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Abstract

We investigated the capability of internal normal modes to reproduce RNA dynam-

ics and predict observed RNA conformational changes, and, notably, those induced

by the formation of RNA-protein and RNA-ligand complexes. Here, we extended our

iNMA approach developed for proteins to study RNA molecules using a simplified rep-

resentation of RNA structure and its potential energy. Three datasets were also created

to investigate di↵erent aspects. Despite all the approximations, our study shows that

iNMA is a suitable method to take into account RNA flexibility and describe its con-

formational changes opening the route to its applicability in any integrative approach

where these properties are crucial.
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Introduction

Ribonucleic acid (RNA) molecules are involved in nearly any physiological phenomenon in

the cell.1–3 Moreover, many viruses (e.g., HIV, Hepatitis C, coronavirus) manipulate cellular

machineries to ensure their replication, for instance to translate their mRNA.4 RNA func-

tions crucially rely on both the specific three-dimensional (3D) folding of the molecule, which

in turn depends on the sequence and on how nucleobases pair through hydrogen bonds,5 and

its conformation. This relationship is even more crucial for protein-RNA complexes. The

dysfunction of such complexes is implicated in many humans and animal pathologies.6 For

example, the formation of ribonucleoprotein particles (RNPs) including mRNAs is key for

the post-transcriptional regulation of gene expression.7 As for proteins, RNA molecules can

undergo conformational changes based on di↵erent stimuli (for example pH) or following the

binding to a ligand or another biomolecule that often goes beyond local rearrangements.8–10

A well-known example is given by the SAM-riboswitch which can change its 2D folding

to bind the S -adenosyl-L-methionine.11 Hence, RNA flexibility is crucial for its function

and underlies not only RNA folding, but also the majority of RNA interactions with other

molecular species.12 However, its flexibility is very complex allowing to adopt distinct con-

formations and it is one of the major reasons why obtaining high-resolution 3D structures

via X-ray crystallography, NMR or cryo-electron microscopy (cryoEM) is still a challenging

task as shown by the relatively small number of bound or unbound structures deposited in

the Nucleic Acid Data Bank (NDB).13,14 In this context, predicting both the structure and

structural transitions and conformational changes linked to the interactions is very impor-

tant, particularly in view of the increasing use of relatively low-resolution data obtained by

small-angle X-ray scattering (SAXS), cryoEM or biochemical probing (for example Selec-

tive 2’-Hydroxyl Acylation analyzed by Primer Extension, SHAPE)15–17 and to develop new

integrative approaches.18–24

Predicting local or global changes in RNA conformations is still very di�cult. In some

cases, this hinders the prediction of the structure of the complex or the change of RNA
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folding.12 A common method to study RNA flexibility, RNA dynamics and conformational

rearrangements for isolated RNA molecules or RNA-ligand/RNA-protein complexes are

molecular dynamics simulations using either an all-atom or a coarse-grain representation.

However, the millisecond simulations currently reachable25 are computationally expensive,

several replica are needed and enhanced methods are still limited for these tasks and the

size of RNA molecules is small.12,22,26–29 Moreover, these methods are still of limited use for

RNA-protein/RNA-ligand docking without reliable starting conformations. Therefore, sim-

plified and faster methods are highly sought. Among them, normal mode analysis (NMA)30

is a well-known computational approach to represent the intrinsic flexibility of biomolecules

and their conformational changes and it is typically combined with coarse-grain molecular

representations and simplified energy models, like elastic network models (ENM) and in

particular Anisotropic Network models (ANM).26,31–37

Under a harmonic approximation, NMA gives insights into the equilibrium vibrational

modes accessible to a system. After many decades of applications to classical physical prob-

lems, molecular applications to biomolecules, in particular proteins, confirmed the impor-

tance of low-frequency motions in biological processes.30,38,39 Although NMA has largely

been applied to study proteins and protein deformations induced by ligand binding, al-

losteric processes and conformational changes occurring between isolated proteins and their

complexes,30,40–43 the use of NMA for nucleic acids is still quite limited, in particular for

single-stranded RNA. For example, NMA has been used in combination with experimental

data such as SAXS44,45 and SHAPE26 to take into account RNA flexibility and its structural

rearrangements. NMA has also been employed to study the dynamics of binding interactions

of snRNA and U1A.33 Van Wynsberghe and Cui investigated the hammerhead ribozyme and

a guanine riboswitch and have shown that NMA coupled with ENM models can reproduce

key aspects of nucleotide dynamics but that it may not be as precise for loosely packed

structures as it is for densely packed ones, such as globular proteins.46 In this perspective,

Zimmermann and Jernigan have investigated the capability of elastic network models and
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coarse-grain models coupled with NMA to capture the apparent motions within ensembles of

16 RNA structures.32 Their study shows that ENM models and NMA are suitable methods

to study well-packed RNA-only structures, thus justifying their use in the analysis of the

dynamics of protein-RNA complexes such as those involving ribonucleic proteins.

As for proteins, almost all the studies reported in the literature for ssRNA are referring

to NMA computed using a Cartesian Coordinate Space (CCS) for its simplicity (hereafter

termed cNMA). This approach is often combined with a coarse-grain model based on a sim-

plified RNA backbone (i.e., the Cartesian positions of the P atoms) where the pseudoatoms

are connected by linear springs within a given cut-o↵ distance or more complex dependen-

cies.32,33 More structural information on both the backbone and the nucleobase atoms can

also be included.26 However, cNMA su↵ers from the fact that the harmonic approximation

is only valid for relatively small movements, implying that conformational changes defined

by the normal modes will quickly deform the valence structure (i.e., bond lengths and bond

angles) of RNA. These intrinsic limitations can explain why cNMA fails to correctly predict

the dynamics of some RNA molecules, in particular for loosely packed structures, and the

need to refine the structure if RNA undergoes large conformational changes.46

One clear route to improve NMA involves the choice of another coordinate space. Gō and

co-workers proposed an alternative approach based on the Internal Coordinate Space (ICS).

They noted that ICS (torsion angles, bond angles, and bond lengths) is more advantageous

as it extends the validity of the harmonic approximation of the conformational energy hy-

persurface.47 Thus, larger conformational changes can be modeled by taking into account

the eigenvectors of low-frequency modes. This approach also allows to chose the “chemically

relevant” variables, thus making it easier to split the degrees of freedom into two categories:

“hard” (typically, bond lengths and valence angles) and “soft” (torsion angles). Based on the

question, the hard variables can be excluded since they are unlikely to significantly contribute

to medium/large collective movements, thus simplifying and speeding up the computations.

