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To identify causation, model-free inference methods, such as Granger Causality, have been widely
used due to their flexibility. However, they have difficulty distinguishing synchrony and indirect
effects from direct causation, leading to false predictions. To overcome this, model-based inference
methods were developed that test the reproducibility of data with a specific mechanistic model
to infer causality. However, they can only be applied to systems described by a specific model,
greatly limiting their applicability. Here, we address this limitation by deriving an easily-testable
condition for a general ODE model to reproduce time-series data. We built a user-friendly compu-
tational package, GOBI (General ODE-Based Inference), which is applicable to nearly any system
described by ODE. GOBI successfully inferred positive and negative regulations in various networks
at both molecular and population levels, unlike existing model-free methods. Thus, this accurate
and broadly-applicable inference method is a powerful tool for understanding complex dynamical
systems.

I. INTRODUCTION

Identifying a causal interaction is crucial to understand
the underlying mechanism of systems in nature. A re-
cent surge in time-series data collection with advanced
technology offers opportunities to computationally un-
cover causation [1]. Various model-free methods, such as
Granger Causality (GC) [2] and Convergent Cross Map-
ping (CCM) [3], have been widely used to infer causation
from time-series data. Although they are easy to imple-
ment and broadly applicable [4–10], they usually strug-
gle to differentiate synchrony (i.e., similar periods among
components) versus causality [11–15] and distinguish be-
tween direct and indirect causation [16–20]. For instance,
when oscillatory time-series data is given, nearly all-to-
all connected networks are inferred [12]. To prevent such
false positive predictions, model-free methods have been
improved (e.g., Partial Cross Mapping (PCM) [20]), but
further investigation is needed to show their universal
validity.

Alternatively, model-based methods infer causality by
testing the reproducibility of time-series data with mech-
anistic models. Although testing the reproducibility is
computationally expensive, as long as the underlying
model is accurate, the model-based inference method is
accurate even in the presence of synchrony in time se-
ries and indirect effect [21–27]. However, the inference
results strongly depend on the choice of model, and inac-
curate model imposition can result in false positive pre-
dictions, limiting their applicability. To overcome this
limit, inference methods using flexible models were de-
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veloped [28–34]. In particular, the most recent method,
ION [12], infers causation from X to Y described by
the general ODE model between two components, i.e.,
dY
dt = f(X,Y ). However, ION is applicable only when
every component is affected by at most one another com-
ponent.

Here, we develop a model-based method that infers
interactions among multiple components described by the
general ODE model:

dY

dt
= f(X) = f(X1, X2, · · · , XN ), (1)

where f can be any smooth and monotonic increasing or
decreasing functions of Xi and XN is Y in the presence of
self-regulation. Thus, our approach completely resolves
the fundamental limit of model-based inference: strong
dependence on a chosen model. Furthermore, we derive
the simple condition for the reproducibility of time-series
with Eq. (1), which does not require computationally ex-
pensive fitting, unlike previous model-based approaches.
To facilitate our approach, we develop a user-friendly
computational package, GOBI (General ODE-Based In-
ference). GOBI successfully infers causal relationships in
gene regulatory networks, ecological system, and cardio-
vascular disease caused by air pollution from synchronous
time-series data, with which popular model-free methods
fail at inference. Furthermore, GOBI can also distin-
guish between direct and indirect causation even from
noisy time-series data. Because GOBI is both accurate
and broadly applicable, which have not been achieved
by previous model-free or model-based inference meth-
ods, it can be a powerful tool in understanding complex
dynamical systems.
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II. RESULTS

A. Inferring regulation types from time-series

We first illustrate the common properties of time series
generated by either positive or negative causation with
simple examples. When the input signal X positively
regulates Y (X → Y ) (Fig. 1a), Ẏ increases whenever X
increases. Thus, for any pair of time point t and t∗ with
which Xd(t, t∗) := X(t) − X(t∗) > 0, then Ẏ d(t, t∗) :=

Ẏ (t)− Ẏ (t∗) > 0. Similarly, when X negatively regulates
Y (X ⊣ Y ) (Fig. 1c left), if Xd(t, t∗) < 0, then Ẏ d(t, t∗) >
0. Thus, in the presence of either positive (σ = +) or
negative (σ = −) regulation, the following regulation-
detection function is always positive (Fig. 1b and c):

IYXσ (t, t∗) := σXd(t, t∗) · Ẏ d(t, t∗) (2)

defined on (t, t∗) such that σXd(t, t∗) > 0.
This idea can be extended to a case with multiple

causes. For instance, when X1 and X2 positively reg-
ulate Y together (Fig. 1d), if both Xd

1 > 0 and Xd
2 > 0,

then Ẏ d > 0. This leads to the positivity of the
regulation-detection function for X1→

