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Abstract

Three billion years of evolution have produced a tremendous diversity of protein molecules,

and yet the full potential of this molecular class is likely far greater. Accessing this potential

has been challenging for computation and experiments because the space of possible protein

molecules is much larger than the space of those likely to host function. Here we introduce

Chroma, a generative model for proteins and protein complexes that can directly sample novel

protein structures and sequences and that can be conditioned to steer the generative process

towards desired properties and functions. To enable this, we introduce a diffusion process that

respects the conformational statistics of polymer ensembles, an efficient neural architecture

for molecular systems based on random graph neural networks that enables long-range rea-

soning with sub-quadratic scaling, equivariant layers for efficiently synthesizing 3D structures

of proteins from predicted inter-residue geometries, and a general low-temperature sampling

algorithm for diffusion models. We suggest that Chroma can effectively realize protein design

as Bayesian inference under external constraints, which can involve symmetries, substructure,

shape, semantics, and even natural language prompts. With this unified approach, we hope

to accelerate the prospect of programming protein matter for human health, materials science,

and synthetic biology.

Introduction
Protein molecules carry out most of the biological functions necessary for life, but inventing them

is a complicated task that has taken evolution millions to billions of years. The field of com-

putational protein design aims to shortcut this by automating the design of proteins for desired

functions in a manner that is programmable. While there has been significant progress towards

this goal over the past three decades [Kuhlman and Bradley, 2019, Huang et al., 2016], including

the design of novel topologies, assemblies, binders, catalysts, and materials [Koga et al., 2012,

Cao et al., 2022, Kries et al., 2013, Joh et al., 2014], most de novo designs have yet to approach
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the complexity and variety of macromolecules that are found in nature, which possess complex

and asymmetric layered architectures built from many distinct sub-domains. Reasons for this in-

clude that (i) modeling the relationship between sequence, structure, and function is difficult, and

(ii) most computational design methods rely on iterative search and sampling processes which,

just like evolution, must navigate a rugged fitness landscape incrementally Maynard Smith [1970].

While many computational techniques have been developed to accelerate this search [Huang et al.,

2016] and to improve the prediction of natural protein structures [Jumper et al., 2021], the space of

possible proteins remains combinatorially large and only partially accessible by traditional compu-

tational methods. Determining how to efficiently explore the space of designable protein structures

while also biasing towards specific functions remains an open challenge.

An alternative and potentially appealing approach to protein design would be to directly sample

from the space of proteins that are compatible with a set of desired functions. While this could

address the fundamental limitation of iterative search methods, it would require an effective pa-

rameterization of a-priori “plausible” protein space, a way to draw samples from this space, and a

way to bias this sampling towards desired properties and functions. Deep generative models have

proven successful in solving these kinds of high-dimensional modeling and inference problems in

other domains, for example, in the text-conditioned generation of photorealistic images [Ramesh

et al., 2021, 2022, Saharia et al., 2022]. For this reason, there has been considerable work develop-

ing generative models of protein space, applied to both protein sequences [Riesselman et al., 2018,

Greener et al., 2018, Ingraham et al., 2019, Anand et al., 2022, Madani et al., 2020, Rives et al.,

2021, Notin et al., 2022] and structures [Anand and Huang, 2018, Lin et al., 2021, Eguchi et al.,

2022, Anand and Achim, 2022, Trippe et al., 2022, Wu et al., 2022a].

Despite these recent advances in generative models for proteins, we argue that there are three

desiderata that have yet to be realized simultaneously in one system. These are (i) to jointly model

the 3D structures and sequences of full protein complexes, (ii) to do so with computation that

scales sub-quadratically with system size, and (iii) to enable conditional sampling under diverse

cues without re-training. The first, generating full complexes, is important because protein function

is often interpretable only in the context of a bound complex. The second, sub-quadratic scaling of

computation, is important because it has been an essential ingredient for managing complexity in

other modeling disciplines, such as in computer vision, where convolutional neural networks scale

linearly with the number of pixels in an image, and in computational physics, where fast N-body

methods are used for efficient simulation of everything from stellar to molecular systems Barnes

and Hut [1986]. And lastly, the requirement to sample conditionally from a model without having

to retrain it on new target functions is of significant interest because protein design projects often

involve many complex and composite requirements which may vary over time.

Here we introduce Chroma, a generative model for proteins that achieves all three of these re-

quirements by modeling full complexes with quasi-linear computational scaling and by admitting

arbitrary conditional sampling at generation time. It builds on the framework of diffusion models

Sohl-Dickstein et al. [2015], Song et al. [2021], which model high-dimensional distributions by

gradually transforming them into simple distributions and learning to reverse this process, and of

graph neural networks Gilmer et al. [2017], Battaglia et al. [2018], which can efficiently reason

over complex molecular systems. We show that it produces high-quality, diverse, novel, and des-

ignable structures, and that it enables programmable generation of proteins conditioned on several
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Figure 1: Chroma is a generative model for proteins and protein complexes that combines a
structured diffusion model for protein backbones with scalable molecular neural networks
for backbone synthesis and all-atom design. a, A correlated diffusion process with chain and ra-

dius of gyration constraints gradually transforms protein structures into random collapsed polymers

(right to left). The reverse process (left to right) can be expressed in terms of a time-dependent op-

timal denoiser x̂θ(xt , t) (b), which we parameterize in terms of a random graph neural network with

long-range connectivity inspired by efficient N-body algorithms (b:, middle) and a fast method for

solving for a global consensus structure given predicted inter-residue geometries (b:, right). (a, top

right) Another graph-based design network generates protein sequences and side-chain conforma-

tions conditionally based on the sampled backbone. c, The time-dependent protein prior learned

inside of the diffusion model can be combined with auxiliary conditioning information for pro-

grammable generation of protein systems.

different properties such as symmetry, shape, protein class, and even textual input. We anticipate

that scalable generative models like Chroma will enable a widespread and rapid increase in our

ability to design and build protein systems fit for function.

Results

A scalable generative model for protein systems
Chroma achieves high-fidelity and efficient generation of proteins by introducing a new diffusion

process, neural network architecture, and sampling algorithm based on principles from contempo-

rary generative modeling and biophysical knowledge. Diffusion models generate data by learning

to reverse a noising process, which for previous image modeling applications has typically been

uncorrelated Gaussian noise. In contrast, our model learns to reverse a correlated noise process to

match the empirical covariance structure in real proteins which is dominated by the constraints of

a collapsed polymer to be chain structured with a particular radius of gyration (Fig. 1a, Appendix

C). Prior models for protein structure have typically leveraged computation that scales as O(N2)
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[Trippe et al., 2022, Wu et al., 2022a] or O(N3) [Jumper et al., 2021, Anand and Achim, 2022] in

the number of residues N, which has limited their application to small systems or required large

amounts of computation for modestly sized systems. To overcome this, Chroma introduces a novel

neural network architecture (Fig. 1b) for processing and updating molecular coordinates that uses

random long range graph connections with connectivity statistics inspired by fast N-body methods

[Barnes and Hut, 1986] and that scales sub-quadratically (O(N) or O(N logN), Appendix D). Fi-

nally, we also introduce methods for principled low-temperature sampling from diffusion models

with a modified diffusion process that allows us to increase quality of sampled backbones (increas-

ing likelihood) while reducing conformational diversity (reducing entropy). A design network then

generates sequence and side-chain conformations conditioned on the sampled backbone, yielding

a joint generative process for the full sequence and the 3D positions of all heavy atoms in a protein

complex. The design network is based on the same graph neural network as the backbone network,

but with conditional sequence decoding layers and side-chain decoding layers that are similar to

prior works [Ingraham et al., 2019, Anand et al., 2022] and have recently seen further refinement

and experimental validation [Jing et al., 2020, Hsu et al., 2022, Dauparas et al., 2022]. While

it is also possible to model sequence and side chain degrees of freedom as part of a joint diffu-

sion [Hoogeboom et al., 2021], we found that a sequential factorization is effective while being

considerably more efficient.

An important aspect of our diffusion-based framework is that it enables conditional sampling under

combinations of user-specified constraints. This is made possible by a key property of diffusion

models: they can recast the diffusion process for a target conditional distribution p(x|y) of pro-

teins x given constraints y, as a combination of the learned gradient field from the diffusion model

∇x log pt(x) and gradients from external classifiers that have been trained to predict labels y from

noisy examples of x, i.e. ∇x log pt(y|x) [Song et al., 2021] (Fig. 1c, Appendix B). This means

that any classifier that predicts a protein property (e.g. pt(y|x)) from structure can be repurposed

to guide the diffusion process towards proteins with those properties. To demonstrate and ex-

plore the extent of this programmatic conditioning, we introduce a variety of analytic and learned

conditioners pt(y|x) (Fig. 1c, Appendix I). This includes geometrical constraints, which are typ-

ically analytic and include constraints on distance (Appendix J), substructure root mean-squared

deviation (RMSD) from a target substructure (Appendix K), symmetric complexes under arbitrary

symmetry groups (Appendix L), and shape matching to arbitrary point clouds (Appendix M). We

also explore the possibilities of semantic prompting by training graph neural networks to predict

multi-scale classifications (Appendix N) and natural language annotations (Appendix O) directly

from protein structures. Any subset of all of these constraints may then be combined for bespoke,

on-demand protein generation subject to problem-specific desiderata.

Analysis of unconditional samples
We first sought to characterize the diffusion model for protein backbone structures by analyzing

a large set of unconditional samples of proteins and protein complexes. When initially exploring

unconditional samples using the diffusion model, we observed an interesting phenomenon where

the model assigned high likelihoods to natural structures but still produced samples that usually

were mostly unstructured with little backbone hydrogen bonding and secondary structure con-

tent (Appendix B). We reasoned that this phenomenon was analogous to a common issue with
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Figure 2: Analysis of unconditional samples reveals diverse geometries that reproduce low-
level structural statistics but exhibit novel higher-order structure. a, A representative set of

proteins and protein complexes sampled from the unconditioned backbone model at inverse tem-

perature λ0 = 10 exhibits complex and diverse architectures with high secondary structure content.

b, Across a set a set of 10,000 single chains, samples from Chroma have structural properties

that are similar to natural protein structures from the PDB, including secondary structure utiliza-

tion and length-normalized contacBt order, radius of gyration, and contact density statistics. Low-

temperature samples from Chroma tend to slightly favor helices over strands and are more compact

than those found in the PDB. c, Chroma samples reproduce length-dependent scaling of contact

order [Plaxco et al., 1998] and radius of gyration.

likelihood-based generative models such as language models [Holtzman et al., 2020] and diffusion

models [Dhariwal and Nichol, 2021], where it is typical for models to take longer to eliminate the

probability mass for poorly structured states (of which there are usually exponentially many more)

than it does for models to assign high probabilities to well-structured states (e.g. well-formed

sentences and images). The standard solution to this issue of overdispersion of likelihood-based

generative models is to leverage modified sampling procedures which bias towards higher proba-

bility states, such as beam-search or greedy decoding in lanaguage models [Holtzman et al., 2020]

or classifier guidance and classifier-free guidance for conditional diffusion models [Ho and Sal-

imans, 2021]. The latter methods of classifier guidance heavily rely on strong classifiers to be

effective, and we found them insufficient to improve sample quality of our backbones. Instead,

we developed a novel and general sampling algorithm for diffusion models that enables sampling

from the temperature-perturbed distribution 1
Z p(x)λ0 (Appendix B). Increasing the inverse temper-

ature parameter λ0 redistributes probability mass towards higher likelihood states. We emphasize

that these low-temperature sampling methods are of critical importance to our framework, and

throughout the paper we sample backbones at inverse temperatures ranging from λ0 = 16 to λ0 = 1

(Appendix H).
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Equipped with our low-temperature sampling method, we characterized a large number of samples

from the prior and to compare their structural statistics to data from the Protein Data Bank (PDB).

We sampled 50,000 single-chain backbones and 10,000 complex backbones at inverse temperature

λ0 = 10. As can be seen in Fig. 2a, the unconditional samples display many properties shared by

natural proteins, such as complex layering of bundled alpha helices and beta sheets in cooperative

unknotted folds. We provide grids of randomly picked subsets of these samples in Appendix H

(Supplementary Figs. 6 and 7 for single-chain and complex structures, respectively). To quan-

titatively measure the agreement with natural folds, we sampled another set 10,000 single chain

samples and computed several key structural properties, including secondary structure utilization,

contact order [Plaxco et al., 1998], length-dependent radius of gyration [Tanner, 2016], length-

dependent long-range contact frequency and density of inter-residue contacts (Appendix H). We

generally observe agreement between the distribution of these statistics for Chroma and samples

from the PDB, indicateing that these backbone structures appear to be similar to native proteins

(Fig. 2b and c). We do see a slight over-utilization of α-helices (by ∼ 0.5-1.0 standard devi-

ations), which we suspect may be a consequence of low-temperature sampling (i.e., helices are

used more frequently than strands in natural proteins, but the ratio is somewhat accentuated in

low-temperature samples).

Evaluation of generated protein structures
An important question is whether the backbone structures generated by Chroma can be realized

with sequences of natural amino acids—i.e., whether they are “designable”. While the only way to

answer this question definitively is through experimental characterization, we performed two types

of analyses to provide in-silico support for the designability of our generated structures. In the first,

we created sequences for our generated backbones and assessed whether open-source structure

prediction models representative of the current state of art [Wu et al., 2022b] would predict that the

sequences would correctly fold into the original, generated structure (Fig. 3a). We note that this

type of sequence-structure mutual consistency test rests on the ability of the structure prediction

model to generalize to novel folds and topologies, which has yet to be conclusively demonstrated.

Nevertheless, this evaluation is able to provide partial supporting evidence for designability in

the instances where the predicted and generated structures have strong agreement, and there have

been some successful applications of structure prediction for de novo design [Anishchenko et al.,

2021]. Figs. 3b-d show the results of this analysis for a set of 100 backbones generated at random

using Chroma with length uniformly randomly sampled in the range [100,500] (Appendix H.4).

