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13 Abstract

14 Past studies have shown that incubation of human serum samples on high density peptide 

15 arrays followed by measurement of total antibody bound to each peptide sequence allows 

16 detection and discrimination of humoral immune responses to a wide variety of infectious 

17 disease agents. This is true even though these arrays consist of peptides with near-random 

18 amino acid sequences that were not designed to mimic biological antigens. Previously, this 

19 immune profiling approach or “immunosignature” has been implemented using a purely 

20 statistical evaluation of pattern binding, with no regard for information contained in the amino 

21 acid sequences themselves. Here, a neural network is trained on immunoglobulin G binding 

22 to 122,926 amino acid sequences selected quasi-randomly to represent a sparse sample of 

23 the entire combinatorial binding space in a peptide array using human serum samples from 

24 uninfected controls and 5 different infectious disease cohorts infected by either dengue virus, 

25 West Nile virus, hepatitis C virus, hepatitis B virus or Trypanosoma cruzi. This results in a 

26 sequence-binding relationship for each sample that contains the differential disease 

27 information. Processing array data using the neural network effectively aggregates the 

28 sequence-binding information, removing sequence-independent noise and improving the 

29 accuracy of array-based classification of disease compared to the raw binding data. Because 

30 the neural network model is trained on all samples simultaneously, the information common 

31 to all samples resides in the hidden layers of the model and the differential information 

32 between samples resides in the output layer of the model, one column of a few hundred values 

33 per sample. These column vectors themselves can be used to represent each sample for 

34 classification or unsupervised clustering applications such as human disease surveillance. 

35

36 Author Summary

37 Previous work from Stephen Johnston’s lab has shown that it is possible to use high density 

38 arrays of near-random peptide sequences as a general, disease agnostic approach to 

39 diagnosis by analyzing the pattern of antibody binding in serum to the array. The current 
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40 approach replaces the purely statistical pattern recognition approach with a machine learning-

41 based approach that substantially enhances the diagnostic power of these peptide array-

42 based antibody profiles by incorporating the sequence information from each peptide with the 

43 measured antibody binding, in this case with regard to infectious diseases. This makes the 

44 array analysis much more robust to noise and provides a means of condensing the disease 

45 differentiating information from the array into a compact form that can be readily used for 

46 disease classification or population health monitoring.

47
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52 Introduction

53 Over the past decade, the Johnston lab and others have developed the use of high 

54 density quasi-random peptide arrays as a tool for generating antibody binding profilies(4-19). 

55 A key feature of these arrays is that the peptide sequences are chosen to cover sequence 

56 space as evenly as possible, rather than focusing on biological sequences or known epitopes. 

57 Due to the random nature of the peptide sequences, this “immunosignature” approach 

58 captures mostly low to moderate affinity interactions of antibodies with the array peptides and 

59 has been shown to enable robust detection or identification of immune responses associated 

60 with numerous infectious and chronic diseases(8-10, 12-14, 17). This method involves 

61 applying a small amount of diluted serum to a dense array of peptides with nearly random 

62 sequences of amino acids, typically with >100,000 distinct peptide sequences of about 10 

63 amino acids in length(7). In most of the studies done, only 16 of the 20 natural amino acids 

64 were used to synthesize the peptides. The level of antibody binding to the peptides on the 

65 array is then detected quantitatively using a fluorescently labeled secondary antibody and 

66 imaged by an array scanner. Based on a statistical comparison of binding patterns between 

67 case and reference samples, classifier models can be built to distinguish one disease 

68 response from another(5).

69 The cognate epitopes of the antibodies involved in an immune response are highly 

70 unlikely to appear within a random set of ~105 sequences on a peptide array. For a linear 

71 epitope of ~10 amino acids in length, there are ~1013 possible amino acid combinations, yet 

72 somehow the interaction of serum antibodies with only ~105 sequences captures sufficient 

73 information to both detect and identify disease state with high accuracy(6-10, 12-14, 17, 20). 

74 If sufficient information can be obtained from a random sparse sampling of antibody binding 

75 to 1 out of every 108 possible sequences (~1013/~105), then the antibodies associated with an 

76 immune response must recognize millions to billions of different sequences to some extent in 

77 a manner that is disease specific. The fundamental question of the current study is whether 

78 this amino acid sequence-dependent antibody binding can be modeled. If so, such a 
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79 relationship could potentially be used to more effectively aggregate information from the array 

80 or to design new panels of sequences that more effectively differentiate diseases.

81 Recently, our group modeled the sequence-binding relationships of nine different, well-

82 characterized, isolated proteins to the peptide arrays described above(21). Binding patterns 

83 of each protein were recorded, and a simple feed-forward, back propagation neural network 

84 model was used to relate the amino acid sequences on the array to the binding values. 

85 Remarkably, it was possible to train the network with 90% of the sequence/binding value pairs 

86 and predict the binding of the remaining sequences with accuracy equivalent to the noise of 

87 the antibody binding measurements (the Pearson correlation coefficients (R) between the 

88 observed and predicted binding values were equivalent to that between measured binding 

89 values of multiple technical replicates, and in some cases as high as R=0.99). In fact, accurate 

90 binding predictions (R > 0.9) for some protein targets could be achieved by training on as few 

91 as hundreds of randomly chosen sequence/binding value pairs from the array. In addition, the 

92 binding predictions were specific; the model captured not only the bulk binding of individual 

93 proteins but also the differential binding between proteins. Finally, a neural network trained on 

94 weakly binding sequences effectively predicted the binding values of sequences on the array 

95 1-2 orders of magnitude greater. At least in the context of the combinatorial space of possible 

96 sequences in this model array-based system (~10 residue peptides using 16 different amino 

97 acids with the C-terminus bound to the surface of a silica substrate), training on one set of 

98 thousands of randomly selected sequences resulted in statistically accurate prediction of the 

99 binding to any other randomly selected set of sequences. 

