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Abstract 
Monocytes in the blood torrent, when activated by pro-inflammatory signals, adhere to the 
vascular endothelium and migrate into the tissue for ultimately differentiate into 
macrophages. Mechanics and adhesion play a crucial role in macrophage functions, such as 
migration and phagocytosis. However, how monocytes change their adhesion and mechanical 
properties upon differentiation into macrophages is still not well understood.  
In this work, we combined atomic force microscopy (AFM) viscoelastic mapping with 
interference contrast microscopy (ICM) to simultaneously probe, at the single-cell level, 
viscoelasticity and adhesion during monocyte differentiation. THP-1 monocytic cells were 
differentiated into macrophages through phorbol 12-myristate 13-acetate (PMA). 
Morphological quantification was achieved using holographic tomography imaging and the 
expression of integrin subunit CD11b was tracked as a marker of differentiation. 
Holographic tomography proved to be a quantitative in vivo technique, revealing a dramatic 
increase in macrophage volume and surface area and two subpopulations, spread and round 
macrophages. AFM viscoelastic mapping revealed an increased stiffness and more solid-like 
behavior of differentiated macrophages, especially in the lamellipodia and microvilli regions. 
Differentiated cells revealed an important increase of the apparent Young’s modulus (E0) and 
a decrease of cell fluidity (𝛽) on differentiated cells, which correlated with an increase in 
adhesion area. Macrophages with a spreading phenotype enhanced these changes. 
Remarkably, when adhesion was eliminated, differentiated macrophages remained stiffer 
and more solid-like than monocytes, suggesting a permanent reorganization of the 
cytoskeleton. We speculate that the more solid-like microvilli and lamellipodia might help 
macrophages to minimize energy dissipation during mechanosensitive activity, such as 
phagocytosis, making it more efficient. Our proposed approach revealed viscoelastic and 
adhesion hallmarks of monocyte differentiation that may be important for biological function. 
 
Keywords: cell mechanics, macrophages, viscoelasticity, atomic force microscopy, 
interference contrast microscopy, CD11b, holographic tomography.  
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Introduction 
Monocytes are circulating cells patrolling the vascular endothelium in search of external 
agents or inflammatory signals1. During inflammation, monocytes become adherent, able to 
trespass the vascular endothelium and the tissue to reach the site of injury or infection 2,3. To 
overcome external dangers, such as viruses or bacteria infections, monocytes differentiate 
into macrophages. Macrophages are highly specialized cells with a high phagocytic activity 
that once activated will be crucial for the inflammatory response and tissue healing4–6. 
 
This process starts with the adhesion of the activated monocytes onto the vascular 
endothelium through specific interactions with adhesion molecules, like selectins and 
integrins 1,7,8. After activation and firm adhesion, monocytes trespass the endothelium 
deforming its cytoskeleton, forming pseudopodia and exerting traction forces to pull its body 
through the extracellular matrix2,9. Finally, monocytes differentiate into macrophages that 
are able to phagocytize external agents and start secreting inflammation mediators (pro-
inflammatory and anti-inflammatory), until the tissue is back to its homeostatic state10,11.  
 
The THP-1 monocytic cell line is known to differentiate into a macrophage phenotype through 
phorbol 12-myristate 13-acetate (PMA) and is a well-established biological model12. Exposure 
to the phorbol ester activates the PKC pathway, which stops proliferation and starts 
differentiation to macrophages13,14. This differentiation process has been extensively studied 
but quantification of relevant features has been elusive15–19. Biological changes like 
membrane antigens, secretory products (interleukins), and proto-oncogenes activation have 
been shown16,20. However, several morphological changes, like the increase in cell volume 
and cell diameter, have been difficult to quantify12. During differentiation, suspended 
monocytic cells become adherent, increasing the expression of adhesion molecules and 
leading to heterogeneous cell morphology with round, oval, or spherical shapes or with a 
spread membrane, stellate shapes, or ameboid shapes12,18,19,21. The expression of integrin 
CD11b is especially abundant in the podosomes of THP-1 PMA differentiated 
macrophages22,23. This integrin binds to multiple extracellular matrix (ECM) and vascular 
proteins, like fibrinogen and ICAM-1, and is commonly used as a marker for macrophage 
differentiation8,24,25. CD11b is also known to be a therapeutic target for other diseases like 
Lupus, and various types of cancer and has been used as a prognosis marker in myeloid 
leukemia25–29. Importantly, CD11b regulates macrophage polarization30.  
 