For the reasons above, ICS NMA (hereafter named iNMA) is usually performed in torsional
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angle space, while keeping fixed valence angles and bond lengths, allowing thus to greatly

reduce the total number of variables involved. As a consequence, an iNMA analysis can be

carried out on any relevant subset of variables without modifying the molecular represen-

tation of the RNA molecule under investigation. Therefore, this approach allows to collect

important pieces of information regarding those variables responsible for low-frequency col-

lective movements. Moreover, iNMA, as cNMA, can equally describe spatial movements by

a conversion of the modes into Cartesian space.31,48

Despite these advantages, applications of iNMA are relatively scarce in particular for

ssRNA,49 probably due to the higher complexity behind it. This complexity comes from the

fact that, in ICS, internal variables must be separated by overall rotations or translations of

the molecular system under study. To do so, we need to know the topology of the system

under investigation, in particular which pseudoatoms are moved by any given variable.50–52

Moreover, although iNMA represents a suitable tool for the characterization of the variables

responsible for low-frequency collective movements, a direct description of the movements

occurring in Cartesian space is not provided. To solve this problem, a second-order expansion

can be used allowing to combine the advantages of iNMA with a CCS description of the

overall conformational change, as shown for proteins in previous works.31,48,53

In the present work, we will use the iNMA approach (coupled with a simplified RNA

representation and an elastic network energy model) to investigate the ability of internal

normal modes analysis to capture RNA dynamics within 21 di↵erent ensembles of exper-

imentally determined RNA structures and that obtained by all-atom molecular dynamics

(MD) simulations for 16 RNA molecules. Finally, we will also study the unbound-to-bound

transition for a set of RNA molecules for which at least two distinct conformational states

are known and conformational changes are involved: an isolated, unbound state and a bound

state involving interactions with another biomolecule or a ligand. In our framework, in order

to extract the dynamics observed in the experimental ensembles and obtained by MD simu-

lations, we will perform a Principal Component Analysis (PCA) in Cartesian space. Hence,
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to compare both RNA dynamics with the one predicted by iNMA and the experimental

structures with those predicted by iNMA, we will do a conversion from the torsional space

into Cartesian space without using any information from the target structure, as proposed

earlier by Bray and co-workers,54 either using the second-order expansion for the first time

applied to RNA molecules or the approach proposed by some of us in.53 The main aim of this

work is to test the possibility of using low-frequency modes to describe RNA dynamics and

unbound-to-bound RNA conformational transformations without introducing any deforma-

tion in the valence structure (bond lengths or angles) as would be the case with cNMA. We

also aim to assess how the topology influences our results and if our approach is more appro-

priate to study loosely packed structures than cNMA. These aspects are important from the

perspective of using iNMA in docking algorithms or in hybrid approaches combining NMA

with experimental data from multiple sources to generate high-resolution models of RNA

and RNA-biomolecules or RNA-ligand assemblies.

Internal Normal Mode Analysis

General Theory

Normal modes55 present an analytical solution of the classical equations of motion by im-

posing a harmonic approximation on the potential energy of the system (i.e., by assuming

that the energy is a quadratic function of its N coordinates) around the potential energy

minimum q
0
i

Ep =
1

2
qTFq (1)

where F is the Hessian matrix, or potential energy matrix, defined by Fij =
@
2
Ep

@qiqj
with qi

and qj the coordinate i and j, and q is a set of internal coordinates. The kinetic energy of
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the molecule, Ek, can then be expressed in terms of internal variables

Ep =
1

2
q̇THq̇ =

1

2

X

a

q̇T @ra
@qi

@ra
@qj

q̇ (2)

where ra and ma represent the position vectors and the atomic masses of each atom a, and

Hij =
P

a ma
@ra
@qi

@ra
@qj

is the kinetic matrix. The internal coordinates q can be bond lengths,

valence angles, torsion or rigid-body movements (rotations and translations). The equations

of motion in terms of any set of coordinates for n variables are given by Lagrange’s equations,

whose solution takes the following form

qi(t) = q
0
i +

nX

k=1

AikQk = q
0
i +

nX

k=1

Aik↵kcos (!kt+ 'k) (3)

where ↵k and 'k depend on the initial conditions and are the thermal amplitude and the

phase of the k-th mode, respectively. The unknowns, Aik and !k, are obtained by solving

the generalized eigenvector problem:

HAW = FA (4)

whereA is the matrix of the eigenvectors andW is a diagonal positive matrix whose elements

are

Wik = �ikw
2
ik (5)

with �ik the Kronecker delta.

The amplitude ↵k of a given normal mode k is also called thermal amplitude and it

depends on the temperature. Using the equipartition theorem, each normal mode has a

time-averaged potential energy equal to 1/2kBT , with T the absolute temperature and kB

the Boltzmann constant. Since the time-averaged potential energy of each mode can be

expressed as

hEpi =
1

2
!
2
k h
�
↵k cos(!kt+ 'k)

2
�
i =

1

4
!
2
k↵

2
k (6)
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we can obtain the thermal amplitude

↵k =

r
2kBT

!k
. (7)

where !k is the frequency of the kth mode.

Internal Coordinate Normal Analysis

In the presence of two RNA strands or another biomolecule, two types of variables must

be taken into account: interbody and intrabody coordinates. The number of independent

interbody variables is 6N�6, with N being the number of independent strands or molecules.

For each body, we chose the P atom for RNA molecules and C↵ atom for proteins31 closest

to the center of mass as the pivot for the rotation and translation. A complete description

of the variables can be found in our previous work.31

Hessian matrix

To compute the Hessian matrix, for the first derivative we used an analytical calculation as

in our previous work.31 The derivative of the energy with respect to the independent internal

variables qi can be written as:
dEp

dqi
=
X

k

dEk

drk
·
drk
dqi

(8)

where the sum runs over the subset of atoms k moving when a rotation is made around

the unit bond vector bi = (ri+1 � ri)/si. For the torsional angle ⌧i, si = |ri+1 � ri| and
drj
d⌧i

= bi ⇥ rj with Rji = rj � ri. In the case of the valence angles, drj/d✓i = (Rji ⇥ ci),

where c1 = (bi�1 � bi)/ sin ✓i is the perpendicular vector to the plane of the valence angle;

in the case of the distances, drj/dti = bi. The second derivatives are computed numerically

for computational e�ciency as presented by some of us in.31
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Kinetic matrix

Regarding the kinetic matrix, H, the derivatives of the atomic position vector ra with respect

to the independent variables qi must be computed carefully. In fact, as the internal kinetic

energy cannot include external motions (i.e., the overall translation and rotation of the

system), the change �ra caused by �qi must not move the center of mass or modify the inertia

tensor. To this end, Noguti and Gō proposed an elegant analytical approach to compute H

in dihedral angular space (DAS).50,56 In other words, for a given dihedral angle, taking all

the other variables as fixed, the system can be treated as two rigid bodies connected by a

chemical bond around which a rotation ⌧p can occur. For each atom b in the first body and

each atom c in the second, �rb and �rc are expressed using Eckart conditions to separate

internal and external motion.57 All the details can be found in a previous publication by

some of the present authors.31

Conversion from Internal Coordinates to Cartesian Ones

For small-amplitude conformational dynamics of RNA, the Taylor expansion of the Cartesian

coordinates31,48,53 around a given conformation (usually an energy minimum) corresponding

