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FIG. 5. Model free-methods, but not our method, make a false prediction due to the presence of synchrony and indirect effect.
a-e We apply our method and popular model-free methods (i.e., GC, CCM, PCM) to various experimental time-series data
obtained from the prey-predator system (a); genetic oscillator (b); repressilator (c); cofactors at the pS2 promoter (d); and air
pollutants and cardiovascular disease (e). For the prey-predator system and genetic oscillator, each time series is duplicated
and the phase is shifted by about half of the period. For the air pollutants and cardiovascular disease data, we test the methods
on three years of data (e grey) and on two years of data (e purple).

For the prey-predator system and genetic oscillator
(Fig. 4a,b), we changed them to more challenging cases:
each time series is duplicated and shifted about half of
its period to increase the number of components. While
our method successfully detects two independent nega-
tive feedback loops (Fig. 5a,b), model-free methods infer
false positive predictions (e.g., P to Dshift in Fig. 5a)
because they usually misidentify synchrony as causality.

For a similar reason, synchrony obscures the inference
of the model-free methods for the repressilator (Fig. 5c).
Moreover, the model-free methods fail to distinguish be-

tween direct and indirect regulations. For example, they
infer the indirect causation TetR → λcl induced by the
regulatory chain TetR ⊣ LacI ⊣ λcl unlike our method.
Similarly, due to synchrony and indirect effect, for the
system of cofactors at the pS2 promoter, model-free
methods infer an almost fully connected causal network
unlike our method (Fig. 5d).

When we use three years of data (full-length data) of
air pollutants and cardiovascular disease, PCM infers the
same structure as GOBI infers, i.e., only NO2 and Rspar
cause the disease (Fig. 5e grey) [20]. On the other hand,
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when only part of the data (i.e. two years of data) is used,
only GOBI infers the same structure (Fig. 5e purple).
This indicates that GOBI is more reliable and accurate
than the model-free methods.

III. DISCUSSION

We develop an inference method that does not suffer
from the weakness of model-free and model-based infer-
ence methods. We derive the conditions for interactions
satisfying the general ODE (Eq. (1)). As this allows us to
easily check the reproducibility of given time-series data
with the general ODE (i.e., the existence of ODE sat-
isfying given time-series data) without fitting, the com-
putational cost is dramatically reduced compared to the
previous model-based approaches. Importantly, as our
method can be applied to any system described by gen-
eral ODE (Eq. (1)), it does not suffer from the fundamen-
tal limit of the model-based approach (i.e., requirement
of a priori model accurately describing the system). In
addition, our method also does not run the serious risk
of misidentifying synchrony as causality, unlike the pre-
vious model-free approaches. Furthermore, our method
successfully distinguishes direct from indirect causal rela-
tions by adopting the surrogate test (Fig. 3). In this way,
our framework dramatically reduces the false positive
predictions which are the inherent flaw of the model-free
inference method (Fig. 5). Taken together, we developed
an accurate and broadly applicable inference method that
can uncover unknown functional relationships underlying
the system from their output time-series data (Fig. 4).

In our approach, we assumed that when X causes Y ,
X causes Y either positively or negatively. Thus, our ap-
proach cannot capture the causation when X causes Y
both positively and negatively or when the type of causa-
tion changes over time. It would be an interesting future
work to derive the condition of reproducibility without
assuming a fixed causation type (i.e. the monotonicity
of f in Eq. (1)). Because our method tests the repro-
ducibility of time-series data using necessary conditions,
false positive causations can be predicted. To resolve
this, we used multiple time-series data and performed
post-filtering tests (i.e., ∆ test and surrogate test). Thus,
to infer high-dimensional regulations, a large amount of
data is required. Lastly, while we considered the general
form of ODE, an interesting future direction would be
to extend our work to models that describe interactions
including time delays.

IV. METHODS

A. Computational package for inferring regulatory
network

Here, we describe the key steps of our computational
package, GOBI (Github link will be provided upon ac-

ceptance). For the experimental time-series data X(t) =
(X1(t), X2(t), · · · , XN (t)), X(t) can be interpolated with
either the ‘spline’, or ‘fourier’ method, chosen by the user.
Also, the derivative of X(t) is computed using the MAT-
LAB function ‘gradient’.

