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Variational inference accelerates accurate DNA mixture
deconvolution

Abstract

We investigate a class of DNA mixture deconvolution algorithms based on
variational inference, and we show that this can significantly reduce computational
runtimes with little or no effect on the accuracy and precision of the result. In
particular, we consider Stein Variational Gradient Descent (SVGD) and
Variational Inference (VI) with an evidence lower-bound objective. Both provide
alternatives to the commonly used Markov-Chain Monte-Carlo methods for
estimating the model posterior in Bayesian probabilistic genotyping. We
demonstrate that both SVGD and VI significantly reduce computational costs over
the current state of the art. Importantly, VI does so without sacrificing precision
or accuracy, presenting an overall improvement over previously published methods.

Keywords: probabilistic genotyping, Stein Variational Gradient Descent,
variational inference, Bayesian inference, runtime, precision

1 Introduction 1

DNA mixture analysis using probabilistic genotyping (PG) software is at the core of 2

forensic science methodologies. While the greatest attention has to be placed on the 3

accuracy of the results, there are other factors that play a role. Recently, it has been 4

shown how the precision of a PG system can be improved by reducing run-to-run 5

variability [15]. Another factor that can be considered is the computational runtime. In 6

many cases, estimating a likelihood ratio (LR) can take more than an hour. Given the 7

workload forensic laboratories face, faster PG algorithms are desirable as long as they 8

produce results of equal accuracy and precision. 9

The accuracy of a PG result directly depends on how well the PG algorithm is able 10

to approximate or estimate the probabilities of the parameters of a model given an 11

observed electropherogram. Often, this is formulated as a Bayesian estimation problem 12

where the task is to estimate the posterior distribution. In state-of-the-art PG 13

models [15, 16], it is not possible to calculate the posterior directly by integrating over 14

the parameters in a reasonable timeframe. Instead, sampling algorithms are used, most 15

prominently Markov-Chain Monte-Carlo (MCMC) methods with random walk [16] or 16

Hamiltonian proposal distributions [15]. These algorithms then estimate the unknown 17

posterior distribution from the electropherogram data. 18

The posterior distribution lives in a space whose dimensionality depends on the 19

number of unknown parameters to be estimated. Since the computational cost of a PG 20

algorithm scales with the number of model evaluations it requires, it is desirable to have 21

PG methods that estimate the posterior distribution as accurately as possible using as 22

few samples as possible. 23

The cost-performance trade-off is a classic research topic in Bayesian inference [18]. 24

There, besides MCMC methods, also other types of algorithms have been proposed. In 25

particular variational methods have been successful at improving the computational 26

performance of Bayesian inference [3]. It therefore seems natural to also adopt these 27

approaches in DNA mixture deconvolution and benchmark their performance against 28

the state of the art in PG. 29

Here, we present implementations of two variational inference techniques adapted to 30

PG applications: variational inference with an evidence lower bound objective (VI) [3] 31

and Stein Variational Gradient Descent (SVGD) [11]. We show that both SVGD and VI 32

achieve shorter runtimes than the MCMC-based methods. Importantly, VI does so 33
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without sacrificing precision or accuracy, presenting an overall improvement over the 34

state of the art in PG. 35

2 Materials and methods 36

In Bayesian inference, the main task is to maximise the posterior probability of a model
M given data V :

P (M |V ) =
P (V |M)P (M)

P (V )
. (1)

The evidence P (V ) is a constant that is independent of the model. Since the location of 37

the maximum in the posterior does not depend on this normalisation, it is often 38

neglected. In the context of PG, namely to obtain the weights of the genotype sets for 39

LR calculation, this is also the case because the evidence crosses out when computing 40

the ratio of likelihoods. 41

Therefore, a Bayesian inference algorithm can in practice be seen as consisting of 42

two parts: an estimator and a model (Figure 1). The model defines the unnormalised 43

posterior, and the estimator defines the way how an approximation of this distribution 44

is obtained. These two parts are largely independent of each other, meaning that, for 45

example, an estimator can be replaced with another one. 46

Estimator Model

• Hamiltonian Monte Carlo

• Random walk
Markov Chain Monte Carlo

• Maximum a posteriori
optimisation

• Numerical integration

• Stein Variational
Gradient Descent

• Variational Inference

• Log-normal

• Gamma

Estimator

Algorithm structure

Figure 1. The basic structure of a probabilistic genotyping algorithm: The algorithm
consists of an estimator, a tool for approximating a distribution, and a model that defines
the unnormalised posterior, usually by defining the likelihood and the prior. Different
popular choices of estimator methods and PG models are given in the circles. Their
choices are largely mutually independent.