to a set of internal coordinates q is given by

ra{q +�q} = ra{q}+
X

i

@ra
@qi

�qi +
X

ij

@
2ra

@qi@qj
�qi�qj +O(q3) (9)

where �qi is the displacement of the internal coordinate i in the preceding instantaneous

conformation, defined as

�qi =

r
2kBT

!k
aik (10)

with aik the ith component of the eigenvector for the kth mode of frequency !k. This

expansion was proposed to study proteins and it was implemented for RNA molecules in

the present work and it should satisfy Eckart conditions and can be used for computing the
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overlap and other expressions (see below). See our previous work for the full expressions

corresponding to each type of variable in the presence of N bodies.31

Average properties

Thanks to the conversion from ICS to CCS, two average quantities can be computed: the

displacements of mean atomic positions from their positions in the minimum-energy confor-

mation, and the mean square fluctuation of each atom from its displaced mean position. As

shown in,31 if the terms up to second order or more are considered (see eq 9), the conversion

from ICS to CCS is no longer linear. The resulting nonlinearity provides a displacement of

atomic positions. The average over all conformations is given by

hrai =
1

2

X

i,j

Laij h�qi�qji =
1

4

X

i,j

Laij

X

k

AikAjk↵
2
k (11)

where Laij =
@
2ra

@qi@qj
represents the coe�cient ij ( quadratic term) for the L matrix. The

mean fluctuations are given by

h(�ra)
2
i = h

 
X

i

Kai�qi +
1

2
Laij�qi�qj

!2

i

=
1

2

X

i,j

KaiKaj

X

k

AikAjk↵
2
k +

3

32

X

ijlt

LaijLalt

X

k

AikAjk.AlkAtk↵
4
k

(12)

with Kai =
P

i

@ra
@qi

.

Computational details

RNA representation

To validate our approach, we used the same coarse-grain (CG) representation proposed

in26 (hereafter also called RNA three-bead model) to represent RNA molecules. In this
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model, each nucleotide is described by three pseudoatoms: the first centered on the atom

P, the second on the atom C1’ (the ribose) and the third centered on the atom C2 (the

nucleobase) (see Figure 1).The mass of each pseudoatom is the sum of the masses of the

atoms that constitute it. For the sake of comparison, we also computed iNMA using the

coarse-grain model HiRE-RNA proposed by Pasquali and co-workers, where each nucleotide

is described by 6 or 7 pseudoatoms (3 atoms for the backbone, 2 for the sugar, 1 or 2 for

the nucleobase).28,58 For the RNA three-bead model, only the dihedral angles between the

pseudoatoms are taken into account (see Figure 1) and each nucleotide has two torsional

angles: ⌧1 and ⌧2. The former involves the torsion around the bond Pi-C1’i and the latter

is the torsion around the C’1i-Pi+1 with i the nucleotide under investigation. For the HiRE

coarse-grain model, as some of us proposed in21 only the torsion angles ⌧b,i that involve the

backbone are taken into account.

C1'

C2

P

i+1

i
1

2

a) b)

b

sb

Figure 1: RNA CG representations. a)RNA three-bead model: the green bead represents
the pseudoatom centered in P, the blue bead the one centered in C1’ and the orange bead
the one centered in C2. The torsional angles ⌧1 and ⌧2 are also shown. b) HiRE model for
three nucleotides. Each bead represents a pseudoatom. An example of the backbone torsion
⌧b and the sugar-base torsion ⌧sb is shown.

In this work, the HiRE-model was used only for comparison and the full study was

conducted using the RNA three-bead model. To avoid artefacts, to compute ICS normal

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.11.30.518608doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518608
http://creativecommons.org/licenses/by-nc/4.0/


modes we chose the P atom closest to the centre of mass as pivot atom in both models.

ICS normal modes were computed using an anisotropic elastic network (ANM) model based

on two RNA representations. Two pseudoatoms i and j are connected if their reference

distance R
0
ij is lower or equal to the distance cuto↵ Rc. Hence, the structure is represented

as a network of nodes connected by springs whose force constant is equal to �. The energy

of the system was computed based on an ANM defined as follows

V =
1

2

if R0
ij<RcX

ij

�
�
Rij �R

0
ij

�2
(13)

where Rij represents the distance between the atom i and j. Here, we investigated the

impact of Rc on our results.

Calculation Protocol for iNMA

Internal normal mode analysis were computed using di↵erent distance cut-o↵s Rc. In each

case studied, all the vibrational frequencies obtained were positive (with the exclusion of the

six zero-frequency modes representing overall translation and rotation with cNMA calcula-

tions). In the case of iNMA, for the first 20 modes within the set {�qi} given by eq. (3), we

calculated the modified position ra{q + �q} using eq. (9) to perform the conversion from

ICS to CCS.

All-atom Molecular Dynamics simulations

All-atom MD unbiased simulations were performed for at least 500 ns with the GROMACS

2018 package59–62 using the Amber ↵99bsc0 force field with state-of-art modification of the

force field for RNA molecules.12 Each RNA molecule was placed in a dodecahedral box and

solvated with TIP4P to a depth of at least 14 Å .63 Each system was neutralized by adding

potassium cations and then K+Cl– ion pairs to reach a physiological salt concentration of 0.15

M and by adding MgCl2 64 based on the experimental conditions. Long-range electrostatic
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interactions were treated using the particle mesh Ewald method65,66 with a real-space cuto↵

of 10 Å. The hydrogen bond lengths were restrained using P-LINCS,67 allowing a time step

of 2 fs. Translational movement of the solute was removed every 1000 steps to avoid any

kinetic energy build-up.68

Before the MD production, we carried out the energy minimization and equilibration as

described in.17,69 During equilibration (at least 10 ns) a Berendsen thermostat (⌧T = 1 ps)

and Berendsen pressure coupling (⌧P = 1 ps)70 were used. The production part was carried

out in an NTP ensemble at a temperature held at 310 K and a pressure held constant at 1

bar using the Bussi velocity-rescaling thermostat (⌧T = 1 ps)71 and the Parrinello-Rahman

barostat (⌧P = 1 ps).72 During minimization and heating, RNA heavy atoms remained fixed

by using positional restraints. During the equilibration, the restraints were gradually relaxed.

Bond lengths were restrained using P-LINCS, allowing a time step of 2 fs. The length of the

simulations was at least 500 ns.

Principal Component Analysis

In general, the Principal Component Analysis (PCA) is used to reduce the dimensionality on

complex data. Here, we applied PCA on both all-atom MD simulations and the ensembles in

the Rfam Data Set to get information on RNA dynamics. The first few principal components

(PCs) usually capture a significant part of the ensemble variance.

PCA on all-atom MD simulations (group 1) We carried out a PCA in Cartesian

Coordinate Space on the all-atom molecular dynamics simulations by considering only the

same pseudoatoms of the CG model. To do so, we first superimposed the trajectory converted

to CG on the reference structure used for iNMA. PCA was performed by first computing

the covariance matrix and then determining the eigenvalues �i and the eigenvectors ei (the

principal components) as implemented in GROMACS 2018.59,60,62
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Principal Component Analysis on the RFARM Data Set (group 2) Also for this

data, to reduce the number of important degrees of freedom and simplify the analysis, we

conducted a PCA. We constructed a matrix where each row holds all coordinates for a

single structure. The structures were superimposed on the reference one. Columns are

then variables, one for each structure coordinate. PCA is performed on this matrix using

MATLAB 2021a.