1. Regulation-detection region

For the ND regulation (Eq. (1)) with regulation type
σ, the regulation-detection region (RXσ ) is defined as the
set of (t, t∗) on the domain of time series [0, τ)2 satisfy-
ing σ(i)Xd

i (t, t
∗) > 0 for all i. For example, with the

positive 1D regulation X → Y (σ = +), RX+ is the set
of (t, t∗) where Xd > 0. For the 2D regulation X1→

X2⊣Y
(σ = (+,−)), RX+

1 X−
2

is the set of (t, t∗) satisfying both
Xd

1 > 0 and Xd
2 < 0. The size of the regulation-detection

region (size(RXσ )) is the fraction of RXσ over the do-
main [0, τ)2. In the presence of noise, we only consider
a region which is not small (i.e., size(RXσ ) > Rthres) to
avoid an error from the noise. The value of Rthres can be
chosen from 0 to 0.1, and the choice of Rthres does not
significantly affect the results (Supplementary Fig. 3a).
However, a small value of Rthres is recommended for in-
ferring high dimensional regulations since the average of
size(RXσ ) decreases exponentially as dimension increases
(see Supplementary Information for details).

2. Regulation-detection function and score

When the regulation type σ from X =
(X1, X2, · · · , XN ) to Y exists, the following regulation-
detection function (IYXσ ) defined on regulation-detection
region RXσ is always positive.

IYXσ := Ẏ d ·
N∏
i=1

σ(i)Xd
i .

Thus, the following regulation-detection score (SY
Xσ ) is

one:

SY
Xσ :=

∫∫
RXσ

IYXσ (t, t∗)dtdt∗∫∫
RXσ

|IYXσ (t, t∗)|dtdt∗
(4)

(see Supplementary Information for details). However,
this is not true anymore in the presence of noise. Thus,
we relax the criteria from SY

Xσ = 1 to SY
Xσ > Sthres.

Among the data which has nonempty RXσ (i.e., RXσ >
Rthres), the fraction of data satisfying the criteria SY

Xσ >

Sthres is called Total Regulation Score (TRSY
Xσ ). Finally,

we infer the regulation from noisy time-series data using
the criteria TRSY

Xσ > TRSthres for noisy time-series data.
Sthres = 0.9− 0.005× (noise level) and TRSthres = 0.9−
0.01×(noise level) are used (Fig. 3a-c and Supplementary
Fig. 3). The noise level of the time series is approximated
using the mean square of the residual between the noisy
and fitted time series (Supplementary Fig. 5).
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3. ∆ test

When we add any regulation on an existing true regula-
tion, the regulation-detection score is always one (Fig. 1j-
l). Thus, to test whether the additional regulation is ef-
fective, we consider ∆Y

Xσ (Xnew) = SY
XσX+

new
− SY

XσX−
new

,
where SY

XσX+
new

(SY
XσX−

new
) is the regulation-detection

score when the new component (Xnew) is positively (neg-
atively) added to the existing regulation type σ. Because
∆Y

Xσ (Xnew) = 0 reflects that the new component (Xnew)
does not have any regulatory role, the newly added reg-
ulation is inferred only when ∆Y

Xσ (Xnew) ̸= 0 for some
data. In particular, ∆ > 0 (∆ < 0) represents that the
new component adds positive (negative) regulation. In
the presence of noise, the positive (negative) regulation is
inferred if ∆ ≥ 0 (∆ ≤ 0) consistently for all time series.
If the number of time series is greater than 25, the sign
of ∆ is quantified by a one-tailed Wilcoxon signed rank
test. We set the critical value of significance as 0.01, but
it can be chosen by the user.

