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Abstract 

Contacts between enhancers and promoters are thought to relate to their ability to 

activate transcription. Investigating mechanisms that drive such chromatin 

interactions is therefore important for understanding gene regulation. Here, we have 

determined contact frequencies between millions of pairs of cis-regulatory elements 

from chromosome conformation capture datasets and analysed a collection of 

hundreds of DNA-binding factors for binding at regions of enriched contacts. This 

analysis revealed enriched contacts at sites bound by many factors associated with 

active transcription. We show that active regulatory elements, independent of 

cohesin and polycomb, interact with each other across distances of 10s of 

megabases in vertebrate and invertebrate genomes and that interactions correlate 

and change with activity. However, these ultra-long-range interactions are not 

dependent on RNA polymerase II transcription or several transcription cofactors. We 

propose that long-range interactions between cis-regulatory elements are driven by 
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three distinct mechanisms – cohesin-mediated loop extrusion, polycomb contacts, 

and association between active regions. 
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Introduction 
 
The large genomes of most animal species derive their regulatory potential from 

non-coding cis-regulatory elements (CREs), in particular the activation of genes by 

enhancers. The spatial relationship between CREs and transcription is a topic of 

active debate (see for example (Benabdallah et al., 2019; Karr et al., 2022; Mir et al., 

2019; Xiao et al., 2021; Zuin et al., 2022)) and thinking in this area has been strongly 

influenced by genome-wide chromosome conformation capture methods such as Hi-

C (Lieberman-Aiden et al., 2009) and micro-C (Hsieh et al., 2015). Contact 

frequency, which is the measure of how often two regions are in proximity for 

crosslinking and ligation, strongly scales negatively with the genomic distance 

between two regions (Lieberman-Aiden et al., 2009).  

CREs controlling developmentally regulated genes are typically contained within a 

single topologically associating domain (TAD), formed by the highly dynamic process 

of cohesin-mediated loop extrusion (Gabriele et al., 2022; Symmons et al., 2014). 

Regions within a TAD interact more frequently with each other than with regions at 

similar distances outside the TAD. This is because cohesin can extrude chromatin 

until it reaches barrier elements, most notably CTCF, which delineate TAD 

boundaries (Fudenberg et al., 2016; Nora et al., 2017). Furthermore, focal contacts 

and “stripes” are seen between pairs of CTCF sites in the presence of loop extrusion 

(Rao et al., 2017). Both TADs and cohesin-driven focal contacts are limited to 

regions separated by up to 1-2 megabases (Mb) (Boyle et al., 2020; Dixon et al., 

2012). Much less understood are mechanisms that lead to enriched interactions 

between regions over larger genomic distances, and which may be independent of 

cohesin.  

One process bringing distal regions together is compartment interactions with their 

own chromatin type, within and between chromosomes. Initial analysis revealed A 

and B domains, corresponding roughly to active and inactive chromatin, that are 

several hundred kilobases (kb) to a few Mb in size (Lieberman-Aiden et al., 2009). 

More fine-scale mapping revealed “sub-compartments” within these larger domains 

(Rao et al., 2014; Spracklin et al., 2021), with extremely high sequencing depths 

revealing ‘compartments’ of sizes down to a few kb (Gu et al., 2021). A unified 

mechanism that explains compartment interactions has not been described, although 

perturbation of transcription in Drosophila melanogaster or DNA methylation in 
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human cell lines can affect interactions between active and inactive compartments, 

respectively (Rowley et al., 2017; Spracklin et al., 2021). Compartment interactions 

may be driven at least in part by affinity between molecules differentially present in 

the compartments, such as histone marks, and may involve phase separation 

(Nichols and Corces, 2021; Nuebler et al., 2018).  

In repressed chromatin, enriched focal interactions are detected between polycomb-

bound regions over a very wide range of genomic distances, up to several 10s of Mb 

(Boyle et al., 2020; Loubiere et al., 2020; Rhodes et al., 2020). These interactions 

are cohesin-independent but are dependent on components of the polycomb 

repressive complexes. The functional significance of these focal interactions in 

polycomb-mediated repression is unclear (Dimitrova et al., 2022; Ogiyama et al., 

2018). 

There is also evidence for associations between active genomic regions over very 

large genomic distances. TADs containing super-enhancers and active genes are 

spatially closer to other highly active TADs than to those with low activity (Beagrie et 

al., 2017), and active regions tend to colocalise with nuclear speckles enriched in 

splicing factors (Chen et al., 2018; Quinodoz et al., 2018). In mouse embryonic stem 

cells (mESCs) and differentiated cell types, active transcription start sites (TSSs) and 

transcription factor (TF) binding sites have been shown to interact with their own type 

across 2-10 Mb (Bonev et al., 2017). The function of, and mechanism driving, these 

long-range interactions, and whether they also occur in other cell types and species, 

are not known. 

To uncover mechanisms underlying enriched chromatin interactions between CREs 

at different scales of genomic separation, we performed a computational screen 

utilising micro-C and Hi-C data and ChIP-seq databases of binding sites for 

hundreds of DNA-binding factors in mouse and human cells. We searched for factors 

whose binding is correlated with enriched chromatin interactions between pairs of 

CREs at short (<1 Mb) and long (>1 Mb) genomic distances. In addition to polycomb 

and cohesin-associated proteins, we uncovered many proteins associated with 

active transcription whose binding sites were enriched in long-range interactions. 

These interactions at active genes and enhancers are enriched between regions 

separated by several 10s of megabases and even on different chromosomes, are 

dynamic between tissues and cell types, and occur in both vertebrates and 
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invertebrates. We show that these interactions are unrelated to cohesin and 

polycomb-driven interactions, but also do not depend on transcription per se or 

several factors associated with transcriptional activation. We propose that CRE-CRE 

interactions are driven by three main mechanisms – loop extrusion, polycomb 

contacts, and ultra-long-range interactions between active regulatory elements. 

 

Results 

Screening for factors bound at sites of enriched CRE-CRE interactions 

To quantify interactions between CREs, we merged DNase-accessible ENCODE 

(Luo et al., 2020) CREs from mESCs within 5 kb of each other and generated 

observed over expected contact frequencies for each CRE pair from Hi-C and micro-

C data at both short-range (0.1-1 Mb) and long-range (1-10 Mb) (Figure 1A). The 10 

Mb cut-off is to limit the number of combinations and to avoid sparse data at larger 

distances. We determined the overlap of CREs with DNA-binding sites (peaks) in the 

cistromeDB (Mei et al., 2017) and ReMap2022 (Hammal et al., 2022) databases. For 

each peak dataset representing one ChIP-seq experiment, we divided CREs into 

overlapping and non-overlapping. We then compared the contact frequencies of 

CRE pairs overlapping the factor on both sides or not at all by calculating the Mann-

Whitney adjusted p-value and effect size (F=U/(n1*n2)), where F>0.5 means 

increased contact frequencies at bound compared to unbound (Figure 1B). We 

annotated the factors into 7 classes; cohesin-associated, polycomb-associated, 

transcription cofactors, TFs, repressive factors, and other. We use transcription 

cofactors broadly here to mean chromatin and transcription-associated proteins 

which are not TFs or known repressors.  