Evaluation normal mode analysis

Overlap and Cumulative Overlap

To evaluate the ability of iNMA calculations to correctly predict RNA dynamics, we calcu-

lated Ojk, the overlap between the conformational change predicted by the jth normal mode

and the principal component:

Ojk =

PN
i=1 aij · eik

⇣PN
i=1 a

2
ij

PN
i=1 e

2
ik

⌘1/2 (14)

where aij represents the ith displacement in the j-th mode and eik the i-th displacement in

the k-th eigenvector of PCA. For iNMA, aij is obtained from the ICS to CCS conversion and

after the orthogonalization of the normal modes with the Gram-Schmidt process.73

To represent unbound-to-bound conformational changes of proteins that form binary

complexes, eq. (14) between the conformational change predicted by the jth normal mode

and the observed unbound-to-bound conformational becomes:

Oj =

PN
i=1 aij ·�ri

⇣PN
i=1 a

2
ij

PN
i=1 �r2i

⌘1/2 (15)

where �ri is the vector describing the unbound-to-bound conformational change for an atom

i. To compute the vector �ri, the unbound and bound structures must be superimposed by

weighting the mass following the same approach proposed in.17,31
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We also computed the cumulative overlap, COk, to recover the k-th principal component

PCk that is defined as

COk =

 
X

j

O
2
jk

!1/2

(16)

For the unbound-to-bound transition, eq. (16) for the cumulative overlap CO becomes:

CO =

 
X

j

O
2
j

!1/2

(17)

Root Mean Square Inner Product

The Root Mean Square Inner Product (RMSIP)74 is a measure of the similarity between two

sets of eigenvectors (either two sets of normal modes or a set of normal mode and principal

components), defined as

RMSIP(J,K) =

sPJ
j=1

PK
k=1 (Aj · Ek)

2

J
(18)

whereAj and Ek are the j-th and k-th eigenvector obtained by iNMA and PCA, respectively.

In other words, it allows to estimate the overlap between the space spanned by the first I

PCs and the first J low-frequency internal modes.

Structure Preservation Descriptors

To study large conformational changes, we exploited the possibility of using mode amplitudes

beyond those corresponding to room temperature (↵k) also for RNA molecules, as proposed

for proteins in.53 Hence, for the k -th mode, the modified amplitude ↵’k can be written as

↵
0
k =

p
�kkB

!k
(19)

where �k is a multiplication factor that is related to the e↵ective temperature, Teff , through

the following equation: �k = 2Te↵. Another parameter we need to consider is the phase
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angle, 'k, for a given mode k (see eq. (3)). If we consider a single mode, we can set the time

equal to zero, and the largest amplitude will be obtained for 'k = 0� and 'k = 180�.

Finally, to assess the extent of the structural deformation induced by iNMA modes, we

computed (i) the RMSD of the pseudo-atoms in the starting structure and in the structure

obtained by the application of normal modes with respect to the target; (ii) the RMSD of

the virtual Pi-Pi+1 bonds and Pi-C10i bonds defined as

RMSDb =

sPNd
i=1

�
db,i � d0b,i

�2

Nd
(20)

where b can either the virtual Pi-Pi+1 bonds or Pi-C0
1,i bonds (RMSDPi�Pi+1orRMSDPi�C101,i

),

Nd is the number of bonds, d0b,i is the reference length of the i-th bond b in the starting struc-

ture and db,i is the length of the i-th bond b in the modified structure.

Data set

In comparison with proteins, there is a small number of available 3D atomic structures

for RNA molecules, as shown in the NDB.13,14 Moreover, fewer resources exist for their

curation and comparison. In this study, we considered three main data sets: i) one based

on single-stranded RNA molecules for which all-atom MD simulations were computed; ii)

one based on the available structures belonged to a specific Rfam family; iii) one based on

the transition from unbound to bound RNA. The first two datasets was used to validate

the capability of iNMA to describe RNA movements and to chose the best parameters for

the elastic network model. The third one was used to investigate the capability of iNMA to

predict large conformational changes.

Single-stranded RNA data set

Based on our previous works31,53 and the benchmarks available in the literature for unbound

and bound RNA,75–79 we selected 16 RNA molecules with di↵erent size, function and con-
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formation. For each molecule, first all-atom MD simulations were performed and secondly

principal component analysis (PCA) in Cartesian Space were computed. All the details are

presented below. Table S1 shows the list of RNA molecules under investigation.

Rfam families

In this study, we built our second dataset starting from Rfam80–83 an important available

resource that collects RNA sequences and available structures into families based on multiple

sequence alignments and co-variance models. First, we filtered Rfam families based on the

presence or the absence of available 3D atomic structures. For each Rfam family, the number

of available 3D structures varies a lot, from few structures up to more than one thousand.

To determine the representative structures for each Rfam family, first we performed

a multisequence alignment for all the members whose 3D structure is available using Lo-

cARNA.84–86 Then, each family is divided in one or more subgroups based on the length

and the sequence alignment. Initially, all structures may only di↵er by 12 bases in length

and they must have the same gaps in the alignment. Only groups with 4 or more members

are retained. Then the 3D structures are downloaded and the pairwise RMSDs in the initial

pool of structures are computed with RNAalign87 that is the RNA version of the TM-align

algorithm used in the previous study by Zimmermann and Jernigan.32 Then, we choose

as the seed structure the highest resolution wild-type conformation that is also selected as

the first representative. All structures at less than c ÅRMSD from it are removed from

the initial pool. Finally, the structure with the lowest number of neighbors at less than

c ÅRMSD is selected as representative, and all structures at less than c ÅRMSD from it

are removed from the pool. This last step is iterated until the pool of structures is empty.

This procedure allows to reduce the structural redundancy within each family: in the set of

representative structures, no pair can have less than c ÅRMSD. It also allows keeping the

maximum number of representatives, since the structure with less neighbors is selected at

each iteration. The cuto↵ c is set to 0.5 Å in this study, but we also built representative sets
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with various c values in the [0.1 � 1.5] range, for testing. We chose a cuto↵ c = 0.3 Å for

two systems to increase the number of representative structures. The ensemble of structures

selected for each Rfarm family di↵ers from the one obtained in.32 Table S1 summarizes this

second dataset.

Unbound-to-bound transition

To build our dataset on unbound-to-bound transition, we used di↵erent RNA-protein docking

benchmark.76–79 Unfortunately, for several complexes, no 3D structure of the unbound RNA

is available and the RMSD between the bound and unbound structure is equal to zero, so

we also excluded such complexes since the RNA molecule does not undergo conformational

changes. Moreover, to do our comparison we need RNA molecules with the same length.