In practice, this ideally means that data scientists can create a model based on 47

observed data and/or theoretical knowledge, while different estimators can be used 48

interchangeably in order to optimise for computational cost and/or accuracy and 49

precision of the PG result. Yet, the model might constrain the choice of the estimator, 50

as different estimators have different structural limitations. 51
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2.1 Model definition 52

In this work, we follow the model and hyper-parameterisation used in Hamiltonian
Monte Carlo (HMC) [15] with a few exceptions as described next. These minor
adaptations are required for variational estimators to work correctly. First, consider the
likelihood probability distribution suggested by the authors of STRmix™ [16]:

ln
O

x
∼ N

(
0,

c2

x

)
. (2)

This postulates that the ratio of the observed peak height O to the expected peak
height x follows a log-normal distribution with mean 0 and a variance proportional to
the square of a parameter c simulated by the model and inversely proportional to the
expected peak height x. During inference, the estimator might thus try values of c close
to 0, as long as the Gamma prior [8] does not forbid this. The probability density fLogN
of this parameterised log-normal distribution can then reach arbitrarily large values:

{O = x > 0} ⇒ lim
c→0

fLogN =∞ . (3)

This is the first issue hampering the use of variational inference methods. 53

The second issue is similar: Consider the prior probability distributions for the
locus-specific amplification efficiencies (LSAE) α with a hyper-parameter σα set by the
laboratory:

log10 α ∼ N (0, i2) , (4)

i2 ∼ Exp(σα) . (5)

The prior density for the LSAEs fLSAE is then also unbounded:

{α = 1} ⇒ lim
i→0

fLSAE =∞ . (6)

These singularities are not a problem for HMC estimators, who will avoid them 54

because of the high curvature of the posterior in the vicinity of the singularities. When 55

the sampler tries to explore these parts of the posterior, the trajectory of the simulated 56

Hamiltonian differs too much from the expected Hamiltonian. The sample is then 57

rejected and marked as a “divergence”. These samples then negatively impact the 58

runtime of the algorithm. The convergence of the chains is slower and, in extreme cases, 59

can lead to a bias in the estimate. 60

Variational inference estimators, however, are not able to work with posteriors that 61

contain singularities. We therefore modify the model as follows: 62

• use shifted log-normal (LogN) priors for allele and stutter peak heights, instead of 63

the Gamma priors used by STRmix™. 64

• use a log-logistic (LogL) hyper-prior for the LSAE standard deviation, instead of 65

an exponential one on LSAE variance (Eq. 5). 66

The exact choice of the prior distribution families, in our case log-normal and 67

log-logistic, is not crucial as long as the estimates densities protect the algorithms from 68

the singularities. 69

To estimate the parameters of these prior distributions, we start with a prior-less 70

posterior estimation of a training set of DNA mixtures. We then extract, for each 71

mixture, the samples (peak height variance, stutter height variance, LSAE variance) 72

that are larger than the 90th percentile of the estimated parameter distribution. Finally, 73

we choose the parameters of the prior distributions that maximise the likelihood of this 74

subsample. 75
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Prior Distribution
stutter peak height standard deviation cs − 6.086 ∼ LogN(2.485, 1.031)
allelic peak height standard deviation cp − 1.63 ∼ LogN(1.975, 0.325)
LSAE standard deviation hyper-prior i ∼ LogL(−1.894, 0.236)

Table 1. Estimated priors based on 37 2- and 3-contributor Globalfiler™ ProvedIT
mixtures not used for the test benchmark.