We tested our approach by measuring changes in enrichment in the seven different 

classes in micro-C and Hi-C datasets from cells in which cohesin-associated factors 

had been degraded (Hsieh et al., 2021) or Ring1b (polycomb) knocked out (Boyle et 

al., 2020). As expected, RAD21 and CTCF degradation led to a decrease (Supp. Fig. 

1A,B), and WAPL degradation led to an increase (Supp. Fig. 1C) in enrichment 

between cohesin-associated binding sites at short-range. Ring1b knockout (KO) led 

to an expected decrease in enrichment for polycomb-bound regions at both short 

and long range (Supp. Fig. 1D). 
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After confirming that our approach was able to detect factors associated with 

enriched chromatin interactions, we performed our analysis on micro-C data from 

WT mESCs (Hsieh et al., 2020) (Fig. 1C, Supp. Fig. 2A-B, Supp. Table 1). Cohesin-

associated factors were enriched for interactions at short but not long range, and 

polycomb-associated factors were similarly enriched at short and long range. 

Besides these already known mechanisms, binding sites for transcription cofactors 

and TFs tended to be enriched at both short and long range, but with higher 

enrichment at long range. We correlated the number of non-polycomb bound TSSs 

per CRE bound by each factor and its enrichment. TFs and cofactors had a high 

correlation between enrichment and TSS overlap, showing that they are separate 

from polycomb and related to the presence of genes (Supp. Fig. 2C). We also 

performed the same enrichment analysis on Hi-C data from the GM12878 human 

lymphoblastoid cell line (Rao et al., 2014) and saw a similar pattern of enrichment for 

the different classes, meaning that this is not a feature specific to micro-C data or to 

mESCs (Supp. Fig. 2D-F). We used pileup analysis (Flyamer et al., 2020) to confirm 

some of the top hits. Sites bound by the CpG island (CGI) binding protein CFP1 

(CXXC1), or KLF4 - a pluripotency TF active in mESCs, showed enrichment at all 

distances up to 100 Mb (Fig. 1D). We call this non-cohesin, non-polycomb 

associated category of interactions at large distances “ultra-long-range interactions” 

(ULIs) between active regions. 

ULIs are seen as enriched stripes and central pixels in pileups, meaning that these 

active elements interact with each other and with the surrounding chromatin more 

than other regions at similar distances. Note that while the level of enrichment above 

expected is similar across distances, this does not represent similar absolute contact 

frequencies. We considered potential technical artifacts that could lead to the 

appearance of ULIs. We divided accessible regions into quartiles based on DNase-

seq signal, split them into those within 1kb of a TSSs or at least 5kb from the nearest 

TSS, and generated pileups (Supp. Fig. 3A-B). While ULIs scaled with accessibility, 

TSSs in lowly accessible regions were much more enriched in ULIs than more 

accessible sites without TSSs, arguing against this signal simply being a result of 

increased digestion or crosslinking efficiency in accessible chromatin. We also 

considered that large protein complexes bound at active genes could lead to 

increased crosslinking efficiency. However, contact frequencies did not correlate with 
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the number of cistromeDB and ReMap2022 peaks overlapping CREs, suggesting 

this is not the case (Supp. Fig. 3C-D). We also excluded normalisation artifacts, as 

ULIs can be seen in both unbalanced and balanced (iterative convergence and 

eigenvector decomposition, ICE, normalised, (Imakaev et al., 2012)) data, whether 

balanced on all, or only on cis, contacts (Supp. Fig. 3E). ULIs are also seen 

regardless of normalising by expected values, shifted controls, or not at all. We 

therefore conclude that ULIs represent bona fide enriched contacts between active 

regulatory elements.  

 
Ultra-long-range interactions between active regions are independent of cohesin and 
polycomb 

The strong enrichment for CFP1 binding sites in our screen (Fig. 1C, Supp. Fig. 2B) 

prompted us to test the relationship between CGIs and ULIs. This showed a 

correlation between interactions and the density of CpG dinucleotides at CGIs 

devoid of polycomb (Fig. 2A). Interaction strength at TSSs also scaled strongly with 

the level of transcription (Fig. 2B). Notably, TSSs in quartile 4 (highly transcribed) 

showed enrichment with quartiles 3 and 2 but not with quartile 1, meaning that 

inactive genes do not interact at all (Supp. Fig. 4A). Non-CGI promoters also interact 

but much less than CGI promoters, suggesting CGIs are not required but contribute 

to ULIs at TSSs (Supp. Fig. 4B). Analysis of micro-C data at 100 bp resolution within 

the 10kb region surrounding the TSS showed that enriched interactions are centred 

at the TSS (Fig. 2C).  

To formally exclude that ULIs are dependent on polycomb and cohesin, we analysed 

data from mESCs with Ring1b deleted (KO) or RAD21 degraded (AID) for 3 hours, 

which disrupts polycomb interactions and CTCF-CTCF interactions, respectively 

(Boyle et al., 2020; Hsieh et al., 2021). These interventions did not affect ULIs (Fig. 

2D-E), and neither did 3 hours of depletion of CTCF or the cohesin unloader WAPL 

(Supp. Fig. 4C). However, we did note a strong reduction of interactions after 6 

hours of RAD21 depletion in an independent mESC dataset (Rhodes et al., 2020) 

(Supp. Fig. 4D), but not in data from Rad21 KO mouse thymocytes (Seitan et al., 

2013) (Supp. Fig. 4E).  

We reasoned that this could be related to cell cycle dynamics as, unlike thymocytes, 

mESCs divide rapidly and accumulate in G2/M after 6 hours of RAD21 depletion due 

to failure to proceed through mitosis (Rhodes et al., 2020). Analysis of a Hi-C dataset 
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from cell cycle-synchronised erythroblasts (Zhang et al., 2019) showed, as expected, 

that ULIs are lost in mitosis and reappear as early as anaphase/telophase (Supp. 

Fig. 5A). This is prior to the formation of both CTCF loops and compartments (Zhang 

et al., 2019). Thus, the loss of ULIs after 6 hours of RAD21 depletion is most likely 

explained by the accumulation of mitotic cells in the absence of cohesin function. 