100 Binding to antibodies, in this case IgG in human sera, represents a much more 

101 complex system than binding to isolated proteins, and one might expect substantially more 

102 complex sequence-binding relationships. Other groups have previously developed such 

103 relationships for immune responses using various starting datasets. A number of groups have 

104 looked at overlapping peptides presented on microarrays or in phage display libraries 

105 generated by tiling antigens or entire proteomes(22-27). Panning of phage or bacterial peptide 
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106 display libraries coupled with next generation sequencing have provided broader binding 

107 profiles(28, 29). The advantage of tiling and panning approaches is that one is starting with 

108 known or suspected binding sequences, and thus the dataset is naturally rich in strong binding 

109 information. In one particularly effective study in this regard, a method referred to as Protein-

110 based Immunome Wide Association Study was used to explore sequence binding 

111 relationships in 31 systemic lupus erythematosus samples(30). Here a large bacterial display 

112 library (1010 12-mer sequences) was reduced to ~106 sequences found to bind to serum 

113 antibodies from the samples and the enrichment of specific 5-mer and 6-mer sequences within 

114 the resulting library was determined. These enriched sequences were then used to identify 

115 autoantibodies in the human proteome, and the authors were successful at identifying several 

116 known autoantigens for the disease within their top candidates. The same group has used 

117 similar methods to perform epitope mapping of antibodies to SARS-CoV-2(31).

118 Machine learning algorithms have also been used to develop sequence-based models 

119 predicting binding of proteins to peptides, antibodies, and DNA(32-42). For example, machine 

120 learning models have been used to model anti-microbial peptides, infectious viral variants that 

121 escape protection, potential epitopes on target antigens, high antibody binding regions on 

122 target proteins, and optimization of target DNA sequences for transcription factors. To do this, 

123 two approaches have primarily been used: 1) introducing single or multiple point mutations on 

124 a target site with known function to identify desired leads, and 2) use of proteomes of interest 

125 or known antigenic proteins to predict epitopes. For example, epitope prediction tools such as 

126 BepiPred-2.0 are generally developed using known antigens derived from crystal structures 

127 of antibody-antigen complexes(43). With regard to modeling of serum binding to random 

128 sequences, Greiff et al, applied multivariate regression to serum antibody binding to a library 

129 of 255 random peptides(44). In that study, serum antibody binding from naïve mice was well 

130 modeled by relating peptide composition to binding intensity, though binding of serum 

131 antibodies from previously infected mice proved more challenging. 
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132 The current work focuses on the feasibility of developing comprehensive sequence-

133 binding relationships that describe the infectious disease specific binding of total IgG to our 

134 model library of 122,926 peptides each between 7 and 12 residues in length and composed 

135 of 16 of the 20 natural amino acids. While this library is clearly limited in terms of size (only 

136 105 of the trillions of possible sequences), composition (16 of 20 natural amino acids) and 

137 context (C-terminus affixed to a silica surface), it is capable of distinguishing immune 

138 responses to different infectious agents, as described previously(6-8, 13). Neural network-

139 based models were used to build quantitative relationships for sequence-antibody binding 

140 using sera from cohorts of individuals who are either uninfected (controls) or infected with 5 

141 infectious agents including three closely related members of the family Flaviviridae (dengue 

142 virus, West Nile virus and hepatitis C virus), a more distantly related member of the family 

143 Hepadnaviridae (hepatitis B virus) and an extremely complex eukaryotic trypanosome (agent 

144 of Chagas disease, Trypanosoma cruzi). This allowed a thorough evaluation of the model’s 

145 ability to capture the disease-specific information content of the array binding. This study 

146 showed that it is possible to create accurate sequence-binding models, which not only 

147 maintain the disease specific information, but also effectively capture the binding information 

148 on the arrays for applications in noise suppression and disease classification. 

149
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150 Results

151 Study Design and Initial Analysis:

152 The serum samples shown in Table 1 were incubated on identical peptide microarrays as 

153 described in Methods and IgG bound to the array peptides was detected via subsequent 

154 incubation with a secondary anti-IgG antibody. The peptide sequence 'QPGGFVDVALSG' is 

155 present on the array as a set of replicate features (n=276). This peptide sequence gives a 

156 consistently moderate to strong binding value from sample to sample and is used to assess 

157 the intra-array spatial uniformity of antibody binding intensities. Median normalized arrays 

158 with an intra-array replicate feature coefficient of variation (CV) ≥ 0.3 for this peptide 

159 sequence were set aside as well as arrays that showed significant physical defects or overall 

160 differences in binding intensity between different regions of the array (collectively these are 

161 referred to as “High CV samples”). In all, 20% of the 679 arrays measured were excluded 

162 from the initial part of the analysis but considered in the last section which focuses on using 

163 the sequence-binding relationship to remove noise from the arrays. Thus, 542 arrays total 

164 were considered “Low CV Samples” in Table 1. 

165 Comparison of average binding profiles of peptides to serum IgG. Figure 1 shows the 

166 cohort average serum IgG binding intensity distributions of the 122,926 unique peptide 

Table 1: Sample information
Disease cohort Sample Source1 Samples 

Collected
Low CV 

Samples2
Genome 
Size(bp)

Hepatitis C Virus (HCV) CTS 100 78 11,000

Dengue Virus, Serotype 4 (Dengue)  CTS and SeraCare 65 57 9600

West Nile Virus (WNV) CTS 100 74 11,000

Hepatitis B Virus (HBV) CTS 100 86 3200

T. cruzi CTS 96 70 105M

Uninfected (ND) CTS and ASU 218 1773 --

1CTS is Creative Testing Solutions (Tempe, AZ); ASU is Arizona State University; SeraCare address is Milford, MA 