Macrophage migration and phagocytic activity require adhesion molecules and the 
cytoskeleton to polarize towards the infection site. Integrins group around podosomes22,23,31, 
structures used by the cell to migrate and strongly adhere and which are directly linked to the 
cell cytoskeleton dynamics32–34. The state of the cell cytoskeleton directly modulates cell 
mechanics, cell shape and proportionate anchors for cell adhesion35–38. It has also been shown 
that adhesion structures are important for the development of stress fibers, cytoskeletal force 
transmission and cell shape39–42. Furthermore, it has been shown that leukocytes react to the 
stiffness of the substrate, for example, neutrophils display a spread mo 
rphology and become stiffer on stiff substrates and monocytes differentiate differently 
according to the substrate viscoelastic properties43,44. Moreover, monocyte firm adhesion to 
epithelial cells is mediated by integrins45 and monocyte adhesion is modulated by cell 
mechanics46. Previous studies have shown that, in the early stages (minutes) of the 
differentiation process, monocytes soften, increasing their adhesion capacity47, and that 
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inflammatory response is sensitive to physical changes in the substrate48. Moreover, the 
mechanical properties of macrophages are involved in their activation state49, and cell 
mechanics allow distinguishing between pro-inflammatory (M1) and anti-inflammatory (M2) 
macrophages under inflammatory conditions50,51. Finally, during phagocytosis, macrophages 
stiffen, increase membrane and cortical tension, exert high traction forces and change the 
organization of the cytoskeleton52–54. Thus, cell mechanics and cell adhesion play an 
interconnected role in the physiological state of the leukocytes during the inflammatory 
response and are of vital importance in macrophage physiology. However, little is known 
about how adhesion and mechanics are related in fully differentiated macrophages. 
Therefore, it is important to measure cell mechanics and cell adhesion at the same time 
during the monocyte's differentiation into macrophages. 
 
Atomic force microscopy (AFM) is a robust technique providing highly quantitative data that 
allows the mechanical characterization of soft biological samples with nanometer 
resolution55,56. Coupling AFM with other optical techniques has been reported on several 
occasions57–59. For example, AFM for cell mechanics is commonly coupled to an inverted 
optical microscope for precise tip positioning over the sample. This gives access to using other 
techniques like immunofluorescence, confocal, total internal reflection fluorescence (TIRF) or 
stimulated emission depletion (STED) microscopy60–64. Interference contrast microscopy 
(ICM) imaging provides a measure of the distance of the cell’s membrane to the glass surface 
with nanometric precision and in a millisecond time scale, which makes it suitable to study 
adhesion in living cells53,65–70. Therefore, coupling AFM with ICM will allow to simultaneously 
determine viscoelasticity and adhesion on living cells. 
 
In this study, we coupled AFM mechanical mapping to ICM to simultaneously determine cell 
viscoelasticity (apparent Young’s modulus and fluidity) and adhesion during monocyte 
differentiation into macrophages (Figure 1). The THP-1 monocytic cell line was differentiated 
into macrophages using PMA12,71. We first characterized cell morphology changes with label-
free holographic tomography images, obtaining 3D holographic reconstructions of the cells72, 
and used flow cytometry to quantify the evolution of CD11b expression. This allowed initial 
characterization and quantitative classification of morphological populations. Differentiated 
macrophages increased their volume and showed two populations: spread and round. 
Viscoelastic maps showed that monocytes stiffened and became more solid-like (solidify) 
upon differentiation into macrophages, especially so in the spread areas. Adhesion correlated 
with this stiffening state. However, when adhesion molecules were cleaved and cells 
detached, resuspended macrophages remained stiffer and more solid-like than monocytes, 
suggesting permanent cytoskeleton reorganization. 
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Figure 1. a. Experimental conditions to probe adhesion and viscoelasticity of monocytes and 
macrophages. a. THP-1 cells (monocytes) were grown in suspension and immobilized on poly-
L-lysine (PLL) coated glass. THP-1 cells treated with 20nM PMA differentiated into 
macrophages after 48 hours and spontaneously adhered to the surface. Trypsin treatment 
cleaves proteins, like integrins, detaching macrophages that were immediately immobilized 
on PLL-coated surfaces. b. Coupled system of atomic force microscopy (AFM) and interference 
contrast microscopy (ICM). Optical interferences and AFM force curves allowed the formation 
of adhesion images and mechanical maps, respectively c. AFM mechanical mapping mode 
creates topography maps from the contact point detected in the force-indentation curves 
(inset in b). d. Apparent Young’s modulus (E0) and e. fluidity maps, were obtained from the 
viscoelastic fit (Eq. 1) to the force-indentation curves. f. Adhesion area of the very same cell 
obtained using ICM.  
 
Results 
CD11b expression 
THP-1 cells were treated with PMA for 24, 48 and 72 hours (Supplementary Figure 1) and 
CD11b integrin cell surface expression was quantified over time using flow cytometry (Figure 
2 a-b). PMA is known to induce the differentiation of THP-1 cells into macrophages, indicated 
by the upregulated expression of integrin subunit CD11b (ITGAM gene, forming Mac-1 with 
CD18)12,15,18,19. In agreement with previous reports, CD11b expression increased with time, 
reaching maximum levels after 48 hours of PMA treatment,  and maintaining a similar level 
for 72 hours19. Thus, at 48h THP-1 cells were considered as differentiated into macrophages. 
PMA concentrations of 20 nM, 50 nM, 100 nM, and 200 nM were also tested obtaining similar 
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results (Supplementary Figure 2). Thus, the minimum concentration needed for CD11b 
expression was used to induce differentiation, 20nM. 
 