Analysis of cell-cycle phased merged single-cell Hi-C data (Nagano et al., 2017) 

shows that ULIs persist throughout G1, S, and G2 phases (Supp. Fig. 5B). In human 

HAP1 cells (Haarhuis et al., 2017), we did not detect a loss of ULIs upon deletion of 

the cohesin subunit SCC4, while WAPL deletion led to slightly decreased 

interactions (Supp. Fig. 5C). It is possible that the stiffening of the chromatin fibre 

that occurs upon prolonged loss of WAPL (Tedeschi et al., 2013) leads to a less 

dynamic chromatin structure, preventing active regions from interacting.  

Promoter-distal H3K27ac-marked CREs, i.e putative enhancers, which do not 

overlap with CGIs, also show enriched ULIs that scale with the level of H3K27ac 

enrichment (Fig. 2F). ULIs also occurred between these distal H3K27ac regions and 

CGIs as well as expressed genes (Fig. 2G, Supp. Fig. 5D). Taken together, these 

results show that ULIs scale with the activity of regulatory elements, are independent 

of polycomb and cohesin, are present in cycling and non-cycling cells, are reformed 

quickly after mitosis, and persist throughout the cell cycle. 

 

Rare interactions between distal cis-regulatory elements 

Enrichment in the pileups represents averages of many pairs of regions. High 

average enrichment could come from a few highly interacting pairs or from a 

tendency of many or all pairs to interact. To test this, we assessed the distribution of 

contact frequency values using two approaches, focusing on TSS quartile pairs at 

10-25 Mb distance. First, we quantified the contact frequency in the central 5 kb bin 

containing the TSS. Higher expression quartiles had higher contact frequencies, 

although most values were zero in all quartiles, reflecting the sparsity of data at 

these large distances (Fig. 3A). We also looked at the signal of the individual “corner 

stripes” in the pileups (Fig. 3B). This revealed a higher number of non-zero values 

across the stripe with increased expression level (Q3 and Q4). We did not find 

evidence of a few particularly highly interacting pairs dominating the pileups, 
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showing rather that this is a property of increased interaction frequencies between 

many pairs.  

The analyses above show that ULIs represent higher average contact frequencies 

between active CREs compared to the surrounding chromatin. Contact frequencies 

are related to, but are not a direct measure of, spatial distances (Finn et al., 2019). 

Nevertheless, we expected that active CREs separated from each other by large 

genomic distances would be closer together in the nucleus on average than with 

regions at similar distances that are not active CREs. To test this, we performed 

DNA FISH on mESC nuclei using probes between pairs of CREs at 9 Mb of genomic 

separation or between one CRE and an equidistant control region in the same A 

compartment. Both CRE-CRE pairs had lower median distances separating them, 

than the corresponding CRE-control, though for only one of these was this difference 

signficant (p=0.03, significant at FDR=10% after Benjamini-Hochberg correction) 

(Fig. 3C). This indicates that while the average enrichment between distal CREs is 

high in pileups, this only translates to marginally smaller distances between 

individual distal CREs in nuclei (median distances in both cases was > 1 micron). 

We only detected one instance of colocalisation (<200 nm distance) between 212 

measured CRE-CRE distances, showing that the enriched contacts seen between 

many regions in Hi-C/micro-C are exceedingly rare between individual pairs (see 

Discussion). 

 

Ultra-long-range interactions occur primarily in cis and in the A compartment 

Because ULIs are enriched at such large genomic distances, we tested if they are 

also enriched in trans between chromosomes. Indeed, high CpG-density regions 

devoid of polycomb are enriched in trans interactions (Supp. Fig. 6A). We note that 

while the level of enrichment compared to expected is comparable to that within 

chromosomes, the absolute contact frequencies are very low. We also considered 

that interactions might occur between homologs and tested this using Hi-C data from 

hybrid mESCs with phased SNPs (Han et al., 2020). This showed that interactions 

occur primarily within chromosomes and not between homologs (Supp. Fig. 6B).  

Active regions in the A compartment at distances of several 10s of Mb, as those we 

look at here, will be separated by multiple intervening A and B compartments. We 

wondered if the stripe seen in the pileups would span the whole intervening 
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chromatin or be constrained to A compartments. We picked regions close to A/B 

compartment switches and saw that the interaction enrichment was confined to the A 

compartment, i.e. the stripe does not span into the B compartment (Supp. Fig. 6C).  

 
Interaction dynamics and DNA methylation 

Their relationship to transcriptional activity and H3K27ac suggests that ULIs are 

dynamic between tissues. To investigate this, we used data from mESCs and 

differentiated neural progenitor cells (NPCs) (Bonev et al., 2017) and selected 

H3K27ac peaks enriched in either of the cell states (Fig. 4A). These regions showed 

correspondingly higher enrichment of ULIs in the cell state with higher H3K27ac. To 

investigate more rapid dynamics, we examined Hi-C data from human macrophages 

stimulated with lipopolysaccharide (LPS) and interferon (IFN-) (Fig. 4B) (Reed et al., 

2022). Regions that gained H3K27ac upon stimulation also gained ULIs and regions 

losing H3K27ac, although relatively lowly enriched to begin with, lost ULIs over the 

time course. While the small number of regions affected and the time resolution of 

the experiment precludes delineating which changes come first, it appears that 

changes in H3K27ac and ULIs accompany one another. 

To examine dynamic changes in ULIs between tissues in vivo, we took advantage of 

data from Danio rerio (zebrafish) and selected brain- or muscle-enriched promoter-

distal H3K27ac peaks (Yang et al., 2020). These were accompanied by enrichment 

of ULIs in the respective tissue (Fig. 4C). We also saw a corresponding higher level 

of DNA methylation in the tissue where the regulatory elements were inactive and no 

interactions were seen (Fig.4D). Because of the relationship between CGIs and ULIs 

(Fig. 2A), we reasoned that the focal demethylation at these regulatory elements 

may be responsible for the interactions, and that gain in DNA methylation would lead 

to their loss. To test if methylation is required for ULIs, we used Hi-C data from 

Drosophila melanogaster, a species with little DNA methylation and lacking CGIs 

(Deaton and Bird, 2011). We could detect ULIs between expressed TSSs and 

H3K27ac-positive, non-polycomb bound (as well as polycomb bound), regions in D. 

melanogaster eye-antennal imaginal discs (Loubiere et al., 2020) (Fig. 4E and Supp. 

Fig. 6D). This shows that ULIs are not specific to vertebrates and that DNA 

methylation is not required for their formation. 

 
Ultra-long-range interactions are not directly dependent on transcription 
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In our initial screening, we had seen enrichment for the binding sites of many 

sequence-specific TFs at ULIs (Fig. 1C, Supp. Fig. 2A-B). To determine whether 

homotypic interactions between TFs could drive ULIs we performed enrichment 

analysis comparing enrichment values for sites where a particular TF is bound at 

both interacting sides to where that TF is bound at only one side but there is at least 

one other TF bound at the other side. This is to avoid comparing to regions devoid of 

binding altogether at one side, i.e. inactive regions, which would skew the 

enrichment. Binding at both sides yielded a stronger enrichment than at one side, but 

the two were correlated with significant enrichment for every TF also when bound at 

only one side (Fig. 5A). As an example, we split H3K27ac peaks into those bound by 

MYC or not in the GM12878 lymphoblastoid cell line and saw that MYC-bound 

regions interacted with other active regions not bound by MYC (Supp. Fig. 7A). 