Fig. 3b shows the TM-score [Zhang and Skolnick, 2005] achieved between generated and predicted

structures in this test as a function of protein length. While it is not surprising that this task is more

challenging for longer proteins, as the difficulty of both generation and prediction will generally

increase with chain length, it is remarkable that TM > 0.5 (a broadly utilized cutoff to indicate

“the same fold”) is achieved even for proteins as long as 480 amino acids. The overall distribution

of TM-scores in Fig. 3c shows the cutoff of 0.5 is achieved in 55% of cases overall.

To isolate the possible confounding effect of structure prediction, we also directly analyzed the

higher-order, local backbone geometries in Chroma-generated backbones versus natural back-

bones. Natural protein structures exhibit considerable degeneracy in their use of local tertiary

backbone geometries, such that completely unrelated proteins tend to utilize very similar struc-
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Figure 3: Chroma-generated backbones are designable by a variety of computational metrics.
a, Workflow of the test involving generation of a backbone using Chroma, design of sequences for

this backbone using our sequence design model, structure prediction for these sequences with

OmegaFold [Wu et al., 2022b], and comparison of predicted versus generated structures. b: Re-

sulting TM-scores (best out of 100 design attempts for each structure) vs. to protein length. c,

Distribution of resulting TM-scores (orange). Shown in blue is the same distribution from a control

calculation involving the same workflow but with Chroma sampling at inverse temperature λ0 = 1

(versus λ0 = 10 in the original test). d, Comparisons between generated and predicted structures

for several cases spanning a range of TM-scores from the worst (left) to the best (right) observed

in this test. e, A visual depiction of a TERMs decomposition. f, The distribution of closest-match

RMSD for TERMs of increasing order originating from native or Chroma-generated backbones

(with inverse temperature λ0 being 1 or 10).

tural motifs and relatively few local tertiary geometries account for the majority of the observed

structures [Mackenzie et al., 2016]. These tertiary motifs, or TERMs, consist of a central residue,

its backbone-contiguous neighbors, neighboring residues capable of contacting the central residue,

and their backbone-contiguous neighbors [Mackenzie et al., 2016, Zheng et al., 2015]. Depend-

ing on how many contacting residues are combined into the motif, TERMs can be distinguished

as self, pair, triple, or higher-order, corresponding to having zero, one, two, or more contacting

neighbors (Fig. 3e). To compare the local geometry of Chroma-generated backbones with that

of native structures, we isolated all possible self, pair, triple, and full TERMs (i.e., TERMs con-

taining all contacting residues for a given central residue) and identified the closest neighbor (by

backbone RMSD) to each within a redundancy-pruned subset of the PDB, the search database

(Appendix H.5). We performed a similar analysis on a set of native proteins not contained within

the search database, additionally taking care to remove any homologous matches (Appendix H.5).

Figure 3f shows the distribution of closest-neighbor RMSDs for TERMs derived from both natural

(native) and Chroma-sampled backbones that were generated at inverse temperatures λ0 = 10 and
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λ0 = 1. The distributions of nearest neighbor RMSD were very close for low-temperature sam-

ples from Chroma and native proteins, indicating that Chroma geometries are valid and likely to

be as designable as native proteins, including complex motifs with four or five disjoint fragments

(Fig. 3f, bottom panel). Because native amino-acid choices are driven by these local geometries

[Zhou et al., 2019], and adherence to TERM statistics has been previously shown to correlate with

structural model accuracy and success in de-novo design Zheng et al. [2015], Zhou et al. [2019],

this argues for the general designability of Chroma-generated backbones in a model-independent

manner. Notably, the samples from Chroma without temperature adjustment (i.e. λ0 = 1) ex-

hibit unfolded and unstructured geometries (Fig. 3f), which underlines the importance of having a

method for low-temperature sampling.

Programmability
Being able to efficiently sample realistic proteins is necessary but not sufficient for downstream

applications such as therapeutic development, since unconditional samples are unlikely to pos-

sess desired functional properties. An important aspect of Chroma is its programmability, which

means that it is straightforward to directly bias sampling towards desired properties (Section “A

scalable generative model for protein systems” and Fig. 1). This leverages a remarkable prop-

erty of diffusion models, which is that they can make traditionally difficult Bayesian inversion

problems tractable [Sohl-Dickstein et al., 2015, Song et al., 2021]. Specifically, to condition on a

property or set of properties (collection of events) y, it is sufficient to train a time-dependent clas-

sifier model pt (y|x) on the noised structures xt ∼ pt(x|x0) and to adjust the sampling process by

∇x log pt (y|x), the gradient of the log likelihood that structure x0 will have the desired property at

time t = 0 (the end of the reverse diffusion). Depending on the property in question, this probabil-

ity can be expressed analytically in a closed form (e.g., see Appendix J), as an empirical, analytic

approximation (e.g., see Appendix K), or as the prediction of a neural network (e.g., see Appendix

N and O). This conditioning formalism is very natural for protein design as it decouples the prob-

lem of parameterizing the space of likely structured proteins, the cost of which is amortized by

training a strong prior model once, from the problem of expressing the correct determinants of

the desired function, which can be isolated to the classifier model. Thus, by focusing effort on

building the right classifiers, designers can spend most of their time on solving specific functional

objectives.

To demonstrate what may be achievable with conditional generation, we built several pt (y|x) clas-

sifier models (Appendix I), including those where y encoded: (i) a distance-based constraint (e.g.,

a “contact” between residues), (ii) the presence of a disjoint sub-structure (based on backbone

RMSD), either anywhere in the generated structure or in a pre-specified alignment, (iii) various

residue-, domain-, and complex-level classes (e.g., CATH or PFAM domains, secondary structure

labels, interfacial residues), and (iv) natural language annotations trained on protein captions from

the PDB and Uniprot [Consortium, 2020]. While we believe that each of these classifiers repre-

sents only a preliminary realization of these conditioning modes, we already see that they suggest

tremendous possibilities for programmable design.

We begin by considering analytic conditioners that can control protein backbone geometry. We

found that conditioning on the symmetry of protein complexes, which can also be cast as sam-

pling under a symmetry constraint, can very flexibly generate samples under arbitrary symmetry
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Figure 4: Symmetry, substructure, and shape conditioning enable geometric molecular pro-
gramming. a, Conditioning on arbitrary symmetry groups is possible by symmetrizing gradient,

noise, and initialization through the sampling process (Appendix L). We show how cyclic Cn, di-

hedral Dn, tetrahedral T , octahedral O, and icosahedral I symmetries can produce a wide variety

of possible homomeric complexes. The righmost protein complex contains 60 subunits and 96,000

total residues. b, Conditioning on partial substructure (monochrome) enables protein “infilling” or

“outfilling”. Top two rows illustrate regeneration (color) of half of a protein (enzyme DHFR, first

row) or CDR loops of an antibody (second row); Appendix K. Next three rows show conditioning

on a pre-defined motif; order and matching location of motif segments is not pre-specified here. c,

Lastly, it is possible to condition on arbitrary volumetric shapes by using gradients derived from

Optimal Transport (Appendix L). We test the ability of Chroma to solve for backbone configura-

tions subject to the complex geometries of the Latin alphabet and numerals.
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groups (Fig. 4a, Appendix L). Figure 4a illustrates symmetry-conditioned generation across many

groups, from simple 4-subunit cyclic symmetries up to a capsid-sized icosahedral complex with

96,000 total residues and over 380,000 atoms. This also demonstrates why favorable computa-

tional scaling properties, such as quasilinear computation time (Appendix D), are important, as

efficient computation facilitates scaling to larger systems. Symmetric assemblies are common in

nature and there have been some successes with de novo symmetric designs [Wicky et al., 2022,

King et al., 2014], but it has been generally challenging to simultaneously optimize for both the

molecular interaction details between protomers and the desired overall symmetry in design. By

enabling simple symmetry conditioning within the generation process, joint Chroma should make

it simpler to more easily sample structures that simultaneously meet both requirements.

Next, we explore substructure conditioning in Fig. 4b, which is a central problem for protein design

as it can facilitate preserving one part of a protein’s structure (and function) while modifying

another part of the structure (and potentially function). In the top row, we “cut” the structure of

human dihydrofolate reductase (PDB code 1DRF) into two halves with a plane, remove one of

the halves, and regenerate the other half anew. The cut plane introduces several discontinuities

in the chain simultaneously, and the generative process needs to sample a solution that satisfies

these boundary conditions while being realistic. Nevertheless, the samples achieve both goals and,

interestingly, do so in a manner very different from both each other and from natural DHFR. In the

second row of Fig. 4b, we cut out the complementarity-determining regions of a VHH antibody and

rebuild them conditioned on the remaining framework structure. The generated structures are once

again plausible despite similar difficulties to the DHFR example. Lastly, in the bottom three rows

of Fig. 4b, condition on sub-structure in a unregistered manner, meaning that the exact alignment

of the substructure (motif) within the chain is not specified a priori as it was in the prior examples.

We ”outfill” protein structure around several structural and functional motifs, including an αββ
packing motif, backbone fragments encoding the catalytic triad active site of chymotrypsin, and

the EF-hand Ca-binding motif. Again, these motifs are accommodated in a realistic manner using

diverse and structured solutions.

In Fig. 4c we provide an early demonstration of a more exotic kind of conditioning in which we

attempt to solve for backbone configurations subject to arbitrary volumetric shape specifications.

We accomplish this by adding heuristic classifier gradients based on optimal transport distances

[Peyré et al., 2019] between atoms in the structures and user-provided point clouds (Appendix M).

As a stress test of this capability, we conditioned the generation of 1,000-residue single protein

chains on the shapes of the Latin alphabet and Arabic numerals. While it remains unclear if

any of these backbones would be sufficiently realistic to autonomously fold into their intended

shapes, we see the model routinely implementing several core phenomena of protein backbones

such as high secondary structure content, close packing with room for designed sidechains, and

volume-spanning alpha-helical bundle and beta sheet elements. Although these shapes represent

purely a challenging set of test geometries, more generally, shape is intimately related to functions

in biology, for example, with membrane transporters, receptors, and structured assemblies that

organize molecular events in space. Being able to control shape would be a useful subroutine for

generalized protein engineering and design.

Finally, we demonstrate in Fig. 5 that it is possible to condition on protein semantics such as sec-

ondary structure, fold class (Fig. 5a) and natural language (Fig. 5b). Unlike for the geometric
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Unconditioned samples

p(ig) = 0.23

p(ig) = 0.59

p(ig) = 2.7e-7

p(rossman) = 0.85

p(rossman) = 0.98

p(rossman) = 2.1e-4

p(beta_barrel) = 0.82

p(beta_barrel) = 0.996

p(beta_barrel) = 1.4e-36

caption perplexity = 1.61 caption perplexity = 4.74

caption perplexity = 4.81

caption perplexity = 4.85

caption perplexity = 1.50

caption perplexity = 1.79

Canonical examples

Condition on text caption
“Protein with 

CHAD domain”
“Crystal structure of 
Aminotransferase”

Rossman Fold
CAT 3.40.50

Beta Barrel
CAT 2.40.155

Ig Fold
CAT 2.60.40

Condition on CATH topologyCondition on secondary structure

C 1

C 2

C 3

Figure 5: Protein structure classifiers and caption models can bias the sampling process to-
wards user-specified properties. The top row shows example structures drawn unconditionally

from the p(structure) model. Below, models trained to predict protein semantics are used to con-

ditionally sample structures with desired secondary structures, belonging to particular topologies,

or corresponding to natural language captions. In each column, all conditional samples are drawn

starting from the same random seed as the unconditional sample shown at the top of the column.

The samples based on secondary structure conditioning show the impact of classifiers trained to

predict mainly alpha, mainly beta, and mixed alpha-beta structures. In the columns with topology-

conditioned samples, the classifier’s predicted probabilities for the intended topology are indicated.

Similarly, in the columns with samples based on text conditioning, the caption model’s average

perplexities are shown. For the topology and text caption columns, PDB structures are shown

(“Canonical examples”) that exemplify the target condition.

conditioning where the classifier is correct by construction (e.g., the presence of a motif under

a certain RMSD is unambiguous), here the classifiers are neural networks trained on structure

data (and structure data are considerably more sparse than image data), so there can be a discrep-

ancy between the label assigned by the classifier and the ground truth class. Thus, looking at the

fold-conditioned generation (Fig. 5a), we see that conditional samples always improve classifier

probabilities over unconditioned samples taken from the same random seed, but the classifica-

tion is not always perfect. For example, for the cases of “beta barrel” and “Ig fold” classes, the

generated samples look like believable representatives of the respective class. On the other hand,

in the “Rossman fold” example, the structure has some of the features characteristic of the class

(i.e., two helices packed against a sheet on one side), but does not contain all such features (e.g.,

the opposing side of the sheet is not fully packed with helices like in a classical Rossman fold).

In Fig. 5b we demonstrate semantic conditioning on natural language captions, which similarly

improves probabilities while not generically being valid. It is exciting to imagine the potential
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Protein length vs CATH Novelty

PDB
Average

Chroma
Average

Typical Fold Novel Fold

UMAP 1

U
M

AP
 2

PDB

Big

Strand

Helix
a b

Figure 6: Chroma-generated structures span natural protein space while also frequently
demonstrating high novelty. a, Proteins from the PDB and Chroma are featurized with 31 global

fold descriptors derived from knot theory [Røgen and Fain, 2003, Harder et al., 2012] and are

embedded into two dimensions using UMAP. The large figure is colored by the CATH cover-

age novelty measure normalized by protein length. Structural novelty was assessed by counting

the number of CATH domains needed to achieve a greedy cover at least 80% of residues with

TM > 0.5. On average Chroma needs 4.3 CATH domains per 200 amino acids to cover 80% of its

residues while structures from the PDB need only 1.6. (a, inset) Chroma generated structures are

more diverse and novel compared to structures from the PDB (regardless of protein length). The

line represents the median value and is bounded by first (25%) and third (75%) quartile bands. The

4 smaller UMAP plots demonstrate the structure of the embedding by highlighting populations of

structures that are mainly helices, strands, large (more than 500 residues), or natural proteins. The

panel labeled PBD shows the distribution of natural proteins used to train the model. b, We render

twelve proteins from across the embedding space with high novelty score (numbered in the em-

bedding plot). The highlighted structures all have a novelty score of at least one standard deviation

greater than the PDB.

of such a capability—i.e., being able to request desired protein features and properties directly

via natural language prompts. Generative models such as Chroma can reduce the challenge of

function-conditioned generation to the problem of building accurate classifiers for functions given

structures. While there is clearly much more work to be done to make this useful in practice, high-

throughput experiments and evolutionary data can likely make this possible in the near term.