Tomography imaging of cell membranes 
To assess the morphological changes during THP-1 differentiation, individual cells were 
imaged by laser holographic tomography at 48h after 20nM PMA stimulation. This label-free 
technique generates 3D stacks and visualizes changes in refractive index throughout samples 
and is particularly suited for highlighting cellular membranes (Figure 2 c-f). At 48h, 
macrophages presented two phenotypes: 1) a prevalent round morphology (Figure 2 d), and 
2) a spread morphology with roughly circular areas on the substrate (Figure 2 e). Similar 
changes in morphology have been identified before as a signature of differentiation. We, 
therefore, analyzed both morphological phenotypes separately and used image analysis to 
quantify the volume, surface area and compactness of the cells before and after 
differentiation (Figure 2 g-i). Differentiated macrophages displayed lower compactness, 
larger volume, and larger surface area than monocytes. The spread phenotype had the lowest 
compactness, as expected given the less spherical shape, and the largest volume and surface 
area (both ~2.6 times larger than monocytes). In addition, tomography imaging revealed that 
all differentiated macrophages contained more and larger cytoplasmic vesicles12,73. To assess 
the effect of substrate adhesion on cell morphology, macrophages were resuspended using 
trypsin, immobilized on PLL-coated bottom dishes and immediately imaged. Resuspended 
cells did not spread and presented reduced volume and surface area and slightly higher 
compactness than the round phenotype (Figure 2 g-i). Therefore, this technique allowed us 
to classify cells into four states: monocytes, round and spread macrophages and resuspended 
macrophages.   
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Figure 2. Molecular and morphological characterization of monocytes and macrophages. a-b 
Flow cytometry. a. Fluorescence intensity (FI) of CD11b obtained by flow cytometry on THP-
1 cells after 20nM PMA treatment at times 24h, 48h and 72h and control. b. CD11b mean +/- 
standard deviation of median FI (MFI) values from three flow cytometry experiments at 24h, 
48h, 72h, for 20nM PMA treated cells and control. c-i. Tomography imaging of control and 
20mM PMA treated THP-1 cells (48h). c-f. Image slices close to the substrate and 3D image 
reconstructions (from 96 slices) for monocytes, round, spread and resuspended 
macrophages. g-i. Volume, surface and compactness were determined after 3D single-cell 
reconstruction of tomographic images of monocytes and round, spread and resuspended 
macrophages (11, 15, 25, and 12 cells, respectively. Squares are mean, dashed lines are 
median, dotted lines 25% and 75% quartiles).  
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Mechanical properties and topography 
To determine how the viscoelasticity changed among the different groups described, AFM 
was used to obtain mechanical maps on individual cells (30x30µm with 64x64 pixels, 468 
nm/pixel), containing 4096 force-distance curves. The apparent Young’s modulus (E0) and the 
cell fluidity (𝛽) were determined by fitting a parabolic viscoelastic contact model to each 
force-indentation curve (Equation 1). Thus, maps revealed topography, apparent YM and cell 
fluidity. (Figure 3 a-c). Topography was extracted from the contact point determined by the 
fit, reflecting the undeformed cell surface. Topography maps allowed us to discern between 
the different cell morphologies, spread macrophages showing a spread membrane of ~400 
nm thickness (Figure 3 a).  
 
From apparent YM (E0) maps, macrophages appeared to be on average stiffer than 
monocytes, regardless of the cell state. Apparent YM (E0) maps allowed us to assess the 
distribution of stiffnesses across the cell (Figure 3 b). On spread macrophages, the membrane 
extension appeared to be ~10-fold stiffer than the body of the cell. Also shown in Figure 3 b, 
the body center of round and spread macrophages was stiffer than the body periphery, while 
the values were more homogeneous in resuspended macrophages. Protrusions and microvilli 
appeared to be stiffer than the average body. Histograms of log(E0) pooling all maps were 
generated, further evidencing the differences between cell states (Figure 3 d). Monocytes 
showed a distribution of log[E0] values with mean±SD of 2.38±0.63 log[Pa] (~240 Pa). For 
macrophages, the mean±SD appeared at 3.08±0.69 log[Pa] (~1200 Pa) (round) and 3.53±0.78 
log[Pa] (~3390 Pa) (spread). Interestingly, spread macrophages presented a histogram with 
clear two peaks, at 3.2 log[Pa] (~1580 Pa) and 4.3 log[Pa] (~20 kPa), corresponding to the cell 
body and the spread regions, respectively, as observed in the mechanical maps (Figure 3 b). 
Interestingly, resuspended macrophages showed a mean±SD of 3.20±0.61 log[Pa] (~1580 Pa), 
slightly stiffer than round macrophages. 
 
Fluidity (𝛽) maps revealed the distribution of solid- (𝛽~0) and fluid-like (𝛽~1) regions across 
the cell, generally revealing low 𝛽 values at high E0 regions (Figure 3 c). As expected for a 
stiffer phenotype, cell fluidity decreased in macrophages, suggesting a more solid-like 
response than monocytes. Solid-like areas, with 𝛽~0, were more frequent in the cell centre 
and borders, corresponding to the areas with microvilli and filopodia, respectively. 
Histograms of 𝛽 values were generated pooling together all maps (Figure 3 e), revealing 
mean±SD of 0.24±0.12 for monocytes, 0.15±0.13 for round macrophages and 0.09±0.12 for 
spread macrophages. Interestingly, resuspended macrophages had a mean±SD beta of 
0.08±0.10, similar to spread macrophages. Monocytes showed a symmetric and centered 
distribution, with two peaks at the limits 0 and 0.5. In contrast, macrophages showed 
distributions with a peak near or coincident with the lower limit of 0 and a long tail towards 
higher 𝛽. To notice, 𝛽 values equal to zero were very frequent, reflecting a perfectly elastic 
response. 
 