X2→Y , IY
X+

1 X+
2

(t, t∗) :=

Xd
1 (t, t

∗) ·Xd
2 (t, t

∗) · Ẏ d(t, t∗), defined for (t, t∗) such that
Xd

1 (t, t
∗) > 0 and Xd

2 (t, t
∗) > 0 (Fig. 1e). Similarly, if X1

and X2 positively and negatively regulate Y , respectively
(Fig. 1g), the regulation-detection function for X1→

X2⊣Y ,
IY
X+

1 X−
2

(t, t∗) := Xd
1 (t, t

∗) · (−Xd
2 (t, t

∗)) · Ẏ d(t, t∗), is pos-

itive for (t, t∗) such that Xd
1 (t, t

∗) > 0 and Xd
2 (t, t

∗) < 0
(Fig. 1i). Note that for X1→

X2→Y (X1→
X2⊣Y ), IY

X+
1 X−

2

(IY
X+

1 X+
2

)
is not always positive (Fig. 1f, h). Thus, the non-
positivity of the regulation-detection function can be
used to infer the absence of the regulation. The same
positive relationships can be seen in other types of 2D
regulations (Supplementary Fig. 1).

The positivity and negativity of the regulation-
detection function IYXσ reflect the presence and absence
of regulation, respectively. The sign of the IYXσ can
be quantified with its normalized integral, regulation-
detection score SY

Xσ (Eq. (4)). Thus, SY
Xσ = 1 in the pres-

ence of regulation type σ since the regulation-detection
function is positive (see Supplementary Information for
details). However, even in the absence of regulation type
σ, SY

Xσ can often be one. For instance, when X1 posi-
tively regulates Y and X2 does not regulate Y (Fig. 1j), Ẏ
increases whenever X1 increases regardless of X2. Thus,
both IY

X+
1 X+

2

and IY
X+

1 X−
2

are positive (Fig. 1k and l).

Here, SY
X+

1 X+
2

= SY
X+

1 X−
2

= 1 reflects that X2 does not af-
fect the regulation X1 → Y . Thus, to quantify the effect
of a new component (e.g., X2) on an existing regulation
(e.g., X1 → Y ), we develop a regulation-delta function
∆:

∆Y
X+

1
(X2) := SY

X+
1 X+

2
− SY

X+
1 X−

2
. (3)

If ∆Y
X+

1

(X2) = 0, SY
X+

1 X+
2

= 1 (SY
X+

1 X−
2

= 1) does not

indicate the presence of X1→
X2→Y (X1→

X2⊣Y ).

B. Inferring regulatory network structure

SY
Xσ = 1 together with ∆ ̸= 0 can be used as an indi-

cator of regulation type σ from X to Y . Based on this,
we construct a framework for inferring a regulatory net-
work from time-series data (Fig. 2a). To illustrate this,
we obtain multiple time-series data simulated with ran-
dom input signal A and different initial conditions of B
and C randomly selected from [−1, 1].

From each time series, regulation-detection score SY
Xσ

is calculated for every 1D regulation type σ (Step 1).
Here, for each regulation, X are causes and Y is a target
among A, B and C. Because only A ⊣ B satisfies the
criteria SY

Xσ = 1 for every time series, only A ⊣ B is
inferred as 1D regulation. Note that even for the other
regulations, SY

Xσ = 1 can occur for a few time series, lead-
ing to a false positive prediction. This can be prevented
by using multiple time series. Next, SY

Xσ is calculated for
every 2D regulation type σ (Step 2). Three types of regu-
lation (A⊣

C→B, A⊣
C⊣B and A→

B→C) satisfy the criteria SY
Xσ = 1

for every time series. Among these, we can identify false
positive regulations by using a regulation-delta function
(Step 3). ∆B

A−(C) is equal to zero for every time series,
indicating that A⊣

C→B and A⊣
C⊣B are false positive regula-

tions. Thus, A→
B→C is the only inferred 2D regulation as

it satisfies the criteria for the regulation-delta function
(∆C

A+(B) ̸= 0 and ∆C
B+(A) ̸= 0). By merging the in-

ferred 1D and 2D regulations, the regulatory network is
successfully inferred. Since there are three components
in this system, we inferred up to 2D regulations. If there
are N components in the system, we go up to (N − 1)D
regulations (Supplementary Fig. 2).