2Arrays passing the data quality metrics used in the initial neural network analysis. The remaining high CV samples 
were used as a test set for certain classification studies.
3100 randomly selected uninfected samples were used for the bulk of the neural network analysis to remain 
reasonably balanced with other cohorts.
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167 sequences. The samples were all median normalized prior to averaging each peptide 

168 binding value within the cohort. The log10 

169 of the average binding is displayed on the 

170 x-axis as the log distributions are much 

171 closer to a normal distribution than are the 

172 linear binding values. Sera from 

173 individuals infected with HCV, dengue 

174 virus or WNV have sharper distributions 

175 (smaller full width at half maximum) than 

176 the other samples, while sera from 

177 individuals infected with HBV show a 

178 distribution width similar to those from 

179 uninfected donors. Sera from individuals 

180 with Chagas disease have a broader binding distribution than the others, with a long tail on 

181 the high binding side. Overall, the width of the distribution increases with increasing 

182 proteome size. Interestingly, for the viruses with small proteome some of the higher binding 

183 antibodies are lost compared to uninfected samples. However, it is important to remember 

184 that the array peptides have no relationship to the viral proteomes or indeed any biological 

185 proteome, except by chance. Thus, what is lost in the small virus samples compared to 

186 strong binding in uninfected samples, may well be gained in more specific binding not 

187 immediately apparent. 

188 Neural Network Analysis

189 The fundamental question of this study is whether it is possible to accurately predict the 

190 sequence dependence of the antibody binding associated with an immune response to a given 

191 pathogen, both in terms of accurately representing the IgG binding to each peptide sequence 

192 in individual serum samples and in terms of the ability of the neural network to capture 

193 sequence dependent differences in IgG binding between samples and cohorts. Towards this 

Fig. 1. Average Binding Distributions of the 
Cohorts. Average binding intensity distributions of 
serum IgG binding to array peptides for the 6 different 
sample cohorts. For each cohort the log10 of the 
average binding for each peptide sequence was used 
to create the distribution. 
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194 end, the low CV samples (Table 1) were analyzed using feed forward, back propagating neural 

195 network models(21) in two different ways. In one approach, each sample was analyzed 

196 separately such that a neural network was trained on every serum sample independently. In 

197 the second approach, all samples were fit together such as that a single neural network was 

198 trained to simultaneously predict the binding for all samples for any given sequence. In both 

199 cases, the optimized network involved an input layer with an encoder matrix (see Methods), 

200 two hidden layers with 350 nodes each and an output layer whose width corresponded to the 

201 number of target samples (1 for individual fits and 465 when all samples were fit 

202 simultaneously). The loss function used was the sum of least squares error based on a 

203 comparison of the predicted and measured values for the peptides in the sample. 
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204 The neural network uses the sequence information to rapidly converge on a solution. 

205 Fig. 2A shows the rate at which the loss function drops during training using the simultaneous 

206 fitting approach in which all samples are analyzed together. When the correct sequence is 

207 paired with its corresponding binding value (blue and red lines, Fig. 2A), the value of the loss 

208 function drops rapidly and the values for the training set and test set drop in concert; there is 

209 almost no overfitting. As a control, the same neural network was used to analyze data in which 

Fig. 2. The neural network model accurately represents the sequence-binding relationship. A neural 
network (2 hidden layers with 350 nodes) was trained on 95% of the sequence/binding data from the 465 low 
CV samples in Table 1 simultaneously (note only 100 of the uninfected samples were used to balance with the 
size of other cohorts). The remaining 5% of the sequence/binding values (6,146 per sample x 465 samples = 
~2.9 million binding values) were held out as the test set. (A) The loss function progression during neural 
network training. Blue and red traces (overlapping): a neural network trained with properly matched sequences 
and associated binding values. Purple and yellow traces: training after scrambling the order of the sequences 
relative to their measured binding values. (B) The scatter plot (dscatter(2)) shows the values predicted by 
neural network (y-axis) vs. the corresponding measured values from the array (x-axis) for the test set only. (C) 
The average predicted vs. measured correlation coefficient for cohort samples as a function of the number of 
peptide sequences used to train the network. 
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210 the order of the peptide sequences was randomized relative to their binding intensities. One 

211 would not expect any relationship between sequence and binding under these circumstances. 

212 In this case, the loss function value for both the training and test initially rise slightly followed 

213 by a slow drop for the training set of peptides over the entire training period and a slow rise 

214 for the test set (yellow trace: test, purple trace: train) indicating overfitting of the training set. 

215 This implies that the neural network is capable of rapidly converging on a true relationship 

216 between the sequences and their binding values in the context of the array peptide library. 

217 The neural network results in a comprehensive binding model applicable across the 

218 model sequence space used. Fig. 2B shows a scatter plot comparing the predicted and 

219 measured values from a neural network model fitting all samples simultaneously. In this case, 

220 the model was trained on 95% of the peptide sequence-binding pairs, randomly selected, with 

221 the remaining 5% or 6,146 peptide sequences excluded from training and used for model 

222 testing (that is 6,146 binding values for each of the 465 low CV samples used = ~2.9 million 

223 binding values in the test set). Only the test set values are displayed in Fig. 2B. Since the 

224 sequences used on the array are nearly random, these sequences should be statistically 

225 equivalent to any randomly selected set of sequences from the combinatorial space of 

226 possible sequences sampled by the array (peptides of about 10 residues utilizing any of 16 

227 amino acids corresponds to about 1012 sequences). The Pearson correlation coefficient (R) 

228 between the measured and predicted values for the test sequences shown is 0.956. Repeating 

229 the training 100 times with randomly selected train and test sets gives an average correlation 

230 of 0.956 with a standard error of the mean of 0.002. The correlation coefficient between 

231 measured and predicted binding for the 95% of the sequences used to train the neural network 

232 was 0.963 +/- 0.002. This implies that there is almost no overfitting associated with the model 

233 (the quality of fit between the test and train data is similar), a conclusion also apparent in the 

234 loss function data of Fig. 2A. Fig. S1 shows the correlation coefficient between measured and 

235 predicted binding for each individual sample in the test dataset (using a simultaneous fit of all 
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236 samples). While some cohorts and some samples were better represented than others, for 

237 the vast majority of the samples, the correlation coefficients are greater than 0.9.