Expanding protein space
So far, we have shown how samples from Chroma are realistic, designable, and can be condi-

tioned, but it remains unclear how much they simply reproduce structures from the training set
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or involve novel fold topologies. We sought to characterize the novelty of samples from Chroma

by taking our large set of single-chain samples (Section “Analysis of unconditional samples”) and

mapping their structural homology to proteins in the PDB. Classifying protein structures into dis-

tinct topologies is not simple, but initiatives such as the CATH database [Sillitoe et al., 2021] have

identified a relatively compact set of structural domains, which can efficiently explain most of the

structures in the PDB as sub-domain combinations. Therefore, we can invoke a notion of “Novelty

as CATH-compressibility” where we ask how easy it is to reduce Chroma-sampled structures to

the compositions of CATH domains. We define a novelty score as the number of CATH domains

required to achieve a greedy cover of 80% of the residues in a protein at a TM score above 0.5.

Note that most valid proteins will be covered by at least some finite number of CATH domains

as we include even very small domains in the coverage test (including those comprising a single

secondary-structural element). The results of this analysis are shown in the inset of Fig. 6a, where

the novelty score is plotted as a function of protein length for both Chroma-generated and native

proteins. The gap between the two is apparent. Most native backbones are described by a handful

of CATH domains, with this number rising slowly as a function of length. On the other hand,

Chroma-generated structures routinely require tens of CATH domains to reach 80% coverage, and

this number rises sharply with length.

We further find that samples from Chroma are diverse and covering of all of natural protein space.

In Fig. 6a, we jointly represent samples from Chroma and a set of structures from the PDB with

global topology descriptors derived from knot theory [Røgen and Fain, 2003, Harder et al., 2012],

and embed these into two dimensions with UMAP [McInnes et al., 2018]. The resulting embedding

appears to be semantically meaningful as sub-sets of structures belonging to different categories by

size and secondary structures appear to cluster in this projection (sub-panels on the left in Fig. 6a).

Coloring individual points in the embedding by the degree of novelty (i.e., the length-normalized

number of CATH domains required to achieve 80% coverage), we can see that novelty in the

space being sampled is spread broadly and not biased to only certain types of structures (Fig. 6a,

right). This is especially clear when looking at a representative selection of novel samples shown

in Fig. 6b (novelty threshold for selecting being > 2.2 CATH domains needed for 80% per 200

amino acids of length). Taken together, these results show that Chroma samples are diverse and

have not yet appeared to exhibit any obvious biases.

Discussion
In this work, we present Chroma, a new generative model capable of generating novel and diverse

proteins across a broad array of structures and properties. Chroma is programmable in the sense

that it can be conditioned to sample proteins with a wide-array of user-specified properties, in-

cluding: inter-residue distances and contacts, domains, sub-structures, and semantic specifications

from classifiers. Chroma is able to generate proteins that have arbitrary and complex shapes, and

we have shown the beginning of the ability to accept descriptions of desired properties as free text.

Due to an efficient design with a new diffusion process, quasilinear scaling neural architecture,

and low-temperature sampling method, Chroma is able to generate extremely large proteins and

protein complexes (e.g. with ≥ 3000 residues) on a commodity GPU (e.g., an NVIDIA V100) in

a few minutes.
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These results are particularly striking in light of the historical difficulty of sampling realistic pro-

tein structures. The task of exploring the structure space in a way that can produce physically

reasonable and designable conformations has been a long-standing challenge in protein design.

In a few protein systems, it has been possible to parameterize the backbone conformation space

mathematically–most notably the α-helical coiled coil [Grigoryan and DeGrado, 2011] and a few

other cases with high symmetry [Woolfson et al., 2015]—and in these cases design efforts have

benefited tremendously creating possibilities not available in other systems [Beesley and Woolfson,

2019, Woolfson et al., 2015]. For all other structure types, however, a great amount of computa-

tional time is being spent on the search for reasonable backbones, often leaving the focus on actual

functional specifications out of reach. Chroma has the potential to address this problem, enabling a

shift from focusing on generating feasible structures towards a focus on the specific task at hand—

i.e., what the protein is intended to do. By leveraging proteins sampled over the first 3+ billion

years of evolution on Earth and finding new ways to assemble stable protein matter, generative

models such as Chroma are well poised to drive another expansion of biomolecular diversity for

human health and bioengineering.
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Symbol Definition

N number of atoms

G = {gi}|G|
i=1 a group, gi is an individual group element in E(3)

G = (V,E) a graph and G(x) defined as the graph generation operation

xt ∈ R
N×3 atom coordinate sampled at time t

xMt ∈ R
|M|×3 retrieve atom coordinates based on index set M⊂ [[1,N]]

x(i)t ∈ R
3 the ith coordinate in xt

Xt ∈ R
|G|×N×3 coordinates of G-symmetric complex

X(i)
t ∈ R

|G|×N×3 coordinates of the ith subunit in the G-symmetric complex

Di j Euclidean distance between i and j ||x(i)−x( j)||2
d(i j)

t time-dependent noised Euclidean distance between i and j
z ∈ R

N×3 whitened noise, and zi is the individual noise component

Σ = RRᵀ covariance matrix for polymer-structured prior, [Rz]ik = ∑ j[R]i jz jk
T = (t,O) Euclidean transformation with translation t and rotation O

βt time-dependent noise schedule

αt integrated noise in the forward diffusion

λt time-dependent inverse temperature

ψ mixing parameter for amount of Langevin equilibration in Hybrid SDE

T number of integration time steps

x̂θ denoising network in Cartesian space

ẑθ denoising network in the whitened space

∇x log pt(x, t) score estimator network

dw, dw̄ forward Brownian noise, reverse Brownian noise

Table 1: Table of notation
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A Diffusion Models with Structured Correlations

A.1 Correlated diffusion as uncorrelated diffusion in whitened space
Correlation and diffusion Most natural data possess a hierarchy of correlation structures, some

of which are very simple (e.g., most nearby pixels in natural images will tend to be a similar color)

and some of which are very subtle (e.g., complex constraints govern the set of pixels forming an

eye or a cat). With finite computing resources and modeling power, it can be advantageous to

design learning systems that capture simple correlations as efficiently as possible such that most

model capacity can be dedicated to nontrivial dependencies (see Appendix C).

Diffusion models capture complex constraints in the data by learning to reverse a diffusion process

that transforms data into noise [Sohl-Dickstein et al., 2015, Song et al., 2021]. While most of these

original diffusion frameworks considered the possibility of correlated noise, it is typical in contem-

porary models to use isotropic noise that is standard normally distributed. In this configuration,

models must learn both simple correlations and complex correlations in data from scratch.

Whitening transformations and linear generative models One classical approach for remov-

ing nuisance correlations in data is to apply a “whitening transformation”, i.e., an affine linear

transformation z =Σ− 1
2 (x−μ) that decorrelates all factors of variation by subtracting the empiri-

cal mean μ and multiplying by a square root of the inverse covariance matrix R =Σ− 1
2 .

Whitening data can also be related to fitting the data to a Gaussian model x = F(z) = Rz+ b
where the whitened factors z are standard normally distributed as z ∼ N (0,I) [Murphy, 2012].

The density in the whitened space can be related to the density in the transformed space by the

change of variables formula as

log p(x) = log pz(F−1(x))− log

∣∣∣∣det
dF
dx

∣∣∣∣
= log pz(R−1(x−b))− log |detR|
= logN (R−1(x−b);0,I)− log |detR|
= logN (x;b,RRᵀ).

From whitened diffusion to dewhitened diffusion If we possess a linear Gaussian prior for our

data p(x) =N (x;b,RRᵀ) which can be sampled as x=Rz with z∼N (0,I)1, then an uncorrelated
diffusion process on the whitened coordinates zt ∼ pt(z|z0) will induce a correlated diffusion

process on the original coordinates xt ∼ pt(x|x0). When the diffusion process is the so-called

Variance-Preserving (VP) diffusion [Sohl-Dickstein et al., 2015, Ho et al., 2020], then the diffusion

will transition from the data distribution at time t = 0 to the Gaussian prior distribution at time t = 1.

Throughout this work we use the continuous time formulation of VP diffusion [Song et al., 2021]

1We will assume the data are centered (have zero mean) for ease of notation.
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in whitened space. This process evolves in time t ∈ (0,1) according to the Stochastic Differential

Equation (SDE)

dz =−βt

2
z dt +

√
βtdw,

where w is a standard Wiener process and βt is the time-dependent schedule at which noise is

injected into the process. We can also write the correlated SDE in terms of xt if we substitute

x = Rz as

dx = Rdz =−βt

2
R z dt +

√
βtRdw

=−βt

2
x dt +

√
βtRdw.

Sampling from the diffusion This diffusion process is simple to integrate forward in time [Sohl-

Dickstein et al., 2015, Song et al., 2021]. Given an initial data point x0, then xt will be distributed

as xt ∼ N (x;
√

αtx0,(1−αt)RRᵀ) where αt =
∫ t

0 exp(−βs)ds is the integrated noise. Samples at

any time t can thus be generated from standard normally distributed noise as

xt =
√

αtx0 +
√

1−αtRε ε∼N (0,I).

A.2 Evidence Lower Bound (ELBO)
Denoising loss Diffusion models can be parameterized in terms of a denoising neural network

x̂θ(x, t) that is trained to predict x0 given a noisy sample xt . Typically this is done by minimizing

a denoising loss
L(x;θ) = Ext∼p(xt |x),t∼Unif(0,1)

[
τt‖x̂θ(xt , t)−x‖2

2

]
where τt is a time-dependent weighting to emphasize the loss at particular points in time (noise

levels) [Song et al., 2021]. Training with this loss can be directly related to score matching and

noise prediction which can be cast as alternative parameterizations of the target output of the

network [Kingma et al., 2021].

Approximate likelihood bound We train the diffusion model by optimizing an approximate

bound on the marginal likelihood of data together with a regularization loss. Following [Kingma

et al., 2021], the negative Evidence Lower Bound (ELBO) in whitened space is

Lz(z;θ) =−Ext∼p(xt |x),t∼Unif(0,1)

[
αtβt

2(1−αt)2
‖ẑθ(xt , t)− z‖2

2

]

where in this case τt = −1
2

d
dt

(
αt

1−αt

)
= − αtβt

2(1−αt)2 is the derivative of the signal to noise ratio
αt

1−αt
. To express this loss in terms of x = Rz we may again apply change of variables formula to

obtain

Lx(x;θ) = Lz(R−1x)+ log |detR|
=−Ext∼p(xt |x),t∼Unif(0,1)

[
αtβt

2(1−αt)2
‖R−1 (x̂θ(xt , t)−x)‖2

2

]
+ log |detR|,
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where the term log |detR| is a constant (we fit the parameters of R offline from training) and can

be ignored during optimization of the denoiser parameters θ.

Regularized loss In practice we optimize a regularized variant of the ELBO loss which is the

sum of whitened and unwhitened reconstruction errors as

Lreg
x (x;θ) =−Ext∼p(xt |x),t∼Unif(0,1)

[
αtβt

2(1−αt)2

∥∥(R−1 +ωI
)
(x̂θ(xt , t)−x)

∥∥2

2

]
,

where I is the identity matrix and we set the scale factor ω to give x units of nanometers. We found

this regularization to be important because in practice we care about absolute errors in x space, i.e.

absolute spatial errors, at least as much as we care about errors in z space, which will correspond

under our covariance models (Appendix C) to relative local chain geometries.

A.3 Reverse-time SDE
In whitened space, we can express the reverse-time dynamics for the forwards-time SDE in terms

of another SDE [Anderson, 1982, Song et al., 2021] that depends on the score function of the

time-dependent marginals ∇z log pt(z) as

dz =
(
−1

2
z− ∇z log pt(z)

)
βt dt +

√
βt dw̄.

We can similarly express this in the score function of the transformed coordinate system as

dx =

(
−1

2
x− RRᵀ∇x log pt(x)

)
βt dt +

√
βt R dw̄.

To sample from the diffusion model by taking a sample from the “prior” (time 1 distribution) and

integrate the SDE above backward in time from t = 1 to t = 0. We can rewrite the above SDE

in terms of our optimal denoising network x̂θ(x, t) (trained as described above) by leveraging the

relationship [Song et al., 2021, Kingma et al., 2021] that

∇x log pt(x) = ((1−αt)RRᵀ)−1 (
√

αt x̂θ(x, t)−x) .

Therefore we can express the reverse-time SDE in terms of the optimal denoising network x̂θ(x, t)
as

dx =

(
−1

2
x−RRᵀ (RRᵀ)−1

1−αt
(
√

αt x̂θ(x, t)−x)

)
βt dt +

√
βt R dw̄

=

(
−1

2
x−

√
αt x̂θ(x, t)−x

1−αt

)
βt dt +

√
βt R dw̄

=

(
−√

αt x̂θ(x, t)+x− 1
2 x(1−αt)

1−αt

)
βt dt +

√
βt R dw̄

=

(
αt +1

2(1−αt)
x−

√
αt

1−αt
x̂θ(x, t)

)
βt dt +

√
βt R dw̄.
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A.4 Probability Flow ODE
Probability Flow ODE for deterministic encoding and sampling Remarkably, it is also pos-

sible to derive a set of deterministic ordinary differential equations (ODEs) whose marginal evo-

lution from the prior is identical to above SDEs [Song et al., 2021, Maoutsa et al., 2020]. In

the context of our covariance model this can be expressed either in terms of the score function

∇x log pt(x) as

dx
dt

=−βt

2
(x+RRᵀ∇x log pt(x)) ,

or in terms of the optimal denoiser network x̂θ(x, t) as

dx
dt

=−βt

2

(
x+RRᵀ ((1−αt)RRᵀ)−1 (

√
αt x̂θ(x, t)−x)

)
=−βt

2

(
x+(1−αt)

−1 (
√

αt x̂θ(x, t)−x)
)

=−βt

2

(
x
(

1− 1

1−αt

)
+ x̂θ(x, t)

√
αt

1−αt

)

=
βt

2

(
x

αt

1−αt
− x̂θ(x, t)

√
αt

1−αt

)

=
1

2

αtβt

1−αt

(
x− x̂θ(xt , t)√

αt

)
.