Although we cannot exclude some contribution, this analysis indicates that 

homotypic TF-TF interactions are unlikely to drive ULIs. 

We next tested if transcription cofactors may be required for ULIs. BRD4 has been 

implicated in chromatin organisation (Linares-Saldana et al., 2021; Rosencrance et 

al., 2020). Furthermore, Mediator and BRD4 have both been shown to be unevenly 

distributed in the nucleus, and enriched in so-called “transcriptional condensates” 

(Cho et al., 2018; Sabari et al., 2018). However, our analysis shows that either BRD4 

degradation (Linares-Saldana et al., 2021) or Mediator disruption (El Khattabi et al., 

2019) do not affect ULIs (Fig. 5B,C). YY1 has been implicated as a regulator of 

enhancer-promoter contacts (Weintraub et al., 2017), but degradation of YY1 (Hsieh 

et al., 2021) also had no effect on ULIs (Supp. Fig. 7B). Treatment with the P300 

catalytic inhibitor A-485 (Pelham-Webb et al., 2021) leads to loss of P300 activity 

and H3K27ac, but has no effect on ULIs (Fig. 5D).  

We considered whether ULIs may be driven by association with nuclear speckles, as 

this is strongly correlated with gene activity (Chen et al., 2018). Knockdown of the 

splicing component Srrm2 leads to a partial disruption of speckles (S. Hu et al., 

2019), but this did not grossly affect ULIs (Supp. Fig. 7C). Nuclear speckle 

association is primarily seen in the A1 subcompartment (Chen et al., 2018). We split 

active regions (H3K27ac peaks) in GM12878 by A1 and A2 (Rao et al., 2014) 

association and saw a higher level of ULI enrichment in A2 (Supp. Fig. 7D). These 
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data suggest that speckles cannot fully explain ULIs, although we cannot exclude 

that they may have some contribution. 

Active regulatory elements, including CGIs, tend to be preferentially located toward 

the nuclear interior (Beck et al., 2018; Boyle et al., 2001). To test whether ULIs are a 

reflection of a more central nuclear position of these regions, we used GPSeq data 

from HAP1 cells which measures radial positioning genome-wide (Girelli et al., 

2020). We divided GPSeq regions into three bins (1-3), from the periphery to the 

centre of the nucleus. As expected, CGIs lacking H3K27me3 in HAP1 cells were 

enriched in the most central GPSeq bin (Supp. Fig. 7E). Analysis of pileups between 

regions in the three bins revealed no trend towards more interactions between 

centrally occupying regions, in cis or in trans (Supp. Fig. 7F). However, this analysis 

normalises the signal to the corners of the pileup to see enrichment compared to 

surrounding chromatin. When excluding this step and looking simply at average 

observed over expected contact frequencies in the different bins, interactions are 

highest between regions in the most central bin at the largest genomic distances (25-

100 Mb) and in trans (Supp. Fig. 7G). These higher contact frequencies surrounding 

the CGIs likely reflects a higher level of A compartment intermingling. Our analysis 

indicates that (i) interactions between CGIs happen more often in the centre of the 

nucleus because they tend to be localised there, (ii) focal enrichment in contact 

frequencies between CGIs over the surrounding chromatin is similar regardless of 

nuclear radial positioning measured by GPSeq, and (iii) trans or very distal cis 

interactions are higher between regions in more centrally occupying regions. We 

therefore conclude that radial positioning contributes to, but does not fully explain, 

ULIs. 

 

As levels of transcription are correlated to ULIs, we investigated whether loss of 

transcription would disrupt ULIs. Treatment with Flavopiridol or Triptolide, which 

block transcription elongation and initiation, respectively, for 45 minutes did not lead 

to a loss of interactions (Hsieh et al., 2020) (Fig. 5E). Neither did degradation of 

RPB1, the largest subunit of RNA polymerase II (Pol II), for 6 hours (Jiang et al., 

2020) (Fig. 5F). ULIs are lost in mitosis and regained before cells enter G1 (Supp 

Fig. 5A). When analysing cells that were synchronised in mitosis and then released 

into G1 with or without RPB1, we saw no loss of ULIs (Fig. 5F).  
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Discussion 

Overall, our results indicate that although ULIs involving active CREs interacting 

across large genomic distances are characterised by scaling with activity – levels of 

transcription or H3K27 acetylation – they are not dependent on RNA Pol II or several 

other cofactors involved in transcriptional regulation, including BRD4, Mediator, and 

P300 activity.  

 

ULIs are dynamic, changing between cell types and upon stimulation on the 

timescale of a few hours.  There must therefore be some driving event leading to 

ULIs, which also coincides with activation of the genomic loci involved. We cannot 

exclude that there is a single factor mediating these interactions which we have not 

uncovered. However, we find it more likely that ULIs reflect an emergent property 

that is related to the many events that are involved in driving CRE activity, such that 

disrupting any individual factor does not disrupt the tendency of active regions to 

interact with each other. The fact that interactions are re-established after mitosis 

without a functional Pol II shows that ULIs are not merely a consequence of ongoing 

transcription. 

 

Many other studies have observed CRE-CRE interactions at distances above 1 Mb 

(for example (Bonev et al., 2017; Ogiyama et al., 2018; Schoenfelder et al., 2015)). 

Those long-range interactions which cannot be explained by polycomb likely reflect 

the same phenomenon we describe here, i.e. the tendency of active regions to 

interact. CGI-containing genes have been shown to interact more than non-CGI 

genes within and across chromosomes (Beck et al., 2018). This was attributed to 

their more central nuclear localisation and interaction with either transcription 

factories or polycomb bodies. We do not find a dependency of active ULIs on 

transcription components, nor a direct relationship to radial positioning. A caveat of 

this analysis is that the measure of radial positioning we used (GPSeq) represents 

an average of the entire cell population and has relatively low resolution (100 kb). 

Interactions between promoter CGIs and non-promoter (orphan) CGIs have been 

implicated in driving transcriptional activation, although at much shorter genomic 

distances (Pachano et al., 2021). While ULIs are particularly strong at CGIs, we see 

interactions between CGIs and other non-CGI active regions. While our results do 
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not exclude some level of specificity between different classes of active regions, we 

did not see evidence of this. 

Two recent studies describe small-scale “compartments” uncovered at very high 

sequencing depth using either whole-genome Hi-C, or micro-C with capture of 

individual TADs (Goel et al., 2022; Gu et al., 2021). While we propose ultra-long-

range as a defining feature of active CRE-CRE interactions, we do not exclude that 

the same forces driving them operates also at shorter distances (i.e. within TADs). 