238 103 to 104 peptides are sufficient to 

239 provide a reasonable description of the 

240 entire combinatorial peptide sequence 

241 space. Neural network models were 

242 trained with different numbers of randomly 

243 selected peptides, and binding was 

244 predicted for the remaining portion of the 

245 peptides. Fig. 2C explores the 

246 dependence of the overall correlation 

247 coefficient between measured and 

248 predicted binding values for the test set of 

249 each of the sample cohorts as a function of the number of peptides used in the training. When 

250 at least 10,000 peptide sequences are used to train the neural network, the correlation 

251 coefficient is >0.9 for all cohorts, and the correlation is >0.85 when the model is trained using 

252 only 2,000 peptides. This implies that even a very sparse sampling of this sequence space 

253 provides a reasonably accurate model of the sequence-binding relationship. The correlation 

254 coefficients do continue to increase slowly as a function of training set size. Thus, even though 

255 a relatively small set of peptides gives a reasonable overall picture, the predictive power of 

256 the relationship continues to improve with more data, and if even more peptide sequences 

257 were available for training than the entire 122,926 peptides on the array, an improved 

258 prediction would be expected.

259

260 There are commonalities in the binding of each sample that make simultaneous 

261 modeling of all samples more accurate than individual neural network models. As stated 

262 above, it is possible to either build entirely independent neural network models for each of the 

Fig. 3. Simultaneous Modeling of All Cohorts is More 
Accurate Than Individual Fits. A comparison of 
predicted vs. measured correlation coefficients 
calculated either by fitting samples simultaneously (as in 
Fig. 2) or one at a time. 
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263 samples considered or to build models that fit all of the samples simultaneously. Fig. 3 shows 

264 a direct comparison of the measured vs. predicted correlation coefficients of each sample 

265 using the simultaneous and individual model approaches. In almost every case, the 

266 simultaneous model is more accurate, providing a small improvement in correlation coefficient. 

267 This implies that the network learns commonalities between IgG binding from serum across 

268 all samples and different cohorts and uses those commonalities to improve the model. In the 

269 simultaneous model, these common features are learned by the 2 hidden layers of the neural 

270 network and the differences between samples are learned in the output layer (the final weight 

271 matrix), with separate columns in that layer giving rise to the binding values for each sample. 

272 Simultaneous modeling of all the samples is used for the remainder of the analyses in this 

273 work. Simultaneous modeling was also dramatically faster than fitting each sample dataset 

274 separately. For comparison, a simultaneous training required about 10 minutes to complete 

275 on an 18 CPU core machine while the individual modeling required about 10 hours even after 

276 optimizing parallel processing.

277 The Neural Network Learns Distinguishing Characteristics of Cohorts

278 Fig. 4A is a schematic of three approaches to disease classification and discrimination. The 

279 blue line is the standard statistical pathway (immunosignaturing). Here, no sequence 

280 information is used in the analysis and the binding values are either fed into a classifier (Fig. 

281 4B) or used to determine the number of significant peptides that distinguish diseases (Fig. 

282 4C), as described below. Alternatively, the neural network can be used to determine a 

283 sequence/binding relationship. This relationship can either be used to recalculate predicted 

284 binding values for the array peptide sequences, forcing the data to always be consistent with 

285 the sequences (red line), or it can be projected onto a completely new set of sequences (an 

286 in silico array, orange line), and those projected binding values used in classification or 

287 determining the number of significant distinguishing peptides between disease pairs.

288 Values predicted by the neural network result in better ability to distinguish cohorts. 
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289 In Fig. 4C-E, the number of peptide binding values that are significantly greater in one cohort 

290 (on the Y-axis) compared to another (on the X-axis) are shown in each grid. Significance was 

291 determined by calculating p-values for each peptide in each comparison using a T-test 

292 between cohorts adjusted for multiple hypothesis comparisons using the Bonferroni correction. 

293 Significant peptides are those in which the p-value is less than 1/N (N=122,926) with >95% 

294 confidence. Fig. 4C shows comparisons between cohorts using the measured data from the 

295 arrays. As one might expect, the sera from donors infected with the Flaviviridae viruses are 

296 most similar to one another in terms of numbers of distinguishing peptides. In general, they 

297 are more strongly distinguished from HBV (except for WNV) and very strongly distinguished 

298 from Chagas donors. If one follows, for example, the top row of Fig. 4C for HCV, moving to 

299 the right one sees that the numbers increase as more and more genetically dissimilar 

Fig. 4. Discriminating between cohorts. (A) The data from the original array was analyzed in three ways: 
directly (blue line), after training a neural network and predicting the values of the array sequences (red line), 
and after projecting the trained neural network on a complete new set of sequences (orange line). Disease 
discrimination was then performed for each approach using multi-class classification or by statistically 
determining the number of significant peptides distinguishing each cohort comparison. (B) Multi-class 
classification based on a neural network (see text). Classification was performed 100 times for each dataset 
leaving out 20% of the samples (randomly chosen) each time. Blue: original measured array data. Red: neural 
network model prediction of binding values for array peptide sequences. Orange: neural network projected 
onto a randomized set of sequences of the same overall size, composition and length distribution as the array 
sequences. (C) Each array element is the number of array peptides with measured binding values that are 
significantly higher in the sample cohort on the Y-axis compared to the sample cohort on the X-axis. 
Significance is defined as a p-value less than 1/N in a T-test with 95% confidence (N = 122,926 total peptides, 
thus significant peptides have a p-value < 0.05/N = 4.1x10-7). (D) As in (A) except that the neural network 
predicted binding values of the array peptides were used instead of the measured. The mean of 10 different 
neural network model training runs is shown; error in the mean is ≤0.3. (E) The same as in (D) except predicted 
values for an in silico generated array of random peptide sequences with the same average composition and 
length as the peptides in the array were used. The mean of 10 different sequence sets and neural network 
runs is shown; error of the mean is ≤0.4. 
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300 comparisons are made. West Nile virus is an exception in this regard. While it is more similar 

301 to Dengue virus than it is to Chagas, it is most similar, in terms of numbers of distinguishing 

302 peptides, to HBV (Fig. 4C).