We have applied the framework to infer regulatory net-
works from simulated time-series data of various biolog-
ical models. In most biological systems, the degradation
rates of molecules increase as their own concentrations
increase; thus we assume that self-regulation is negative
for every component in the system. Thus, to detect ND
regulation, the (N + 1)D regulation-detection function
and score, including negative self-regulation, is used. For
example, to infer 1D positive regulation from X to Y ,
the criteria SY

X+Y − = 1 is used.
From the time series simulated with the Kim-Forger

model (Fig. 2b left), describing the negative feedback
loop of the mammalian circadian clock [35], using the cri-
teria SY

XσY − = 1 , two positive 1D regulations (M → PC

and PC → P ) and one negative 1D regulation (P ⊣ M)
are inferred (Fig. 2b middle). Among the six different
types of 2D regulations (M→

P→PC , M→
P⊣ PC , PC→

M→P , PC→
M⊣ P ,

P⊣
PC→M and P⊣

PC⊣M) satisfying the criteria SY
XσY − = 1

for all the time series, none of them pass the ∆ test
(i.e., ∆PC

M+(P )= ∆P
P+

C

(M)= ∆M
P−(PC)=0) (Fig. 2b mid-

dle). Thus, no 2D regulation is inferred. By merging the
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FIG. 1. Inferring regulation types using regulation-detection functions and scores. a Because X positively regulates Y , as
X increases, Ẏ increases. Thus, whenever Xd(t, t∗) = X(t) − X(t∗) > 0, Ẏ d(t, t∗) = Ẏ (t) − Ẏ (t∗) > 0. b Therefore, when
Xd(t, t∗) > 0, regulation-detection function IYX+(t, t

∗) := Xd(t, t∗) · Ẏ d(t, t∗) is always positive. Here, I is in the range [−1, 1]

since all the time series were normalized. c If X negatively regulates Y , IYX− := (−Xd)·Ẏ d is always positive when Xd(t, t∗) < 0.
d-i When X1 and X2 positively regulate Y , as X1 and X2 increase (Xd

1 > 0, Xd
2 > 0), Ẏ increases (Ẏ d > 0) (d). Thus, when

Xd
1 (t, t

∗) > 0 and Xd
2 (t, t

∗) > 0, IY
X+

1 X+
2

:= Xd
1 · Xd

2 · Ẏ d is positive (e). When X1 and X2 positively and negatively regulate

Y , respectively (g), IY
X+

1 X−
2

:= Xd
1 · (−Xd

2 ) · Ẏ d is always positive when Xd
1 (t, t

∗) > 0 and Xd
2 (t, t

∗) < 0 (i). Such positivity
disappears for the regulation-detection functions, which do not match with the actual regulation type (f and h). j-l When X1

positively regulates Y and X2 does not regulate Y (j), both IY
X+

1 X+
2

:= Xd
1 ·Xd

2 · Ẏ d (k) and IY
X+

1 X−
2

:= Xd
1 · (−Xd

2 ) · Ẏ d (l) are
positive because the regulation type of X2 does not matter. Here, we use X1(t) = cos(2πt) and X2(t) = sin(2πt) as the input
signal and Y (0) = 0 for simulation on [0, 1].

three inferred 1D regulations, the negative feedback loop
structure is recovered (Fig. 2b right). Our method also
successfully inferred the negative feedback loop structure
of Frzilator [36] (Fig. 2c) and the 4-state Goodwin oscilla-
tor [37] (Fig. 2d). Furthermore, our framework correctly
inferred the systems having 2D regulations: the Gold-
beter model describing the Drosophila circadian clock
[38] (Fig. 2e) and the regulatory network of the cAMP
oscillator of Dictyostelium [39] (Fig. 2f) (see Supplemen-
tary Information for the equations and parameters of the
models and Supplementary Data 1 for detailed inference
results).

C. Inference with noisy time series

In the presence of noise in the time-series data, the
regulation-detection score (SY

Xσ ) may not be one even
if there is a regulation type σ from X to Y . For ex-
ample, in the case of an Incoherent Feed-forward Loop
(IFL) which contains A ⊣ B (Fig. 3a), SB

A− is not one
in the presence of noise (Fig. 3b blue). Thus, for noisy
data, we need to relax the criteria SY

Xσ = 1 to SY
Xσ >

Sthres where Sthres < 1 is a threshold. Because SB
A−

gets farther away from one as the noise level increases,
Sthres also needs to be decreased. We choose Sthres as
0.9− 0.005× (noise level) with which true and false reg-
ulations can be distinguished in the majority of cases for
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FIG. 2. Framework for inferring regulatory networks. a With ODE describing the network (left), various time series are
simulated with different initial conditions (middle). Then, from each time series, regulation-detection score SY

Xσ is calculated
for every 1D regulation type σ (Step 1). The criteria SY

Xσ = 1 infers A ⊣ B. Next, SY
Xσ is calculated for every 2D regulation

type σ (Step 2). Among the three types of regulations with SY
Xσ = 1, only one passed the ∆ test (Step 3). By merging the

inferred 2D regulation with the 1D regulation from Step 1, the regulatory network is successfully inferred. b-f This framework
successfully infers the network structures of the Kim-Forger model (b), Frzilator (c), the 4-state Goodwin oscillator (d), the
Goldbeter model for the Drosophila circadian clock (e), and the cAMP oscillator of Dictyostelium (f). For each model, 100
time-series data were simulated from randomly selected initial conditions, which lie in the range of the original limit cycle.

