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Abstract

Summary: Haplotype Trend Regression with eXtra flexibility (HTRX) is an R package which uses

cross-validation to learn sets of interacting features for a prediction. HTRX identifies haplotypes

composed of non-contiguous single nucleotide polymorphisms (SNPs) associated with a phenotype.

To reduce the space and computational complexity when investigating many features, we constrain

the search by growing good feature sets using ‘Cumulative HTRX’, and limit the maximum complexity

of a feature set.

Availability: HTRX is implemented in R and is available under GPL-3 license from CRAN and

Github at:

https://github.com/YaolingYang/HTRX.

Contact: yaoling.yang@bristol.ac.uk

1 Introduction

Numerous single nucleotide polymorphisms (SNPs) associated with human complex traits and

diseases have been discovered by genome-wide association studies (GWAS) (Buniello et al., 2019).

However, multiple SNPs from a high linkage disequilibrium (LD) region may be required to

describe the total causal signal (Yang et al., 2012) which may be from multiple SNPs or interactions

(Galarneau et al., 2010). Haplotype-based association studies, combining SNPs into features, have
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the potential to be more powerful than methods based on independent SNPs (Balliu et al., 2019).

Haplotype-based association studies, such as Haplotype Trend Regression (HTR) (Zaykin et al.,

2002) (reviewed by Schaid (2004) and Liu et al. (2008)) are limited to investigating haplotypes

specifying values at all SNPs. We recently (Barrie et al., 2022) proposed Haplotype Trend Regression

with eXtra flexibility (HTRX) which searches non-contiguous haplotypes. As the number of

haplotypes increases exponentially with the number of SNPs, inferring true interactions at scale

is unrealistic (Guan and Stephens, 2011). Consequently, the goal of HTRX is to make good

predictions by selecting features which have the best predictive performance. By predicting the

out-of-sample variance explained (R2), HTRX quantifies whether a tagging SNP is adequate, or

whether interactions or LD with unobserved causal SNPs are present.

Barrie et al. (2022) demonstrated the utility of this method by detecting interactions in the

human leukocyte antigen (HLA) locus for Multiple Sclerosis (MS). This note addresses two important

improvements: controlling computational complexity, and ensuring that overfitting is controlled.

We will control the former by limiting the flexibility of haplotypes to be considered, and the latter

using penalisation and cross-validation (CV). In addition to Bayesian Information Criteria (BIC)

(Schwarz, 1978) employed to select candidate models by Barrie et al. (2022), we consider Akaike’s

information criterion (AIC) (Akaike, 1974) and lasso (Tibshirani, 1996) regularisation in the R

package ‘HTRX‘.

2 Methods

HTRX defines a template for each haplotype using the combination of ‘0’, ‘1’ and ‘X’ which

represent the reference allele, alternative allele and either of the alleles, respectively, at each SNP.

For example, a four-SNP haplotype ‘1XX0’ only refers to the interaction between the first and

the fourth SNP. Each haplotype Hij takes a value of either 0, 0.5 or 1 if individual i has 0, 1

or 2 haplotype j in both genomes. This template creates 3u − 1 different haplotypes in a region

containing u SNPs, while only 2u − 1 of them are independent. Fitting models using all possible

haplotypes result in overfitting (Hawkins, 2004). To address this, HTRX considers AIC, BIC and

lasso penalisation. AIC and BIC penalise the number of features in the model through forward

regression, while lasso uses L1 norm to regularize parameters, and the features whose parameters
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do not shrink to 0 are retained. The objective function of HTRX is the out-of-sample variance

explained by haplotypes within a region. We use k-fold CV, an ensemble learning method (k ≥ 3

for algorithms below) as a natural score function:

Algorithm 1 Direct CV (function ‘do direct cv’)

Split data into k folds;

for i← 1 to k do

Train in k − 1 folds (i′ ̸= i) using penalisation;

Test in fold i, compute R2
i ; ▷ Out-of-sample R2

Compute score: R2
cv ← 1

k

∑k
i=1 R

2
i .

Although Algorithm 1 reduces overfitting, it generates an ensemble of feature sets due to

variation in the training data. To choose a fixed feature set, a more complicated CV algorithm

is required.