303 Figure 4D is the same as Fig. 4C except that in this case, the predicted values from the neural 

304 network model are used for the array sequences instead of the measured values. Because 

305 the network requires that a common relationship between sequence and binding be 

306 maintained for all sequences, it increases the signal to noise ratio in the system such that 

307 significantly more distinguishing peptides are identified in every comparison. The neural 

308 network was run 10 times and the results were averaged.

309 Figure 4E shows results in the same format as the other two panels but using in silico 

310 generated sequences and their binding values predicted by the neural network model trained 

311 on peptide array binding data. These sequences were produced by taking the amino acids at 

312 each residue position in the original sequences and randomizing which peptide they were 

313 assigned to (considering the sequences as a matrix with rows representing peptides in the 

314 array and columns representing residue positions, order of amino acids in each column was 

315 randomized separately and at the end any spaces due to varying peptide lengths were 

316 removed). This created an in silico array with a completely new set of sequences that had the 

317 same number, overall amino acid composition and average length as the sequences on the 

318 physical array to ensure a consistent comparison. The binding values for each sample were 

319 then predicted for this in silico array and those values were used in the cohort comparisons. 

320 The number of significant peptides identified using the new sequence set (Fig. 4E) are 

321 identical to within error for each comparison with the predictions from the actual array peptide 

322 sequences used in the training (Fig. 4D). Note that the result of generating ten different 

323 randomized in silico arrays was averaged.

324 Another way to understand how well distinguishing information is captured by the neural 

325 network model is to compare classification based on measured values vs. predicted values. 

326 Fig. 4B shows the result of applying a multiclass classifier, either to the measured binding 
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327 values, the binding values predicted for the array sequences, or binding values predicted for 

328 in silico generated sequences. A simple multiclass classifier was built using a neural network 

329 with a single hidden layer with 300 nodes (described in the supplementary information). This 

330 will be referred to simply as the “multiclass classifier” to avoid confusion with the neural 

331 network used to model the sequence-binding relationship. The multiclass classifier cannot 

332 effectively use all peptides for each sample. Peptide feature selection was performed using a 

333 peptide-by-peptide T-test between the binding values of each cohort vs. all others. Either 20 

334 features (the measured data) or 40 features (the two predicted data sets) were used per cohort, 

335 with the number of features chosen to be optimal for the dataset (see Fig. 4 caption). The 

336 training target is a one-hot representation of the sample cohort identity, and the network is set 

337 up as a regression. 80% of the samples were randomly selected and used to train the 

338 multiclass classifier and 20% were used as the test set. Each test sample was then assigned 

339 a cohort label based on the largest value in the resulting predicted output vector. The process 

340 was repeated 100 times and overall prediction accuracy determined. For every cohort, with 

341 the possible exception of HCV, classification was improved relative to direct use of the 

342 measured array values (blue bars) when using the predicted values. This was true using either 

343 predicted values for the array sequences (red bars) or predicted values resulting from 

344 projection of the trained network on the randomized in silico array sequences (orange bars).

345 Understanding the Noise Reduction Properties of Neural Network Modeling

346 The results presented above show that by using the sequence/binding information to first train 

347 a neural network model and then predicting the binding using that model (on the same or a 

348 different set of sequences), it is possible to improve the signal to noise ratio in the data, at 

349 least for the purpose of differentiating between disease cohorts. To understand this in more 

350 detail, the effects of noise added to the data was explored.

351 Gaussian noise is effectively removed by the model. In Fig. 5, noise was artificially added 

352 to each point in the measured dataset by using a random number generator based on a 

353 gaussian distribution that was centered at the measured value:
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354  𝑓(𝑥) = 1
𝜎 2𝜋

𝑒―1
2
(𝑥―𝜇

𝜎
)2

355 In the above equation, mu (µ) is the log10 of the median normalized measured binding value. 

356 Sigma (σ) was then varied from 0 to 1 to give different levels of added noise. Note that sigma 

357 =1 results in addition of noise on the order of 10-fold greater or less than the linear binding 

358 value measured (due to the log10 scaling). Fig. 5A shows the resulting distribution of peptide 

359 binding values after adding noise. The peptide binding values were mean normalized across 

360 all cohorts and then plotted as a distribution, for each cohort (since this is the log10 of the mean 

361 normalized value, the distributions are centered at 0). As sigma is increased, the width of the 

362 resulting distribution after adding noise increases dramatically.
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363 Fig. 5B plots the multi-class classification 

364 accuracy of each dataset for each sample cohort 

365 as a function of sigma (this uses the same 

366 multiclass classifier as Fig. 4). The classification 

367 accuracy of the original measured data with 

368 increasing amounts of noise added drops rapidly 

369 (dashed lines). Since this is a 6-cohort multi-

370 class classifier, random data would give an 

371 average accuracy of ~17%. The measured 

372 values with added noise approach that accuracy 

373 level at the highest noise. However, by running 

374 the data through the neural network and then 

375 using predicted values for the same sequences 

376 as are on the array, the accuracy changes only 

377 slightly for sigma values up to about 0.5 and then 

378 drops gradually with increased noise, but always 

379 remains well above what would be expected for 

380 random noise. Note that a sigma of 0.5 

381 corresponds to causing the linear measured 

382 values to randomly vary between about 30% and 

383 300% of their original values.