In all states, a linear trend was observed between 𝛽 and log[E0] (Figure 3 f). However, from 
monocytes to macrophages, the peak was shifted towards lower 𝛽 and higher log[E0]. In the 
case of spread macrophages, two clear populations were observed, corresponding to the 
body and spread areas (Figure 3 f). 
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Figure 3. Atomic force microscopy topography and viscoelastic maps. 30x30 µm, 64x64 px, 
4096 F-d curves per map at 468 nm/pixel. a. Topographical maps extracted from the contact 
point of the F-d curves (scale bar 10µm). b. Apparent YM maps (E0), color scale: 1.7-4.47 
log[Pa], with saturated values on the glass surface. c. Cell fluidity maps (𝛽), color scale: 0-0.5. 
d. Apparent YM (E0) distribution in log scale. e. Cell fluidity (𝛽) histogram. f. Cell fluidity (𝛽) 
versus log[E0]. Monocytes N=12, round macrophages N=9, spread macrophages N=6, 
resuspended macrophages N=11. The number of curves for d-f was between 8000 and 10000 
per condition studied after filtering out the background curves. 
 
Cell adhesion by ICM 
The coupled AFM/ICM system allowed to directly quantify the adhesion of cells to the 
substrate (Figure 4) on the very same cells mapped by AFM. This allowed direct correlation 
between adhesion and viscoelastic parameters. The contrast in ICM image pixels values is 
related to the distance between the cell membrane and the glass surface, following a damped 
sinusoidal relationship as the distance increases, with a wavelength of ~200 nm (half the 
wavelength of incident green light, 𝜆, divided by the refraction index of the medium n=1.33 
for water 65). The periphery of cells was brighter than the cell center and spread regions 
(thinner than 𝜆/2) appeared darker. Thus, we assumed that darker regions (lower pixels 
values) implied shorter distances, i.e. stronger adhesion, as suggested before68. Therefore, 
pixel values provide a semi-quantitative measure of cell adhesion strength. The ICM images 
were processed as explained in the methods and the distribution of pixels values from the cell 
area was plotted as averaged histograms (Figure 4 a-d). Macrophages showed lower pixel 
values, suggesting that macrophages of any state had stronger adhesion compared to 
monocytes. ICM images on macrophages revealed more variability in the grey values, often 
showing small, circular dark areas, resembling podosome-like structures, and circular ruffles 
suggesting actin bundles observed before18,22,31. Adhesion decreased in resuspended 
macrophages, whose intensity histogram showed a peak in a similar range as monocytes, with 
a second peak at lower values suggesting punctual strong adhesion areas. 
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ICM images were processed as described in the methods to quantify the adhesion area (µm2), 
perimeter (µm), ellipse major/minor ratio, and compactness (Figure 4 e-g). Macrophages 
showed larger adhesion area than monocytes, especially in the spread phenotype (4 and 6-
fold larger for round and spread, respectively), recovering monocyte values when 
resuspended (Figure 4 e), in accordance with tomographic imaging results for surface and 
volume (Figure 4 g-h). The perimeter followed the same but less pronounced trend (Figure 4 
f). The ratio between the ellipse major and minor diameters showed that spread macrophages 
had rounder adhesion areas (Figure 4 g). The compactness of the adhesion area did not vary 
importantly, although the lowest value was found in resuspended macrophages suggesting 
rougher perimeters (Figure 4 h). 

 
Figure 4. Interference contrast microscopy (ICM) image processing. a-d. ICM images (left) for 
monocytes and round, spread and resuspended macrophages. ICM images were processed 
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to extract the mask and quantify the adhesion area (right) and perimeter of each cell (centre). 
The intensity values inside the mask for all cells at each state were pooled and an average 
histogram (red line) was generated, with values ranging from 0 (black) and 255 (white) (blue 
shading represents the standard deviation). e. Adhesion area (µm2). f. Cells perimeter (µm). 
g. Ratio ellipse major axis/ellipse minor axis. h. Compactness. Monocytes N=9, round 
macrophages N=9, spread macrophages N=6, resuspended macrophages N=11. 
 
To summarize, macrophages appeared stiffer and more solid-like than monocytes in all 
conditions. These results were more pronounced on spread macrophages. Overall, stiffness 
and solidity correlated with adhesion, the more adhesive cells being stiffer and more solid-
like. However, resuspended macrophages did not recover monocyte viscoelasticity, 
maintaining the solid-like behavior of spread macrophages with the apparent Young’s 
modulus of round macrophages. 
 
