the data. As such, the number of

lifetime maps present in a given data set are enumerated as the number of non-zero weights,

Fig. 1c. Next, as our goal is to determine what spatial maps for each species determined

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.29.518311doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518311
http://creativecommons.org/licenses/by-nc-nd/4.0/


are warranted by the data of all possible candidate lifetime maps (of a nominally infinite

number), we invoke Gaussian process (GP) priors64–67. This is critical in allowing us to

learn continuous lifetime maps smoothly over large spatial regions58, rather than to rely on

concatenated pixel-wise maps derived from independent pixel analyses. As we will see, a

value for the lifetime map can be deduced at any point in physical space, of the infinitely

dense points in the two dimensional focus plane, even below a pixel value with correctly

propagated uncertainty.

In what follows, we show that our Bayesian nonparamteric FLIM (BNP-FLIM) algorithm

learns the number of lifetime components (with corresponding lifetimes with sub-nanosecond

resolution), and interpolating lifetime maps below pixel size using limited FLIM data from

experiments described above.

Methods

Here, we briefly discuss the mathematical framework for our BNP-FLIM algorithm. Full

model details developed herein can be found in the Supplementary Information.

BNP-FLIM starts from stochastic photon arrivals, designated by ∆t, where the double

overbar represents the entire set of photons from all pixels. The stochasticity is introduced

from the inherent random nature of photon emission and detection process. Stochastic

photon arrival times motivate our probabilistic analysis framework.

Our framework starts from the likelihood

P
(
W,∆t|ϑ

)
=
∏
i

∏
k

P
(
W i

k|ϑ
)
P
(
∆tik|ϑ

)
, (1)

where W represents a set of binary random variables W i
k for the kth pulse in the ith pixel

indicating whether the pulse leads to a photon detection or not (empty or non-empty pulse).

Also, ϑ collects the set of parameters we wish to infer including: lifetime values (τm), lifetime

maps (Λm), the means of GPs (νm) on which we place a hyperprior, and the binary weights
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(bm) associated to each lifetime component. As we will see, the binary weights are Bernoulli

random variables realized to unity for existing lifetime components warranted by the data

and 0 otherwise. Herem indexes the number of lifetimes andm runs from 1 : M . In Bayesian

nonparametrics, we consider M →∞ a priori and determine which lifetimes ultimately are

warranted by the data.

Furthermore, P (W i
k|ϑ) and P (∆tik|ϑ), respectively, denote the likelihood of an individual

pulse and photon arrival time. In what follows, we describe each of these likelihoods in more

detail.

We start by describing the likelihood for the binary observation W i
k. This parameter

follows a Bernoulli distribution with success probability of observing a photon of 1 − πi
0

leading to the following likelihood

P
(
W i

k|θ
)

= Bernoulli
(
W i

k; 1− πi
0

)
, (2)

where πi
0 denotes the probability of observing no photons from the ith pixel. The explicit

form for πi
0 will be derived shortly.

The next observation coincides with the photon arrival times from non-empty pulses, ∆tik,

which can originate from any of the species present in input data. To obtain the likelihood

of photon arrival times, ∆tik, we need to take into account the IRF and sum over all possible

events leading to a photon observation, including: all N previous pulses that could have

excited the fluorophore; and all M fluorophore species that might have lead to this photon.

This returns

P (∆tik|ϑ) =

[ M∑
m=1

πi
m

N∑
n=0

λm
2

exp

(
λm
2

(
2(τIRF −∆tik − nT ) + λmσ

2
IRF

))
× erfc

(
τIRF −∆tik − nT + λmσ

2
IRF

σIRF

√
2

)]
, (3)

where πi
m gives the probability of detecting a photon from the mth fluorophore species in
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the ith pixel. Here, λm, τIRF, σIRF and T , respectively, denote the inverse of lifetime (1/τm),

offset, and variance of the IRF and the inter-pulse time. Derivation details are provided in

the Supplementary Information.

After introducing likelihoods in broad terms, we now turn our attention to the probabili-

ties πi
m and πi

0 appearing within our likelihoods. These quantities are directly related to the

lifetime maps as follows58

πi
m = (1− P i

0m)
∏
r 6=m

P i
0r, (4)

where P0m denotes the probability of no photon observation from the mth species given by58

P i
0m = exp

[
−bm

∫
Λm(X)PSF(ξi;X)dX

]
, (5)

where PSF, ξi and X, respectively, denote the confocal point spread function, the center of

the ith pixel corresponding to the center of PSF, and three dimensional spatial coordinates.