384 Neural network predictions of array signals 

385 improved classification of high CV samples.  

386 As described above, 137 samples were not 

387 used in the analyses above because they either had high CV values calculated from 

388 repeated reference sequences across the array or because there were visual artifacts such 

389 as scratches or strong overall intensity gradients across the array. A neural network model 

Fig. 5. Effect of added noise on multiclass 
classification. Noise was added to each 
peptide in the sample using a randomly chosen 
value from a gaussian distribution centered at 
the log10 of the measured value. The sigma of 
the distribution was varied between 0 and 1 
(the binding, and thus sigma, is on a log scale). 
(A) The resulting distributions of binding values 
for each sigma value. Distributions were 
determined after mean normalizing the binding 
values for each peptide in a cohort and then 
including all peptide binding values in the 
distribution. (B) Results of applying a multi-
class classifier (as in Fig. 4B) to the data for 
measured binding values (dashed lines) and 
predicted binding values (solid lines) at each 
value of sigma. Each classification was 
repeated 100 times (noise at each level was 
randomly added 10 times and each of these 
were reclassified 10 times leaving out 20% of 
the samples as the test set).
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390 was applied to all 679 sample in Table 1 (all 

391 542 low CV + 137 high CV) simultaneously. 

392 Note that the model does not include any 

393 information about what cohort each sample 

394 belongs to, so modeling does not introduce 

395 a cohort bias. The overall predicted vs. 

396 measured scatter plots and correlations are 

397 given in Fig. 6A and 6B for the low CV and 

398 high CV data, respectively. The number of 

399 points displayed was randomly selected to 

400 be constant between datasets and make the 

401 plots comparable. Prediction of the binding 

402 values for the high CV data results in more 

403 scatter relative to measured values, due to 

404 the issues with those particular arrays. 

405 In Fig. 6B, the measured and predicted 

406 values for the 542 low CV samples were used to train a multiclass classifier which was then 

407 used to predict the cohort class of the high CV samples. Three different data sources were 

408 used: 1) the measured array data (blue bars), 2) predicted binding values for the array 

409 peptide sequences based on the neural network model (red bars) and 3) projected values for 

410 in silico generated arrays similar to those used in Fig. 4 (orange bars). The classifier used 

411 was the same as that in Fig. 4 and the number of features selected was optimized for the 

412 data source as described for the analysis of Fig. 4 (20 features per cohort for the measured 

413 array data and 40 features per cohort for the two datasets based on the neural network 

414 predictions). In each case except for the non-disease samples, the use of predicted values 

415 resulted in a significantly better classification outcome. 

416

417

Fig. 6. Classification accuracy for high CV 
samples. (A) Neural network predicted vs. 
measured values for low CV data and (B) for high 
CV data. (C) Multiclass classification of the high CV 
data. Blue, Red and Orange bars represent use of 
measured, predicted and projected data as in Fig. 4.
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418 Discussion

419 A Quantitative Relationship Between Peptide Sequences and Serum IgG Binding

420 The work described above shows that it is possible to use a relatively simple neural network 

421 model to generate a quantitative relationship between amino acid sequence and serum 

422 antibody binding over a large amino acid sequence space by training on a very sparse 

423 sampling of binding to that sequence space, similar to what was seen previously for isolated 

424 proteins binding to the array(21). Indeed, a reasonably accurate prediction can be obtained 

425 with only thousands of sequences (Fig. 2C). 

426 The model system used here to explore the relationship between antibody molecular 

427 recognition profiles and amino acid sequences has limitations. Only 16 of the 20 natural amino 

428 acids were used in this model for technical reasons (see Materials and Methods). The 

429 sequences are also bound at one end to an array surface, and the other end has a free amine 

430 rather than a peptide bond as would be seen in a protein. In addition, the array peptides are 

431 short, linear and largely unstructured. This limits the range of molecular recognition 

432 interactions that can be observed, and thus the level of generality of the conclusions, but also 

433 suggests that comprehensive and accurate structure/binding relationships for humoral 

434 immune responses should be possible to generate given binding data in a broader sequence 

435 context. Such relationships would be invaluable for epitope prediction, autoimmune target 

436 characterization, vaccine development, effects of therapeutics on immune responses, etc. 

437 Even this rather simple model system for sequence space already shows the ability to capture 

438 differential binding information between multiple diseases simultaneously, including infectious 

439 diseases that involve closely related pathogens (Fig. 4).

440 The fact that one can develop comprehensive sequence/binding relationships within this 

441 model sequence space also explains, at least in part, why the immunosignature technology is 

442 promising. Immunosignaturing technology as applied to diagnostics uses the quantitative 

443 profile of IgG binding to a chemically diverse set of peptides in an array followed by a statistical 

444 analysis and classification of the resulting binding pattern to distinguish between diseases. 
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445 The approach has been successfully used to discriminate between serum samples from many 

446 different diseases (6-10, 12-14, 16, 17) and has been particularly effective with infectious 

447 disease(6-8, 18), as exemplified by the robust ability to classify the immune response to the 

448 infectious diseases studied here (Fig. 4D). This raises the question, why would antibodies that 

449 are generated by the immune system to bind tightly and specifically with pathogens show any 

450 specificity of interaction to nearly random peptide sequences on an array? The success of the 

451 neural network in comprehensive modeling of the sequence/binding interaction provides an 

452 answer. The information about disease-specific IgG binding is dispersed broadly across 

453 peptide sequence space, even in the interaction with sequences that themselves bind weakly 

454 and with low specificity, rather than being focused only on a few epitope sequences. It is not 

455 necessary to measure binding to the epitope if you have a selection of sequences that are 

456 broadly located in the vicinity of the epitope in sequence space.