The ODE formulation of sampling is especially important because it enables reformulating the

model as a Continuous Normalizing Flow [Chen et al., 2018], which can admit efficient and exact

likelihood calculations using the adjoint method [Grathwohl et al., 2018].

A.5 Conditional sampling from the posterior under auxiliary constraints
Bayesian posterior SDE for conditional sampling An extremely powerful aspect of the reverse

diffusion formulation is that it can also be extended to enable conditional sampling from a Bayesian

posterior p(x|y) by combining with auxilliary classifiers log pt(y|x) and without re-training the

base diffusion model [Song et al., 2021]. When extended to the correlated diffusion case, this

gives the SDE

dx =

(
−1

2
x− RRᵀ (∇x log pt(x)+∇x log pt(y|x))

)
βt dt +

√
βt R dw̄ (1)

=

(
αt +1

2(1−αt)
x−

√
αt

1−αt
x̂θ(x, t)− RRᵀ∇x log pt(y|x)

)
βt dt +

√
βt R dw̄ (2)
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Bayesian posterior ODE for conditional sampling In the context of our covariance model and

conditional constraints, the Probability Flow ODE for sampling from the posterior is

dx
dt

=−βt

2
(x+RRᵀ (∇x log pt(x)+∇x log pt(y|x))) (3)

=
1

2

αtβt

1−αt

(
x− x̂θ(x, t)√

αt

)
− βt

2
RRᵀ∇x log pt(y|x) (4)

A.6 Related work
Subspace diffusion models [Jing et al., 2022] also consider correlated diffusion, with a particular

emphasis on focusing the diffusion to most relevant factors of variation for statistical and com-

putational efficiency. Additionally, latent-space diffusion models [Rombach et al., 2022] might

be viewed as learning a transformed coordinate system in which the diffusion process can more

efficiently model the targer distribution. Our work provides further evidence for how correlated

diffusion may be an underutilized approach to distributional modeling and shows how domain

knowledge can be incorporated in the form of simple constraints on the covariance structure of the

noise process.

B Low-Temperature Sampling for Diffusion Models
Maximum likelihood training of generative models enforces a tolerable probability of all data-

points and, as a result, misspecified or low-capacity models fit by maximum likelihood will typi-

cally be overdispersed. This can be understood through the perspective that maximizing likelihood

is equivalent to minimizing the KL divergence from the model to the data distribution, which is the

mean-seeking and mode-covering direction of KL divergence.

To mitigate overdispersion in generative models, it is common practice to introduce modified sam-

pling procedures that increase sampling of high-likelihood states (mode emphasis, precision) at

the expense of reduced sample diversity (mode coverage, recall). This includes approaches such as

shrunken encodings in normalizing flows [Kingma and Dhariwal, 2018], low-temperature greedy

decoding algorithms for language models [Holtzman et al., 2020], and stochastic beam search

[Kool et al., 2019].

A powerful but often intractable way to trade diversity for quality in generative models is low-

temperature sampling. This involves perturbing a base distribution p(x) by exponentiating with

an inverse temperature rescaling factor λ and renormalizing as pλ (x) = 1
Z p(x)λ . As the inverse

temperature becomes large λ � 1, this perturbed distribution will trade diversity (entropy) for

sample quality (likelihood) and ultimately will collapse into the global optimum as λ → ∞. Un-

fortunately, low temperature sampling in the general case will require expensive iterative sampling

methods such as Markov Chain Monte Carlo which typically offer no guarantee of convergence in

a practical amount of time [MacKay, 2003].

Low temperature and diffusion models The issue of trading diversity for sample quality in

diffusion models has been discussed previously, with some authors reporting that simple modi-
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fications like upscaling the score function and/or downscaling the noise were ineffective [Dhari-

wal and Nichol, 2021]. Instead, classifier guidance and classifier-free guidance have been widely

adopted as critical components of contemporary text-to-image diffusion models such as Imagen

and DALL-E 2 [Ho and Salimans, 2021, Saharia et al., 2022, Ramesh et al., 2022].

Equilibrium versus Non-Equilibrium Sampling Here we offer an explanation for why these

previous attempts at low temperature sampling did not work and produce a novel algorithm for

low-temperature sampling from diffusion models. We make two key observations, explained in

the next two sections

1. Upscaling the score function of the reverse SDE is insufficient to properly re-weight pop-

ulations in a temperature perturbed distribution.

2. Annealed Langevin dynamics can sample from low temperature distributions if given

sufficient equilibration time.

B.1 Reverse-time SDE with temperature annealing
The isotropic Gaussian case To determine how the Reverse SDE can be modified to enable

(approximate) low temperature sampling, it is helpful to first consider a case that can be treated ex-

actly: transforming a Gaussian data distribution N (x0;μdata,σ2
data) to a Gaussian prior N (x1;0,σ2

prior).
Under the Variance-Preserving diffusion, the time-dependent marginal density will be given by

pt(x) =N
(

x;
√

αtμdata, αtσ2
data +(1−αt)σ2

prior

)
,

which means that the score function st will be

st � ∇x log pt(x)

=

√
αtμdata −x

αtσ2
data +(1−αt)σ2

prior

.

Now, suppose we wish to modify the definition of the time-dependent score function so that, instead

of transitioning to the original data distribution, it transforms to the perturbed data distribution, i.e.

so the it transitions to 1
Z p0(x)λ0 . For a Gaussian, this operation will simply multiply the precision

(or equivalently, divide the covariance) by the factor λ0. The perturbed score function will therefore

be

sperturb
t =

√
αtμdata −x

αtσ2
data/λ0 +(1−αt)σ2

prior

.

Based on this, we can express the perturbed score function as a time-dependent rescaling of the

original score function with scaling based on the ratios of the time-dependent inverse variances

as

sperturb
t = st

(1−αt)σ2
prior +αtσ2

data

(1−αt)σ2
prior +αtσ2

data/λ0

.
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Supplementary Figure 1: The Hybrid Langevin SDE can sample from temperature-perturbed
distributions. The marginal densities of the diffusion process pt(x) (top left) gradually transform

between a toy 1D data distribution at time t = 0 and a standard normal distribution at time t = 1.

Reweighting the distribution by inverse temperature λ0 as 1
Z pt(x)λ0 (left column, bottom two rows)

will both concentrate and reweight the population distributions. The annealed versions of the

reverse-time SDE and Probability Flow ODEs (middle columns) can concentrate towards local

optima but do not correctly reweight the relative population occupancies. Adding in Langevin

dynamics with the Hybrid Langevin xSDE (right column) increases the rate of equilibration to

the time-dependent marginals and, when combined with low temperature rescaling, successfully

reweights the populations (bottom right).
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Therefore we see that, to achieve a particular inverse temperature λ0 for the data distribution, we

should rescale the learned score function by time-dependent factor

λt =
(1−αt)σ2

prior +αtσ2
data

(1−αt)σ2
prior +αtσ2

data/λ0

≈ λ0

αt +(1−αt)λ0

where in the last step we assumed σ2
data = σ2

prior. So one interpretation of the previously observed

insufficienes of low temperature sampling based on score-rescaling [Dhariwal and Nichol, 2021]

is that these were hampered by uniform rescaling the score function in time instead of in a way that

accounts for the shift of influence between the prior and the data distribution.

Temperature-adjusted reverse time SDE We can modify the Reverse-time SDE by simply

rescaling the score function with the above time-dependent temperature rescaling as

dx =

(
−1

2
x− λtRRᵀ∇x log pt(x)

)
βt dt +

√
βt R dw̄

=

(
−1

2
x−λt

√
αt x̂θ(x, t)−x

1−αt

)
βt dt +

√
βt R dw̄.

Temperature adjusted probability flow ODE Similarly for the Probability Flow ODE we can

rescale as

dx
dt

=−βt

2
(x+λtRRᵀ∇x log pt(x))

=
βt

2

(
x

αt +λt −1

1−αt
− x̂θ(x, t)

λt
√

αt

1−αt

)
.

Rescaling does not reweight We derived the above rescaling rationale by considering a uni-

modal Gaussian, which has the simple property that the score of the perturbed diffusion can be

expressed as a rescaling of the learned diffusion. This will not necessarily be true in general, and

sure enough we find that the above dynamics do drive towards local maxima but do not reweight
populations based on their relative probability (Supplementary Figure 1) as true low temperature

sampling does. To address this, we next introduce an equilibration process that can be arbitrarily

mixed in with the non-equilibrium reverse dynamics.

B.2 Annealed Langevin Dynamics SDE
Instead of reversing the forwards time diffusion in a non-equilibrium manner, we can also use the

learned time-dependent score function ∇x log pt(x) (expressed in terms of the optimal denoiser

x̂θ(x, t)) to do slow, approximately equilibrated sampling with annealed Langevin dynamics [Song

and Ermon, 2019].
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1 2 4 8 16
Inverse Temperature

Supplementary Figure 2: Low-temperature sampling trades reduced sample diversity (en-
tropy) for increased sample quality (likelihood). Given a fixed random seed for generation

(each row), structures sampled at higher inverse temperature λ0 leads have higher secondary struc-

ture content and tighter packing as compact, globular folds.

While the annealed Langevin dynamics of [Song and Ermon, 2019] was originally framed via

discrete iteration, we can recast it in continuous time with the SDE

dx =−βtψ
2

RRᵀ∇x log pt(x)λ0 dt +
√

βtψ R dw̄

=−βtψ
2

λ0RRᵀ∇x log pt(x) dt +
√

βtψ R dw̄

where ψ is an “equilibration rate” scaling the amount of Langevin dynamics per unit time. As

ψ → ∞ the system will instantaneously equilibrate in time, constantly adjusting to the changing

score function. In practice, we can think about how to set these parameters by considering a single

Euler-Maruyama integration step in reverse time with step size 1
T where T is the total number of

steps

xt− 1
T
← xt +

βtψ
2T

λ0RRᵀ∇x log pt(x)+
√

βtψ
T

R ε ε∼N (0,I)

which is precisely preconditioned Langevin dynamics with step size
βtψ
T . For a sufficiently small

interval (t −dt, t) we can keep the target density approximately fixed while increasing T to do an

arbitrarily large number of Langevin dynamics steps, which will asymptotically equilibrate to the

current density log pt(x).
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B.3 Hybrid Langevin-Reverse Time SDE
We can combine the annealed Reverse-Time SDE and the Langevin Dynamics SDE into a hybrid

SDE that infinitesimally combines both dynamics. Denoting the inverse temperature as λ0 and the

ratio of the Langevin dynamics to conventional dynamics as ψ , we have

dx =

(
−1

2
x−

(
λt +

λ0ψ
2

)
RRᵀ∇x log pt(x)

)
βt dt +

√
βt(1+ψ) R dw̄

=

(
−1

2
x−
(

λt +
λ0ψ

2

)
RRᵀ (RRᵀ)−1

1−αt
(
√

αt x̂θ(x, t)−x)

)
βt dt +

√
βt(1+ψ) R dw̄

=

(
−1

2
x−
(

λt +
λ0ψ

2

)√
αt x̂θ(x, t)−x

1−αt

)
βt dt +

√
βt(1+ψ) R dw̄

where we highlight in pink the terms that, when set to unity, recover the standard reverse time

SDE.

Representative samples using this modified SDE are shown in Fig 7. Without the low temperature

modification, this idea is very reminiscent of the Predictor Corrector sampler proposed by Song

et al. [2021], except in that case the authors explicitly alternated between reverse-time diffusion

and Langevin dynamics while we fuse them into a single SDE.

Equilibration is not free Generally speaking, as we increase the amount of Langevin equilibra-

tion with ψ , we will need to simultaneously increase the resolution of our SDE solution to maintain

the same level of accuracy. That said, we found that even a modest amount of equilibration was

sufficient to significantly improve sample quality in practice with ψ ∈ [1,5].

Even more equilibration Lastly, while the Hybrid Langevin-Reverse Time SDE can do an ar-

bitrarily large amount of Langevin dynamics per time interval which would equilibrate asymp-

totically in principle, these dynamics will still inefficiently mix between basins of attraction in

the energy landscape when 0 < t � 1. We suspect that ideas from variable-temperature sampling

methods, such as simulated tempering [Marinari and Parisi, 1992] or parallel tempering [Hans-

mann, 1997], would be useful in this context and would amount to deriving an augmented SDE

system with auxiliary variables for the temperature and/or copies of the system at different time

points in the diffusion.

C Polymer-Structured Diffusions
Most prior applications of diffusion models to images and molecules have leveraged uncorrelated

diffusion in which data are gradually transformed by isotropic Gaussian noise. We found this

approach to be non-ideal for protein structure applications for two reasons. First, noised samples

break simple chain and density (e.g., radius of gyration, Rg) constraints that almost all structures

satisfy [Hong and Lei, 2009, Tanner, 2016], forcing the model to allocate a significant amount of

capacity towards re-implementing these basic constraints. And second, this “out-of-distribution”

aspect of high-noise samples tends to limit the performance of efficient domain-specific neural
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architectures for molecular systems. To this end, we introduce multivariate Gaussian distributions

for protein structures that (i) are SO(3) invariant, (ii) enforce protein chain and radius of gyration

statistics, and (iii) can be computed in linear time. Throughout this section, we will introduce

covariance models for protein polymers (which can be thought of as a de-whitening transform R,

see Appendix A) with parameters that can be fit offline from training the diffusion model.

C.1 Preliminaries: Diffusion models linearly interpolate between the aver-
age quadratic forms of the data and prior

Here we show how the diffusion processes described above will predictably affect molecular ge-

ometry as a function of the covariance structure of the noising process. We will use this result to

reflect on how the covariance structure should be designed. Squared distance D2
i j and the squared

radius of gyration R2
g are both functions that can be expressed as quadratic forms in the coordinates.