Indeed, our initial screen showed enrichment for factors associated with active 

regions both at short-range and long-range, with a correlation between the two. 

While the compartment nomenclature used in the above studies suggests that these 

interactions are formed by the same mechanism as the much larger compartment 

domains, it is not yet known exactly what mechanisms contribute to compartment 

interactions. We observe that ULIs reform after mitosis before G1, which is much 

earlier than the reestablishment of large A/B compartments, which are complete only 

by late G1. While this does not exclude a similar mechanism, it suggests that ULIs 

behave differently from the larger compartment domains.  

 

DNA FISH of CRE pairs 9 Mb apart showed only one instance of colocalisation 

(<200 nm) of spots and marginally smaller median distances compared to CRE-

control probes in the same A compartment. Therefore, ULIs should not be 

considered as stable interactions between individual regions, but rather an increase 

of already small probabilities of association between CREs compared to surrounding 

chromatin. This could derive from an increased probability for encounter in the 

nucleus, an increase in time spent together when encountered, or both. It is the 

cumulative increase in these probabilities between many regions which give rise to 

the average enrichment in Hi-C/micro-C data. 

 

We propose the following model for interactions between CREs across scales (Fig. 

5G). At the ~1-2 Mb scale CREs are brought into proximity by the loop extrusion 

process, with focal interactions between loop extrusion boundaries such as CTCF 

sites. Polycomb-repressed regions are both locally compacted and interact with each 

other across all genomic distances. Finally, active CREs, including promoters and 

enhancers, interact with each other across large genomic distances. The average 
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enrichment between active CREs is on the order of ~50-100%, which could be 

considered relatively low. It is hard to imagine that very rare contacts between two 

specific regions at large distances, even though higher than with other regions at 

similar distances, would have a measurable functional impact. However, the 

cumulative interactions between all active CREs are substantial and may have a 

functional effect by creating a nuclear environment that enhances transcription.  

 

 

Methods 

Custom code 

All custom code used in the analysis has been deposited on GitHub 

(https://github.com/efriman/Friman_etal_ULI). Custom analysis was done in Python 

3.8.12 (G. van Rossum (Guido), 1995) in Jupyter notebooks (Kluyver et al., 2016) 

using pandas (McKinney, 2010) , numpy (Harris et al., 2020), and scipy (Virtanen et 

al., 2020) for data analysis and matplotlib (Hunter, 2007) and seaborn (Waskom, 

2021) for plotting. 

 

Hi-C data processing 

Already processed Hi-C and micro-C data were, when required, converted to cooler 

format (Abdennur and Mirny, 2020) using hic2cool (Dekker et al., 2017) or cooler 

cload pairs (see Supp. Table 3). Hi-C pairs from allele-phased SNPs (Han et al., 

2020) were downloaded from NCBI GEO:GSE132898 and split into separate files by 

genotype annotation, followed by conversion to cooler using cooler cload pairs. 

Other datasets (see Supp. Table 4) were processed using the distiller-nf 0.3.3 

(Goloborodko et al., 2019) pipeline with default settings and coolers filtered for 

q>=30 were used. ICE balancing (Imakaev et al., 2012) was performed using cooler 

balance, using ‘--cis_only’ or ‘--trans-only’ to generate cis/trans balanced weights. 

Replicate datasets were combined when available using cooler merge. Expected 

contact frequencies were generated using the cooltools 0.5.1 (Open 2C et al., 2022) 

functions expected-cis or expected-trans with ‘--clr_weight_name’ set to the 

appropriate balancing (cis/trans/total). Hi-C data in Fig. 3C were visualised using 

HiGlass in resgen.io (Kerpedjiev et al., 2018). 

 

Contact screen 
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ReMap2022 peaks were downloaded from https://remap2022.univ-amu.fr/. 

cistromeDB “Factor” data for mouse and human were downloaded in batch from 

http://cistrome.org/db. cistromeDB datasets corresponding to perturbation datasets 

(e.g. siRNA, KO, treatments) or misannotated data were discarded (see Supp. Table 

5). ReMap2022 and cistromeDB data for mouse or human were combined and 

overlapped with ENCODE CREs (peaks within 5kb merged using BEDTools merge 

(Quinlan and Hall, 2010)) overlapping DNase-seq peaks in mESCs or GM12878, 

respectively (see Supp. Table 6). Observed over expected (O/E) contact frequencies 

at 10 kb resolution (balanced using all contacts) and their respective coordinates for 

DNase-accessible CREs were extracted using coolpup.py with settings ‘--

store_stripes --flank 0 --expected expected_file --mindist 100000 --maxdist 

10000000 --by_distance 100000 1000000 10000000’. For each dataset in the 

cistromeDB and ReMap2022 data the contact frequency scores for short-range and 

long-range were split between pairs overlapping the dataset at both ends or at 

neither end. Datasets with less than 500 regions or with less than 50 overlapping or 

non-overlapping regions were discarded. A Mann-Whitney U test (using 

scipy.stats.mannwhitneyu with default settings) was performed to compare the two 

distributions and the effect size (F) calculated using F=U/n1*n2 where n1 and n2 are 

the number of observations for overlapping and non-overlapping regions. Adjusted p-

values were calculated by multiplying the Mann-Whitney p-value by the number of 

tests performed. TFs and transcription cofactors were derived from the AnimalTFDB 

3.0 (H. Hu et al., 2019) database followed by additional manual annotation (see 

Supp. Table 1-2). For Supp. Fig. 1, the F values were normalised to the mean F in 

each dataset (e.g. Ring1B KO) and this normalised value used to divide treated over 

untreated or KO over WT. For Fig. 5A, the analysis was performed in the same way 

as described above, except peaks were combined for all ChIP-seq datasets of the 

same factor. Comparison was made between regions unbound by any TF to those 

bound on both sides by the factor or only one side but at least one other TF bound 

on the other side. 

 

Pileups 

Pileups were generated with coolpup.py 1.0.0 (https://github.com/open2c/coolpuppy) 

(Flyamer et al., 2020). Most pileups are generated with the command ‘coolpup.py 

coolfile peakfile --flank 100000 --mindist 100000 --maxdist 100000000 --by_distance 
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100000 1000000 10000000 25000000 100000000 –expected expected_file.tsv’. 

Balancing (ICE normalisation) was always done on cis contacts, except for Supp. 