Then, we used RNA-align87 to compare and superimpose the 3D structures and compute

their alignment. Based on all these criteria, we selected 24 RNA molecules whose RMSDs

between the unbound and bound structure vary from 2 to 37.1 Å as shown in Table S2.

Results and Discussion

Advantages of iNMA for RNA molecules

As we have already shown in our previous works on a large set of proteins and models,

iNMA is generally capable of describing large conformational changes and also deals with

models.40 First, as we demonstrated for proteins, in the same way we computed iNMA on a

set of RNA molecules and for a given mode we increased the parameter �k to verify if our

approach is capable to preserve the structure. To do so, we computed the RMSD of the

Pi-C0
1,i bonds (RMSDPi�C10i

) and the virtual Pi-Pi+1 bonds (RMSDPi�Pi+1) for each RNA

molecule. Figure 2 shows an example of our results obtained for the PDB structure 2TRA

(A10). As expected, the RMSD computed on the Pi-C101,i bonds is equal to 0 Å since in

our approach the bonds are not taken into account as internal variable. The RMSD for the
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virtual Pi-Pi+1 bonds slightly increase with �k since the structure undergoes a signification

conformational change and also it is reasonable that the distance between the phosphates of

two consecutive nucleotides may increase.
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Figure 2: Root-Mean-Square-Deviation (RMSD) for the Pi-C10i bonds (blue star line)and for
the virtual Pi-Pi+1 bonds between two consecutive nucleotides (red dot line) as a function
as the multiplicative factor �k as defined in eq. (19). The calculations were performed on
the PDB structure 2TRA (A10).The starting structure and the final one obtained for the
first mode are shown for the sake of clarity.

Second, using iNMA we can also estimate the Root-Mean-Square-Fluctuations (RMSF)

per residue using eq. (12). As mentioned before, the RMSF can be computed using a linear

or second-order approximation. To evaluate the impact of these approximations, Figure

3 and Figure S1 report the predicted RMSF per residue of the RNA hairpin whose PDB

structure is 1QWA and the PDB structure 1L9A, respectively. By comparing Figure 3 and

Figure S1 obtained with di↵erent values of the force constant �, the larger the fluctuations

are large the higher the di↵erence between the approximations highlighting the limitations

of the linear approximation for large RMSF. We also investigated the impact of the distance

cut-o↵ Rc and the force constant � on the prediction of the RMSF profiles, as shown in

Figure 3 for the same RNA structure. Figure S2 shows other examples. We can observe that

the RMSF profiles predicted by iNMA show the same flexible regions, but the intensity of
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the peaks decreases with the increase of the value of the distance cut-o↵ Rc. Similar results

are obtained if we fix Rc and we change the value of the force constant �. It is important to

point out that the distance cut-o↵ Rc not only a↵ects the intensity of the peaks (see Figure

3 B) but also the eigenvectors. On the contrary, the force constant � has an impact mostly

only on eigenvalues, and not on the internal modes.

Finally, we can also compare the RMSF per residue predicted by iNMA with that com-

puted from all-atom MD simulations (see Figure 4 for the PDB structure 1QWA and 1L9A,

respectively). As highlighted above, based on the distance cut-o↵ Rc and the force constant

�, the predicted RMSF profiles change their intensity, although the ratio between the peaks

is mostly unchanged. Although we would not expect the iNMA-derived fluctuations to ex-

actly reproduce the all-atom MD results, the peak positions correspond reasonably well. For

the PDB structure 1QWA, using a distance cut-o↵ Rc equal to 12 Å and a force constant �

equal to 0.6 kcalmol|1, multiplying the NMA data by a factor of 4 also leads to a reasonably

good agreement in magnitude, with the exception of the ends whose flexibility is overes-

timated. When a larger value of either the distance cut-o↵ Rc or the force constant � is

chosen, a larger multiplicative factor should be used to better fit the magnitude of the peaks

as shown in Figure S3. It is important to point out that this good agreement is obtained

despite the fact that our analysis is limited to dihedral angles and includes only a simplified

energy description.

As already highlighted in our previous works on iNMA applied to proteins,17,31,40 also

for RNAs only few residues show significant torsional changes when low-frequency modes

are used, but these residues account for a large part of the overall motion. It is important

to point out that the knowledge of the key nucleotides responsible for the conformational

change is an another intrinsic feature of iNMA, but it is di�cult to dermine using Cartesian

Normal Mode Analysis. Moreover, thanks to the transformation from ICS to CCS, the

location of the largest structural displacements due to the key torsional variables for each

mode can be identified. Finally, as already showed we can explore amplitude larger to room
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Figure 3: A) RMSF per residue obtained for the PDB structure 1QWA using the first
(red dashed line) and second (red) order approximation in eq.(12) and Rc = 16 Å and � =
0.4 kcalmol�1. B) RMSF per residue obtained for 1QWA using the following distance cut-
o↵ Rc: Rc = 10 Å(red),Rc = 12 Å(blue), Rc = 14 Å(yellow), Rc = 16 Å (purple) and
Rc = 16 Å (olive green). C) RMSF per residue obtained for 1QWA using the following force
constant �: � = 0.1 kcalmol�1 (red), � = 0.2 kcalmol�1 (blue), � = 0.4 kcalmol�1 (yellow)
and � = 0.6 kcalmol�1 (purple) . In the plots B) and C), the arrow indicates the increasing
of Rc or � and second-order approximation has been used.
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Figure 4: Comparison of iNMA RMSF (red) with RMSF from all-atom MD simulation
(black) computed for the PDB structure 1QWA (top) and 1L9A (bottom) using a value of
distance cut-o↵ Rc = 12 Å and a force constant � = 0.6 kcalmol�1. RMSF profiles obtained
by iNMA are multiplied by a factor 4.

temperature without deforming the structure. To highlight the capability of the iNMA

to predict large conformational changes, Figure 5 shows the RMSD between the modified

structure using internal normal modes and the target structure (RMSDm-b) as a function of

the multiplicative factor �k (see eq. (19)).

Impact of the RNA coarse-grain model on the predictions

Based on the analysis of our results, we chose two RNA molecules to assess the impact of the

RNA coarse-grain model on the prediction of flexibility and in particular RNA motions on

two opposite scenarios: a compacted structure (a tRNA whose PDB structures is 2TRA) and

a completely unfolded RNA molecule like the PDB structure 1SDR. As explained above in

the subsection RNA representation , the RNA three-bead model and the model HiRE-RNA

were chosen. To compare the normal modes, for both of them we computed the overalp

Ojk between the j-th internal mode j and the k-th principal component (PCk) obtained
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Figure 5: RMSD between the bound structure (PDB ID: 1ASY) and the modified structure
after application of mode j on the unbound structure 2TRA as a function of the multiplicative
factor �k (see eq. (19)). In the plot, the unbound structure (colored gray, PDB ID: 2TRA)
is superposed to the bound one (colored blue); the modified structure (colored yellow) is
superposed to the bound one at the minimum of RMSD.

by all-atom MD simulations, the cumulative overlap COk and RMSIP. Figure 6 summarizes

these results obtained with di↵erent value of distance cut-o↵ Rc for the two models, since

their resolution is di↵erent, we chose Rc = 19 Åfor the RNA three-bead and Rc = 11 Åfor

the model HiRE-RNA. For the tRNA, the results are very similar between the two models

in terms of cumulative overlap COk and RMSIP, showing that iNMA coupled with the RNA

three-bead model and HiRE-RNA can predict 87% and 83% of the motions of the first three

dominant PCs by taking in account only the first ten lowest modes. There are just slightly

dependent on the values of Rc, justifying our choice to use a the three-bead RNA model in

this study to investigate quite compact structures.