our examples (Fig. 3b and Supplementary Fig. 3e). For
instance, Sthres (green dashed line, Fig. 3b) overall sep-
arates true regulation (Fig. 3b blue) and false regulation
(Fig. 3b red). However, SY

Xσ > Sthres (SY
Xσ < Sthres) is

not always satisfied for true (false) regulation type σ from
X to Y (Fig. 3b). Thus, we further use a Total Regula-
tion Score (TRS), the fraction of time-series data satisfy-
ing SY

Xσ > Sthres (Fig. 3c left). Then, we use the criteria
TRSY

Xσ > TRSthres to infer the regulation. Similar to
Sthres, TRSthres also decreases as the noise level increases.
Thus, we use TRSthres = 0.9− 0.01× (noise level), which
successfully distinguishes between the true and false reg-
ulation of IFL (Fig. 3c right) and the other systems

(Supplementary Fig. 3f). Note that TRSY
Xσ is the mea-

sure which integrates the weight given on the regulation-
detection score reflecting the size of the domain of the
regulation-detection function (see Supplementary Infor-
mation for details). See Method for how to quantify the
noise level.

Next, we investigate whether the ∆ test can distin-
guish direct and indirect regulations using examples of
Coherent Feed-forward Loop (CFL, Fig. 3d) and Single
Feed-forward Loop (SFL, Fig. 3e). In CFL, direct regu-
lation of A ⊣ C exists. On the other hand, in SFL, only
indirect negative regulation from A to C, induced from
a regulatory chain A ⊣ B → C, exists.
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FIG. 3. Extended framework for inferring regulatory network from noisy data. a A regulatory network with 1D regulation from
A to B and 2D regulation from A and B to C. b The threshold for regulation-detection score (Sthres = 0.9−0.005×(noise level),
green dashed line) distinguishes true (A ⊣ B) and false regulation (A → C). c The fraction of data satisfying SY

Xσ > Sthres,
total regulation score (TRSY

Xσ ), is used to infer the network. Specifically, TRSY
Xσ > TRSthres is used where TRSthres =

0.9 − 0.01 × (noise level) (green dashed line). d In CFL, direct negative regulation exists from A to C. e On the other hand,
in SFL, the regulatory chain A ⊣ B → C induces an indirect negative regulation from A to C. f, g ∆C

B+(A) cannot distinguish
between the direct and indirect regulations in the presence of noise because SC

A−B+ > SC
A+B+ for both CFL and SFL, indicating

the presence of regulation A⊣
B→C. h-i SC

A−
shuffledB

+ with the surrogate time series of A can be used to distinguish between the

indirect and direct regulations. To disrupt the information of A, the time series of A is shuffled (h). In the presence of direct
regulation (CFL), but not indirect regulation (SFL), SC

A−
shuffledB

+ is significantly smaller than the original SC
A−B+ (p-value

< 0.001). j By including the surrogate test, our extended framework can successfully infer IFL, CFL and SFL even from noisy
time series. k F2 score of our inference method when the level of noise increases from 0 to 20%. Here, the mean of the F2 score
for 10 data-sets is calculated. Each data-set consists of 100 time series which are simulated with different initial conditions.

In the presence of noise, the regulation-delta function
often fails to distinguish these direct and indirect regula-
tions from A to C in CFL and SFL. Specifically, for both
of CFL and SFL with 20% multiplicative noise, SC

A−B+ is
larger than Sthres and ∆C

B+(A) is strictly negative (Fig. 3f
and g) for the most of cases. Here, the sign of ∆ is quan-

tified by using a one-tailed Wilcoxon signed rank test
(Supplementary Fig. 4a). Thus, the regulation A⊣

B→C is
inferred from not only CFL but also SFL. This indicates
that in the presence of noise, the regulation-delta func-
tion can be skewed to the specific type of regulation even
for indirect regulation. To prevent such false positive pre-
diction, we developed another criteria. Specifically, we
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use a surrogate time series A (Ashuffled, Fig. 3h) to destroy
the dependence of C on A in the presence of direct regula-
tion (A ⊣ C). As a result, the regulation-detection score
SC
A−

shuffledB
+

is significantly reduced compared to SC
A−B+

(Fig. 3i top). On the other hand, if A does not directly
regulate C, then regulation-detection score SC

A−
shuffledB

+

does not decrease much (Fig. 3i bottom), and SC
A−B+ is

not significantly larger than SC
A−

shuffledB
+
. When multiple

time series are given, we calculate the p-values for each
data and integrate them using Fisher’s method. The cri-
teria (the combined p-value < combining p = 0.001 for
every data) successfully distinguishes between direct and
indirect regulation even when the noise varies (Supple-
mentary Fig. 4b).