457 Note also that by working with sequence/binding relationships, rather than purely statistical 

458 comparisons of binding values associated with specific sequences, one can combine 

459 information from arrays that contain different peptides. As shown in Fig. 2C, when 50% of the 

460 array is used to predict the other 50%, the correlation coefficient on average is well over 0.9. 

461

462 The Advantage of Analyzing Many Samples Simultaneously

463 The results of Fig. 3 demonstrate that simultaneous neural network analysis of all samples 

464 from all cohorts provides a somewhat more accurate overall description of binding than does 

465 sample by sample analysis. Conceptually, this suggests that there is enough information in 

466 common between the antibody molecular recognition profiles of the various samples that using 

467 the same hidden layers to describe all of them, followed by an output layer with a distinct 

468 column describing each sample, is sufficient to both describe the general and specific binding 

469 interactions. An added practical benefit to this approach is a significant reduction in 

470 computation time, as described above.
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471 Using the Sequence/Binding Relationship to Eliminate Noise

472 In Fig. 4, both the number of distinguishing peptides between cohorts and the classification 

473 accuracy improved when the measured values for each array sequence were replaced by the 

474 corresponding predicted values. Effectively, the neural network focuses information from the 

475 entire peptide dataset on each of the predicted values. This has an information aggregating 

476 effect that is extremely potent. In Fig. 5, random noise (sequence independent variation) is 

477 purposely added to the array. Since the noise is added to the log10 of the binding value, a 

478 sigma of 0.5 corresponds to a several-fold increase in the noise distribution width, as can be 

479 seen in Fig. 5A, and a sigma of 1 broadens the distribution of linear values by roughly an order 

480 of magnitude. As a result, multi-class classification of the original data with noise added 

481 performs poorly (Fig. 5B, dashed lines). However, because the neural network predictions 

482 effectively aggregate the combined information from nearly 123,000 sequence/binding values 

483 in the generation of the sequence/binding relationship, random noise is dramatically reduced 

484 and a sigma of 0.5 has very little effect on classification and even a sigma of 1 provides 

485 reasonable results considering that this is a 6-cohort multi-class classification problem (Fig. 

486 5B, solid lines). This concept is taken further in Fig. 6, where arrays that for technical reasons 

487 were rejected because of excessive noise or physical artifacts affecting part of the array are 

488 included in the simultaneous analysis of all samples and their excess noise and defects are 

489 effectively repaired by comparison to other samples in the system. This is done without the 

490 network that creates the sequence-binding relationship having any information about which 

491 cohort is which in the analysis. The implication for array based diagnostic applications is that 

492 replacing a purely statistical approach like immunosignaturing with a structure-based 

493 approach provides a means of eliminating noise that is unrelated to the binding properties of 

494 the sequences (obviously, the real patient to patient variance is not removed as these 

495 differences are based on proper binding of antibodies to specific sequences). 

496 Using the Neural Network Model Itself for Disease Discrimination 
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497 As shown in both Fig. 4 and 6, predicted 

498 binding values for a set of peptide sequences 

499 that approximately cover the same model 

500 sequence space as the array sequences can 

501 be used to discriminate between cohorts of 

502 samples just as well as predicted values of the 

503 original array sequences. In fact, it is the 

504 sequence/binding relationship that contains 

505 the discriminating information, and it is not 

506 necessary to use predicted binding to real 

507 sequences at all. In the neural network used 

508 here for simultaneous analysis of all samples, 

509 the output layer consists of one column corresponding to each sample. The length of the 

510 column is the same as the width of the last hidden layer (350 values in this case). The 350 

511 values associated with each sample in this output layer, combined with a single bias value 

512 added at the end, contains all of the distinguishing information for that sample and can 

513 effectively be used to replace the ~123,000 sequence/binding values measured with only a 

514 few hundred values. Fig. 7 shows an unsupervised clustering using the algorithm UMAP(1, 3) 

515 in which the 351 values of the final weight matrix for each sample plus the bias value were 

516 used to perform a dimension reduction to 2 components. The component values for each 

517 sample are plotted and the different cohorts are color coded. The plot makes biological sense; 

518 the sera from individuals infected by viruses are clustered together but well separated into 

519 subgroups while samples from Chagas disease and uninfected individuals are distantly 

520 separated from those collected from individuals suffering viral infections. As was seen in Fig. 

521 4, sera from WNV and HBV infected individuals are the hardest to distinguish, but the rest are 

522 almost completely distinguishable in this unsupervised analysis. Interestingly, there is one 

523 small cluster consisting of different kinds of samples completely separated from the others 

524 (upper left, Fig. 7). UMAP is a nonlinear clustering algorithm which looks for the most similar 

Fig.7 Unsupervised clustering of the neural 
network output layer weights. A Matlab 
implementation (1) of UMAP (Uniform Manifold 
Approximation and Projection(3)) was used to 
reduce 351 values from the final weight matrix of 
the neural network and the bias for each sample to 
2 component values which are plotted. Cohorts are 
color coded.
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525 features in samples to determine clustering. Apparently, this cluster of individuals had some 

526 other unknown immunological stimulus in common that distinguished them from all others. 

527 The ability to detect such clusters could prove useful in public health bio-surveillance 

528 applications. Fig. 7 demonstrates that the cohort distinguishing information is contained in the 

529 351 values of the final weight matrix and bias; once the sequence-binding relationship is 

530 created, there is actually no need to use predicted binding values of sequences at all in order 

531 to distinguish the different cohorts effectively.