Fig. 6A where trans contacts were used, and Supp. Fig. 6B where all contacts were 

used. For all pileups, 5 kb resolution data were used, except for Fig. 2C where 100 

bp resolution was used. For Supp. Fig. 3E, mindist was set to 1000000 and --

clr_weight_name was altered based on if using total, cis, or no balancing, and ‘--

nshifts 0’ ‘--nshifts 5’ or ‘--expected expected_file’ used. Central pixel interactions 

and stripes in Fig. 3A-B were generated using ‘--mindist 10000000 --maxdist 

25000000 --store_stripes’. For Supp. Fig. 6C, regions near compartment edges were 

annotated as + or - stranded depending on if the nearest boundary was to the left or 

right and pileups generated with ‘--by_strand --mindist 1000000 --maxdist 

100000000 --flip_negative_strand’ and combining -- with ++ using a custom 

modify_2Dintervals_func in coolpup.py. For figures comparing interactions between 

different sets of regions, e.g. Fig. 2G, the different sets were annotated as + or -  and 

pileups generated with ‘--by_strand --flip_negative_strand’ and combining +- and -+ 

using a custom modify_2Dintervals_func in coolpup.py. Pileup heatmaps were 

generated using the coolpuppy function plotpup.py with settings '--plot_ticks’ and 

appropriate values for ‘--cols and ‘--rows’. ‘--norm_corners 10’ was used in all cases 

except Supp. Fig. 3E and Supp. Fig. 7G. Stripe plots in Fig. 3B were plotted using 

plotpup.py with settings ‘--stripe corner_stripe --plot_ticks --lineplot’. 

 

Peak and coverage files 

Peaks (bed or narrowPeak) and coverage files (bigWig) used are listed in Supp. 

Tables 6-7. Overlaps between peaks were generated using BEDTools intersect or 

bioframe (Open2C et al., 2022) overlap. Peaks were randomly sampled in some 

cases to get the same or similar number of peaks for comparisons. Distances to the 

closest peak were generated using BEDTools closest and peaks were merged using 

BEDTools merge. For Supp. Fig. 3A-B and Fig. 2F, ENCODE DNase-seq peaks or 

H3K27ac peaks not overlapping TSSs, CGIs or RING1B were split into quartiles 

based on the signalValue column. CGIs and dinucleotide frequencies were derived 

from CAP-CGI data (Illingworth et al., 2010). TSSs were defined as the first TSS for 

all genes in refGene (O’Leary et al., 2016). Processed H3K27ac values from 

stimulated THP-1 derived macrophages (Reed et al., 2022) were split into quartiles 

based on the m0000_VST and m1440_VST columns and regions with adjusted p-
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values < 0.5 and going from quartiles 1 or 2 to 4 or (up-regulated) or 4 to 1 or 2 

(down-regulated) were used. For Supp. Fig. 6C, compartments were called using 

cooltools eigs-cis at 50kb resolution and eigenvector E1 values above and below 

zero were called as A and B and adjacent bins in the same compartment merged. 

TSSs not overlapping RING1B binding sites within 50 kb of compartment edges 

were compared to Q4 TSSs not overlapping RING1B at least 100 kb from 

compartment edges. Zebrafish H3K27ac enrichment values were taken from figure 

2d source data from (Yang et al., 2020) and brain/muscle enrichment defined as 

those with values >4 in one and <1 in the other tissue. Processed Drosophila 

melanogaster RNA-seq data from (Loubiere et al., 2020) were split into quartiles 

based on the baseMean value. For GM12878, the top 20000 H3K27ac peaks (based 

on signalValue) not overlapping H3K27me3 from ENCODE were used and 

overlapped with ENCODE MYC peaks (Supp. Fig. 7A) or subcompartments from 

(Rao et al., 2014) (Supp. Fig. 7D). GPSeq data at 100 kb resolution were 

downloaded from https://github.com/ggirelli/GPSeq-source-data (source data figure 

2e) and values from two experiments were averaged and split into three bins, which 

were overlapped with CAP-CGI regions which dit not overlap H3K27me3 in HAP1 

(from ENCODE). Peaks were converted between assemblies using UCSC liftOver 

(Hinrichs et al., 2006). Coverage heatmaps and lineplots were generated using 

deepTools (Ramírez et al., 2016) computeMatrix with settings ‘-reference-point --

referencePoint center -a 5000 -b 5000’ and plotted using deepTools plotHeatmap or 

plotProfile. 

 

Expression quartiles and H3K27ac 

4SU-seq data from mESCs and differentiating towards NPCs (Boyle et al., 2020) 

were aligned to the mm10 genome in paired-end mode using STAR 2.7.1a (Dobin et 

al., 2013) with settings ‘--outFilterMultiMapNmax 1’. H3K27ac ChIP-seq data from 

mESCs (Luo et al., 2020) and NPCs (Bonev et al., 2017) were aligned to the mm10 

genome in single-end mode using STAR 2.7.1a with settings ‘--

outFilterMultiMapNmax 1 --alignMatesGapMax 2000 --alignIntronMax 1 --

alignEndsType EndToEnd’. Duplicate reads were discarded using Picard 

(http://broadinstitute.github.io/picard/), and reads not aligning to autosomes, X, or Y 

were removed using samtools 1.10 (Li et al., 2009). Read counts were generated 

using HOMER 4.10 (Heinz et al., 2010) annotatePeaks.pl with settings ‘-noadj -len 0 
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-size given’ in the first exon of every refGene gene (for 4SU-seq) or merged 

H3K27ac peaks within 5 kb from mESCs and NPCs (for H3K27ac ChIP-seq). TMM 

normalisation was performed using edgeR (Robinson et al., 2010) in R 4.1.3 (R Core 

Team, 2022). For 4SU-seq, the mean normalised values from both replicates were 

averaged, divided by the length of the exon, and split into quartiles. For H3K27ac, 

DE analysis using limma (Ritchie et al., 2015) was performed with contrast 

~0+Sample. Peaks with adjusted p-values < 0.05 were split into those higher in 

mESCs or NPCs.  

 

DNA FISH 

mESCs grown on slides were fixed in 4% paraformaledhyde, permeabilized in 

PBS/0.5% Triton X, dried, and then stored at −80°C prior to hybridisation. Slides 

were incubated in 100 μg/mL RNase A in 2× SSC for 1 h at 37°C, washed briefly in 

2× SSC, passed through an alcohol series, and air-dried. Slides were incubated for 5 

min at 70°C, denatured in 70% formamide/2× SSC (pH 7.5) for 40 min at 80°C, 

cooled in 70% ethanol for 2 min on ice, and dehydrated by immersion in 90% ethanol 

for 2 min and 100% ethanol for 2 min prior to air drying. 1 μg of fosmid DNA was 

labeled by nick translation to incorporate green-dUTP (Enzo Lifesciences), Alexa 

fluor 594-dUTP (Invitrogen) or digoxigenin-11-dUTP (Roche). 100 ng of each fosmid, 

6 μl of Cot1 DNA per fosmid, and 5 μg of sonicated salmon sperm DNA were dried in 

a spin-vac and then reconstituted in 30 μl of hybridisation mix. Probes were then 

denatured for 5 min at 80°C and reannealed for 15 min at 37°C. Fosmid probes were 

hybridised to slides under a sealed coverslip overnight at 37°C. Slides were washed 

the next day four times for 3 min in 2× SSC at 45°C and four times for 3 min in 0.1× 

SSC at 60°C, and the digoxigenin labelled probe detected with anti-digoxigenin 

antibody (Roche) and Alexa-Fluor 647 donkey anti-sheep antibody (Invitrogen). 