That means they can be expressed as a function F(x) = xᵀAx where A is a matrix weighting the

different cross-terms as F(x) = ∑i, j Ai jxix j. Suppose we want to understand the behavior of these

quantities as they evolve under the forward process of a diffusion model. Recall that we can write

samples from the forward diffusion process as

xt =
√

αtx0 +
√

1−αtRz, z ∼N (0,I)

So we can write the time-expectation of any quadratic form as

Ep(xt |x0) [F(x)] = Ez

[
(
√

αtx0 +
√

1−αtRz)ᵀA(
√

αtx0 +
√

1−αtRz)
]

= F(
√

αtx0)+Ez

[
F(
√

1−αtRz)+
√

αt(1−αt)
(
xᵀ0Rz+Rzᵀx0

)]
= αt F(x0)+Ez

[
F(
√

1−αtRz)
]

= αt F(x0)+(1−αt) Epmodel(x) [F(x)]

Squared distance is a quadratic form, so diffusion processes will simply linearly interpolate to the

behavior of the prior as

Ep(xt |x0)

[
D2

i j(xt)
]
= αt D2

i j(x0)+(1−αt) Epprior(x)
[
D2

i j(x)
]

and squared radius of gyration will similarly evolve under the diffusion as

Ep(xt |x0)

[
R2

g(xt)
]
= αt R2

g(x0)+(1−αt) Epprior(x)
[
R2

g(x)
]

Punchline Because diffusion models will do simple linear interpolations between the average

squared distances and Rg of the data distribution and of the prior, we should focus on covariance

structures that empirically match these properties as closely as possible. Two primary ways will be

in the chain constraint, i.e., that Di,i+1(xt) should always be small and match the data distribution,
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and the size/density constraint of how R2
g(xt) should behave as a function of protein length and

typical packing statistics.

C.2 Covariance model #1: Ideal chain
In this section, we introduce one of the simplest covariance models that enforces the chain con-

straint but ignores the Rg scaling. It will interpolate between the data distribution and the ensemble

of unfolded random coils.

Noise process We index our amount of noise with a diffusion time t ∈ [0,1]. Given a denoised

structure x0, a level of noise t, and a noise schedule αt , we sample perturbed structures from a

Multivariate Gaussian distribution p(xt |x0) =N (
√

αtx0,(1−αt)Σ) as

xt =
√

αtx0 +
√

1−αtRz, z ∼N (0,I),

where the covariance matrix enforcing our chain constraint Σ= RRᵀ can be expressed in terms of

its square root R, which is defined below.

Key to our framework is a matrix R whose various products, inverse-products, and transpose-

products with vectors can be computed in linear time. We define the matrix R in terms of its

product with a vector f (z) = Rz:

f (z)i = x̃i +δ x̃1 −∑
k

x̃k

N
, where x̃i = γ

i

∑
k=1

zk

The inverse product f−1(x) = R−1x is then

f−1(x)i =
x̃i − x̃i−1

γ
, where x̃i = xi − x1 +

1

δ ∑
k

xk

N

This definition of R induces the following inverse covariance matrix on the noise, which possesses

a special structure:

Σ−1 = (RRᵀ)−1 =
1

γ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

1

(Nγδ )2
11ᵀ

The parameter γ sets the length scale of the chain and the parameter δ sets the allowed amount of

translational noise about the origin. This latter parameter is important for training on complexes

where each chain may not have a center of mass at 0.
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C.2.1 Covariance model #1 has ideal chain scaling Rg ∝ N(1/2)

Our ideal-chain model is a simple Brownian motion and so the interatomic residual is Gaussian

distributed with zero mean and γ2|i− j| variance, i.e.,

ri j ∼N (0,γ2|i− j|)

The expected squared norm for a Multivariate Normal Distribution (MVN) with spherical covari-

ance is ‖μ‖2
2 + kσ2 where k is the dimensionality, so we have:

Ep(xt |x0)

[
D2

i j(xt)
]
= αt D2

i j(x0)+(1−αt)3γ2|i− j|

When αt = 0, the expected squared distances are those of the data distribution, while when αt = 1,

they are those on an ideal Gaussian chain.

To compute the expected radius of Gyration, we can use the identity that it is simply half of the

root mean square of inter-residue distances

1

2N2 ∑
i, j

Epprior

[
‖x j

t −xi
t‖2

2

]
=+

1

2N2 ∑
i, j
(1−α)3γ2|i− j|

= 3γ2 1

2N2 ∑
i, j

|i− j|

= 3γ2 1

N2

N

∑
i=1

N

∑
j=i

j− i

= 3γ2 N
6

(
N2 −1

N2

)

Therefore, we can also view the mean behavior of the diffusion as linearly interpolating the squared

radius of gyration as

Ep(xt |x0)

[
R2

g (x)
]
= α

(
R(0)

g

)2
+(1−α)3γ2 N

6

(
N2 −1

N2

)

When α → 0 and N � 0, the term
(

N2−1
N2

)
≈ 1 we recover the well-known scaling for an ideal

chain with Ep(xt |x0)

[(
R2

g(xt)
)]

= Na2

6 where the segment length is a =
√

3γ .

C.3 Covariance model #2: Rg-confined, linear-time Polymer MVNs
In this section we consider how to extend the previous model that also constrains the the scaling of

the radius of gyration Rg. We consider a family of two-parameter linear chain models that include

the previous model as a special case. Specifically, consider the following linear recurrence
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xi = azi +bxi−1

= a
i

∑
j=2

bi− jz j +bi−1x1

Here, the parameter a is a global scale parameter setting the “segment length” of the polymer and b
is a “decay” parameter which sets the memory of the chain to fluctuations. We recover a spherical

Gaussian when b = 0 and the ideal Gaussian chain when b = 1.

This system can also be written in matrix form as x = Rz with

R = a

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vb0

vb1 b0

vb2 b1 b0

...
. . .

. . .

vbN−2 b1 b0

vbN−1 · · · b2 b1 b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where v =
√

Var(x1).

We can solve for the equilibrium value of v via the condition Var(x1) = a2v2 =Var(xi) =Var(xi−1).
The solution is

Var(xi) = a2 Var(zi)+b2 Var(xi)

Var(xi)(1−b2) = a2

a2v2 =
a2

1−b2

v =
1√

1−b2

So our final recurrence is

xi = a
i

∑
k=2

bi−kzk +a
bi−1

√
1−b2

z1

C.3.1 Expected R2
g as a function of b

To compute the expected Radius of Gyration, we will use the identity R2
g(x) = 1

2N2 ∑i, j D2
i j(x),

which we can compute via the variance of the residual between xi and x j. Assuming j > i, we

have

x j − xi

a
=

j

∑
k=i+1

b j−kzk +
i

∑
k=2

(b j−k −bi−k)zk +
b j−1 −bi−1

√
1−b2

z1
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and the variance of which is

1

a2
E
[
D2

i j(x)
]
=

1

a2
Var(x j − xi)

=
j

∑
k=i+1

b2( j−k) +
i

∑
k=2

(b j−k −bi−k)2 +
(b j−1 −bi−1)2

1−b2

=
2(1−b j−i)

1−b2

So the expected squared radius of gyration is

1

a2
E
[
R2

g (x)
]
=

1

a2
E

[
1

N2

N

∑
i=1

N

∑
j=i

D2
i j(x)

]

=
1

N2

N

∑
i=1

N

∑
j=i

1

a2
E
[
D2

i j(x)
]

=
1

N2

N

∑
i=1

N

∑
j=i

2(1−b j−i)

1−b2

=
2bN+1 −b2N(N +1)+2b(N2 −1)−N(N −1)

(b−1)3(b+1)N2

≈
(

6b
N

+1−b2

)−1

for b on (0,1) and N � 1

=
N

6b+N(1−b2)

The approximation in the penultimate step works quite well in practice and becomes more accurate

with growing N:

∀b ∈ (0,1) lim
N→∞

2bN+1 −b2N(N +1)+2b(N2 −1)−N(N −1)

(b−1)3(b+1)N2

(
6b
N

+1−b2

)
= 1

Additionally, we can verify that this result recovers the expected limiting behavior of an ideal

unfolded chain when b → 1

lim
b→1

1

a2
E
[
R2

g (x)
]
=

N
6

and of a standard normal distribution when b → 0

lim
b→0

1

a2
E
[
R2

g (x)
]
= 1
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To finish up, we can add back in our global scaling factor a for our final result:

Ex∼pprior(x)
[
R2

g(x)
]
= a2 2bN+1 −b2N(N +1)+2b(N2 −1)−N(N −1)

(b−1)3(b+1)N2

≈ Na2

6b+N(1−b2)

C.3.2 How to implement any R2
g scaling

Equipped with a simple dependence of R2
g on b, we can solve for the correct spring strength by

simply asking for what value of b we achieve our scaling law with Flory coefficient ν

Ex∼pprior(x)
[
R2

g(x)
]
= (rNν)

2
=

Na2

6b+N(1−b2)

This gives a quadratic equation with the solution

beffective(N,a,r,ν) =
3

N
±N−ν

√
N2(ν−1)(N2 +9)− a2

r2

The positive branch is the relevant one to us (the negative branch corresponds to a pathological

solutions for small N), giving us the result:

beffective(N,a,r,ν) =
3

N
+N−ν

√
N2(ν−1)(N2 +9)− a2

r2

C.3.3 Standardizing the translational variance

Currently, the above procedure has diverging marginal variance as b → 1. We can arbitrarily re-

tune the translational variance of each chain with the following mean-deflation operation which

enforces ∑k
xk
N = (1−ξ )∑k

x̃k
N :

xi = x̃i −ξ ∑
k

x̃k

N

x̃i = xi +
ξ

1−ξ ∑
k

xk

N

C.3.4 Setting the parameters

We have two procedures for setting the value of ξ , leading to two different named covariance

models:

1. Pile-of-globs covariance. Set a and b to satisfy within-chain Rg scaling of each chain in a

complex based on its length. Set ξ so that the translational variance of each chain is unity.

This will cause chains to have a realistic radius of gyration but pile up at the origin.
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2. Glob-of-globs covariance. Set a and b to satisfy within-chain Rg scaling of each chain in

a complex based on its length. Set ξ per chain by solving for the translational variance

that also implements the correct whole-complex Rg scaling as a function of the number of

residues. This will cause chains to preserve a realistic complex-level radius of gyration and

also intra-chain radius of gyration that scales as that of individual globular proteins.

C.3.5 Factorization of the matrix

When also including a centering transform, we can factorize the matrix R as a product of three

matrices, which can be useful for computing inverses and transposes:

R = aRcenterRsumRinit

= a
(

I− ξ
N

11ᵀ
)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1 b0

b2 b1 b0

...
. . .

. . .

bN−2 b1 b0

bN−1 · · · b2 b1 b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
1−b2

1

1
. . .

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

C.4 Inverse covariance and intuition
Ignoring the translational rescaling and by numerical investigation, it appears that the precision

matrix Σ−1 = (RRᵀ)−1 is

Σ−1 =
1

a2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −b
−b 1+b2 −b

−b 1+b2 −b
. . .

. . .
. . .

−b 1+b2 −b
−b 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We can decompose this as the sum of terms for the precision of Brownian motion (Chain Lapla-

cian), for a spherical Gaussian (Identity matrix), and some nuisance boundary conditions

Σ−1 =
1

a2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+(1−b)2I+

⎡
⎢⎢⎢⎢⎢⎢⎣

b(1−b)

b(1−b)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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D Random Graph Neural Networks
Prior approaches to predicting or generating protein structure have relied on neural network archi-

tectures with O(N2) or O(N3) computational complexity [Jumper et al., 2021, Anand and Achim,

2022, Trippe et al., 2022], in part motivated by the need to process the structure at multiple length

scales simultaneously and/or to reason over triples of particles as is done during distance geom-

etry methods. Here we introduce an effective alternative to these approaches with sub-quadratic

complexity by combining Message Passing Neural Network [Gilmer et al., 2017] layers with ran-

dom graph generation processes. We design random graph sampling methods that reproduce the

connectivity statistics of efficient N-body simulation methods, such as the Barnes-Hut algorithm

[Barnes and Hut, 1986].

D.1 Background: efficient N-body simulation
One of the principal lessons of computational physics is that N-body simulations involving O(N2)
dense interactions (e.g. gravitational simulations and molecular physics) can often be effectively

simulated with only O(N logN)-scaling computation. Methods such as Barnes-Hut [Barnes and

Hut, 1986] and the Fast Multipole Method take advantage of a common particular property of (and

inductive bias for) physical systems that more distant interactions can be modeled more coarsely
for the same level of accuracy. For example, in cosmological simulations, you can approximate

the gravitational forces acting on a star in a distant galaxy by approximating that galaxy as a point

at its center of mass.

So far, most relational machine learning systems [Battaglia et al., 2018] for protein structure have

tended to process information in a manner that is either based on local connectivity (e.g. a k-

Nearest Neighbors or cutoff graphs) [Ingraham et al., 2019] or all-vs-all connectivity [Jumper

et al., 2021, Anand and Achim, 2022, Trippe et al., 2022]. The former approach is natural for

highly spatially localized tasks such as structure-conditioned sequence design and the character-

ization of residue environments, but it is less clear if local graph-based methods can effectively

reason over global structure in a way that is possible with fully connected Graph Neural Networks,

such as Transformers [Vaswani et al., 2017]. Here we ask if there might be reasonable ways to add

in long-range reasoning while preserving sub-quadratic scaling simply by random graph construc-

tion.

Related work Our method evokes similarity to approaches that have been used to scale Trans-

formers to large documents by combining a mixture of local and deterministically [Child et al.,

2019] or randomly sampled long-range context [Zaheer et al., 2020]. Distant-dependent density

of context has also been explored in multiresolution attention for Vision transformers [Yang et al.,

2021] and in dilated convolutional neural networks [van den Oord et al., 2016].