For the following results, we used 37 2- and 3-contributor filtered Globalfiler™ 76

mixtures that were not a part of the test benchmark [12, 14]. For the list of mixtures, 77

please see Supplementary Material 1. The estimated priors are presented in Table 1 and 78

compared with the priors from Riman et al. [12] in Figure 2. 79

The shifted peak-height standard deviation priors prohibit parameter values smaller 80

than the shift. One could argue that this introduces a bias into the analysis, as the 81

“true” value of the parameter might not be accessible to the estimator. While this is 82

true, it is not specific to our work. Indeed, also in other models these distributions are 83

shifted to the right of the estimates from the model, see, e.g., Figure 4 from Taylor et 84

al. [17]. Moreover, a natural meaning of the peak height standard deviation parameter 85

is the confidence of the model when estimating peak heights. The lower the value of the 86

parameter, the more confident the model. An overestimation of these parameters might 87

be then desirable, since this increases the level of uncertainty of the estimator. 88

0 10 20 30 40 50
Peak height standard deviation, natural logarithm base

d
en

si
ty

New stutter prior

New allelic prior

Old allelic prior

Old stutter prior

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Locus-specific amplification efficiency variance, log10 base

d
en

si
ty

New LSAE hyper-prior

Old LSAE hyper-prior

Figure 2. Comparison of the singularity-free priors estimated using our method with
those from previous studies [12, 15]. Peak height standard deviation is expressed in
natural logarithms, i.e. ln O

x ∼ N , whereas LSAE variance is presented in a decimal
logarithms base: log10

2.2 Variational inference 89

In Bayesian inference, one typically distinguishes sampling methods, such as MCMC 90

and HMC, from variational methods. Sampling methods iteratively draw samples from 91
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the posterior. They construct a Markov chain of the samples. The chains, as long as 92

they are ergodic, converge to the desired stationary distribution, which is the 93

(unnormalized) posterior of the model in the limit of infinitely many samples. In 94

practice, however, the number of samples is finite. Therefore, convergence criteria (e.g. 95

the Gelman-Rubin test) are used to determine when to stop the sampler. This 96

inherently trades off computational cost, which is proportional to the number of 97

samples drawn, with accuracy and precision (i.e., reproducibility) of the result. 98

Variational methods avoid this trade-off by directly building an approximation to the 99

posterior. This approximation comes from a family of distributions, called the 100

variational family, which is selected by the design of the algorithm. For simpler models, 101

it is sometimes possible to construct an exact variational family, but this is not the case 102

for the model considered here. 103

2.2.1 Variational inference with an evidence lower-bound objective 104

The first variational method we consider uses multivariate normal distributions as the
variational family Q(M). It then aims to minimise the Kullback-Leibler (KL)
divergence:

KL (Q (M) ||P (M |V )) =

∫
M

p(m|V ) log

(
p(m|V )

q(m)

)
dm, (7)

where p(m|V ) and q(m) are the densities of the posterior and the variational
distributions, respectively. The final result of VI is the distribution from the variational
family that resembles the posterior the most, where resemblance is measured by the KL
divergence between the two distributions. While KL divergence cannot be calculated
directly in our case, it can be shown that in general:

KL (Q (M) ||P (M |V )) = logP (V )− ELBO = logP (V )− Em′∼Q

[
log

p(m′, V )

q(m′)

]
, (8)

where ELBO is the so-called “evidence lower-bound objective”. Since the log-evidence is 105

a constant independent of the model, the KL divergence is minimised by maximising 106

ELBO. This formulation of the optimisation problem is flexible w.r.t. the choice of the 107

variational family. In order to consider a wide choice of possible solutions, we here use a 108

multivariate Gaussian family with full covariance matrix. 109

This choice of variational family could harm the quality of the results if the true 110

posterior distribution cannot be approximated by multivariate Gaussians. Empirically, 111

however, we observe that the posterior estimated by HMC, which should be a close 112

approximation of the true posterior, is similar to a transformed multivariate Gaussian. 113

We therefore expect VI to work well. We compare the posterior estimated by the 114

different methods in Figure 3. We run all three methods identically with the priors 115

presented in Section 2.1 on the 116

F04 RD14−0003−42 43−1;9−M3a−0.15GF−Q0.5 06.15sec (referred to as “F04”) 117

mixture from the ProvedIT dataset [1]. Since the distributions are transformed [15], the 118

marginal density plots do not always look Gaussian. A transformed normal distribution 119

output by VI, however, approximates well the answer provided by HMC. Still, we note 120

some differences exist, such as decreased variance of the estimated marginal degradation 121

distributions. 122

We maximise the ELBO using the Adamax algorithm [11]. This algorithm internally 123

uses a Monte-Carlo estimator for the ELBO according to Eq. 8. We use 10 samples per 124

estimation and a variable learning rate (LRate) schedule: The first iterations are 125

performed with LRate=0.01; then, after every 100 iterations, the LRate is multiplied by 126