Regarding the extended RNA molecule (PDB ID: 1SDR), similar results between the

RNA three-bead model and HiRE-RNA are obtained when at least the first six lowest modes

are taken into account for the first and third principal component (PC1 and PC3). Although

both methods describe at least 50% of motions of the second principal component, the results
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obtained for HiRE-RNA are a bit better and the di↵erence between the three-bead model and

HiRE-RNA becomes constant after the first six lowest modes. A similar trend is observed

using RMSIP. By taking into account the first twenty lowest mode, iNMA with HiRE-RNA

model can predict 66% of the motions of the first three dominant PCs, and iNMA with the

RNA three-bead model 60%. In this case, the results obtained by the three bead RNA model

are also impacted by the choice of the value of Rc (see Figure S4 and S5). However, our

results are very promising since first predicting the motions of an extended RNA molecule is

very challenging and also all-atom MD simulations can su↵er of limited sampling. Second,

there is a limited lost of information using the three bead-RNA model and a simplified

energetic model, mostly due the intrinsic advantages of iNMA.

Figure 6: Cumulative overlap (CO) (see eq.(16)) as a function of the number of lowest modes
used in the calculation for the first (left), the second (middle) and the third (right) principal
components. In top, the results obtained for the PDB structure 2TRA are reported. In
the bottom the results for the PDB structure 1SDR. Red circle: HiRE-RNA model. Lilac
downward-pointing triangle: RNA three-bead model.Rc = 19 Åfor the RNA three-bead and
Rc = 11 Åfor the model HiRE-RNA
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Comparison of predicted flexibility obtained by iNMA with struc-

ture ensembles

MD ensembles

First, to assess the capability of internal modes computed by iNMA to properly described

the flexibility and the motions observed in all-atom MD simulations (here-by termed MD

ensembles), we studied the first dataset (dataset 1) and for each system, we computed the

overlap Ojk and the cumulative overlap COk for value of the distance cut-o↵ Rc ranging

from 11 Å to 16 Å. Figure S15 shows an example of the matrix of overlaps Ojk obtained for

the PDB structure 2TRA. Interestingly, for some systems, only a mode seems su�cient to

recover completely a specific principal component (PC). In particular, the maximum overlap

Oj between the first low-frequency internal mode and the first principal component show a

range of values of 0.16 ! 0.94. For PC2 and the lowest mode, this range of values varies

between 0.19 and 0.92 and for PC2 and the second lowest mode between 0.12 and 0.82.

Figure S16 represents the maximum overlap Ojk obtained for the first three PCs and Figure

7 shows the location of the maximum (i.e. the best) overlap Oj1 between the internal modes

and PC1 in the lowest twenty mode. The iNMA approach places the maximum overlap

between the internal mode and the first principal component within the first lowest of mode

in ⇠ 44% of the cases, within the two lowest modes in ⇠69% of the cases and within the

five lowest mode in ⇠81% of the cases suggesting that a few modes are su�cient to properly

describe the motions.

Figure 8 illustrates how the cumulative overlap changes as a function of the value of the

distance cut-o↵ Rc, the number of modes taken in account (the first ten and 20 low-frequency

internal modes) and the system under investigation for the first principal component (PC1).

Figure S17-S21 show the results obtained for PC1 using the five, ten and fifteen lowest-

frequency internal modes, for PC2 using the first five, ten, fifteen and twenty low-frequency

modes and for PC3 using the first five, ten, fifteen and twenty low-frequency modes. For some
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Figure 7: Percentage location of the maximum overlap, Oj1, obtained for the first principal
component PC1 on dataset 1, for the 20 lowest frequency modes.

molecules of RNAs, COs can be a↵ected by the choice of the value of the force constant Rc

showing a complicated trend. By considering the lowest ten modes, we can predict between

43% and 93% of the motions of the PC1 by choosing Rc = 16 Å. Again, these results

suggested that few modes are necessary since the cumulative overlap slightly improve if the

first twenty low-frequency modes are considered instead of the first ten ones.

Figure 8: Cumulative overlap (CO) (see eq. (16)) computed using the first ten (left) and
twenty (right) low-frequency modes and the first principal component (PC1) for all the
systems under investigation in dataset 1. The color of each cell is based on the calculated
CO and goes from cyan (low CO, meaning that less than 30% of the motions are captured)
to magenta (CO equal to 1, i.e., all the motions are captured and recovered).

To better characterize these results, we chose a cut-o↵ of 0.5 for the cumulative overlap
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computed on the first principal component (PC1). By setting this cut-o↵, the percentage

of systems that capture at least 50% of the dominant motions varies with the value of the

distance cut-o↵ Rc and the number of modes taken into account, as summarized in Figure 9.

The percentage rapidly increases until 10 modes where around 94% of systems captures at

least 50% of the dominant motions using a distance cut-o↵ equal to 16 Å. A similar trend is

observed also for both PC2 and PC3 (see Figure S13). In case of PC2, using the lowest ten

internal modes for all the systems we can describe at least 50% of motions. Although using

ten modes, the best results are obtained using a distance cut-o↵ equal to 14 Å, similar results

are also obtained with Rc equal to 16 Å. Finally, similar results are obtained by analysing

the comparing iNMA and the combination of the first three PCs via RMSIP (see eq.(18)).

Using only the first five low-frequency modes, iNMA can capture between 31% and 100% of

three dominant PCs (PC1, PC2 and PC3). Figure S23 summarizes these results by showing

the percentage of systems which captures at least 50%, 60%, 70% and 80% of first three

dominant PCs.
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Figure 9: Percentage of systems of dataset 1 which capture at least 50% of the motions of
the first principal component as a function of the number of modes taken into account. The
dots are colored based on the value of the distance cut-o↵ Rc from blue to yellow for which
the best prediction is obtained, for example, Rc = 16 Å for green dots.
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Experimental ensembles from Rfam families

Using the same strategy, we also compared the predicted flexibility obtained by iNMA with

those described by experimental structure ensembles (dataset 2 in Table S1). To do so,

we considered the second dataset based on the Rfam families for which 3D structures are

available. For each system, we performed iNMA on the representative structure for value

of the distance cut-o↵ Rc ranging from 11 Åto 16 Åand we computed the overlap Ojk and

the cumulative overlap COk. Figure S6 shows an example of the matrix of overlaps Ojk.