Slides were stained with 4,6-diaminidino-2-phenylidole (DAPI) at 50 ng/mL, mounted 

in VectaShield (Vector Laboratories), and sealed with nail varnish. Slides were 

imaged on the SoRa spinning disk confocal microscope (Nikon CSU-W1 SoRa) and 

images were denoised and deconvolved using NIS deconvolution software (blind 

preset) (Nikon). 3D images are shown in the figures as maximum intensity 

projections prepared using ImageJ. The distances between the relevant spots was 

calculated using the Imaris spots function. Statistical comparison was performed 

using a Wilcoxon signed-rank test (scipy.stat.wilcoxon with default parameters) and 
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multiple test correction using Benjamini-Hochberg 

(statsmodels.stats.multitest.multipletests with alpha=0.1). Probe coordinates are 

found in Supp. Table 8 

 

Figure legends 

Figure 1. Computational screening for factors associated with enriched 

interactions between CREs 

(A) Schematic of the computational pipeline. CRE pairs are split into short-range 

(0.1-1 Mb between pairs) and long-range (1-10 Mb between pairs). These regions 

are overlapped with peaks from different datasets and contact frequencies at 10 kb 

resolution compared between pairs overlapped by the factor, and pairs not 

overlapped by the factor to calculate enrichment values. (B) Example of the analysis 

for a RING1B ChIP-seq dataset. Observed over expected (O/E) contact frequencies 

for CREs at long-range were split into overlapping RING1B peaks on neither or both 

sides and Mann-Whitney F and adjusted p-values were calculated (****: p=3.8*10-

184). (C) Effect sizes for factors with significantly enriched chromatin interactions 

compared to unbound CREs in mESCs. x and y axes show enrichment at short-

range and long-range. Colours represent the group the factor belongs to. (D) Pileup 

analysis for 5000 regions for each of the indicated hits from Fig. 1C for interaction 

pairs at different distances of genomic separation in micro-C data from mESCs. For 

CFP1 and KLF4, peaks overlapping RING1B binding sites were excluded.  

 

Figure 2. Ultra-long-range interactions between active promoters and distal 

regulatory elements 

Pileup analysis for (A) non-RING1B overlapping CGIs split by quartiles based on 

CpG density (2352-3015 peaks per group). (B) Non-RING1B overlapping TSSs 

(4800-5128 peaks) divided into quartiles by expression level, based on 4SU-seq 

data, in micro-C data from mESCs. (C) The 10 kb surrounding the Q4 TSSs (5128 

peaks) at 100 bp resolution in micro-C data from mESCs. (D and E) CGI Q4 (2651 

peaks) regions in (D) micro-C data from RAD21-AID mESCs and (E) Hi-C data from 

WT or Ring1b KO mESCs. (F) TSS-distal H3K27ac peaks not overlapping RING1B 

or CGIs split by quartiles based on H3K27ac ChIP-seq signal (6161-6452 peaks per 

group) in micro-C data from mESCs. (G) CGI Q4 regions (2651 peaks, +CGI) and 

Q4 promoter-distal H3K27ac (6268 peaks, -CGI) in in micro-C data from mESCs.  
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Figure 3. Distribution of contact frequencies and DNA FISH 

(A) Empirical cumulative distribution frequency of O/E contact frequency values in 

the central 5 kb pixel between TSSs in the different quartiles separated by 10-25 Mb. 

(B) Left: Depiction of the “corner stripe” from a pileup. Right: Heatmaps of O/E 

contact frequency values in individual corner stripes for TSS-TSS quartile interaction 

pairs at 10-25 Mb distance. The line plot on top represents the mean signal. (C) Hi-C 

matrices for regions on chromosomes 1 (left) and 9 (right) used in DNA FISH 

experiments. CGI marks CGIs without RING1B. (D) Top: Interprobe distances 

measured by DNA FISH between ~9 Mb distal CREs on chromosomes 1 (left) and 9 

(right) or a CRE and an equidistant control region in the same A compartment. 

N=100 (Chr1) and 112 (Chr9) measurements. Boxplot lines denote maximum 

(excluding outliers), interquartile range (upper and lower bound of box), median 

(centre of box), and minimum values. *: p=0.03. Bottom: Example images of DNA 

FISH. Blue: DAPI, Green: CRE1 probe, Magenta: CRE2 probe, Cyan: control probe 

(adjacent to CRE2 in the genome). Scale bar: 2 μm. 

 

Figure 4. Interaction dynamics in mouse, human, zebrafish and Drosophila 

melanogaster 

(A) Left: H3K27ac signal in mESCs and neural progenitor cells (NPC) at mESC-

enriched (1509 peaks) and NPC-enriched (2491 peaks) regions. Right: Pileup 

analysis for the differentially enriched H3K27ac peaks in Hi-C from mESC and NPC. 

(B) Top and bottom: Pileup analysis for regions with increasing (top; 1058 peaks) or 

decreasing (bottom; 553 peaks) H3K27ac across the time course of LPS and IFN- 

stimulation of THP-1 derived macrophages. Middle: H3K27ac signal in THP1-derived 

macrophages at region with increasing (top) or decreasing (bottom) H3K27ac. (C) 

Left: H3K27ac signal in zebrafish brain and muscle at brain-enriched (2315 peaks) 

and muscle-enriched (1994 peaks) regions. Middle: Pileup analysis for the 

differentially enriched H3K27ac peaks in brain and muscle. (D) Average whole 

genome bisulfite (WGBS) signal in the differentially enriched H3K27ac peaks in brain 

and muscle. (E) Pileup analysis for Drosophila melanogaster TSSs (2943 regions 

per group) divided by expression level based on RNA-seq in Hi-C data from 

Drosophila melanogaster eye-antennal imaginal discs. 
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Figure 5. Independence of BRD4, Mediator, P300 activity, and transcription 

(A) Effect sizes of TFs for long-range (1-10 Mb) contact enrichment compared to TF-

unbound CREs in mESCs. x and y axes show enrichment for TF binding at both 

sides and only one side, but at least one other TF bound at the other side. ρ: 

Spearman’s correlation coefficient. (B) Pileup analysis between CGI Q4 regions in 

dTAG-BRD4 mESCs with or without BRD4. (C) Pileup analysis between CGI Q4 

regions in WT, Med15-/- Med16-/- Med23-/- Med24-/- Med25-/- (tailless), and MED14-

SMASh degron CH12 cells. (D) Left: Mean H3K27ac signal in CGI Q4 regions in 

mESCs treated with DMSO or A-485. Right: Pileup analysis between CGI Q4 

regions in mESCs treated with DMSO or A-485. (E). Pileup analysis between CGI 

Q4 regions in micro-C data from WT mESCs or treated with flavopiridol (FLV) or 

triptolide (TRP) for 45 minutes. (F) Pileup analysis between CGI Q4 regions in 

RPB1-AID mESCs with or without RPB1. Top two rows represent asynchronous 

cells, bottom two rows represent cells arrested in mitosis and released into G1. (G) 

Proposed model for interactions between CREs. Inactive genes in A or B 

compartments do not interact. In the A compartment, CREs overlapping loop-

extrusion boundaries interact via cohesin at short range, and polycomb-repressed 

CREs interact at short and long range. Active regulatory elements interact with each 

other across very large distances (focal interactions), as well as with other A 

compartments (stripes). 