Discussion 
Tomography imaging revealed the cell surface in vivo, without labeling and with nanometric 
resolution (183 nm in xy, 312 nm in z), while 3D reconstruction allowed us to determine the 
morphology of cells, providing a quantitative measure of the different cell phenotypes (Figure 
2 g-i). Compared to monocytes, differentiated macrophages, regardless of the condition, 
increased volume and surface, and reduced compactness. As reported before, macrophages 
often presented round phenotypes and, less frequently, membrane spreading (Figure 2 d and 
e, respectively)12,18. We named these two populations round and spread macrophages. This 
first visual division corresponds to a 1.7-fold increase in surface and volume and a 1.5-fold 
decrease in compactness of spread macrophages compared to round ones. Resuspended 
macrophages presented similar compactness, and slightly smaller volume and surface than 
round macrophages (Figure 2 g-i). Therefore, tomography imaging allows the establishment 
of cell populations based on quantitative morphological features of unlabeled cells in-vivo. 
Recent work on blood samples from COVID-19 patients revealed increased size and volume 
of monocytes (~1.2-fold) due to dysregulated inflammatory response or cytokine storm 
syndrome74, which, according to our quantification, may be an early signature of 
differentiation. In this direction, COVID-19 patients' blood samples have also reported 
monocytes expressing macrophage markers like CD80 and CD20675. 
 
Tomography imaging also allows visualization of internal membranes, such as vesicles (Figure 
2 c-f). THP-1 cells after differentiation showed an increased number of small, dark spheres, 
resembling vesicles, characteristic of macrophages73. Lysosomal vesicles are related to the 
antimicrobial activity of macrophages and their content is released in case of pathogenicity. 
In the resuspended phenotype, the number of vesicles diminished, suggesting release during 
resuspension, which may explain the reduced volume and surface area. Therefore, vesicle 
number may be used as an additional quantitative marker of monocyte differentiation. 
 
AFM and ICM were combined to simultaneously obtain topography, viscoelasticity and 
adhesion maps on the very same cells. This coupling approach has been used before to 
characterize hyaluronon brushes and living cells57,76, but not to correlate adhesion and 
mechanics on cells. A possible improvement of the current setup would involve adding a 
lambda quarter waveplate between the objective and the sample and using different 
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illumination wavelengths. This would help increase the signal-to-noise ratio and allow direct 
quantification of the substrate-membrane distance65,70. 
 
To obtain mechanical maps of living monocytes and macrophages, we used long and relatively 
sharp AFM tips. Long tips of ~20 µm were necessary to allow mapping of 10-14µm height cells 
without touching the cell body with the cantilever arm. Moreover, long tips allowed us to 
obtain force curves at a relatively high velocity (~200 µm/s) with minimal contribution of the 
substrate to viscous drag forces on the cantilever77. Finally, relatively sharp tips (~30 nm) 
provide relatively high-resolution maps, revealing the structure and mechanics of the cell 
surface with submicrometer resolution. While we were able to obtain good quality maps on 
living cells at 234 nm/pixel (Figure 1), the long time acquisition (30 min) limited the viability 
of the cells and thus, we opted to use a lower resolution (468 nm/pixel). Nevertheless, the 
maps allow visualization of subcellular structures, such as filopodia, and quantify their 
mechanical properties (Figure 3). This was important to detect the contribution of cell 
stiffness and fluidity of the different regions across the cell surface. 
 
Compared to monocytes, maps revealed stiffening of macrophages in all states, as showed 
the geometric mean of the apparent YM (E0, Figure 3). Round macrophages (1202 Pa on 
average, beta=0.15) were 5 times stiffer and considerably less viscous than monocytes (240 
Pa, beta=0.24). Remarkably, spread macrophages were ~14-fold stiffer than monocytes and 
even more solid-like than round macrophages (3388 Pa, beta=0.09). This dramatic increase in 
E0 was due to its bimodal distribution, corresponding to the cell body and spread area, with 
peaks at 1584 Pa and 20 kPa, respectively. The first peak of the apparent YM distribution 
corresponded to the cell body, slightly stiffer than round macrophages, being this region less 
viscous, suggesting that the spreading may induce tension or prestress in the cell cortex78,79. 
The second peak of the YM distribution correlated with the spread region and was ~80 times 
stiffer than monocytes and almost perfectly elastic (beta~0). Measurements in thin spread 
regions (400 nm thick) may appear stiffer due to the hard bottom effect. However, for an 
average indentation of around 200 nm (Supplementary Figure 5) and given the relatively 
sharp tip (~30 nm), we evaluated this overestimation to be less than 20%, another advantage 
of using relatively sharp probes. Therefore, spread regions were remarkably stiffer and almost 
perfectly solid-like. This may be important for phagocytic activity. 
 