D.2 Random graph generation
We propose to build scalable graph neural networks for molecular systems by sampling random

graphs that mix short and long-range connections. We define the graph G = (V,E) where V is the

node set and E is the edge set. A protein can be represented as a point set x ∈ R
N×3. We define
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Algorithm 1 Random graph generation

Require: Inter-node distances {Di j}N
i, j=1, inverse temperature ζ , attachment propensity

log p((i, j) ∈ E(x)|Di j) ∝ ec(Di j), number of edges to sample k
for each i ∈ [N] do

for each j ∈ [N] do
Ui j ∼ Uniform(0,1) � Sample uniform noise per edge

Zi j ← ζ c(Di j)− log
(− log

(
Ui j
))

� Perturb log probabilities with Gumbel noise

end for
E ←⋃N

i {(i, j)| j ∈ TopK(Zi)} � build edge set by sampling top k edges

end for

the process of constructing the geometric graph as G(x) = (V,E(x)) with |V|= N. Different from

the usual graph construction scheme, the edges are generated stochastically, and E(x) describes

the process. We consider schemes in which edges for each node are sampled without replacement

from the set of possible edges, weighted by an edge propensity function based on spatial distance

(Fig. 3). In practice, we implement this weighted sampling without replacement using Gumbel

Top-k sampling Kool et al. [2019] (Algorithm 1). Throughout this work, we use hybrid graphs

which include the 20 nearest neighbors per node together with 40 randomly sampled edges under

the inverse cubic edge propensity function so that both short-range and long-range interactions are

sampled with appropriate rates.

D.3 Computational complexity
Under the inverse cubic attachment model, the cumulative edge propensity as a function of dis-

tance will scale as
∫ Dmax

Dmin

1
r3 r2dr =

∫ Dmax
Dmin

1
r dr = logDmax − logDmin. As we increase the total size

(radius) of the system by Dmax, we only need to increase the total number of of edges per node by

a factor of logDmax to keep up with the increase in total edge propensity (and to therefore ensure

that increasingly distant parts of the system do not “steal” edge mass from closer parts of the sys-

tem). This means that, even if we were to scale to extremely large systems such as large, solvated

molecular dynamics systems with millions of atoms, the total amount of computation required for

a system of N atoms will scale as O(N logN). In practice, we found that for protein sizes con-

sidered in this work (complexes containing up to 4000 residues2) it was sufficient to simply set

the number of edges per node to a constant k = 60, which means that the graph and associated

computation will scale within this bounded size as O(N). This is a considerable improvement on

previous approaches for global learning on protein structure such as methods based on fully con-

nected graph neural networks Trippe et al. [2022] O(N2) or Evoformer-based approaches [Jumper

et al., 2021] which scale as O(N3). These sparse graphs also combine favorably with our method

for synthesizing updated protein structures based on predicted inter-residue geometries (Section

E).

2In some of our symmetry examples we find that models still generalize well to systems larger than they were

trained on.
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k-NN

Random graphs

Inverse cubicExponential

Edge propensity

20 k-NN + 40 Inverse Cubic

constant

Marginal distance propensity (uniform grid)

Mixed graph

Uniform

Non-vanishing local attachment

Non-vanishing long-range attachment

Monotonic decreasing

Deterministic graph

Supplementary Figure 3: Random graphs with distance-weighted attachment efficiently cap-
ture long-range context. Contemporary graph neural networks for learning from molecular sys-

tems achieve efficiency via spatial locality, e.g. with a spatial k-Nearest Neighbors graphs or cutoff

graph (top left, O(Nk)). We propose methods that retain this efficiency while incorporating long-

range context through random edge sampling weighted by spatial distance (middle columns). We

consider three different graph sampling schemes: (i) Uniformly random sampling (middle left)

introduces long-range context but at the expense of vanishing local attachment. (ii) Exponential

distance weighting (middle center), which can be related to dilated convolutions [van den Oord

et al., 2016], includes both short- and long-range attachment but introduces a typical length scale

as it induces Gamma-distributed distances. (iii) Inverse cubic distance weighting (middle right),

which is the effective connectivity scaling of fast N-body methods such as Barnes-Hut [Barnes

and Hut, 1986], retains a balance of both short and long-term distances with a marginal distance

propensity that gently and monotonically decays with D. In practice, we combine inverse cubic

sampled random graphs with deterministic k-NN graphs to guarantee coverage of the k closest

nodes while adding in long-range context (top right).

E Equivariant Consensus Structure from Weighted Inter-residue
Geometries

E.1 Background and motivation
Prior neural network layers for generating molecular geometries in proteins have typically relied

on either (i) direct prediction of backbone internal coordinates (i.e., dihedral angles) [AlQuraishi,

2019, Wu et al., 2022a], which incurs accumulating errors along the chain in the form of “lever
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effects” that hinder performance beyond small systems; (ii) prediction of inter-residue geometries

followed by offline optimization [Anand and Huang, 2018, Senior et al., 2020], which builds on

the successes of predicting protein structure from contacts [Marks et al., 2012] but is difficult to

make end-to-end trainable; or (iii) iterative local coordinate updates based on the entire molecular

system [Jumper et al., 2021].

In principle, protein structures arise from a balance of competing intra-molecular forces between

atoms in the polymer. Indeed, protein structure can be thought of as the solution to a constraint sat-

isfaction problem across multiple length scales and with many kinds of competing interactions. It

is therefore natural to think about protein structure prediction as a so-called “Structured Prediction”

problem [Belanger and McCallum, 2016] from machine learning, in which predictions are cast as

the low-energy configurations of a learned potential function. Structured Prediction models often

learn efficiently because it is usually simpler to express a system in terms of its constraints than

to directly characterize the solutions to these constraints. This perspective can be leveraged liter-

ally for molecular geometries via differentiable optimization or differentiable molecular dynamics

[Ingraham et al., 2018, Schoenholz and Cubuk, 2020, Wang et al., 2020], but these approaches are

often unstable and can be cumbersome to integrate as part of a larger learning system.

E.2 Equivariant structure updates via convex optimization
Here we introduce a novel framework which realizes the benefits of inter-residue geometry predic-

tion and end-to-end differentiable optimization in an efficient form based on convex optimization.

We show how predicting pairwise inter-residue geometries as pairwise roto-translation transfor-

mations with anisotropic uncertainty induces a convex optimization problem which can be either

locally solved analytically admits a dast iteration scheme for a global consensus configuration.

Throughout this section we will refer to the coordinate frames of residues with a notation that is

similar to that used in AlphaFold2 [Jumper et al., 2021], but with rotations R replaced with O (for

Orientation) as in Ingraham et al. [2019]. The functions for synthesizing the backbone structure

from residue poses (i.e., StructureToTransforms and TransformsToStructure) are those described

in the supplementary information of [Jumper et al., 2021].

The key idea of our update is that we ask the network to predict a set of inter-residue geometries

Ti j together with confidences wi j (which will initially be simple but can be extended to anisotropic

uncertainty) and we then attempt to either fully or approximately solve for the consensus structure

that best satisfies this set of pairwise predictions.

Transform preliminaries Let T = (t,O) ∈ SE(3) be a transformation consisting of a translation

by vector t ∈R
3 followed by a rotation by an orthogonal matrix O ∈ SO(3). These transformations

form a group with identity, inverse, and composition given by

Tid = (0, I)

T−1 =
(−O−1t, O−1

)
Ta ◦Tb = (ta, Oa)◦ (tb, Ob) = (ta +Oatb, OaOb)
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We denote the transformation to the frame of each residue a as Ta, and denote the relative trans-

formation from residue a to residue b as

Tab := T−1
a ◦Tb =

(
O−1

a (tb − ta) , O−1
a Ob

)
These relative transformations satisfy equations

Tab ◦Tbc = Tac

Tba = T−1
ab

Convex problem Given a collection of pairwise inter-residue geometry predictions Ti j and con-

fidences wi j ∈R, we score a candidate structure {Ti}N
i=1 =StructureToTransforms(x) via a weighted

loss U that measures the agreement between the current pose of each residue Ti and the predicted

pose of the residue from the frame of each neighbor T j:

U
({Ti};{wi j,Ti j}

)
= ∑

i, j
wi j
∣∣Ti −T j ◦T ji

∣∣2
= ∑

i, j
wi j
∣∣ti − (t j +O jt ji)

∣∣2 +wi j
∣∣Oi −O jO ji

∣∣2

We wish to optimize each local pose Ti with neighbors fixed as

T�
i ← argmin

Ti
U
({Ti};{wi j,Ti j}

)
This problem of finding the local “consensus pose” T�

i is a convex optimization problem, the

solution to which can be analytically realized as a weighted average with projection,

T�
i =

(
∑

j
pi j(t j +O jt ji), ProjSO(3)

(
∑

j
pi jO jO ji

))
, where pi j =

wi j

∑ j wi j

where the projection operator is accomplished via SVD as in the Kabsch algorithm [Kabsch, 1976]

for optimal RMSD superposition. If we iterate this update multiple times to all positions in parallel,

we obtain a parallel coordinate descent algorithm. Putting this together, we parameterize our

denoising function as

{Ti}N
i=1 ← StructureToTransforms(x)

{wi j,Ti j}i j∈G(x) ← InvariantGraphNeuralNetwork(x,G(x);θ)
{Ti}N

i=1 ← LocallyOptimizeTransforms
({Ti}N

i=1;{wi j,Ti j}(i, j)∈G(x)
)

do this M times

x̂ ← TransformsToStructure({Ti}N
i=1)
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Extensions to anisotropic uncertainty models The above iteration leverages an isotropic un-

certainty model in which the error model for the translational component is spherically symmetric

and coupled to the uncertainty in the rotational component of the transform. We consider two

forms of anisotropic uncertainty: in the first, two-parameter version, we decouple the weight wi j
into separate factors for the translational and rotational components of uncertainty, wᵀ

i j and w∠
i j, re-

spectively. This makes intuitive sense when, for example, the network will possess high confidence

about the relative position of another residue but not its orientation.

In a second and more sophisticated form of anisotropic uncertainty, we extend this framework to

ellipsoidal error models bespoke to each i j, while retaining a closed form iteration update using

approaches from sensor fusion. We parameterized this anisotropic error model by separating this

precision term w into three components: w∠
i j for rotational precision and two components for posi-

tion: w‖
i j for radial distance precision, and w⊥

i j for lateral precision. The radial and lateral precision

terms are each eigenvalues of the full 3x3 precision matrix Pi j for translation errors (i.e., inverse

covariance matrix under a multivariate normal error model):

Pi j = w‖
i jπi j +w⊥

i j(I −πi j), πi j =
(O jt ji)(O jt ji)

ᵀ

(O jt ji)ᵀ(O jt ji)

where πi j is the projection matrix onto the radial direction from t j to the predicted position

t j +O jt ji of ti, and I−πi j is the projection matrix onto lateral translations (spanned by the re-

maining two eigenvectors). These anisotropic terms finally combine as

U
({Ti};{wi j,Ti j}

)
= ∑

i, j

(
t j +O jt ji − ti

)ᵀPi j
(
t j +O jt ji − ti

)
+w∠

i j
∣∣Oi −O jO ji

∣∣2
= ∑

i, j
w‖

i j

∣∣πi j(t j +O jt ji − ti)
∣∣2

+w⊥
i j
∣∣(I −πi j)(t j +O jt ji − ti)

∣∣2 +w∠
i j
∣∣Oi −O jO j

∣∣2
As we expect the radial precision to always exceed the lateral precision, our neural predictor out-

puts three positive parameters (w⊥, w‖−w⊥, w∠). Whereas the isotropic objective above is solved

by weighted averaging, the anisotropic translation part of this objective is solved by a standard

Gaussian product operation from sensor fusion [Murphy, 2007]:

t�i = ti +

(
∑

j
Pi j

)−1

∑
j

Pi j(t j +O jt ji − ti)

Supplementary Figure 4 illustrates this anisotropic Gaussian fusion operation.

Extension as a generalization of the AlphaFold Structure Module If an additional “dummy”

edge is added that is connected to the current state of Ti, then this transform will serve an identical

role to the predicted frame updates in AlphaFold2. Thus, our framework can be cast as a gen-

eralization of this family of backbone updates that opens up opportunities for complex fusion of

predicted interrresidue geometries.
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Supplementary Figure 4: Anisotropic consensus update. Position i is forced towards its consen-

sus position which is the mean of a fusion of anisotropic Gaussians. Here we visualize the covari-

ance ellipsese of component the Gaussians, i.e. the inverses of the precision matrices predted by

our network.

E.3 Extension to equivariant prediction of all backbone atoms
The above updates predict rigid residue poses {Ti} but our diffusion model (Appendix C) requires

independent prediction of all backbone heavy atoms. We can straightforwardly augment the above

predictions in an equivariant manner by predicting from every node embedding local coordiates
for each atom position relative to the parent residue pose. To ease learning, we cast these as

residual updates from the ideal geometry positions of each backbone heavy atom. To build the

final atomic structure, we simply compose these right-compose these local coordinate predictions

with the parent poses. These predictions will be equivariant because they are right-composed with

the parent residue poses, which are equivariant because they are built from relative, equivariant

geometric transformations off of the initial geometry.

F Chroma architecture
Supplementary Figure 5 provides a diagram of the Chroma architecture, which includes the back-
bone network, the design network, and the underlying graph neural network components. We list

important hyperparameters for the backbone network in Supplementary Table 2 and for the design

network in Supplementary Table 3. We design sequences by extending the framework of [Ingra-

ham et al., 2019] and factorizing joint rotamer states autoregressively in space, and then locally

autoregressively per side-chain χ angle within a residue as done in [Anand et al., 2022]. For the

sequence decoder, we explore both autoregressive decoders of sequence (pictured in fig. 5) and

conditional-random field decoding of sequence, which was also explored in concurrent work [Li

et al., 2022].