As for the MD ensemble, for fewer cases only a mode seems su�cient to recover completely

a specific principal component (PC). In particular, the maximum overlap Oj between the

first low-frequency internal mode and the first principal component show a range of values

of 0.05 ! 0.64. This range of value is lower than the one obtained for MD ensembles, and

we can speculate that this is due to the lack of experimental structures in some ensembles

or the overrepresentation of some conformations. For PC2 and the lowest mode, this range

of values varies between 0.05 and 0.75 and for PC2 and the second lowest mode between

0.02 and 0.53. These results are similar to the ones obtained for MD ensembles. Figure

S7 summarizes these results by showing the maximum overlap Ojk obtained for the first

three PCs. In comparison with the work of Zimmermann and Jernigan32 conducted on a

similar dataset where 3 modes are necessary to describe the CO for their case study (the

tRNA family, here system R1), our findings highlight again the potential of iNMA to predict

RNA flexibility and motions. In fact, the iNMA approach places the maximum overlap, Oj1,

between the internal mode and the first principal component within the two lowest modes

in ⇠48% of the case and within the five lowest mode ⇠81% (Figure 10).

Figure 11 illustrates how the cumulative overlap changes as a function of the value of

the distance cut-o↵ Rc, the number of modes taken into account (the first ten and 20 low-

frequency internal modes) and the system under investigation for the first principal com-

ponent (PC1). Figures S8-S12 show the results obtained for PC1 using the five ten and

fifteen low-frequency internal modes, for PC2 using the first five, ten, fifteen and twenty
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Figure 10: Percentage location of the maximum overlap, Oj1, obtained for the first principal
component PC1 on dataset 2, for the 20 lowest frequency modes.

low-frequency modes and for PC3 using the first five, ten, fifteen and twenty low-frequency

modes. A slight dependence on the choice of the distance cut-o↵ is observed, as obtained

in previous analyses on MD ensembles. To assess the capability of the iNMA approach to

predict experimentally observed RNA motions, we also compared our results with the ones

presented in,32 although we redefined the ensembles using our new approach. In both stud-

ies, the first sixteen families are the same. First, we can observe that our approach has

similar results and for several families (⇠ 75% of ensembles in common) our predictions are

better than the ones reported by Zimmermann and Jernigan in Figure 1 in.32 However, for

the family of 5.8sRNA, our predictions are less good than theirs, but this discrepancy can

be explained by the fact that our new ensemble di↵ers from the one used in.32 Based on our

refinement approach, we almost halved the number of structures for several families with re-

spect to,32 and we can suggest that the di↵erences may arise from the lack of 3D structures

in the new ensemble. However, based on the overall results and the advantages of iNMA

already presented, our approach seems more suitable than cNMA to study the dynamics of

RNA ensembles.

As for the ensemble obtained by MD simulations, to better characterize these results, we

chose a cut-o↵ of 0.5 for the cumulative overlap computed on the first principal component

(PC1). By setting this cut-o↵, the percentage of systems that capture at least 50% of the

dominant motions varies with the value of the distance cut-o↵ Rc and the number of modes
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Figure 11: Cumulative overlap (CO) (see eq. (16)) computed using the first ten (left) and
twenty (right) low-frequency modes and the first principal component (PC1) for all the
systems under investigation in dataset 2. The color of each cell is based on the calculated
CO and goes from cyan (low CO, meaning that less than 30% of the motions are captured)
to magenta (CO equal to 1, i.e., all the motions are captured and recovered).

taken into account, as summarized in Figure 12. The percentage rapidly increases until 10

modes where 72% of systems captures at least 50% of the dominant motions using a distance

cut-o↵ equal to 16 Å. A similar trend is observed also for PC2 (see Figure S13). Although

for 10 modes, the best results are obtained using a distance cut-o↵ equal to 11 Å, similar

results are also obtained with Rc equal to 16 Å. For PC3, our results highlight the need to

use up to 20 modes to recover the motions (see Figure S13), when on the contrary it is not

necessary for MD ensembles. To understand this discrepancy, we can make two hypothesis:

i) although the third PCs is dominant, it is already more sensible to small di↵erences as also

observed when the maximum overlap Ojk is computed hence the need of a large number of

internal normal modes to recover this motion; ii) the lack of structures can also influenced

our capability to predict RNA motions. Finally, we also compare iNMA and the combination

of the first three PCs via RMSIP (see eq. (18)) and results are are similar. In fact, iNMA

can capture between 26% and 68% for the first five low-frequency modes, between 32% and

72% for the first ten low-frequency modes and between 40% and 80% for the first twenty

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.11.30.518608doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518608
http://creativecommons.org/licenses/by-nc/4.0/


low-frequency modes of three dominant PCs (see Figure S14 for the percentage of systems

which captures at least 50% of three dominant PCs).
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Figure 12: Percentage of systems of the dataset 2 which capture at least 50% of the motions
of the first principal component as a function of the number of modes taken into account.
The dots are colored based on the value of the distance cut-o↵ Rc from blue to yellow, For
example, Rc = 16 Å for green dots.

Study of unbound-to-bound transition

In order to study the unbound-to-bound transition, based on the results presented above, we

chose a value of 16 Å for the distance cut-o↵ Rc to perform iNMA of the RNA molecules in

dataset 3 (see Table S2). First, we evaluated the overlap Oj and the cumulative overlap, CO.

Figure 13 summarizes the maximum, Oj, and the cumulative overlap, CO, as a function of

RMSD for the lowest 20 modes of a full set of 24 RNA molecules that we have studied using

iNMA. Considering first the maximum overlap, we observe a range of values of 0.14 ! 0.73,

that is close to the one obtained in our previous work for the proteins.31 It is important

to point out that the iNMA approach continues to provide good results, even for RNAs

that undergo large conformational changes. Moreover, since the normal modes represent

an orthonormal space, we can easily combined them and compute the cumulative overlap,

as shown above. Once again, we observe that iNMA is a suitable method to describe the
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transition from unbound to bound structures and, for some RNAs, we reach a cumulative

overlap equal to 1 (i.e., a complete description of the transition unbound-to-bound confor-

mation) including for RNAs undergoing large conformational changes. Figure 13 also shows

the average cumulative overlap, hCOij, as a function of the j number of modes used in the

calculation. As expected, the cumulative overlap increasing by adding the modes and with

10 modes it already reaches an average value of 0.6. Based on the plot the first 5-10 modes

provides the larger contributions, suggesting that only few modes are needed as shown before

to describe the flexibility.
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Figure 13: Maximum overlap, Oj (left) and cumulative overlap CO (middle) for 24 RNAs
proteins, as a function of the RMSD between the unbound and bound structure, computed
using the 20 lowest modes obtained. Right: Average cumulative overlap hCOi computing
with increasing number of internal normal mode. The error bar indicates the standard
deviation of these values.