1.5 until it reaches 0.05. This adaptation prevents diverging gradients that could 127
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F04 posterior estimates
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Figure 3. Comparison of the posteriors estimated for the F05 ProvedIT mixture by
different algorithms. We plot the marginal densities of the posteriors for the parameters:
peak-height standard deviations, total allelic product, major contributor weight, and
contributors’ template degradation. All plots are created using kernel density estimation.
The estimation has been performed on 1000 samples from the Gaussian estimated by VI,
800 samples from HMC, and 100 particles from SVGD. Given the smaller sample size
from SVGD, we decreased the kernel bandwidth two-fold, resulting in plots that are less
smooth for SVGD.
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otherwise be caused by bad initialisation of the variational family. Indeed, during the 128

first few iterations, gradient computation could become numerically unstable, as an 129

outlier sampled from the variational distribution could cause it to significantly depart 130

from reasonable parameter values. Convergence of the optimiser is monitored by 131

comparing the mean value of the ELBO every 100 iterations. If this mean is smaller 132

than the mean from the previous hundred iterations, the optimiser is stopped, since no 133

further improvement was achieved. 134

2.2.2 Stein variational gradient descent 135

Stein variational gradient descent (SVGD) [11] intends to find a composition of
transformations for an ensemble of n particles in the d-dimensional parameter space
with positions x ∈ Rn×d = [xi]

n
i=1, xi ∈ Rd, that maps an initial distribution to the best

approximation of the true posterior as quantified by the KL divergence. Each individual
transformation is defined as:

T (x) = x+ ϵϕ∗(x) , (9)

where ϵ is a step size and ϕ∗ : Rn×d 7→ Rn×d is a map defining a per-particle direction
vector that maximises the rate of decrease of the KL divergence between the current
transformed variational distribution q[T ] and the unnormalised posterior p:

ϕ∗(x) = argmax
ϕ∈F

{
− ∂

∂ϵ
KL

(
q[T ] || p

)∣∣∣
ϵ=0

}
, (10)

where T (x) ∼ q[T ] and x ∼ q. The transformation for each particle xi depends on the
other particles within some neighborhood. The authors of the method take the function
space F of the transformations to be the unit ball in a vector-valued reproducing kernel
Hilbert space (RKHS) with positive-definite kernel k(·, ·). Theorem 3.1 from Liu &
Wang [11] tells us that the rate of decrease can be expressed in closed form as an
expectation:

− ∂

∂ϵ
KL

(
q[T ] || p

)∣∣∣
ϵ=0

= Ex∼q [Apϕ(x)] , (11)

where
Apϕ(x) = ∇x log p(x)

⊤ϕ(x) +∇xϕ(x) (12)

is the Stein operator [13]. The maximum in Eq. 10 is called the Stein discrepancy. 136

It has been shown that when F is the unit ball in the RKHS, then the Stein
discrepancy is a well-defined expectation value [11]:

ϕ∗(x) = Ex′∼q[k(x,x
′)∇x′ log p(x′) +∇x′k(x,x′)]. (13)

Intuitively, Eq. 13 means that: 137

• The particles prefer to be in regions of high probability density, as indicated by 138

the gradient of the log-posterior. The log-posterior of the neighbours will 139

dominate this term for any particle given the multiplication with the kernel. 140

• At the same time they are repelled from one another by the gradient of the kernel 141

in order to not collapse into a single mode and cover the whole posterior. 142

To provide a computable update rule, the expectation is estimated by the average
over the set of particles:

xi ← xi +
ϵ

n

n∑
j=1

[
k(xi, xj)∇xj

log p(xj) +∇xj
k(xi, xj)

]
. (14)
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Note that Equation 11 holds for ϵ = 0, meaning that if we wanted to follow the exact 143

optimal trajectory, we would have to use continuous updates. Any computable version 144

must therefore discretise the update trajectories using a finite step size ϵ. As long as 145

this step size is small enough, the particles still represent a sample from the correct 146

posterior after a sufficient number of transformations, as demonstrated by Liu & 147