From the noisy time series, using the criteria TRSY
Xσ >

TRSthres, all potential 1D (Fig. 3h upper-left) and 2D
(Fig. 3h upper-right) regulations are inferred. Then,
among the inferred regulations, we need to identify in-
direct regulations. Unlike IFL, CFL and SFL have a
potential indirect regulation. That is, A ⊣ C has the
potential to be indirect since there is a regulatory chain
A ⊣ B → C. In this case, we use a surrogate time series
of a potential source of indirect regulation (A) to test
whether SC

A−B+ is significantly larger than SC
A−

shuffledB
+
.

This reveals that A ⊣ C is direct regulation for CFL, but
not SFL. Then, merging 1D and 2D results successfully
recovers the network structure of IFL, CFL, and SFL
even from noisy time series.

Based on TRS and post-filtering tests (∆ test, sur-
rogate test), we develop a user-friendly computational
package, General ODE-Based Inference (GOBI), which
can be used to infer regulations for systems described
by Eq. (1). GOBI successfully infers regulatory networks
from simulated time series using ODE models (Fig. 2b-g)
in the presence of noise. Here, the F2 score, the weighted
harmonic mean of precision and recall, is nearly one,
indicating the nearly perfect recovery of all regulations
(Fig. 3k).

D. Successful network inferences from
experimentally measured time series

We use GOBI to infer regulatory networks from experi-
mentally measured time series. From the population data
of two unicellular ciliates Paramecium aurelia (P ) and
Didinium nasutum (D) [3, 40] (Fig. 4a left), the network
between the prey (P ) and predator (D) is successfully
inferred (Fig. 4a and Supplementary Fig. 6a).

Next, we apply GOBI to the time series of the synthetic
genetic oscillator, which consists of Tetracycline repres-
sor (TetR) and RNA polymerase sigma factor (σ28) [41]
(Fig. 4b left). While the time series are measured under
different conditions after adding purified TetR or inac-
tivating intrinsic TetR, our method consistently infers
the negative feedback loop based on two direct regula-

tions σ28 → TetR and TetR ⊣ σ28 for all cases (Fig. 4b
middle and Supplementary Fig. 6b). This indicates that
our method can infer regulations even when the data are
achieved from different conditions since we do not specify
the specific equations with parameters in Eq. (1). Here,
since depletion of a component typically increases as its
own concentration increases, self-regulation is assumed
to be negative (Fig. 4b right, dashed arrow).

We next investigate the time-series data from a slightly
more complex synthetic oscillator, the three-gene re-
pressilator [42] (Fig. 4c left). Assuming negative self-
regulation, the criteria TRSY

XσY − > TRSthres infers three
negative 1D regulations and three 2D regulations (Fig. 4c
middle). Among the 2D regulations, positive regulations
are inferred as indirect as they do not pass the surrogate
test (Fig. 4c middle, dashed arrow). Thus, among the
inferred 2D regulations, only the negative regulations,
consistent with the inferred 1D regulations, are inferred
as direct regulations. Gathering these results, GOBI suc-
cessfully infers the network structure of the repressilator
(Fig. 4c right and Supplementary Fig. 6c). Note that
although our method infers the regulations among pro-
teins as direct, in fact, mRNA exists as an intermediate
step between the negative regulations among the pro-
teins. This happens due to the short translation time
in E.coli [44] and thus the similar shape and phase of
the mRNA and protein profiles. This indicates that our
method infers indirect regulations with a short interme-
diate step as direct regulations.

From the time series measuring the amount of four co-
factors present at the estrogen-sensitive pS2 promoter
after treatment with estradiol [43, 45](Fig. 4d left),
four 1D regulations (HDAC ⊣ hER, TRIP1 ⊣ hER,
HDAC ⊣ POLII and hER → POLII) satisfy the cri-
teria TRSY

XσY − > TRSthres. However, we exclude them
because hER and POLII have two causes, forming 2D
regulations, although the 1D criteria assumes a single
cause (Fig. 4d middle, dashed box). If both regulations
are effective, they will be identified as 2D regulations. In-
deed, among the 10 candidates for 2D regulations, most
of them include the four inferred 1D regulations. Via
∆ test and surrogate test, two 1D regulations (hER →
POLII and HDAC ⊣ hER) and one 2D regulation
(POLII→
TRIP1→HDAC) are inferred (Supplementary Fig. 6d).

While we are not able to further infer 3D regulations due
to the limited amount of data, the inferred regulations
are supported by the experiments. That is, estradiol trig-
gers the binding of hER to the pS2 promoter to recruit
PolII [43], supporting hER → POLII. Also, inhibi-
tion of POLII phosphorylation blocks the recruitment of
HDAC but does not affect the APIS engagement at the
pS2 promoter [43], supporting POLII → HDAC and
no regulation from POLII to TRIP1, which is a surro-
gate measure of APIS. Without inhibition of POLII,
HDAC is recruited after the APIS engagement, and
when the HDAC has maximum occupation, then the
pS2 promoter becomes refractory to hER [43], support-
ing TRIP1 → HDAC ⊣ hER. Interestingly, the in-
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FIG. 4. Inferring regulatory networks from experimental data. a GOBI successfully infers predatory interaction from 30-day
abundance time-series data of two unicellular ciliates Paramecium aurelia and Didinium nasutum (data taken from [3, 40]). b
GOBI successfully infers the negative feedback loop of the synthetic genetic oscillator with a repressor TetR and activator σ28