Furthermore, Λm(X) is set to µm(X)ρm(X) where µm(X) denotes the excitation probability

of a fluorophore of type m during a single pulse, and ρm(X) denotes the concentration of

fluorophores58. Here, for lifetime maps with zero weights (bm = 0), eq. 5 reduces to unity

leading to zero probability of observing photons from the corresponding species.

Here, we learn absolute lifetime maps by leveraging the information carried by pulses

leading to no photon observation, termed empty pulses. This is by contrast to previous

FLIM analyses46–51,56 that only take into account the set of observed photons from different

species in pixel i, and learn the ratio of lifetime maps by calculating probabilities of photon

observations from different species, πi
m.

Here, the probability of observing no photon from the ith pixel is given by the product

of probabilities of no photon observation from all species

πi
0 =

M∏
m=1

P i
0m, (6)
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where P i
0m is the probability of no photon detection from species m. Considering empty

pulses, the sum of these probabilities is naturally unity

πi
0 +

M∑
m=1

πi
m ' 1, (7)

under the assumption that there is no more than a single detected photon per pulse58. To

build further intuition, removing the contribution from empty pulses (πi
0) from the above

equation results in a sum no longer equal to unity. As such, methods ignoring empty pulses

rescale probabilities πi
m to make them resum to unity and, as a result, only learn rescaled

values, i.e., photon ratios, rather than the absolute values.

Now, with the likelihood at hand, we proceed to construct the posterior proportional to

the product of the likelihood and priors on the unknown parameters

P
(
ϑ|∆t,W

)
∝ P

(
∆t,W |ϑ

)
P (ϑ). (8)

The most notable priors in the BNP-FLIM algorithm are the nonparametric GP priors on

the set of lifetime maps and the nonparametric beta-Bernoulli process priors61–63 on the

binary weights

Λm ∼GP(νm,K) (9)

qm ∼ beta(Aq, Bq) (10)

bm ∼Bernoulli(qm), (11)

where νm, K are, respectively, the GP prior mean and the covariance matrix. Aq, Bq are beta-

Bernoulli process hyperparameters. The remaining priors are discussed in Supplementary

Note 1-2.

As the posterior does not attain an analytic form, it cannot be sampled directly for all

variables. Thus the BNP-FLIM algorithm provides a means to sample our posterior to draw
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inferences about unknown parameters using Marov Chain Monte Carlo techniques63,68–75 (see

details in Supplementary Note 2). Furthermore, while nominally the lifetime components

are infinite (M →∞) within the nonparametric paradigm, here we instead follow Refs.61–63

and set a large upper limit on the number of lifetime components (M) in lieu of infinity.

More specifically, our MCMC chain is structured in such a way as to sweep through

the entire set of parameters (i.e., via Gibbs sampling) at every iteration by independently

drawing samples from each parameters’ conditional posterior; see Supplementary Information

Note 2. To do so, we sweep the parameter set in the following order:

• lifetime maps, Λm–these can be sampled either using the conceptually simpler Metropo-

lis Hastings (MH)76,77 or the more efficient elliptical slice sampling78. We opt for the

latter. Either method of sampling for lifetime maps are required as the likelihood

derived in eqs. 1-3 is not conjugate to the GP prior.

• mean of GP priors, νm– we use MH to sample the GP means, νm due to the lack of

conjugacy between the prior and likelihood;

• lifetimes, τm–we sample the lifetimes, τm, again using MH because again due to lack

of conjugacy;

• the binary weights, bm–we update the binary weights, bm, by modifying a subset of bm

by randomly picking a subset and directly sampling from the posterior for that subset

(See Supplementary Note 2).

In the end, the chain of samples drawn are used for subsequent numerical analysis.

Results

The overarching aim of our BNP-FLIM algorithm described above is to develop the posterior

and sample from it to learn the number of lifetime components, i.e., number of non-zero

binary weights bm, warranted by the data, the corresponding lifetimes, τm, and lifetime maps,
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designated by Λ1:M , using a set of input photon arrival times ∆t and pulse occupancies

W . To do so, the BNP-FLIM algorithm draws numerical samples from our posterior for

these parameters as illustrated in the former section. Our results are thus histograms over

numerical samples drawn from our Monte Carlo sampling scheme. Uncertainties naturally

follow from the widths of our histograms reflecting our marginal posteriors.

In this section, we use a range of synthetic and experimental data to benchmark our algo-

rithm against different lifetime maps including: 1) simple, smoothly varying, homogeneous

lifetime maps (see Fig. 2 and Fig. S1); 2) more difficult lifetime maps with heterogeneous

features similar to those present in experimental samples (see Figs. 3-5 and Figs. S2-7). In

addition, employing simulated data with smoothly varying lifetime maps, we further evaluate

our algorithm’s performance over a wide range of lifetimes, lifetime differences, and photon

counts (see Fig. 2).