Wang [11]. Following Liu & Wang [11], we use a radial basis function kernel 148

k(xi, xj) = exp
(
−||xi − xj ||22/h

)
, and we set bandwidth h to med2/lnn where med is 149

the median of the pairwise distances between the n particles. In our experiments, we 150

use 100 particles and run 500 updates. Our implementation uses the Adamax 151

algorithm [9] with learning rate 0.25 to efficiently approximate the gradient descent in 152

Eq. 14. Adjusting the learning rate, as done for VI, is not necessary, since instabilities 153

in the gradient computation cannot occur. 154

When only one particle is used, n = 1, SVGD reduces to maximum a posteriori 155

estimation, which is the method used in Euroformix [19]. 156

We reduce memory consumption by iteratively evaluating the unnormalised posterior 157

p in 10 equal batches of 10 particles each. This hyper-parameter can be adjusted 158

depending on the available computational resources. Memory consumption scales 159

linearly with batch size. 160

2.3 Implementation details 161

From the estimated posteriors, we compute LRs as described [15]. We first draw a 162

sample from the estimated posterior distribution. For SVGD, the particles directly 163

represent the sample [11]. For VI, we sample 1000 points from the estimated Gaussian. 164

We note that increasing the number of particles in SVGD would linearly increase the 165

computational time, while in case of VI we sample from an explicit Gaussian 166

distribution only after the inference is finished, and thus we can afford a larger sample. 167

Subsequently, the same approach as in HMC is used for both algorithms: we calculate 168

the deconvolution by averaging the values across all samples. 169

We implement both the SVGD and VI estimators using the Tensorflow Probability 170

library [6]. Gradients are computed using Tensorflow’s automatic differentiation. All 171

benchmarks are performed on NC4as T4 v3 Azure cloud GPU instances unless specified 172

otherwise. 173

3 Results 174

We validate the use of variational inference for forensic PG and provide a comparative 175

study between the two presented methods, SVGD and VI, and HMC. We benchmark 176

three characteristics important for any PG system: the accuracy of the method, it’s 177

precision, and the computational runtime. We use the term scenario to indicate the 178

combination of a DNA mixture with a certain prosecutor/defendant hypothesis. 179

3.1 Accuracy 180

In order to quantify the accuracy of the methods, we compare their results on the 181

ProvedIT mixtures from the NIST comparative study [12]. We observe almost identical 182

performance in terms of the ROC area-under-the-curve (AUC) between HMC (0.99896) 183

and VI (0.99887), see Table 2. SVGD performs slightly worse (0.99843), which is caused 184

by one scenario with true contributor #33 resulting in a large negative log10 LR of 185

-16.3753, see Figure 6. This is mixture E05, which was already described in 186

Supplementary Material 2 of Ref. [14]. The LR for the locus D12S391 and the 187

sub-sub-source hypothesis that resulted in the largest LR overall is 2.71 · 10−27. When 188
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HMC SVGD VI

ROC AUC

2 contributors 0.99999 0.99999 0.99997
3 contributors 0.99894 0.99892 0.99886
4 contributors 0.99812 0.99643 0.99819

combined 0.99896 0.99843 0.99887

OotNT with false contributors
2 contributors 0 1 1
3 contributors 2 2 2
4 contributors 11 13 13

OotNT with true contributors
2 contributors 1 1 0
3 contributors 10 10 14
4 contributors 10 11 9

OotNT rate
2 contributors 0.002 0.002 0.003
3 contributors 0.014 0.014 0.018
4 contributors 0.021 0.024 0.022

Table 2. Performance metrics for the three tested algorithms (HMC: Hamiltonian Monte
Carlo [15]; SVGD: Stein variational gradient descent [this work]; VI: variational inference
with evidence lower-bound objective [this work]) on the ProvedIT benchmark [1]; OotNT
= Opposite of the Neutral Threshold [14].

we consider the same alternative scenario as in Ref. [14], with the peak 18.3 (1220 RFU) 189

added in locus D12S391, SVGD estimates a log10 LR of 11.646, which is close to the 190