532 Materials and Methods

533 Peptide arrays: 

534 The peptide arrays used were produced locally at ASU via photolithographically directed 

535 synthesis on silicon wafers using methods and instrumentation common in the electronics 

536 fabrication industry and as described previously(7). The synthesized wafers were cut into 

537 microscope slide sized pieces, each slide containing a total of 24 peptide arrays. Each array 

538 contained 122,926 unique peptide sequences that were 7-12 amino acids long (average of 

539 10). A 3 amino acid linker consisting of GSG was attached to each peptide and connected the 

540 C-terminus to the array surface via amino silane. The peptides were synthesized using 16 of 

541 the 20 natural amino acids (A,D,E,F,G,H,K,L,N,P,Q,R,S,V,W,Y) in order to simplify the 

542 synthesis process (C and M were excluded due to complications with deprotection and 

543 disulfide bond formation and I and T were excluded due to the similarity with V and S and to 

544 decrease the overall synthetic complexity and the number of photolithographic steps 

545 required(45). The arrays were created in 64 photolithographic steps (4 rounds through addition 

546 of the 16 amino acids) and sequences were chosen from the set to cover all possible 

547 sequences as evenly as the synthesis would allow. A detailed description of the amino acid 

548 composition of the arrays and peptide length distribution was published previously(21) 

549 (referred to as CIMw189-S9 in that publication).

550 Serum samples:
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551 Deidentified serum samples were collected from three different sources: 1) Blood donors’ 

552 samples from Creative Testing Solutions (CTS), Tempe, AZ, 2) LGC SeraCare, Milford, MA, 

553 and 3) Arizona State University (ASU) (Table 1). The dengue serotype 4 serum samples 

554 were collected from 2 of the above sources: 30 samples were provided by CTS and 35 

555 samples were purchased by Lawrence Livermore National Labs (LLNL) from SeraCare 

556 before they were donated to the Center for Innovations in Medicine (CIM) in the Biodesign 

557 Institute at ASU. Uninfected/control samples consisted of 200 CTS samples and 18 samples 

558 from healthy volunteers at ASU. All deidentified infectious case samples came from CTS. All 

559 samples provided by CTS were residual samples collected from blood donors who were 

560 asymptomatic at the time of blood donation and were identified as test-reactive for infectious 

561 disease markers during blood screening at CTS. At the time of donation, blood donors 

562 agreed to the use of their samples in research. Serum samples were frozen shortly after 

563 collection and not thawed before being received as aliquots. ASU samples were collected 

564 under IRB protocol STUDY00002876: DHS Immunosignaturing - A Platform for Detecting 

565 and Identifying Multiple Infectious Diseases – July 2015). Serum samples were frozen at the 

566 time of collection and not thawed before being received as aliquots. Further sample 

567 description and in-house validation of disease state is described in the supplementary 

568 materials.

569 Sample processing and serum IgG binding measurements:

570 Serum from the 6 sample cohorts (5 disease cohorts and uninfected) were diluted (1:1) in 

571 glycerol and stored at -20°C. Before incubation, each serum sample was prepared as 1:625 

572 dilution in 625 µL incubation buffer (phosphate buffered saline with 0.05 Tween 20, pH 7.2). 

573 The slides, each containing 24 separate peptide arrays were loaded into an ArrayIt microarray 

574 cassette (ArrayIt, San Mateo, CA). Then, 20 µL of the diluted serum (1:625) was added on a 

575 Whatman 903T Protein Saver Card. From the center (12 mm circle) of the protein card, a 6 

576 mm circle was punched, and put on the top of each well in the cassette, and covered with an 

577 adhesive plate seal (3M, catalogue number: 55003076). Incubation of the diluted serum 

578 samples on the arrays was performed for 90 minutes at 37°C with rotation at 6 RPM in an 
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579 Agilent Rotary incubator. Then, the arrays were washed 3 times in distilled water and dried 

580 under nitrogen. A goat anti-human IgG(H+L) secondary antibody conjugated with either 

581 AlexaFluor 555 (Life Technol.) or AlexaFluor 647 (Life Technol.) was prepared in 1x PBST pH 

582 7.2 to a final concentration of 4 nM. Following incubation with primary antibodies, secondary 

583 antibodies were added to the array, sealed with a 3M cover and incubated at 37°C for 1 hour. 

584 Then the slides were washed 3 times with PBST (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 

585 and 1.8 mM KH2PO4. 0.1% Tween (w/v)), followed by distilled water, removed from the 

586 cassette, sprayed with isopropanol and centrifuged, dried under nitrogen, and scanned at 

587 0.5um resolution in an Innopsys Innoscan 910 0.5 um laser scanner (Innopsys, Carbonne, 

588 Fr), excitation 547 nm, emission 590 nm. Each image was analyzed (GenePix Pro 6.0, 

589 Molecular Devices, San Jose, CA) and the raw fluorescence intensity data was exported as a 

590 GenePix Results (‘gpr’) file.

591 Binding analysis using neural networks: 

592 The neural network used to relate peptide sequences on the array to the measured binding of 

593 total serum IgG has been described previously(21). The amino acid sequences are input as 

594 one-hot representations. An encoder layer linearly transforms each amino acid into a real-

595 valued vector. The amino acid encodings are then concatenated to form a full sequence 

596 encoding. Finally, a feed-forward neural network is used to predict total serum IgG binding 

597 from the sequence encoding. The encoder and neural network are trained on the peptide 

598 sequence/binding value pairs by optimizing an L2 loss function (sum of squared error) 

599 between the measured and predicted binding values. The model performance is assessed by 

600 calculating the Pearson correlation coefficient between the measured and predicted binding 

601 values for a test dataset not involved in the training. Except where otherwise stated, the neural 

602 networks used in this work are trained on all samples simultaneously, where all layers of the 

603 encoder and neural network weights are shared across cohorts except for the final layer of the 

604 neural network. 
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605 The neural network was trained using the log10 of the median-normalized binding values from 

606 the peptide array (normalized by the binding values of all peptides in a given sample). Any 

607 zeros in the dataset were replaced by 0.01 x the median prior to taking the logarithm.  

608
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