(data is taken from [41]). c From time-series data of a three-gene repressilator (data taken from [42]), GOBI successfully infers
the underlying network. Three direct negative 1D regulations are inferred. Among the three 2D regulations having high TRS,
only negative regulations pass the ∆ test and surrogate test. d From time series measuring the amount of cofactors present at
the estrogen-sensitive pS2 promoter after treatment with estradiol (data taken from [43]), four 1D regulations have high TRS.
However, they are not inferred because they share a common target (dashed box). Among 10 regulations having high TRS, one
2D regulation and two 1D regulations are inferred, passing the ∆ test and surrogate test. e From 1000-day time-series data of
daily air pollutants and cardiovascular disease occurrence in the city of Hong Kong (data taken from [20]), GOBI finds direct
positive causal links from NO2 and Rspar to the disease.

ferred network contains a negative feedback loop which
is required to generate sustained oscillations [46].

Finally, we investigate five time series of air pollutants
and cardiovascular disease occurrence in Hong Kong from
1994 to 1997 [47] (Fig. 4e left). Since our goal is to iden-
tify which pollutants cause cardiovascular disease, we fix
the disease as a target. Also, we assume the negative self-
regulation of disease reflecting death. While two positive
causal links from NO2 and respirable suspended partic-
ulates (Rspar) to the disease are identified as 1D regu-
lation (Fig. 4e middle), we exclude them because they
share the same target. (Fig. 4e middle, dashed box).
Among two inferred 2D regulations, one of them passes
the ∆ test and surrogate test (Fig. 4d middle). Further-
more, no 3D and 4D regulation is inferred (Supplemen-
tary Fig. 6e). The inferred network indicates that both

NO2 and Rspar are major causes of cardiovascular dis-
eases (Fig. 4e right). Indeed, it was reported that NO2

and Rspar are associated with hospital admissions and
mortality due to cardiovascular disease, respectively [48].

E. Comparison between our framework and other
model-free inference methods

Here, we compare our framework with popular model-
free methods, i.e., GC, CCM and PCM, by using the
experimental time-series data in the previous section
(Fig. 4a-e). Unlike our method, the model-free meth-
ods can only infer the presence of regulation and not its
type (i.e. positive and negative). Thus, the arrows repre-
sent inferred regulations, which could be either positive
or negative.
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FIG. 5. Model free-methods, but not our method, make a false prediction due to the presence of synchrony and indirect effect.
a-e We apply our method and popular model-free methods (i.e., GC, CCM, PCM) to various experimental time-series data
obtained from the prey-predator system (a); genetic oscillator (b); repressilator (c); cofactors at the pS2 promoter (d); and air
pollutants and cardiovascular disease (e). For the prey-predator system and genetic oscillator, each time series is duplicated
and the phase is shifted by about half of the period. For the air pollutants and cardiovascular disease data, we test the methods
on three years of data (e grey) and on two years of data (e purple).

For the prey-predator system and genetic oscillator
(Fig. 4a,b), we changed them to more challenging cases:
each time series is duplicated and shifted about half of
its period to increase the number of components. While
our method successfully detects two independent nega-
tive feedback loops (Fig. 5a,b), model-free methods infer
false positive predictions (e.g., P to Dshift in Fig. 5a)
because they usually misidentify synchrony as causality.

For a similar reason, synchrony obscures the inference
of the model-free methods for the repressilator (Fig. 5c).
Moreover, the model-free methods fail to distinguish be-

tween direct and indirect regulations. For example, they
infer the indirect causation TetR → λcl induced by the
regulatory chain TetR ⊣ LacI ⊣ λcl unlike our method.
Similarly, due to synchrony and indirect effect, for the
system of cofactors at the pS2 promoter, model-free
methods infer an almost fully connected causal network
unlike our method (Fig. 5d).

When we use three years of data (full-length data) of
air pollutants and cardiovascular disease, PCM infers the
same structure as GOBI infers, i.e., only NO2 and Rspar
cause the disease (Fig. 5e grey) [20]. On the other hand,
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when only part of the data (i.e. two years of data) is used,
only GOBI infers the same structure (Fig. 5e purple).
This indicates that GOBI is more reliable and accurate
than the model-free methods.