HMC estimate of 12.8367 in the same case. The sub-sub-source LR for the D12S391 191

locus then becomes 89.2053. 192

An interesting question is why SVGD is more sensitive to such missed peaks than 193

both HMC and VI (log10 LR of 2.4072). It is known that SVGD is particularly prone to 194

the curse of dimensionality and therefore tends to underestimate the variance of the 195

posterior [2]. This is indeed seen in Figure 3, where SVGD underestimates (compared to 196

the other estimators) the allele peak-height standard deviation. This increases the 197

confidence of the model and, therefore, this estimator is less robust against extreme 198

observations, such as an uncalled peak with a RFU larger than 1000. 199

Next, we consider the numbers of OotNT (Opposite of the Neutral Threshold [14]) 200

scenarios with true and false contributors, as well as the OotNT rates [14]. The results 201

are again given in Table 2. In these metrics, both SVGD and VI perform slightly worse 202

than HMC. For example, VI provided 4 OotNT scenarios with true contribuors more 203

than HMC for the 3-contributor mixtures, and both SVGD and VI provided 2 OotNT 204

scenarios with false contribuors more than HMC for the 4-contributor mixtures. All of 205

these scenarios are characterised by low certainty. For example, the additional 206

3-contributor OotNT scenarios with true contributors had log10 LRs of -0.7756, -0.2065, 207

-0.2970, and -0.3269 in case of VI, and 0.1248, 0.3516, 0.2888, and 0.462 in case of HMC. 208

The detailed results are available in Supplementary Material 1. 209

Visualisations of the full results are given in Figures 4 to 9. All comparisons confirm 210

the strong agreement between the compared methods, with the difference between the 211

log10 LRs from the different methods rarely exceeding 2 bans. In the few scenarios where 212

differences are larger, both methods provide strong evidence. The results for HMC are 213

taken from the supplementary materials of Ref. [14], where the priors of Riman et 214

al. [12] were used, whereas here we use the modified priors described in Section 2.1. 215

This indicates that the exact choice of priors is not crucial to the reported results. 216
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Figure 4. Comparison of results obtained by SVGD and HMC on 2-contributor
mixtures.
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Figure 5. Comparison of results obtained by SVGD and HMC on 3-contributor
mixtures.
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Figure 6. Comparison of results obtained by SVGD and HMC on 4-contributor mixtures.
The scenario with log10 LR of -0.0852 in case of HMC and -16.3753 in case of SVGD is
mixture E05 when Contributor 33 is assumed in the hypothesis of the prosecutor.
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Figure 7. Comparison of results obtained by VI and HMC on 2-contributor mixtures.
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Figure 8. Comparison of results obtained by VI and HMC on 3-contributor mixtures.
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Figure 9. Comparison of results obtained by VI and HMC on 4-contributor mixtures.
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3.2 Precision 217

A desirable property of a PG software is low run-to-run variability. It has been shown 218

that HMC greatly reduces this variability compared to random-walk MCMC [15]. Low 219

run-to-run variability implies high reproducibility of the results, which is known as 220

precision. We compare the precision of HMC as previously benchmarked [14] with the 221

precision of SVGD and VI. For this, we perform 10 independent repetitions of the 222

analyses for each scenario and compare two statistics: the standard deviation of the 223

resulting log10 LR and the difference between the largest and smallest log10 LR. The 224

measurements are presented in Figure 10. SVGD is overall less precise than the other 225

two algorithms, with 8 scenarios having a run-to-run standard deviation of the log10 LR 226

larger than 0.2. The other two algorithms result in 3 scenarios each where the standard 227

deviations are larger than 0.1. In 14 (HMC) and 13 (VI) scenarios, the standard 228

deviations across runs are larger than 0.05. The precision of SVGD can be improved by 229

either increasing the number of particles or using more iterations with learning-rate 230

annealing. As we will see below, however, this would not compare well against VI in 231

terms of the computational cost and is therefore not explored. 232

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Standard deviations

SVGD

VI

HMC

0.0 0.5 1.0 1.5 2.0
max log10LR - min log10LR

SVGD

VI

HMC

Figure 10. Precision comparison of the tested algorithms both in terms of the log10 LR
standard deviation (top) and the difference between the largest and smallest log10 LR
(bottom) across 10 independent repetitions for each scenario (1 scenario = 1 dot).
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Visualisations of the full results are available in Supplementary Material 2, with the 233

raw data provided in Supplementary Material 1. 234

3.3 Runtime 235

0 20 40 60 80 100
Minutes

SVGD

VI

HMC

Inference time: 4 contributors mixtures

Figure 11. Comparison of the computational runtime of the different algorithms on
the same 4-contributor mixtures. Each dot represents a different scenario.

