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Abstract

Motivation: Advances in sequencing technologies have led to a surge in genomic data, although the
functions of many gene products coded by these genes remain unknown. While in-depth, targeted exper-
iments that determine the functions of these gene products are crucial and routinely performed, they fail
to keep up with the inflow of novel genomic data. In an attempt to address this gap, high-throughput
experiments are being conducted in which a large number of genes are investigated in a single study.
The annotations generated as a result of these experiments are generally biased towards a small subset
of less informative Gene Ontology (GO) terms. Identifying and removing biases from protein function
annotation databases is important since biases impact our understanding of protein function by providing
a poor picture of the annotation landscape. Additionally, as machine learning methods for predicting
protein function are becoming increasingly prevalent, it is essential that they are trained on unbiased
datasets. Therefore, it is not only crucial to be aware of biases, but also to judiciously remove them from
annotation datasets.
Results: We introduce GOThresher, a Python tool that identifies and removes biases in function anno-
tations from protein function annotation databases.
Implementation and Availability: GOThresher is written in Python and released via PyPI https:
//pypi.org/project/gothresher/ and on the Bioconda Anaconda channel https://anaconda.org/

bioconda/gothresher. The source code is hosted on GitHub https://github.com/FriedbergLab/

GOThresher and distributed under the GPL 3.0 license.
Contact: {idoerg | parnal}@iastate.edu

1 Introduction

The accurate annotation of the biological functions of proteins and other gene products is an open
problem in life science. In the age of high throughput sequencing and multi-omics, accurate annota-
tions are important: errors in initial annotations may propagate through different databases, leading
to entrenched misannotations that are very difficult to root out (Schnoes et al., 2009). Furthermore,
protein function prediction algorithms rely on functional annotation data as the standard-of-truth for
training. It is commonly accepted that annotations using direct experimental evidence are of the high-
est quality. Biocurators typically assign function to gene products manually using the Gene Ontology
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(GO) (Ashburner et al., 2000) by examining experimental data from available literature, and assigning
the appropriate GO terms to the relevant proteins (Camon et al., 2004). Given the standardized, dy-
namic and machine-readable format of Gene Ontology, it is currently the primary mode of annotating
protein function.

In previous studies, we (Schnoes et al., 2013) and others (Clark and Radivojac, 2013; Bastian et al.,
2015) have shown that not all experimental annotations are of equal quality. Specifically, experimental
annotations from high-throughput studies appear to be less descriptive and contain less information than
those from low throughput studies. An example of term with low information content is catalytic
activity (GO:0003824) while a term with high information content would be β-alanyl-dopamine
hydrolase activity (GO:0003832). The information content (IC) of a GO term is a quantitative
measure that describes the specificity of that GO term within a certain context (Mazandu and Mulder,
2014). GOThresher calculates IC in the context of user provided set of annotations as the negative
logarithm of the GO term frequency in the corpus. ICi = − log2(Pi), where Pi is the frequency of
occurrence of any GO term i in a corpus as in (Lord et al., 2003; Pesquita et al., 2009). Annotations
with low information content can be useful for some applications, such as genome-wide surveys, and
they can provide insights into functioning of previously uncharacterized genes that lays groundwork for
further experimental characterization (Attrill et al., 2019). However, such annotations do not accurately
describe the function of a gene product. In response to the steady increase in number of high-throughput
studies being published, the Gene Ontology Consortium introduced evidence codes that indicate anno-
tations generated by high-throughput method as against other types of experiments which usually are
small-scale and elucidate more detailed functionality about the gene products under investigation (At-
trill et al., 2019). Moreover, computational methods trained on poor quality ground truth data generate
annotations that are also non-specific, contributing further to the “shallow annotation problem” (Wang
et al., 2007). Shallow annotations affect similarity measurements since gene pairs annotated exclusively
with less informative terms like “protein binding” may demonstrate a non-meaningful functional simi-
larity. However, this does not imply that these two gene products are similar in function, nor can these
pairs be distinguished from other high-scoring gene pairs associated with more specific GO terms (Guzzi
et al., 2012; Mistry and Pavlidis, 2008). This can also encourage algorithms trained on low information
datasets will perform more shallow predictions (Clark and Radivojac, 2013). Other research has shown
the how filtering large GO classes improves function prediction (Warwick Vesztrocy and Dessimoz, 2020;
Törönen et al., 2018). In sum, a large number of low information content annotations that are mostly
generated by large scale experimental studies strongly impact our understanding of protein function. To
address the issue of bias arising from accumulation of less informative GO terms, we have developed
GOThresher, which selectively removes annotations from Uniprot-GOA files based on GO evidence, an-
notation source, number of proteins annotated from a given source, date, or combinations of the above.
GOThresher is useful to creators of tools for protein function prediction, for creating balanced training
sets and selecting different levels of annotation specificity. GOThresher can be used standalone or in
conjunction with protein function prediction benchmark creation tools such as GOBench (Dickson et al.,
2022) or CAFA Benchmark (https://github.com/CAFA-Challenge/CAFA_benchmark). It is also useful
for data scientists interested in diagnosing protein function annotation databases.