Before describing our results, we illustrate our procedure for simulating data. To be more

precise, we explain the data simulation procedure for a single pixel (ith pixel) in order to

later simulate all multi-pixel FLIM data used across this study. To do so, we assume a set

ofM lifetime maps corresponding toM lifetime components (typicallyM is much smaller

than the truncated M we use in the Methods section to approximate the beta-Bernoulli

process prior). Next, we use lifetime maps to simulate data in the ith pixel by: 1) sampling

W i
k to determine whether the kth pulse results in a photon or not (i.e., is empty or non-

empty pulse) from a Bernoulli distribution similar to eq. 2; 2) sampling the fluorophore

species, m ∈ {1, ...,M}, giving rise to the detected photons, for non-empty pulses, from

a categorical distribution, i.e., a discrete distribution with more than two options, with

probabilities πi
1:M given by eqs. 4-5; 3) sampling the period spent in the excited state by

the fluorophore, ∆tiext,k, from an exponential distribution with lifetime τm; 4) sampling the

IRF time, ∆tiIRF,k, from a Gaussian distribution and adding it to the time spent in the

excited state by the fluorophore; finally 5) deal with cases where the sum of both those

times generated in steps 3-4 exceeds the interpulse time T .
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To elaborate briefly on step 5, since the photon arrival times are recorded with respect

to the immediately preceding pulse (sometimes termed the “microtime" in FLIM), they are

always smaller than the interpulse window. As such, to allow for the possibility that some

arrival times may exceed the interpulse window (especially when the excited state lifetime

is on par with the interpulse window), we need to introduce a third term subtracting integer

interpulse windows from the generated arrival times

∆tik = ∆tiext,k + ∆tiIRF,K − T
⌊

∆tiext,k + ∆tiIRF,K

T

⌋
, (12)

where the bracket returns the integer part of its content. We note, as a sanity check, that if

an arrival time is smaller than the interpulse window the third term is zero. Moreover, the

parameters used in the simulations are inspired by values from the experimental data used

later. That is, we sample IRF times from a Gaussian distribution with mean and standard

deviation of 12.20 ns and 0.8 ns. Furthermore, we use interpulse time and pixel size of

T = 12.8 ns and 0.39 µm and assume a Gaussian PSF (see eq. 5) with σxy = 0.54µm and

σz = 1.56µm. Other parameter values used in the analyses are provided in Supplementary

Note 3.
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Figure 2: BNP-FLIM robustness with respect to photon counts per pixel and lifetime differ-
ences. Three overlapping lifetime maps with different lifetimes were generated over a region
of 5×20 pixels and processed by the BNP-FLIM algorithm. There are two fixed lifetimes of
1 ns and 4.5 ns in all simulated data, while we varied the third lifetimes to obtain lifetime
differences of (a) 0.3 ns; (b) 0.8 ns and 1.5 ns. Histograms show the resulting lifetime samples
from the BNP-FLIM algorithm.

Robustness with respect to photon counts and lifetime resolution

Here, we start by considering smoothly varying lifetime maps (before turning to more com-

plex maps in the next section). We use these maps to benchmark our BNP-FLIM algorithm

against a range of lifetimes, lifetime differences, and photon counts. To do so, we use three
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synthetic maps corresponding to three different lifetimes over an area of 5×20 pixels. We use

the combination of these maps to generate data sets with 10, 20 and 50 photons per pixel

shown in the first, second and third columns in Fig. 2, respectively. Row a in Fig. 2 shows

the resulting lifetime histograms where two of the lifetimes differ by only 0.3 ns representing

a challenging case with sub-nanosecond lifetime differences. Here, the BNP-FLIM algorithm

correctly assigns non-zero binary weights to three lifetime maps and learns the corresponding

lifetimes accomplishing sub-nanosecond lifetime resolution even with 10 photons per pixel

and 1000 photons in total. We also note that by increasing the photon counts to 20 and 50

photons per pixel the histograms’ widths tend to decrease signifying smaller uncertainties.

Next, as we move to larger differences in lifetime in rows b-c, we expect to observe sharper

histograms due to less uncertainty. However, the histograms do not exhibit such behavior

due to posterior broadening for larger lifetimes. This is because fluorophore species with

larger lifetimes are more likely to stay excited longer than an interpulse period leading to

more photons detected one or more pulses following the one inducing fluorophore excitation.