As already shown for proteins,17,31 these results obtained for RNA molecules confirm

that unbound RNA structures can often be perturbed along a single low-frequency mode to

produce a conformation that is close to the bound one. This behavior can advantageously be

used in docking algorithms to account for RNA flexibility in an e�cient way or in integrated

approaches as internal variables. However, two important problems remain: i) how should

we chose the ”correct” mode(s) and how many? ; ii) how closely the target conformation can

be reached using iNMA? To answer the first questions, the overlap and the RMSD between

the modified structure by internal normal modes and the bound structure can be taken into

account. Figure 14 illustrates the location of the best mode in term of overlap Oj, and
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the cumulative results for the first 20 modes. As for proteins,31 also for RNAs, the iNMA

approach places the maximum overlap within the five lowest modes in ⇠67% of the cases,

and, moreover, shows a monotonically increasing probability of finding the maximum overlap

as the frequency decreases within the first five modes.

However, the prediction of the best mode based on the overlap does not guarantee that

the selected mode is still the best one in terms of RMSD, when amplitudes of movement

above room temperature are considered. Hence, first, for each mode we also computed the

modified structures using di↵erent multiplicative factor �k ranging from ⇠ 70 to ⇠ 60, 000

and then we determined the best mode by computing the optimal RMSD between them

and the target structure (see Table S3 for a summary). The results obtained using overlap

(Figure 14) or RMSD (Figure 15) naturally di↵er, but, in fact, follow similar trends. In

particular for RMSD, studying the first two modes is su�cient in many cases (63%). Taking

into account the first five modes increases the value to ⇠ 75%.

These results suggest that the best mode describing a transition between two confor-

mations is likely to be amongst the first five and, often, the first two, however we do not

answer the second question since they cannot quantify how closely we can reach the target

using iNMA. To address this point, first we can determine the RMSDm�b, the RMSD of

the modified structure obtained using the best internal normal mode among the first twenty

ones with the target at the optimal value of the multiplicative factor �k and second compare

RMSDm�b versus RMSDexp the experimental RMSD between the experimental starting (i.e.,

unbound) and target structures (i.e., bound), as shown in Figure 15. To evaluate our results,

we can also compute the percentage of RMSD change defined as RMSDexp�RMSDm�b

RMSDexp
. By set-

ting a cut-o↵ of 20% for � RMSD, 54% of RNAs have modified structures that are within

this varation of RMSD distance of the target, when the best mode is chosen. This value

slightly varies until a cut-o↵ of 40% for � RMSD, where only four RNAs (17 %) undergo

a change in the RMSD with respect to the bound structure of 40%. However, these results

are very encouraging as the conformation changes we are trying to predict cover a range up
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Figure 14: Percentage location of the maximum overlap, Oj, (top) and percentage location of
the maximum overlap, Oj (bottom) obtained on the dataset of unbound-to-bound transition
(dataset 3, Table S3), for the 20 lowest frequency modes.

to 40 Å and only a mode is taken into account, as proof of concept.

Conclusions

In this work, we have described the implementation of normal mode analysis in internal

coordinate space (iNMA) for RNA molecules coupled with a simple description of RNA

topology (the RNA three-bead model) and a simplified energetic potential. Our implemen-

tation is based on our previous works on protein and protein complexes, and it presents

several advantages. Among them, a notable advantage is that, even for large movements,

internal normal modes avoid the damage to bond lengths and valence angles that occurs

with Cartesian coordinate normal modes.

We have applied iNMA to predict RNA flexibility and unbound-to-bound transitions. To
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Figure 15: Top: Percentage location of the best mode for RNA molecules in dataset 3 (Table
S2) based on RMSD at optimal multiplicative factor �k. Bottom: Optimal RMSD between
the modified structure using the best single iNMA mode and the target (RMSDm-b) plotted
versus the RMSD between the unbound and bound structures (RMSDexp). The dashed line
represent the case where no change in RMSD is obtained after application of an internal mode
(RMSDm�b=RMSDexp). The insert plot is a zoom for the RNA molecules whose RMSDexp

is between 0 and 10 Å.

do so, we set up three separate datasets. The first one includes 15 all-atom MD simulations

of RNA molecules, the second one contains 21 ensembles of experimental 3D structures for

di↵erent RNA families and the third one includes 24 RNA molecules for which the unbound

and bounded 3D structure is known. The first two datasets allowed us to compare the

predicted flexibility by iNMA and the one obtained by MD simulations and in experimental

ensembles. The third dataset aims to study the unbound-to-bound transition for RNA

molecules.

To assess the capability of iNMA to well capture RNA flexibility we computed several

quantities: the overlap Ojk per internal mode j and principal component k, the cumulative

overlap, COk, for the 20 lowest-frequency modes with respect to the k-th principal component
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and the Root Mean Square Inner Product (RMSIP) between the first 3 principal components

and the 20 lowest-frequency modes. First, the most relevant modes are found within the

five lowest frequency modes in ⇠ 80% of the cases studied. Second, our results are slightly

a↵ected by the value of the distance cut-o↵ Rc. The approach iNMA using the 20 lowest

modes is capable to describe at least 50% of the motion of PC1 for almost all RNA molecules

and 80% of them in dataset 1 and dataset 2, respectively. The discrepancy between dataset

1 and dataset 2 may be due to the lack of some structures in some experimental ensembles

or the overrepresentation for some conformations. Interestingly, these results are slightly

a↵ected if the ten lowest modes are taken in account suggesting that few modes are su�cient

to describe the flexibility. For two RNA molecules, we also computed iNMA using a more

sophisticate coarse-grain represent (HiRE-RNA). By comparing the results, for a compact

structure no significant di↵erences are obtained. For a completed unfolded structure, the

di↵erences are observed only if few modes are taken into account suggesting that the use of

three-bead RNA model with iNMA allows to retain a large part of structural information

and iNMA is a more suitable approach than cNMA to study loosely packed structures.

To analyse the unbound-to-bound transitions, we also computed the overalp Oj, the

cumulative overalp CO and the RMSD between the modified structure obtaiend after appli-

cation of the mode j and a multiplicative factor �k and the bound experimental structures.

The iNMA approach seems to require few modes to represent the conformational transitions.

Again, the most relevant modes are found within the five lowest frequency modes in ⇠ 70%

of the cases studied by considering both the overlap Oj and the RMSD. Moreover, the prob-

ability of finding the single optimal mode increases monotonically with decreasing frequency.

The cumulative overlap of the the lowest twenty modes can also reach unity. The iNMA

approach can predict large conformational changes also for RNA molecules like the ones are

expected to occur for RNAs that binds the ribosome.

These promising results open a new route to treating RNA flexibility for unbound struc-

tures as well during the formation of RNA-ligand/protein interactions. By adding only few
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internal modes, it should be possible to implementing iNMA in the refinement of struc-

tures in combination with data from low-resolution techniques such as SAXS, in integrative

approaches to assembling large molecular complexes and in docking methodologies.
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(49) López-Blanco, J. R.; Aliaga, J. I.; Quintana-́ı, E. S.; Chacón, P. iMODS: internal

coordinates normal mode analysis server. Nucleic Acids Research 2014, 42, W271–

W276.
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