Algorithm 2 Two-stage CV (function ‘do cv’)

for b← 1 to B do ▷ Stage 1: Generate candidate models

Sample a fraction of data D;

Select the best q candidate models using penalisation;

Count the number of different candidate models z;

Split data into k folds; ▷ Stage 2: Model fit via k-fold CV

for i← 1 to k do

for j ← 1 to z do

Train model j in k − 2 folds, without penalisation;

Validate in one fold, compute R2
vij;

Test in remaining one fold, compute R2
tij;

Compute R̄2
vj ← 1

k

∑k
i=1 R

2
vij; so j∗← argmax

j
R̄2

vj;

Compute R̄2
2−stage← 1

k

∑k
i=1 R

2
tij∗ .

These algorithms scale badly with u are limited to around u ≤ 6. To consider more features

as commonly found in genetic LD blocks, cumulative HTRX (Algorithm 3) controls the space and

computational complexity:
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Algorithm 3 Cumulative HTRX (function ‘do cumulative htrx’)

for i← 1 to B do ▷ Stage 1: Extend haplotypes

Sample a fraction of data D;

Sample L features (from u) to generate all possible haplotypes;

Retain best M features using forward regression with no penalisation;

for j ← L+ 1 to u− 1 do

Sample another SNP from the remaining u− j + 1 to generate all possible haplotypes;

Retain best M features using forward regression with no penalisation;

Add the last SNP to M to generate all possible haplotypes; ▷ Stage 2: Generate a set of

candidate models

Select the best q candidate models using penalisation;

Count the number of different candidate models z;

Apply Algorithm 2 Stage 2. ▷ Stage 3: Constrained CV

Larger L, M and B may slightly improve the predictive performance, but they significantly

increase complexity both the spatially and computationally. It is rare that many features are

involved in an interaction, and such interactions are statistically hard to identify. Because of this,

we consider constraining the maximum number of SNPs permitted in a template. This reduces

compute, and space complexity (Fig. S1). Fig. 1 compares the performance of many choices in a

realistic simulated scenario (Supplementary Methods).

3 Discussion

We show in a simulated dataset of 6 interacting features that ‘Two-stage CV’ significantly outperforms

‘Direct CV’, especially when the outcome is binary (Fig. 1). Also, penalisation using AIC or BIC

produces significantly better out-of-sample performance than lasso. ‘Two-stage CV’ chooses a

subset of all possible models to reduce computational cost.

Out-of-sample prediction is wasteful of scarce data, and for R2 prediction using less data creates

a downward bias as well as increased variance. Whilst results throughout are shown for true

out-of-sample prediction, for real data we implement k-fold Cross-Validation which introduces
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(a) Linear Models

0.85

0.90

0.95

1.00

S
N

P

2
S

N
P

_
h

a
p

3
S

N
P

_
h

a
p

4
S

N
P

_
h

a
p

5
S

N
P

_
h

a
p

a
ll_

h
a

p

H
T

R

Feature set
A

v
e

ra
g

e
 o

u
t-

o
f-

s
a

m
p

le
 R

² 
(%

)

(b) Logistic Regression Models

Algorithm
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Figure 1: Comparison of the average out-of-sample R2 through 10-fold CV for linear and logistic

regression models in a simulated dataset (Supplementary Methods). Feature set specifies the

maximum number of features (of 6) that can interact, from ‘SNP’= 1, to ‘all hap’= 6, while

‘HTR’ uses templates that interact in all SNPs with no ‘X’ in the template. D = 50%, B = 10 and

q = 3 are used for ‘Two-stage-CV’. ‘Direct-Fit’ refers to all-feature multivariate regression.

a negligible bias compared to the variance (Fig. S2).

More generally, these algorithms efficiently search features for interactions. One approach

is reducing the number of interactions permitted, and another is growing the most promising

interaction sets. Both exploit the diminishing marginal returns of complexity for prediction to

quantify the total out-of-sample variance explained, which tests for the presence of feature interaction.

It has general application in regression, but is specifically important for determining whether a

single SNP is an adequate description of the effect of a genetic region on a phenotype.
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