In addition, the resolution of the maps allowed us to discern stiffer and solid-like regions 
coincident with protrusions, resembling microvilli. A large proportion of cell surface appeared 
purely elastic, in particular at lamellipodia and microvilli. Macrophages are highly 
mechanosensitive cells5,49,80–83, a more solid-like response of lamellipodia and the apical part 
of microvilli would result in higher mechanosensitivity and more efficient downstream 
transmission of the mechanical stresses. Thus, we conclude that monocytes differentiate into 
macrophages by developing high mechanosensitive solid-like regions, lamellipodia 
(membrane spreading) and microvilli and protrusions (macrophage central body). These 
solidified structures may render mechanosensing more efficient, minimizing the dissipation 
of energy due to viscous effects. A similar purely elastic response has been recently reported 
on the periphery/boundaries of various adherent cell lines84, suggesting solidification as a 
possible fingerprint of mechanosensing during cell spreading and migration. 
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Spread macrophages extended the membrane, modulating both cell stiffness and adhesion 
to the substrate, resembling what has been termed frustrated phagocytosis18,53. As previously 
reported contact activated neutrophils on stiff surfaces changed to a spread morphology with 
a stiffer and more solid-like mechanical response, while monocytes differentiate aberrantly 
on stiff substrates43,44. The stiffening of leukocytes during inflammation has been reported 
and hypothesized to be a fingerprint of leukocyte activation, inducing adhesion and 
extravasation74,85,86. It has also been described in several works that macrophage activation 
state in M1 or M2 phenotypes change their mechanical properties49,81. In apparent 
contradiction, THP-1 cells treated with PMA have been reported to soften in the short term 
(~30min), enhancing cell adhesion47. In contrast, after long-term stimulation (48h), we 
observed stiffer macrophages, likely due to cytoskeleton reorganization, accumulation of 
actin filaments in the cell edge and podosome formation18,22,31. This suggests that PMA-
induced short-time softening (minutes) helps monocytes to adhere to the substrate, 
consequently inducing cytoskeleton remodeling, stiffening and solidification at longer times. 
These changes may allow macrophages to migrate and phagocyte external agents more 
efficiently12,14,19. Interestingly, when macrophage adhesion was suppressed through 
trypsinization, macrophages still remained 6.6-fold stiffer (1585 Pa) than monocytes, 
probably due to a permanent reorganization of the cytoskeleton, likely of actin and associated 
proteins23,87. Taken together, these results suggest that macrophage stiffening is due both to 
cell adhesion-mediated tension and cytoskeleton remodeling. 
 
ICM allowed us to evaluate the changes in adhesion of the different cells and correlate them 
later with the mechanical state (Figure 4). Adhesion area and perimeter increased during 
differentiation of monocytes into macrophages (Figure 4 e-f). This is partly due to the increase 
in the size of the cells observed by tomography 3D reconstructions images (Figure 2 c-f). 
However, the size increase was up to 2.6-fold in 3D (for spread, 1.5 for round), while the 
increase in adhesion area was between 3.2- and 6.6-fold, suggesting an important amount of 
excess membrane in macrophages, allowing phagocytosis of large external agents. In 
addition, the adhesion areas appeared to be circular for macrophages (Figure 4 g). These 
changes were more accentuated in the spread macrophages. Interestingly, the increase in 
adhesion area and perimeter correlated with the increase in adhesion strength as observed 
from the darker ICM intensity distributions, again suggesting frustrated phagocytosis (Figure 
4 a-d). Given that CD11b expression increases dramatically at 48h, it seems reasonable that 
the stronger and larger adhesion was mediated substantially by integrin Mac-1, formed by 
subunits CD11b and CD18, likely binding to serum proteins like fibrinogen adsorbed to the 
glass surface18,19,21. When macrophages were resuspended, the adhesion returned to 
monocyte levels. Some ICM images of macrophages only presented darker spots, which could 
correlate to strong adhesion areas related to podosomes observed before in these 
cells18,22,31,68. 
 
The relationship between adhesion and mechanics in macrophages has been suggested 
before. The adhesiveness of THP-1 cells to various ligands has been measured by optical 
tweezers, showing an increase in binding forces after 48h PMA differentiation that correlated 
with higher traction forces exerted by cells88. In addition, stiffening of extracellular matrix due 
to crosslinking increased adhesiveness in THP-1 PMA-differentiated cells9. Quantification of 
the apparent Young’s modulus, fluidity and adhesion area on the very same cells allowed us 
to directly compare the average parameters against each other. Overall, monocyte 
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differentiation revealed a correlation between adhesion and viscoelastic parameters (Figure 
5 a-b). Monocytes differentiated into macrophages stiffened, solidified and showed larger 
adhesion area. However, within populations, larger adhesion did not always result in stiffer 
and more solid-like cells. This is clearly observed in spread macrophages, in which even a 
negative correction of log[E0] vs adhesion is observed (Figure 5 a). Thus, changes in cell 
mechanics may be due solely to integrin expression, as observed recently on melanoma 
cells89, although may be reinforced during the initial steps of firm adhesion. After this, a 
possible mechanical upper bound may limit the relationship between adhesion expansion and 
stiffness, as suggested from neutrophil phagocytosis90. In accordance, when adhesion was 
suppressed in resuspended macrophages, the viscoelastic parameter values did not recover 
monocyte levels (Figure 5 a-b). This suggests that adhesion, stiffening and solidification 
progress together during differentiation but that may become independent of each other 
once differentiation is reached. 
 