4. Surrogate test

Indirect regulation is induced by the chain of direct
regulations. For example, in SFL (Fig. 3e), regulatory
chain A ⊣ B → C induces the indirect negative reg-
ulation A ⊣ C. In the presence of noise, the ∆ test
sometimes fails to distinguish between direct and indi-
rect regulations (Fig. 3d-g). Thus, after the ∆ test,
if the inferred regulation has the potential to be indi-
rect, we additionally perform the surrogate test to deter-
mine whether the inferred regulation is direct or indirect.
Specifically, for each candidate of indirect regulation, we
shuffle the time series of cause using the MATLAB func-
tion ‘perm’ and then calculate the regulation-detection
scores. Then, we test whether the original regulation-
detection score is significantly larger than the shuffled
ones by using a one-tailed Z test. In the presence of
the k number of time-series data, we can get the k num-
ber of p-values (pi, i = 1, 2, · · · , k). Thus, we combined
them into one test statistic (χ2) using Fisher’s method,
χ2
2k ∼ −2

∑k
i=1 log(pi). We set the critical value of the

significance of Fisher’s method by combining pi = 0.001
for all the data, but it can also be chosen by the user.

5. Model-free methods

For GC, we rejected the null hypothesis that Y does
not Granger cause X, and thereby inferred direct regu-
lations by using the F statistic with a significance level
of 95% [2]. For Convergent cross mapping (CCM) [3]
and Partial cross mapping (PCM) [20], we choose an
appropriate embedding dimension using the false near-
est neighbor algorithm. Also, we select a time lag pro-
ducing the first minimum of delayed mutual information.

Specifically, we used embedding dimension 2 for the prey-
predator, genetic oscillator and estradiol data-sets; and 3
for the repressilator and air pollutants and cardiovascu-
lar disease data-sets. Also, we used time lag 2 for prey-
predator; 3 ∼ 10 for genetic oscillator (there are eight
different time-series data-sets); 10 for therepressilator; 15
for the estradiol data-set; and 3 for the air pollutants and
cardiovascular disease data-set.

B. in silico time-series data

With the ODE describing the system, we simulate the
time-series data using the MATLAB function ‘ode45’.
The sampling rate is 100 points per period for all the
examples (Fig. 1, 2, 3). For the multiple time-series data
(Fig. 2, 3), we generate 100 different time series with
different initial conditions. Then, before applying our
method, we normalize each time series by re-scaling to
have minimum 0 and maximum 1. For noisy time se-
ries, we add multiplicative noise sampled randomly from
a normal distribution with mean 0 and standard devi-
ation given by the noise level. For example, for 10%
multiplicative noise, we add the noise X(ti) · ϵ to X(ti),
where ϵ ∼ N(0, 0.12). Before applying our method, all
the simulated noisy time series are fitted using the MAT-
LAB function ‘fourier4’. However, if the noise level is too
high, ‘fourier4’ tends to overfit and capture the noise.
Thus, in the presence of a high level of noise, ‘fourier2’
is recommended for smoothing.

C. Experimental time-series data

For the experimental data, we first calculate the period
of data by using the first peak of auto-correlation. Then,
we cut the time series into periods (Fig. 4a,b). Specifi-
cally, we cut the prey-predator time series every five days
to generate seven different time series (Fig. 4a). When
the number of cycles in the data is low (<5), to generate
enough multiple time series (Fig. 4c-e), we cut the data
using the moving-window technique. That is, we choose
the window whose size is the period of the time series.
Then, along the time series, we move the window until
the next window overlaps with the current window by
90%. Then, the time series in every window is used for
our approach. We did this for the repressilator (Fig. 4c);
estradiol data-set (Fig. 4d); and air pollution and car-
diovascular disease data (Fig. 4e). For instance, we used
time-series data of air pollutants and cardiovascular dis-
ease with a window size of one year and an overlap of
11 months (i.e., move the window for a month) to gen-
erate 23 data-sets. Before this, the time series of disease
admissions are smoothed using a simple moving average
with a window width of seven days to avoid the effect of
days of the week. Each time series is interpolated using
the MATLAB function ‘spline’ (Fig. 4a-d) or ‘fourier2’
(Fig. 4e) depending on the noise level of the time-series
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data.
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