ABSTRACT
In fluorescence microscopy, computational algorithms have been developed to suppress noise, enhance contrast, and even enable super-resolution (SR). However, the local quality of the images may vary on multiple scales, and these differences can lead to misconceptions, which is especially intractable in emerging deep-learning ones. Current mapping methods fail to finely estimate the local quality, challenging to associate the SR scale content. Here, we develop a rolling Fourier ring correlation (rFRC) framework to evaluate the reconstruction uncertainties down to SR scale. To visually pinpoint regions with low reliability, a filtered rFRC is combined with a modified resolution scaled error map (RSM), offering a comprehensive and concise map for further examination. We demonstrate their performances on various SR imaging modalities, and the resulting quantitative maps enable better SR images integrated from different reconstructions. Beyond that, we provide a strategy for learning-based restorations, allowing a direct detection of both data and model uncertainties, and expect the representative cases can inspire further advances in this rapidly developing field.
Competing Interest Statement
L. C., H. L., and W. Z. have a pending patent application on the presented framework.