Depsite this, we still see histogram sharpening with more photons per pixel from left to right

for each row. Further, cross-sections of lifetime maps corresponding to these lifetimes are

represented in Fig. S1. Here, although we are able to achieve sub-nanosecond lifetime reso-

lution by using photons from across the entire region, the spatial lifetime maps are learned

using only photons from specific areas, i.e., pixels, which can result in poorer uncertainties

in the estimated maps, particularly for the case with 10 photons per pixel, compared to the

inferred lifetimes.

Heterogeneous simulated and in vivo lifetime maps

In this section, we challenge our BNP-FLIM algorithm using lifetime maps with more com-

plex features. To do so, we use data including: in vivo data acquired by labeling three

different subcellular structures using different fluorophore species in Fig. 3; a mixed image

composed of single-species in vivo data in Fig. 4 and Fig. S3-S6; and synthetic data generated
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from heterogeneous lifetime maps mimicking ones recovered in vivo (see Fig. 5).
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m
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Figure 3: In vivo data set containing three lifetime components. (a) Data acquired by scan-
ning the sample over area of 30×40 pixel. The sample is simultaneously labeled with three
fluorophore species of pHrodo with lifetime of 0.8 ns staining lysosomes, TMRM with lifetime
of 2.8 ns staining mitochondria, and Lyso-Red with lifetime of 4.5 ns staining endosomes.
This resulted in three lifetime maps interpolated below pixel size (1/2 pixel); (b) lifetime
maps corresponding to lifetime of 0.8 ns; (c) lifetime map corresponding to lifetime of 2.8 ns;
(d) lifetime map corresponding to lifetime of 4.5 ns. Scale bars are 2 µm.

Here, we start by assessing the performance of the BNP-FLIM algorithm using data

acquired by scanning an area of 30×40 pixels of an in vivo sample stained by three fluorophore

species: pHrodo with a lifetime of 0.8 ns which binds to lysosomes; TMRM with a lifetime of

2.8 ns which binds to mitochondria; Lyso-red with a lifetime of 4.5 which binds to endosomes

(see Fig. 3a). The BNP-FLIM algorithm correctly learns the number of lifetimes present in

the data with the corresponding lifetimes shown in Fig. S2. For the lifetimes, the average

difference of the ground truths and the histogram peaks is approximately 0.2 ns (where the

ground truth in the SI is taken to originate from a very large number of photons using

the phasor method33). Moreover, Fig. 3 depicts lifetime maps interpolated below pixel size

(1/2 pixel) corresponding to pHrodo, TMRM and Lyso-Red shown in green, red and blue,

respectively. However, in this case, we cannot benchmark BNP-FLIM using lifetime maps
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due to the lack of ground truth maps. For this reason, we use a hybrid data set consisting

of three single species in vivo data and synthetic data described below.
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Figure 4: In order to test our method on realistic distributions of fluorophores, we consider
in vivo FLIM data composed, as a test of our method, by mixing three single-species lifetime
maps into one. That is, we first analyze three data sets each containing a single species to
produce the “ground truth" maps seen in pnels a-c. More concretely: (a) is the “ground
truth" lifetime map (green) for pHrodo with a lifetime of 0.8 ns; (b) is the “ground truth"
lifetime map (red) for TMRM with a lifetime of 2.8 ns; and (c) is the “ground truth" lifetime
map (blue) for Lyso-red with a lifetime of 4.5 ns. Now, we combine our three original data
sets to produce (d). Next, we apply BNP-FLIM to learn the number of species and their
maps that we show in panels e-g and can now compare, respectively, with panels a-c. Lifetime
maps in panels a-c and e-g are reported with a pixel size equal to 1/2 the pixel size of panel
d. Scale bars are 2 µm. The agreement between panels a-c and e-g is discussed in the text.

We begin by first describing each single-species lifetime map within the hybrid in vivo

data set. These data sets were acquired by scanning 30×40 pixel regions of three different

samples (see Fig. S3a-c). Each sample contained one of the fluorophore species: pHrodo,
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TMRM and Lyso-red. Fig. 4a-c, respectively, represents the lifetime maps learned from the

raw data shown in Fig. S3 reporting lifetime maps at 1/2 the pixel for pHrodo (green),

TMRM (red) and Lyso-Red (blue). These lifetime maps are obtained by analyzing each

individual data set using the BNP-FLIM algorithm (also see Fig. S3d-f). Moreover, Fig. S4

shows the resulting lifetime histograms where the histogram peaks differ from the ground

truth by less than 0.07 ns on average (where ground truth lifetimes were again taken to be

values found using phasor method).