III. DISCUSSION

We develop an inference method that does not suffer
from the weakness of model-free and model-based infer-
ence methods. We derive the conditions for interactions
satisfying the general ODE (Eq. (1)). As this allows us to
easily check the reproducibility of given time-series data
with the general ODE (i.e., the existence of ODE sat-
isfying given time-series data) without fitting, the com-
putational cost is dramatically reduced compared to the
previous model-based approaches. Importantly, as our
method can be applied to any system described by gen-
eral ODE (Eq. (1)), it does not suffer from the fundamen-
tal limit of the model-based approach (i.e., requirement
of a priori model accurately describing the system). In
addition, our method also does not run the serious risk
of misidentifying synchrony as causality, unlike the pre-
vious model-free approaches. Furthermore, our method
successfully distinguishes direct from indirect causal rela-
tions by adopting the surrogate test (Fig. 3). In this way,
our framework dramatically reduces the false positive
predictions which are the inherent flaw of the model-free
inference method (Fig. 5). Taken together, we developed
an accurate and broadly applicable inference method that
can uncover unknown functional relationships underlying
the system from their output time-series data (Fig. 4).

In our approach, we assumed that when X causes Y ,
X causes Y either positively or negatively. Thus, our ap-
proach cannot capture the causation when X causes Y
both positively and negatively or when the type of causa-
tion changes over time. It would be an interesting future
work to derive the condition of reproducibility without
assuming a fixed causation type (i.e. the monotonicity
of f in Eq. (1)). Because our method tests the repro-
ducibility of time-series data using necessary conditions,
false positive causations can be predicted. To resolve
this, we used multiple time-series data and performed
post-filtering tests (i.e., ∆ test and surrogate test). Thus,
to infer high-dimensional regulations, a large amount of
data is required. Lastly, while we considered the general
form of ODE, an interesting future direction would be
to extend our work to models that describe interactions
including time delays.

IV. METHODS

A. Computational package for inferring regulatory
network

Here, we describe the key steps of our computational
package, GOBI (Github link will be provided upon ac-

ceptance). For the experimental time-series data X(t) =
(X1(t), X2(t), · · · , XN (t)), X(t) can be interpolated with
either the ‘spline’, or ‘fourier’ method, chosen by the user.
Also, the derivative of X(t) is computed using the MAT-
LAB function ‘gradient’.

1. Regulation-detection region

For the ND regulation (Eq. (1)) with regulation type
σ, the regulation-detection region (RXσ ) is defined as the
set of (t, t∗) on the domain of time series [0, τ)2 satisfy-
ing σ(i)Xd

i (t, t
∗) > 0 for all i. For example, with the

positive 1D regulation X → Y (σ = +), RX+ is the set
of (t, t∗) where Xd > 0. For the 2D regulation X1→

X2⊣Y
(σ = (+,−)), RX+

1 X−
2

is the set of (t, t∗) satisfying both
Xd

1 > 0 and Xd
2 < 0. The size of the regulation-detection

region (size(RXσ )) is the fraction of RXσ over the do-
main [0, τ)2. In the presence of noise, we only consider
a region which is not small (i.e., size(RXσ ) > Rthres) to
avoid an error from the noise. The value of Rthres can be
chosen from 0 to 0.1, and the choice of Rthres does not
significantly affect the results (Supplementary Fig. 3a).
However, a small value of Rthres is recommended for in-
ferring high dimensional regulations since the average of
size(RXσ ) decreases exponentially as dimension increases
(see Supplementary Information for details).

2. Regulation-detection function and score

When the regulation type σ from X =
(X1, X2, · · · , XN ) to Y exists, the following regulation-
detection function (IYXσ ) defined on regulation-detection
region RXσ is always positive.

IYXσ := Ẏ d ·
N∏
i=1

σ(i)Xd
i .

Thus, the following regulation-detection score (SY
Xσ ) is

one:

SY
Xσ :=

∫∫
RXσ

IYXσ (t, t∗)dtdt∗∫∫
RXσ

|IYXσ (t, t∗)|dtdt∗
(4)

(see Supplementary Information for details). However,
this is not true anymore in the presence of noise. Thus,
we relax the criteria from SY

Xσ = 1 to SY
Xσ > Sthres.

Among the data which has nonempty RXσ (i.e., RXσ >
Rthres), the fraction of data satisfying the criteria SY

Xσ >

Sthres is called Total Regulation Score (TRSY
Xσ ). Finally,

we infer the regulation from noisy time-series data using
the criteria TRSY

Xσ > TRSthres for noisy time-series data.
Sthres = 0.9− 0.005× (noise level) and TRSthres = 0.9−
0.01×(noise level) are used (Fig. 3a-c and Supplementary
Fig. 3). The noise level of the time series is approximated
using the mean square of the residual between the noisy
and fitted time series (Supplementary Fig. 5).
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3. ∆ test

When we add any regulation on an existing true regula-
tion, the regulation-detection score is always one (Fig. 1j-
l). Thus, to test whether the additional regulation is ef-
fective, we consider ∆Y

Xσ (Xnew) = SY
XσX+

new
− SY

XσX−
new

,
where SY

XσX+
new

(SY
XσX−

new
) is the regulation-detection

score when the new component (Xnew) is positively (neg-
atively) added to the existing regulation type σ. Because
∆Y

Xσ (Xnew) = 0 reflects that the new component (Xnew)
does not have any regulatory role, the newly added reg-
ulation is inferred only when ∆Y

Xσ (Xnew) ̸= 0 for some
data. In particular, ∆ > 0 (∆ < 0) represents that the
new component adds positive (negative) regulation. In
the presence of noise, the positive (negative) regulation is
inferred if ∆ ≥ 0 (∆ ≤ 0) consistently for all time series.
If the number of time series is greater than 25, the sign
of ∆ is quantified by a one-tailed Wilcoxon signed rank
test. We set the critical value of significance as 0.01, but
it can be chosen by the user.