2 Implementation

GOThresher is a command-line tool implemented in Python. We have released GOThresher as a package
via PyPI and Conda enabling easy installation. GOThresher allows the user to obtain information about
the quality of annotation datasets using Information Content (IC) calculation as described in (Lord et al.,
2003) and Information Accretion as described in (Clark and Radivojac, 2013). The main functionality
that GOThresher provides is to remedy biases from protein function annotation datasets using filtering
criteria based on annotation information content, annotation source, and several proteins annotated
by a certain source. GOThresher requires Gene Ontology in the Open Biomedical Ontologies (OBO)
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format and protein function annotation data in Gene Association File (GAF) format (Gene-Ontology-
Consortium, 2012).
Select functions of GOThresher: For a full list of features, see the documentation on the Github
site. Using the -PLTHRESH argument, the user can provide a threshold for discarding annotations with
an IC below it. Instead of providing a value, it is also possible to provide a percentage value p following
the -PLTHRESHp argument, which will retain only those annotations whose IC is in the top p% of all
the IC scores.
Example usage:

$ gothresher -i goa_yeast.gaf -a C P -e EXPEC IBA -PLTHRESH 5 -o results_dir

This command will read goa_yeast.gaf, select the Cellular Component and Biological Process GO
terms which have been determined experimentally or generated computationally as “IBA” (Inferred
from Biological Aspect of ancestor). Additionally, it will discard all annotations that have an IC ≤ 5
and create the output in the results_dir directory.

3 Results

Here we show some results illustrating the utility of GOThresher in filtering information from a UniProt
GOA file. The results demonstrate the utility of GOThresher in balancing the databases.
Input data (see GitHub repository: https://github.com/FriedbergLab/GOThresher):
goa_exampleYeast.gaf which is a truncated Uniprot-GOA file based on 2022-01-14 version of the yeast
Uniprot-GOA file available in full from: https://ftp.ebi.ac.uk/pub/databases/GO/goa/old/YEAST/

Example 1: Filter by Information Content (IC)

Command:

$ gothresher -PLTHRESH 10 -i goa_exampleYeast.gaf

Explanation: This command will read goa_exampleYeast.gaf, discard all the annotations that have
an IC ≤ 10, and create an output file named exampleYeast_MFO_BPO_CCO_PL_10.gaf in the working
directory.

Example of processing:
Maximum IC of GO term in the input data before filtering: 15.5
Minimum IC of GO term in the input data before filtering: 5.2
IC threshold to discard GO terms: 10

Table S1: Difference between number of annotated genes and all annotations before and after filtering based
on Philip Lord Information Content

Before filtering by IC After filtering by IC
Number of annotated genes 6189 5353
Number of annotations 47072 28248
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(a) Change in the number of annotated genes after filtering based on IC

(b) Change in the number of GO annotations after filtering based on IC

Figure S1: Difference between the (a) number of annotated genes and (b) number annotations separated
by the three GO aspects Biological Process Ontology (BPO), Cellular Component Ontology (CCO), and
Molecular Function Ontology (MFO) before and after filtering based on Philip Lord Information Content
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Example 2: Filter by evidence code – select all experimental annotations

Command:

$ gothresher -e EXPEC -i goa_exampleYeast.gaf

Explanation: This command reads goa_exampleYeast.gaf, selects annotations that have been gener-
ated experimentally, and creates an output file named exampleYeast_MFO_BPO_CCO_EXPEC.gaf in the
working directory. Experimental evidence includes the following GO experimental evidence codes:
[‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, ‘IEP’, ‘HTP’, ‘HDA’, ‘HMP’, ‘HGI’, ‘HEP’] (See http://geneontology.
org/docs/guide-go-evidence-codes/ for an explanation of evidence codes)

Table S2: Difference between number of annotated genes and all annotations before and after filtering based
on experimental evidence

Before filtering by evidence After filtering by evidence
Number of annotated genes 6189 5827
Number of annotations 47072 42930
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(a) Change in the number of annotated genes after filtering based on experimental evidence

(b) Change in the number of GO annotations after filtering based on experimental evidence

Figure S2: Difference between the (a) number of annotated genes and (b) number of annotations separated
by the three GO aspects Biological Process Ontology (BPO), Cellular Component Ontology (CCO), and
Molecular Function Ontology (MFO) before and after filtering using experimental evidence
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Example 3: Filter by aspect of GO – select Molecular Function Ontology (MFO)
GO terms not generated experimentally

Command:

$ gothresher -einv EXPEC -a F -i goa_exampleYeast.gaf

Explanation: This command reads goa_exampleYeast.gaf, discards annotations that are associated
with all experimental evidence codes, then selects Molecular Function GO terms, and creates an output
file named exampleYeast_MFO.gaf in the working directory.

Table S3: Difference between number of annotated genes and all annotations before and after filtering based
on aspect of GO and evidence

Before filtering by evidence After filtering by evidence
Number of annotated genes 6189 1128
Number of annotations 47072 1627
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(a) Change in the number of annotated genes after filtering based on experimental evidence and aspect

(b) Change in the number of GO annotations after filtering based on experimental evidence and aspect

Figure S3: Difference between the (a) number of annotated genes and (b) number of annotations separated
by the three GO aspects Biological Process Ontology (BPO), Cellular Component Ontology (CCO), and
Molecular Function Ontology (MFO) before and after filtering based on the aspect of GO and evidence
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