 

Supplementary figure 1. Effect of cohesin subunit degradation and Ring1b 

knockout on contact frequency screen enrichment values 

(A-D) F-values for (left) short-range (0.1-1 Mb between pairs) and (right) long-range 

(1-10 Mb between pairs) enrichment were calculated for each Hi-C/micro-C dataset 

and the relative enrichment derived by dividing by the mean F for each dataset. This 

value was divided between treatment (AID = Auxin treated, or KO = knockout) and 

control (UT = Untreated, or WT) for (A) RAD21-AID, (B) CTCF-AID, (C) WAPL-AID, 

and (D) Ring1b KO. 

 

Supplementary figure 2. Contact frequency screen results in mESCs and 

human GM12878 lymphoblastoids 
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(A and B) F values for short-range (A) and long-range (B) enrichment in mESCs. 

Black outlined dots are significantly enriched (adjusted p<0.05), while non-outlined 

ones are not. (C) Correlation between the number of non-RING1B overlapping TSSs 

per CRE overlapping the factor and its enrichment (F) value at short (left) and long 

(right) range. (D) Effect sizes for factors with significantly enriched chromatin 

interactions compared to unbound CREs in the human GM12878 lymphoblastoid cell 

line. x and y axes show enrichment at short-range and long-range. Colours represent 

the group the factor belongs to. (E and F) Same as (A and B) but for GM12878. 

 

Supplementary figure 3. Exclusion of accessibility, binding, balancing, and 

normalisation as artifacts 

(A) Pileup analysis of micro-C data from mESCs in quartiles split by DNase-seq 

signal and proximity to TSSs (<1kb or >5kb; 2705 peaks per group). (B) DNase-seq 

signal for regions used in (A). (C and D) Hexbin plots showing the correlation (ρ: 

Spearman’s correlation coefficient) between the sum of the total number of factors 

overlapping the regions on both sides and contact frequencies at short-range (C) 

and long-range (D). (E) Pileup analysis of 5898 CFP1 peaks not overlapping 

RING1B in micro-C data from mESCs using different balancing and normalisation 

parameters. Balancing refers to ICE normalisation, based on total or only cis 

contacts. Normalisation is performed using either 5 randomly shifted regions for each 

peak or based on calculated expected values. Corner normalisation refers to 

normalising the total signal by the average of the signal in the 4x10 corner pixels. 

 

Supplementary figure 4. ULIs between TSSs, effect of CTCF and WAPL 

degradation, and effect of RAD21 long-term depletion or knockout 

(A) Pileup analysis between different non-RING1B bound TSS quartiles in micro-C 

data from mESCs. (B) Pileup analysis of the top 2 non-RING1B bound TSS quartiles 

based on expression and split by overlap with CGIs (732 peaks per group) in micro-

C data from mESCs. (C) Pileup analysis between CGI Q4 regions in micro-C data 

from CTCF-AID and WAPL-AID mESCs. (D) Pileup analysis between CGI Q4 

regions in Hi-C data from RAD21-AID mESCs. (E) Pileup analysis between CGI Q4 

regions in Hi-C data from WT and Rad21 KO thymocytes. 
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Supplementary figure 5. Cell cycle phase, cohesin disruption in HAP1, and 

TSS-non TSS interactions 

(A) Pileup analysis between CGI Q4 regions in Hi-C data from cell cycle staged 

mouse erythroblasts. (B) Pileup analysis between CGI Q4 regions in merged single-

cell Hi-C data from cell cycle stage-inferred mESCs. (C) Pileup analysis between 

high CpG density CGI (Q4) regions not overlapping H3K27me3 (22’924 Peaks) in Hi-

C data from HAP1 cells with or without SCC4 and/or WAPL. (D) Pileup analysis 

between Q4 H3K27ac regions (6268 peaks; -TSS) and Q4 TSSs in micro-C data 

from mESCs. 

 

Supplementary figure 6. Trans interactions, compartment switches, and 

interactions in Drosophila melanogaster 

(A) Pileup analysis between CGI Q4 regions on different chromosomes (trans) in 

micro-C data from mESCs. (B) Pileup analysis for non-RING1B bound CGI regions 

(11’157 peaks) in Hi-C data from SNP-phased hybrid mouse CD4 T-cells. (C) Pileup 

analysis for non-RING1B bound TSSs close to B compartments (top; 1139 peaks) or 

Q4 TSSs far from B compartments (bottom; 1139 peaks) in micro-C data from 

mESCs. (D) Pileup analysis for regions with different combinations of H3K27ac and 

PRC1 (SUZ12 and PSC) regions (4722, 3187, and 3350 peaks) in Hi-C data from 

Drosophila melanogaster eye-antennal imaginal discs.  

 

Supplementary figure 7. MYC binding, effect of YY1 and Srrm2 perturbation, 

subcompartments, and correlation with radial positioning 

(A) Pileup analysis between H3K27ac peaks with or without MYC (3301 peaks per 

group) in Hi-C data from GM12878. (B) Pileup analysis between CGI Q4 regions in 

micro-C data from YY1-AID mESCs. (C) Pileup analysis between CGI Q4 regions in 

Hi-C data from AML12 cells with control or Srrm2 shRNA. (D) Pileup analysis of 

H3K27ac peaks overlapping the A1 (9445 peaks) or A2 (8082 peaks) 

subcompartments in Hi-C data from GM12878. (E) Number of CGIs not overlapping 

H3K27me3 in HAP1 overlapping three bins based on GPSeq signal, where higher 

means more central nuclear localisation. (F) Pileup analysis of CGIs overlapping 

different GPSeq bins (2670 peaks per group) in cis (left) and trans (right) in Hi-C 

from HAP1 cells. (G) Pileup analysis of CGIs overlapping different GPSeq bins in cis 

(left) and trans (right) in Hi-C from HAP1 cells without corner normalisation. 
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Supplemental figure 7
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