Graph Neural Network All of our neural network models are based on graph neural networks

that reason over 3D structures of proteins by transforming them into attributed graphs built from

rigid transformations (SE(3)) invariant features. This approach has been pursued in several prior
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Supplementary Figure 5: Chroma is composed of graph neural networks for backbone denois-
ing and sidechain design.

works [Ingraham et al., 2019], and our primary architectural innovations on those models are two-

fold:

• We propose random graph neural networks that add in long-range connections and reasoning

while preserving subquadratic / quasi-linear computational complexity (Appendix D)

• We introduce a method for efficiently and differentiably generating protein structures from

predicted inter-residue geometries based on parallel coordinate descent (Appendix E)
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Category Hyperparameter Value in Backbone Network A Value in Backbone Network B
Diffusion model Covariance model Pile-of-Globs Glob-of-Globs

Noise schedule Log-linear SNR (-7,13.5) Log-linear SNR (-7,13.5) [Kingma et al., 2021]
Graph Featurization Node Features Internal Coordinates Internal Coordinates

Edge Features Distances, Interresidue transforms, |i− j|, same chain, Distances, Interresidue transforms, |i− j|, same chain
Number of edges per node, k 60 60
Number of kNN edges 20 20
Number of Inverse Cubic edges 40 40

Graph Neural Network Number of GNN layers 12 12
Node Embedding Dimension 512 512
Edge Embedding Dimension 256 256
Node MLP hidden dimension 512 2048
Edge MLP hidden dimension 128 128
Dropout p 0.1 0.1

Backbone Solver Uncertainty model Isotropic (1-parameter) Decoupled (2-parameter)
Number of iterations 3 10

Loss Function Whitened ELBO weight 1 1
X-space pseudo-ELBO weight 1 1
X-space units Nanometers Nanometers

Total Number of Parameters 18.6M 94.1M

Table 2: Hyperparameters of backbone network configuration.

Category Hyperparameter Value in Design Network A Value in Design Network B
Graph Featurization Node Features Internal Coordinates Internal Coordinates

Edge Features Distances, |i− j|, same chain Distances, |i− j|, same chain
Number of edges per node, k 30 30
Number of kNN edges 30 30
Number of inverse cubic edges 0 0

Graph Neural Network Number of GNN layers 6 3
Node embedding dimension 128 128
Edge embedding dimension 128 128
Node MLP hidden dimension 512 512
Edge MLP hidden dimension 128 128
Dropout p 0.1 0.1

Sequence decoder Type Potts model Autoregressive
Chi decoder Number of chi bins N/A 36
Total Number of Parameters 3.7M 9.2M

Table 3: Hyperparameters of design network configuration.

G Training

G.1 Dataset
The PDB was queried (on 2022-03-20) for non-membrane X-ray protein structures with a resolu-

tion of 2.6 Å or better. Structures with homologous sequences were removed by assigning each

chain sequence to a cluster ID using USEARCH [Edgar, 2010] at a 50% sequence identity thresh-

old and removing entries with chain cluster ID completely found in another entry. An additional

set of 1726 non-redundant antibody structure cluster using 90% sequence identity was added to

the reduced set. All 28819 remaining structures were transformed to their biological assembly by

favouring assembly ID where the authors and software agreed, followed by authors and finally

by software only. Missing side-chain atoms were added with pyRosetta [Chaudhury et al., 2010].

An 80/20/20 train, validation and test splits were generated by minimizing the sequence similarity

overlap using entries of PFAM family ID, PFAM clan ID [Mistry et al., 2021], UniProt ID [Bate-

man et al., 2020] and MMSEQ2 cluster ID at a 30% threshold [Steinegger and Söding, 2017]. A

graph pruning method was used to minimize shared label overlap between all splits. Briefly, a

graph is built where each PDB entry is represented by a node connected to other entries that share

at least one identical annotation. Connected sub-graphs are identified and broken apart by itera-

tively deleting the most central annotations until there are 50 or fewer connected nodes. Using this

procedure, the generated test set had 9%, 59%, 82% and 89% of its entries that did not share any

PFAM clan, PFAM family, MMSEQ30 cluster, or Uniprot IDs with the training set, respectively.

Whereas a random split would have given 0.1%, 10%, 50% and 70% for the same label types,
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respectively.

G.2 Optimization
We train the backbone model by optimizing the regularized ELBO loss (Appendix A) with the

Adam optimizer [Kingma and Ba, 2014] and leverage data parallelism across 8 GPUs. We train

the design networks by optimizing the sequence (pseudo)likelihoods and chi angle likelihoods with

Adam on a single GPU.

H Evaluation

H.1 Unconditional samples
Two sets of unconditional protein samples were generated for display and analysis with Chroma.

Both sets used the same parameters: 200 steps, λ0 = 10, and ψ = 2. Of these two sets, one was

comprised of single chain proteins, and the other, of multi-chain proteins. The single chain set

contained 50 thousand samples and the lengths were drawn from a ”1/Length” distribution where

the probability of a protein chain’s length was proportional to one over its length. The multi-

chain set contained 10 thousand samples and length distribution of each chain was determined

empirically from the chain length statistics from complexes in the PDB. Specifically, a random

protein complex was drawn from the PDB and the number of chains and length of each chain for

the random sample was determined from that random PDB complex. In order to show typical

non-cherry picked random samples from the model we provide supplementary Figure 6 for single

chain and Figure 7 for multi-chain examples.

H.2 Backbone geometry statistics
To evaluate the structural validity of Chroma generated single chain structures, they were charac-

terized based on secondary structures and residue interactions alongside a non-redundant subset of

PDB database (Table 4). The distribution of secondary structures (α-helix, β -strands, and coil)

was evaluated using Stride [Frishman and Argos, 1995]. Residue interaction was determined by

any pairwise residue (C-α to C-α) with an Euclidean distance less than 8 Å. Mean and long-

range residue contact were computed. Contact order [Ivankov et al., 2003] and radius of gyration

[Tanner, 2016] were computed and length normalized according to their corresponding empirical

power laws. All metrics except for secondary structures are normalized for Fig. 2b.

H.3 Novelty and structural homology
The novelty of Chroma-generated samples was assessed by comparing their structures to natural

protein folds. Using TMalign [Zhang and Skolnick, 2005], they were each aligned to the 32k struc-

turally conserved domains from CATHdb S40 set [Sillitoe et al., 2021] and filtered for TMscore

greater than 0.5 when normalized by the shortest sequence. The number of domains needed to

cover at least 80% of the query was greedily determined by identifying the hits with the highest
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Supplementary Figure 6: Random single chain samples from backbone model A.

number of residues within 5 Å of the query that wasn’t already covered. The number of domains re-

quired increases with query size given that CATH domains typically have a length ranging between

50 and 200 amino acids. As a baseline, we ran the test set with the same algorithm.

Single chain structures from Chroma and the test set were embedded in 31 Gauss Integral dimen-
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Supplementary Figure 7: Random complex samples from backbone model A.

sions using the pdb2git program from the Phaistos suite [Harder et al., 2012] [Borg et al., 2009]. It

failed to embed structures with chain breaks or with protein lengths greater than 876. The final set

of 6492 generated structures and 561 natural folds were projected to a 2 dimensions space using

UMAP [McInnes et al., 2018] with default parameters of 25 neighbours and a minimal distance of
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Metric Description Normalization
Secondary structure content (SSi) Distribution of Helix, Strand, Coil for

given structure

none

Mean Residue Contact (Cmean) Average number of contacts per residue for

any given structure

none

Long-range Residue Contact (Clong) Number of long-range contacts per

residue; long-range residue interaction

means a pair of interacting residues

separated by 24 or more residues in

sequence

none

Contact Order (CO) Average sequence distance between con-

tacting residues normalized by the total

length of the protein; higher contact orders

generally indicate longer folding times

CO/N−0.3 [Ivankov et al.,

2003]

Radius of Gyration (Rg) Root mean square distance of structure’s

atomic coordinates from its center of mass

Rg/N0.4 [Tanner, 2016]

Table 4: Metrics to describe backbone geometry of structures

Sample type T λ0 ψ Additional details
Unconditioned 200 10. 2. Appendix H

Shape 2000 5. 2. Appendix J

Infilling 400 5. N/A Appendix K

Symmetry 400 16. 2. Appendix L

Natural language (ProCap) 200 10. 2. Appendix O, scaled to have norm ≤ 10

Table 5:

0.5.

H.4 Structure prediction-based designability
Structures were generated using Chroma with λ0 = 10. Sequences conditioned on generated struc-

tures were designed by using our sequence design module with a Potts decoder to create a pairwise

sequence-level energy table representing the sequence landscape compatible with the fold. Se-

quences were sampled from this Potts model using 10 independent cycles of simulated annealing

Monte Carlo (MC), each with 200 · n steps with n being the length of the protein. The score

used in the annealing was the Potts energy plus a flat-bottom restraint energy around the sequence

complexity calculated as equation 4 in [Wootton and Federhen, 1993]. The restraining potential

linearly penalized sequence complexity dropping below one standard deviation under the mean for

a native sequence of equivalent length, and was otherwise zero. For each generated structure, the

above MC procedure was run 100 times to produce 100 sequences, each of which were used as

input into OmegaFold [Wu et al., 2022b] for structure prediction. For each backbone, the highest

obtained TM score was used as the evidence for whether the underlying backbone was designable

in our analysis.
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H.5 TERM-based designability
RMSD-based search was performed using an in-house implementation of the method FASST avail-

able as part of the open-source software package Mosaist (https://github.com/Grigoryanlab/Mosaist).

The method is a close relative of the previously published approach MASTER [Zhou and Grigo-

ryan, 2014, 2020a]. The training and test sets for Chroma were used as the search database and the

set of native proteins in this analysis, respectively. Although the test and training sets have been

split by chain-level sequence homology, we took further care to exclude any apparent homologues

of native TERMs from consideration as matches. To this end, we compared the local 31-amino

acid sequence windows around each TERM segment and its corresponding match, with any pair-

ings reaching 60% or more sequence identities not being allowed to participate in a match.

I Programmability: Overview
Overview In principle, the set of proteins satisfying a given set of functional constraints can be

described using Bayes’ Theorem,

p(protein|function) ∝ p(protein)× p(function|protein)

where the posterior distribution of proteins p(protein|function) is proportional to the likelihood of

satisfying the set of functional constraints p(function|protein) times the prior probability of the

protein molecule being functional p(protein). This characterization has been appreciated for sev-

eral decades [Simons et al., 1997], but leveraging it is challenging in practice for two reasons. First,

developing tractable and accurate priors over the space of possible proteins has proven extremely

difficult owing to the tremendous complexity in a single protein system (a complex can easily have

> 104 atoms) and the intractabilities of marginalizing out low level details. Secondly, even with

an accurate prior, sampling from the space of polypeptide conformations is extremely difficult as

it will generally be a rugged landscape under which global optimization is infeasible.

One potential way to make the difficult inverse problem posed by protein design more tractable is

given by contemporary methods from machine learning. In particular, diffusion models make con-

ventionally intractable inference and inverse problems tractable by learning to gradually transform

a complex data distribution into a simple and tractable distribution [Sohl-Dickstein et al., 2015,

Song and Ermon, 2019]. This has enabled transformative applications in text-to-image modeling

[Ramesh et al., 2022, Saharia et al., 2022].

The manner in which diffusion models enable Bayesian inversion can be made especially clear

in the continuous-time formulation of Diffusion models, where we can take advantage of the fact

that the score functions are independent of normalizing constants and we can therefore express the

time-dependent posterior score ∇x log pt(x|y) as the sum of the prior score ∇x log pt(x) and the
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likelihood score ∇x log pt(y|x) because

∇x log pt(x|y) = ∇x log
pt(x)pt(y|x)

pt(y)
= ∇x log pt(x)+∇x log pt(y|x)−������

∇x log pt(y)
= ∇x log pt(x)+∇x log pt(y|x).

We describe how to take advantage of this via the posterior SDE and ODE in Appendix A.

We note that while we primarily focus on classifier conditioning of backbone conditioning through-

out this work, it is also very feasible to extend this to tractable sequence classifier conditioning with

new discrete sampling methods based gradient-based locally-adjusted MCMC proposals [Grath-

wohl et al., 2021, Rhodes and Gutmann, 2022].

Conditioner Dim. Granularity Type Examples and applications
Sequence 1D Residue Learned Sequence design & sequence conditioning

Domain classifier 1D Chain Learned Pfam, CATH, Taxonomy

Secondary Structure 1D Residue Learned Topological constraints

Distances (contacts) 2D Atoms Analytic Fold constraints, binder design

Sub-structure RMSD 1D Atoms Analytic Scaffolding-based constraint

Sub-structure 1D Atoms Analytic Structural “in filling”

Shape constraint 1D Atoms Analytic Molecular shape control

Symmetry constraint 1D Atoms Analytic Self-assembling oligomers, e.g. capsids

Text caption 1D Chain, Complex Learned Natural language prompting

Table 6: Conditioners available to Chroma.

I.1 Example applications of constraint composition
We list a table of composable constraint models in Table 6. Some practical protein design problems

that could be realized through composite constraints under this framework are

De-novo binders Combine (i) substructure conditioning on antigen, (ii) optional scaffold con-

straint on binder, and (iii) contact constraints on epitope/paratope

Enzyme miniaturization Use substructure RMSD to graft an active site into a novel scaffold or

known scaffold (via combining with substructure constraints

Nanostructure control Use the shape constraint to sample novel designable folds or complexes

satisfying arbtitrary shape constraints

Nanomaterial design Combine nanostructure control with interfacial binding constraints on pe-

riodic boundary conditions
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J Programmability: Distance-based constraints

J.1 Motivation and problem statement
In some instances, it may be useful to generate diverse protein chain and/or complex structures

under the constraint that one or more specific residue pairs be in spatial proximity (i.e., form a

“contact”). Such a conditioner could be used, for example, in designing binders, to ensure that

the desired binding site is being engaged. Or it could be used to insure some desired topological

properties–i.e., the proximity of N- and C-termini (e.g., for ease of circular permutation). Assum-

ing that we are interested in conditioning on a contact between atoms i and j, we are seeking the

probability that the distance between these two atoms in the fully denoised structure is below some

desired cutoff c, di j
0 < c, given a noised sample at time t and the corresponding distance di j

t .