The third performance metric of interest is the computational runtime. Variational 236

techniques are usually faster, which is the main reason why they became popular with 237

the deep-learning community. We confirm this here for PG, observing significant 238

speedups as shown in Figure 11. We compare the runtimes on identical computer 239

hardware for all 4-contributor scenarios of the benchmark [12]. The computationally 240

most demanding mixture takes 1 hour and 54 minutes to be solved with HMC. For 241

SVGD, the longest observed inference time is 36 minutes 28 seconds. VI provides the 242

largest speedups, with the slowest inference completing in 18 minutes and 27 seconds. 243

On average, VI is 4.33 times faster than HMC and 1.72 times faster than SVGD on 244

4-contributor scenarios. In 81.1% of the 4-contributor scenarios (103/127) VI completes 245

the inference in under 10 minutes and in 96.1% (122/127) in under 12 minutes. SVGD 246

completes 91.4% (116/127) of these scenarios in under 20 minutes. 247

These runtime benchmarks used GPU hardware. Most forensic laboratories, however, 248

still use CPUs to compute. We therefore confirm the runtimes of the best-performing 249

algorithm, VI, on four vCPU cores (AMD EPYC 7V12 Rome) for the 250

F03 RD14−0003−48 49 50 29−1;4;4;4−M2U15−0.403GF−Q1.3 06.15sec mixture. For 251

this scenario, VI runs for 10 minutes and 13 seconds on the GPU, whereas the same 252

inference on the CPU takes 67 minutes and 14 seconds. We note, however, that the 253

code contains no CPU-specific optimisations so that this figure could probably be 254

improved if needed. 255

4 Conclusions 256

We presented two variational Bayesian inference algorithms for probabilistic genotyping 257

(PG): Stein variational gradient descent (SVGD) and variational inference with an 258

evidence lower-bound objective (VI). These are applicable to PG models that are free of 259

singularities. We have therefore also shown how to adapt the PG models of 260
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STRmix™ [16] to allow for variational inference. We then described the algorithms and 261

explained their working principles and underlying assumptions. 262

We then validated the algorithms and checked the validity of the assumptions on the 263

ProvedIT mixtures from the NIST comparative study [12] and compared with the 264

Hamiltonian Monte Carlo (HMC) method, which was recently benchmarked on the 265

same data set [14]. All three methods, HMC, SVGD, and VI were comparable in terms 266

of accuracy with HMC slightly more accurate than the other two. This could, however, 267

also be due to the different priors used in the HMC model. Importantly, VI achieved 268

significantly lower computational runtimes than both SVGD and HMC while 269

maintaining the high precision of HMC. It therefore seems to offer the best trade-off 270

between accuracy, precision, and runtime, suggesting that VI could replace 271

MCMC-based algorithms in practice and provide better user experience due to faster 272

runtimes. Faster runtimes would also enable laboratories to run independent repetitions 273

of the inference in order to quantify reproducibility. 274

While not outperforming in the benchmarks, SVGD is an algorithmically interesting 275

method that offers ample opportunity for optimization and links to established 276

mathematical frameworks such as particle filters [4] for which efficient parallel software 277

exists [5] While our implementation of SVGD was significantly faster than HMC, it was 278

overly sensitive to missing peaks as seen in case of the E05 mixture. 279

An important limitation of the present work is that our implementation of VI was 280

limited to a multivariate Gaussian approximation of the posterior. Recently, it has been 281

shown that it is possible to construct more general approximations using VI, 282

theoretically even a universal one [7]. This greater approximation power is achieved by 283

learning invertible distribution transformations, called normalising flows. We tested 284

possible flow architectures and obtained promising results with inverse autoregressive 285

flows [10]. Then, we often observed improved quality of the posterior estimation, but the 286

method had two significant drawbacks: First, the computation time increased to become 287

comparable with that of HMC. Second, we could not find a robust way to prevent 288

gradient divergence, which happened occasionally when normalising flows were used. 289

Taken together, our results not only provide a way of accelerating inference in 290

Bayesian PG without sacrificing much accuracy or precision, but they also open the 291

field of research toward a more diverse range of inference algorithms beyond 292

sampling-based MCMC methods. We hope this might trigger a discussion in the field 293

and reinvigorate the search for better, more scalable, and mathematically founded 294

algorithms for DNA mixture deconvolution in forensic genetics. 295
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