4. Surrogate test

Indirect regulation is induced by the chain of direct
regulations. For example, in SFL (Fig. 3e), regulatory
chain A ⊣ B → C induces the indirect negative reg-
ulation A ⊣ C. In the presence of noise, the ∆ test
sometimes fails to distinguish between direct and indi-
rect regulations (Fig. 3d-g). Thus, after the ∆ test,
if the inferred regulation has the potential to be indi-
rect, we additionally perform the surrogate test to deter-
mine whether the inferred regulation is direct or indirect.
Specifically, for each candidate of indirect regulation, we
shuffle the time series of cause using the MATLAB func-
tion ‘perm’ and then calculate the regulation-detection
scores. Then, we test whether the original regulation-
detection score is significantly larger than the shuffled
ones by using a one-tailed Z test. In the presence of
the k number of time-series data, we can get the k num-
ber of p-values (pi, i = 1, 2, · · · , k). Thus, we combined
them into one test statistic (χ2) using Fisher’s method,
χ2
2k ∼ −2

∑k
i=1 log(pi). We set the critical value of the

significance of Fisher’s method by combining pi = 0.001
for all the data, but it can also be chosen by the user.

5. Model-free methods

For GC, we rejected the null hypothesis that Y does
not Granger cause X, and thereby inferred direct regu-
lations by using the F statistic with a significance level
of 95% [2]. For Convergent cross mapping (CCM) [3]
and Partial cross mapping (PCM) [20], we choose an
appropriate embedding dimension using the false near-
est neighbor algorithm. Also, we select a time lag pro-
ducing the first minimum of delayed mutual information.

Specifically, we used embedding dimension 2 for the prey-
predator, genetic oscillator and estradiol data-sets; and 3
for the repressilator and air pollutants and cardiovascu-
lar disease data-sets. Also, we used time lag 2 for prey-
predator; 3 ∼ 10 for genetic oscillator (there are eight
different time-series data-sets); 10 for therepressilator; 15
for the estradiol data-set; and 3 for the air pollutants and
cardiovascular disease data-set.

B. in silico time-series data

With the ODE describing the system, we simulate the
time-series data using the MATLAB function ‘ode45’.
The sampling rate is 100 points per period for all the
examples (Fig. 1, 2, 3). For the multiple time-series data
(Fig. 2, 3), we generate 100 different time series with
different initial conditions. Then, before applying our
method, we normalize each time series by re-scaling to
have minimum 0 and maximum 1. For noisy time se-
ries, we add multiplicative noise sampled randomly from
a normal distribution with mean 0 and standard devi-
ation given by the noise level. For example, for 10%
multiplicative noise, we add the noise X(ti) · ϵ to X(ti),
where ϵ ∼ N(0, 0.12). Before applying our method, all
the simulated noisy time series are fitted using the MAT-
LAB function ‘fourier4’. However, if the noise level is too
high, ‘fourier4’ tends to overfit and capture the noise.
Thus, in the presence of a high level of noise, ‘fourier2’
is recommended for smoothing.

C. Experimental time-series data

For the experimental data, we first calculate the period
of data by using the first peak of auto-correlation. Then,
we cut the time series into periods (Fig. 4a,b). Specifi-
cally, we cut the prey-predator time series every five days
to generate seven different time series (Fig. 4a). When
the number of cycles in the data is low (<5), to generate
enough multiple time series (Fig. 4c-e), we cut the data
using the moving-window technique. That is, we choose
the window whose size is the period of the time series.
Then, along the time series, we move the window until
the next window overlaps with the current window by
90%. Then, the time series in every window is used for
our approach. We did this for the repressilator (Fig. 4c);
estradiol data-set (Fig. 4d); and air pollution and car-
diovascular disease data (Fig. 4e). For instance, we used
time-series data of air pollutants and cardiovascular dis-
ease with a window size of one year and an overlap of
11 months (i.e., move the window for a month) to gen-
erate 23 data-sets. Before this, the time series of disease
admissions are smoothed using a simple moving average
with a window width of seven days to avoid the effect of
days of the week. Each time series is interpolated using
the MATLAB function ‘spline’ (Fig. 4a-d) or ‘fourier2’
(Fig. 4e) depending on the noise level of the time-series
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data.
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