We now evaluate the performance of our algorithm by combining all three data sets. The

ground truth is now taken as the lifetime maps shown in Fig. 4a-c that were obtained by

analyzing the single-species data sets.
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Figure 5: Simulated FLIM data generated from a mixture of three lifetime maps. (a) Ground
truth map simulated with lifetime of 1 ns. (b) Ground truth map simulated with lifetime of
2.5 ns. (c) Ground truth map simulated with lifetime of 4.5 ns. (d) Data generated using
a mixture of lifetime maps in panels a-c. This data was processed using the BNP-FLIM
algorithm resulting again in three non-zero binary weights and corresponding lifetime maps
with lifetimes of (e) 1 ns, (f) 2.5 ns, (g) 4.5 ns. Scale bars are 2 µm.
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Our BNP-FLIM algorithm correctly identified three species (as the maximum a posteriori

estimate) and their coinciding lifetime maps are shown in Fig. 4e-g with the learned maps

interpolated below pixel size (1/2 pixel) for pHrodo (green), TMRM (red) and Lyso-Red

(blue). To quantitatively compare the resulting maps in Fig. 4a-c and the ground truth maps

(Fig. 4e-g), we calculated their absolute relative differences given by |∆Λ|/max(Λtrue), where

Λtrue denotes the ground truth map. The error maps are shown in Fig. S5 with the mean

errors of ≈ 3%,≈ 8% and ≈ 6% for pHrodo, TMRM and Lyso-Red, respectively. Moreover,

the resulting histograms of the number of non-zero binary weights and the corresponding

lifetimes are shown in Fig. S6. For lifetimes, the average difference of ground truth values

and histogram peaks is approximately 0.12 ns.

After assessing the performance of our BNP-FLIM algorithm using in vivo data, we

continue to benchmark our algorithm using synthetic FLIM data containing three complex

lifetime maps (see Fig. 5a-c) similar to those in experimental data with lifetimes of 1 ns,

2.5 ns and 4.5 ns, generated over an area of 32×32 pixels (see Fig. 5d). We used our BNP-

FLIM algorithm to analyze this data. The resulting lifetime maps are shown in Fig. 5e-g

with average absolute relative differences of ≈ 5%,≈ 8% and ≈ 5%, respectively. Moreover,

the histograms of the number of non-zero binary weights warranted by the data and the

corresponding lifetimes are given in Fig. S7. Here, the histogram in the number of lifetime

components have peaks at the true value of 3 and peaks of the lifetime histograms differ

from the ground truths by less than 0.08 ns on average.

Discussion

Fluorescence lifetime imaging techniques allow us to probe life within complex sub-cellular

environments at the nanoscale. In particular, these techniques have been employed to detect

changes in cellular metabolism due to cancer metastasis29,79,80 whose ensuing metabolic

shift is detected by monitoring varying levels of free and bound NADH within breast tissue
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cells29. However, quantitative interpretation of FLIM data remain limited by fundamentally

unknown numbers of lifetime components to which to fit the data, as well as low lifetime

and spatial resolutions, and high photon counts required to determine lifetimes separated

by small differences. Addressing these issues requires a framework leveraging all spatial

correlations across all pixels known physics of the problem by incorporating it directly into

the likelihood. This includes Poisson photon emission statistics as well as all existing noise

sources, e.g., IRF, to simultaneously learn the number of lifetime components and associated

maps interpolated below data pixel size leveraging all spatial correlations across pixels.

Due to our choice of Monte Carlo samplers in BNP-FLIM, the computational cost scales

linearly with the number of pixels and photon counts. Moreover, the computational cost also

depends on the type of data analyzed. For instance, more challenging data sets, such as data

sets containing lifetime maps with more complex features or multiple lifetime maps (where

background could be considered yet another species), complicate the posterior’s shape. This

necessarily requires us to draw more samples from the posterior and therefore introduces

higher computational cost. For example, it took two days to analyze the single species in

vivo data sets shown in Fig. S3, while it took about a week to analyze the in vivo data set

containing three lifetime maps shown in Fig. 4d on a regular desktop machine.

Although we assumed a Gaussian IRF for simplicity while retaining sufficient accuracy,

the BNP-FLIM algorithm is also capable of accommodating any type of IRF by simply

modifying eq. 3 at no additional computational cost. Moreover, here, we assumed that

parameters of the IRF distribution, e.g., offset and variance, can be pre-calibrated. However,

our inverse strategy can be generalized to learn these parameters along the rest of unknowns

by adding appropriate priors on these parameters. What is more, for species present at low

concentrations, the probability of no excitation, appearing in eq. 5, can be approximated

by the first two terms of their Taylor expansion, leading to simpler expressions and reduced

computational complexity.
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