It is interesting to notice that, on average, monocytes, round and spread macrophages all fell 
within the same trend line of beta vs log[E0], while resuspended macrophages slightly 
deviated from this trend. Interestingly, using the three main parameters as dimensions of a 
phase space, we observed that the four cell phenotypes clustered around different regions 
(Figure 5 d).  
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Figure 5. Viscoelasticity and cell adhesion area comparison for single cell analysis (each 
symbol corresponding to a single cell). a. Apparent YM (Log10[E0]) versus adhesion area (µm2) 
. b. Cell fluidity (𝛽) versus adhesion area (µm2). c. Cell fluidity (𝛽) versus apparent YM 
(Log10[E0]). d. Cell fluidity (𝛽), apparent YM (Log10[E0]) and adhesion area. Different colors 
correspond to different cell conditions. 
 
The correlation between adhesion and viscoelasticity and the increased expression of CD11b 
suggests that integrin expression may be the triggering factor to induce stiffening and 
solidification. However, mechanical hallmarks of macrophages remain independent of 
adhesion once differentiation was reached. CD11b has been reported as a key biomarker in 
immune cells for the progression of diseases like cancer and autoimmunity25,28–30,91–93. Given 
the growing evidence that cell elasticity and fluidity suffer alterations in disease, adhesion 
and mechanics of immune cells may appear as relevant biomarkers26,94–103.  
 
Conclusions 
In conclusion, we applied holographic tomography imaging as a quantitative, non-invasive 
and label-free technique uncovering round and spread macrophage phenotypes with larger 
volume and surface area than monocytes. Coupling of AFM mechanical mapping with ICM 
allowed us to quantify the adhesion and viscoelasticity on the very same cells revealing 
viscoelastic hallmarks of monocyte differentiation into macrophages that correlated with 
adhesion. Compared to monocytes, macrophages showed larger adhesion, higher apparent 
YM (E0) and decreased cell fluidity (𝛽), particularly in lamellipodia and microvilli. Mechanical 
changes may be a consequence of adhesion to the surface through a reinforcement 
mechanism, as shown in the spread macrophages whose population stiffening almost tripled 
compared to the round phenotype, mainly due to the spread regions. However, this 
correlation fails within spread macrophages when using average cell values. Recent work has 
reported stiffening and solidification of neutrophils and macrophages during phagocytosis90, 
which might be frustrated in the spreading phenotype53. Stiffening and solidification may help 
force transmission. Taken together, our results support the idea that stiffening, solidification 
and size change of monocytes during differentiation into macrophages are biologically 
important. We propose that larger, stiffer, and solidified macrophages may be more efficient 
during mechanosensitive activities, such as migration and phagocytosis104,105.  
 
Methods 
Cell culture  
The THP-1 cell line was obtained from ATCC (American Type Culture Collection, TIB-202) and 
cultured in RPMI-1640 media (Gibco, Thermofisher, Ref.11875093) supplemented with 1% 
sodium pyruvate (Gibco, Thermofisher, Ref. 11360070), 1% of MEM NEAA (Gibco, 
Thermofisher, Ref. 10370047), 1% Penicillin-streptomycin (Gibco, Thermofisher, Ref. 
15140148), HEPES 10mM (Gibco, Thermofisher, Ref.15630080) and 10% fetal bovine serum 
(FBS). Cells were maintained at 37ºC, 5% CO2 and 95% humidity. The cells were kept between 
a concentration of 2-8 x 10 5 cells/mL, splitting them every 2-3 days. Cells were discarded after 
20 passages to avoid any drifting in the phenotype. All % values are v/v %. Cells were routinely 
tested for mycoplasma contamination.  
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Cell differentiation 
THP-1 cells were cultured in the cell culture media described before with 20nM phorbol 12-
myristate 13-acetate (PMA) (Sigma Aldrich, Ref. P1585) for 48h in glass-bottom Petri dishes. 
After 48h the cells were washed once with fresh cell culture media, without PMA, prewarmed 
at 37ºC.  
 
Atomic force microscopy measurements 
Cultured cells' viscoelastic properties and topography were measured with AFM-force 
mapping mode in a Nanowizard 4 (Bruker-JPK) using pre-calibrated PFQNM-LC-cal cantilevers 
(Bruker). The force set point was set at 0.8 nN, speed at 200 µm/s and the range at 15µm in 
Z. The first experiments were conducted at high resolution (234 nm/px) and then the 
resolution was set to 64x64px in a 30µm square area (468 nm/px). We applied the SNAP 
approach to calibrate the inverse of the optical lever sensitivity (invOLS) from the thermal 
spectra in liquid106. For that, we used the pre-calibrated spring constant of the cantilevers and 
the correction factors described in Rodríguez-Ramos 2021107. 
 
The viscous drag coefficient of the cantilever (b=0.7 pN·s/µm) was determined as the 
difference between approach and retract forces before contact from force curves obtained 
on top of the cells. For the monocyte and macrophage measurements, the cells in suspension 
were immobilized with a poly-L-lysin 0.01% solution coating of high molecular weight 
(>80kDa), (Sigma Aldrich Ref.25988-63-0). For the adhesion control, THP-1 differentiated cells 
were trypsinized for 3-5 minutes at 37ºC, centrifuged at 1200rpm for 10 min and seeded with 
fresh culture media without PMA in a glass-bottom petri dish coated with poly-L-lysine. The 
measurements of all conditions were taken in the culture media without PMA, at room 
temperature and 20mM Hepes in a window of time of 2 hours at room temperature.  
 
Viscoelastic properties 
The apparent Young’s modulus (E0) and cell fluidity (𝛽) were determined using a parabolic 
contact model assuming a viscoelastic sample following power law rheology of time-
dependent Young’s modulus E(t)=E0(t/t0)𝛽 108, [Lacaria 2022 in preparation]. Briefly, the 
approach and retract force versus time traces (Fa(t) and Fr(t), respectively) were fitted 
simultaneously using the equations below. 
 

(1) 
[Lacaria 2022 in preparation] where 2F1 is the ordinary hypergeometric function, 𝜈=0.5 is the 
Possion ratio, va and vt are the approach and retract velocities, respectively, t0=1s and t1 is the 
time point from the retract curve at which the area of contact equals the area of contact of 
the approach and is found to be 
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where tm is the time at maximum indentation. The viscous drag force was added to the 
approach and retract curves from the viscous drag factor times the velocity calculated at each 
time point: b·va(t) and -b·vr(t), respectively. 
 
 
Interference contrast microscopy (ICM) 
The ICM observations were done in situ using the optical microscope Ti-Eclipse (Nikon, Japan) 
coupled to the AFM. The images were acquired using an epi-illumination (light source LHS-
H100C-1, Nikon, Japan) featuring a cube equipped with a polarizer, an analyzer and a semi-
reflective mirror (Nikon, Japan), a 60x water immersion objective (NA 1.2, Nikon, Japan) and 
a CCD camera (model C8484-03G01, Hamamatsu, Japan). The AFM laser was shut down and 
the aperture diaphragm was closed to illuminate only the area of interest. The images were 
acquired using the HCImage software (provided by Hamamatsu), automatically adjusting the 
acquisition time.  
 
ICM Image processing 
The images were processed using a self-written Python 3.8.8 code. Briefly, the images were 
first segmented to select only the pixels corresponding to the inner part of the aperture 
diaphragm, using the unsupervised learning method Kmeans (from the sklearn package). A 
median blur was then applied to remove the highly-contrasted points (corresponding to 
impurities in the optical path and/or on the Petri dish surface). An estimation of the 
background was performed using the rolling ball method (with skimage restoration rolling ball 
function) and subtracted to the raw image to homogenize the brightness over the full field of 
view. The remaining noise was removed using Chambolle projection algorithm (with skimage 
restoration denoise-tv-chambolle function). To reveal the contour of the contact area, a map 
of the local variations was generated using a circular kernel and a mean-C local thresholding 
(also called adaptive thresholding) was applied. When the cell was centered in the shutter, 
the contour was closed using the corresponding function from the skimage module, and a 
flood fill was realized. When the cell ICM pattern was near the border of the diaphragm, to 
avoid the shutter to be detected as part of the cell, an eroded version of the inner shutter 
mask was applied to the image. In both cases, only the biggest filled area (corresponding to 
the cell) was kept, the others (corresponding to impurities) were discarded. This area is 
slightly overestimated due to the size of the local variance kernel. To refine the area 
estimation, this overestimated area was used as a mask and applied to the raw image. Any 
pixel whose value is greater than the mean value of all pixels inside this mask was removed 
(considered as the background). A graphical user interface was developed (with pygame 
package) for the user to decide whether the detected surface is correct or not, allowing the 
user to draw on the image to discard or add parts. Finally, multiple parameters, such as the 
area, perimeter or compactness, are measured using the skimage measure regionprop 
method. 
 
Holographic tomography and image processing 
Cells were seeded in glass-bottom Petri dishes using the same conditions as for AFM-force 
mapping and imaged by holographic tomography72 using a 3D Explorer (Nanolive). Live cells 
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were imaged in RPMI 1640 medium with a normalization refractive index set to 1.338. The 
collected image stacks were analyzed in ImageJ and TAPAS to extract single-cell volume and 
surface area109,110. Two distinct cell regions were extracted separately: the main part 
corresponding to the highly-contrasted central part of the cell, and the remaining part 
corresponding to thin membrane extensions at the cell perimeter. The central cell region was 
detected using a classical segmentation protocol. For that, stacks were filtered with a 3D 
median filter with radii 4x4x2, followed by automatic thresholding (using the triangle 
algorithm) and a “fill holes” procedure. The weakly-contrasted thin membrane boundaries 
were manually delineated. Finally, the individual values computed for the central and 
peripheral regions were combined to obtain total single cell volume and surface areas. 
 
Flow cytometry 
THP-1 cells were cultured in wells as detailed in the cell culture methods and analyzed using  
a flow cytometer (BD Accuri C6 flow cytometer, BD Biosciences). Differentiated cells were 
detached using Enzyme Express (1X) TrypLE™ (Gibco, Ref.12605010), to preserve the 
adhesion proteins on the surface, and collected in FACS tubes for analysis. Cells were stained 
with CD11b Antibody, anti-human, REAfinity™ (Miltenyi Biotec, Ref.130-110-554) and REA 
control (I)-APC human for the control of unspecific binding (Miltenyi Biotec, Ref. 130-104-
615). At least 10000 events were gated according to the FSC/SSC dot plot with the exclusion 
of dead cells.  
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