J.2 Approach
One approach would be to train a time-dependent classifier pt(y|x(t)) to classify noisy inputs. For

the case of a contact classifier, however, we can directly compute the desired probability analyti-

cally. By definition of our forward noise process, the i-th coordinate of our protein at time 0 and t
are related to each other by

x(i)0 =
x(i)t√

αt
−
√

(1−αt)[Rz]i

Below we sketch the derivations of the distribution di j
0 cases of Brownian and globular noise sched-

ules.

J.2.1 Brownian noise

Here we have that

[Rz]i = γ
i

∑
k

zk − γ
N

N

∑
j=1

j

∑
k=1

zk +δ z1

and therefore

x( j)
0 −x(i)0 =

x( j)
t −x(i)t√

αt
− γ
√

1−αt

i

∑
k= j

zk

But as ∑i
k= j zk ∼ N (0, |i− j|) by independence of {zi}, we have x( j)

0 − x(i)0 ∼ N (x( j)
t −x(i)t√

αt
,γ2(1−

αt) · |i− j|), so that:

(di j
0 )

2

|i− j|(1−αt)γ2
∼ NonCentralChiSquared

[
(di j

t )
2

|i− j|(1−αt)αtγ2
,k = 3

]

For a contact threshold c > 1 we have:

di j
0 < c ⇐⇒ (di j

0 )
2 < c2 ⇐⇒ (di j

0 )
2

|i− j|(1−αt)γ2
<

c2

|i− j|(1−αt)γ2
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and so we can conclude that pt

(
di j

0 < c|xt

)
is given exactly by the CDF of the noncentral chi-

squared distribution above, evaluated at c2
[|i− j|(1−αt)γ2

]−1
.

J.2.2 Globular noise

For the globular chain noise process we instead have that

[Rz]i = a
i

∑
k=2

bi−kzk +a
bi−1

(1−b2)1/2
z1

By substituting we see

x( j)
0 −x(i)0 =

x( j)
t −x(i)t

α1/2
t

+(1−αt)
1/2([Rz] j − [Rz]i)

So that x( j)
0 −x(i)0 ∼N (x( j)

t −x(i)t

α1/2
t

,(1−αt)Var([Rz] j − [Rz]i)). But, assuming j > i:

Var([Rz] j − [Rz]i) =
2a2(1−b j−i)

1−b2
=: σ2

j−i

It then follows that

x( j)
0 − xi

0

(1−αt)1/2σ j−i
∼N (

x( j)
t −x(i)t

σ j−i(1−αt)1/2α1/2
t

,I)

and finally

(di j
0 )

2

(1−αt)σ2
j−i

∼ NonCentralChiSquared

[
(di j

t )
2

σ2
j−iαt(1−αt)

,k = 3

]

K Programmability: sub-structure RMSD

K.1 Motivation and problem statement
It would be very useful for a variety of protein engineering applications to condition structure

generation on the presence of a particular structural “motif.” By this we mean an arbitrary sub-

structure, composed of any number of disjoint backbone segments, that we would like to exist

within our final generated structure. In practice, such a motif could represent a functional (e.g.,

catalytic) constellation of residues or a metal/small-molecule binding site—this could be useful for

designing enzymes or other functional proteins, by exploring ideas around a core functional mech-

anism. In another example, the motif could correspond to a “scaffolding” part of the molecule that

we would want to preserve—e.g., the binding scaffold that can admit different loop conformations.

Or the motif could represent a desired epitope that we would like to faithfully present on the sur-

face of a generated protein in the context of vaccine design. Fig. 8 shows an example motif and

two unrelated native protein structures in which this motif is found with low RMSD.
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(a) (b) (c)

Supplementary Figure 8: Motifs can occur in entirely unrelated structural contexts. a, An

example motif composed of three disjoint segments. b, PDB entry 3NXQ harbors the motif with

a backbone RMSD of 0.45 Å. c, PDB entry 3OBW harbors the motif with a backbone RMSD of

0.64 Å.

The task of determining whether the pre-specified motif is present in a given structure S is simple–

we can, for example, find the substructure of S with the lowest optimal superposition root-mean-

squared-deviation (RMSD) to the motif in question and ask whether this RMSD value is below a

desired cutoff (this can be done using previously published algorithms [Zhou and Grigoryan, 2015,

2020b]). But what we need for conditional generation is the ability to estimate the probability that

the final de-noised structure will harbor the desired motif, given a noisy structure at the current

time point in the diffusion.

K.2 An empirical approach
Specifically, if xt ∈ R

N×3 is our coordinate array and the forward diffusion process is represented

by:

xt =
√

αtx0 +
√

1−αtRε ε∼N (0,I).

we need to express p(y|xt)–the probability that x0 contains the motif given xt , where y stands for

the condition of motif presence (e.g., as defined by RMSD to a template motif below a desired

cutoff). If we define the presence of a motif in terms of optimal-alignment best-fit RMSD being

below a cutoff, we need to understand how this RMSD behaves (in a probabilistic sense) as a

function of noise. Further, as we will generally not be given where within xt the motif may be (i.e.,

we would not know a priori the matching between motif atoms and a sub-structure of the target

structure), our p(y|xt) needs to integrate information for the full structure xt to determine possible

motif location(s). Achieving this analytically seems non-trivial. For this reason, here we consider

an empirical approach to expressing p(y|xt).

The goal is to observe the behavior of optimal-alignment best-fit RMSD in practice, as a function

of αt , using a set of reasonable structures and diverse motifs, and find an analytical approximation

for its probability distribution. Specifically, given a motif m and a structure represented by xt , let

rt represent the RMSD of optimal alignment of m onto xt (i.e., the lowest RMSD between atoms

of m and any sub-structure of xt), and r0 represents the RMSD induced by the same matching in

the context of structure x0. We seek to approximate the cumulative distribution function F(r0 −
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rt |xt ,αt). With this, we would calculate p(y|xt) as p(y|xt) = p(r0 < σ |xt) = p(r0 − rt < σ −
rt |xt) = F(σ − rt |xt ,αt), where σ is the desired RMSD cutoff for classifying the existence of the

motif. The procedure in algorithm 2 was run to generate an empirical data set of 106 points to

describe the behavior of r0 − rt .

Algorithm 2 Data generation procedure for RMSD classifier fitting

Require: T –training set of protein complex structures, N–number of data points desired

i ← 1

while i �= N do
x0 ← random protein complex from database � Noise-free structure

x′ ← a different random protein complex from database

r ← uniform random number ∈ [6;30] � Motif radius

R ← random residue from x′
m ← R and all residues within r of R � Sampled motif

t ← uniform random number ∈ [0;1] � Noise level

xt ←√
αtx0 +

√
1−αtRε � Noised structure

A ← optimal alignment of m onto xt � [Zhou and Grigoryan, 2015]

rt ← best-fit RMSD of m aligned onto xt according to A
r0 ← best-fit RMSD of m aligned onto x0 according to A
record rt , r0, t, αt , m

end while

K.2.1 Motif size and complexity dependence

Clearly, the distribution of rt (and Δrt = r0 − rt) should depend on αt . But these distributions

should also depend on the size and complexity of the motif. For example, in the extreme case

when the motif consists of a single atom, rt will always be zero. On the other hand, for large and

complex motifs, we may expect rt to increase rapidly with added noise.

The simplest surrogate for motif complexity is its size—i.e., the number of residues it involves.

However, under our noise model, the atoms closer to each other in the protein chain will move in

a more correlated manner than those that are farther apart. So it should matter whether the motif

consists of multiple short disjoint segments matching to far-away (in sequence) portions of the

target structure versus a motif consisting of one long contiguous segment. As a purely empirical

measure to capture this notion, we propose the following effective length definition:

Le =− log

[
2

n(n−1)

N−1

∑
i=1

N

∑
j=i+1

1√|i− j|C(i, j)

]

where C(i, j) is an indicator function that is 1 if atoms i and j are part of the same chain and

0 otherwise. The motivation for the inverse square root of the index distance is from Brownian

motion (displacement distance growing as the square root of time, here the number of atom hops).

And the motivation for ignoring atom pairs from different chains is that these move independently

under our noise model. In practice, Le appears to better explain variation of rt − r0 than just

pure number of motif residues L, despite the fact that overall Le correlates somewhat closely with

log(L).
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(a) (b)

Supplementary Figure 9: Fitting empirical Gumbel-distribution parameters μs and βs from
local αt-window fits (which capture Le-dependence of location and scale, respectively) as an-
alytical functions of αt . Both the location (a) and scale (b) parameters vary monotonically with

αt , closely following the functional form k · (1−αt)
n.

K.2.2 Distribution of r0 − rt

We expect the distribution of r0 − rt to depend on αt and Le. To get a sense of the general shape

of this distribution and its dependence on αt , one can take slices of the training data with αt in

different narrow ranges. Inspection and fitting of these αt-window histograms of r0 − rt suggested

that the Gumbel family of distribution should work reasonably well for describing the observed

variations.

The dependence on Le can be captured defining the parameters of the Gumbel distribution as func-

tions of Le. Towards defining a reasonable functional form, we consider extremes. The Gumbel

distribution has two parameters–location μ and scale β . The latter is solely responsible for the vari-

ance (i.e., π2

6 β 2) and the mean is contributed to by both (μ +βγ , where γ is the Euler–Mascheroni

constant, or approximately 0.577). Clearly, for a motif that only has one atom, we expect Δrt to

be a delta function at 0, meaning that both μ and β would be zero. And in general, for small

(and simple) motifs we would expect μ and β to be low, while for large (and complex) motifs we

would expect it to be high. Thus, both μ and β should be monotonically increasing functions of

Le that pass through the origin. Experimentation with different curve families under these criteria,

using the overall data likelihood as the objective metric (see below), we arrived at the simple linear

parameterization option as being best–i.e., where μ = μsLe and β = βsLe with μs and βs being

fitting parameters.

K.3 Fitting procedure
With the parameterization choices above, the fitting approach took the following steps.
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K.3.1 Fitting individual αt windows

For 50 equally-spaced αt windows, fit the observed Δrt = r0 − rt to Gumbel distributions, whose

location and scale parameters linearly depend on Le of each motif, using likelihood maximization.

Specifically, the likelihood function being maximized was:

logL=
ND

∑
i=1

− log(βsLi
e)−

Δri
t −μsLe

βsLe
− exp(−Δri

t −μsLe

βsLe
)

were Li
e and Δri

t are the effective motif length and Δrt is the i-th data point, respectively, and ND is

the number of data points. The result of this procedure then estimates μs and βs parameters specific

for the current αt window.

K.3.2 Fitting parameters as functions of αt

We next fit μs and βs as functions of αt analytically. The functional form chosen for both param-

eters was k · (1−αt)
n, ensuring that at αt = 1 both parameters necessarily become zero (i.e., as

the noise level reaches zero, the Δr distribution should approach a delta function). Both the raw

locally-fit values of μs and βs and the corresponding analytical fits are shown in Fig. 9.

K.3.3 Assessment of fit quality

Given the now fully parameterized p(Δrt |αt ,Le), we integrate over Le in each αt window to pro-

duce the expected distribution of Δrt and compare with the corresponding observed distribution to

evaluate the overall goodness of fit. The results, shown in Fig. 10, demonstrate an excellent overall

fit. This is especially encouraging given the wide range of motif sizes (anywhere from one to over

350 residues) and numbers of disjoint segments present in the training set (one to five).

K.4 Conditioning with pre-registration: structural infilling
In some cases, the residue indices of the desired sub-structure in the context of the larger structure

are given a priori, for instance, in the case of imputing missing structural information. let S,M⊂
[1, · · · ,N] denote the atoms comprising the unknown scaffold and known motif respectively.

K.4.1 Related work

Song et al. [2021] presents a replacement method for drawing approximate conditional samples

from p(xS0 |xM0 ) in which one samples a sequence of noised motifs x̄M1:T ∼ q(xM1:T |xM(0)), then running

diffusion backwards in time but at each time step replacing xMt ← xMt before sampling xt−1 ∼
p(xt−1|xt). Trippe et al. [2022] demonstrated that this method introduces irreducible error that

is exacerbated by the correlation introduced by q and propose a particle-filtering based approach

which furnishes arbitrarily accurate conditional samples given sufficient computation. Informally,

the error introduced by the replacement method arises from imputing noised motifs that are highly

unlikely given the corresponding noised scaffold.
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Supplementary Figure 10: Comparison between expected (based on inferred model parame-
ters) and observed distributions of Δrt in different windows of αt . Observed histograms are

show in black and the analytical prediction in blue. Legend indicates the mean αt value for each

window.
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K.4.2 Method

Given xM, we impute for every contiguous missing fragment Si we sample xSi from a brownian

bridge with endpoints fixed at a = xSi−1 and b = xSi+1 for internal fragments as follows. Let

M = |Si|, we sample (zi)
M
i=1 ∼N (0,σ2), where σ2 was tuned to 4.0.

[xSi ]k = (1− k
M
)a+

k

∑
l=1

zl − k
M
(

M

∑
l=1

zl −b)

If a fragment terminates on the right (e.g there is no right endpoint), instead:

[xSi ]k = a+
k

∑
l=1

zl

with left-terminating fragments handled similarly.

Once initialized, we integrate backwards in time the conditional probability flow ODE where the

conditional pt(xM0 |xMt ) is taken be RMSD(xM0 ,xMt ) To address issues with clashes and disconti-

nuities, we include terms:pclash(x0|xt) and pviolation(x0|xt) where pclash is a L1 penalty on all-atom

distance matrix of xt restricted to non-adjacent residues penalizing distances less than 1.5 Å., and

pviolation is given by the violation loss defined in [Jumper et al., 2021].

L Programmability: Symmetry

L.1 Motivation
Built from identical subunit proteins, many protein complexes are assembled symmetrically. Many

symmetric complexes such as tube-shaped channel proteins and icosahedral viral capsids are bio-

logically important [Goodsell and Olson, 2000]. Incorporating symmetry in computational protein

generation holds promise in designing large functionalized protein complexes [Hsia et al., 2016].

To fully explore the sampling of protein complexes subject to symmetry constraints, we propose

a method to symmetrize the underlying ODE/SDE sampling to satisfy any prescribed Euclidean

symmetries.

Incorporating group equivariance in machine learning has been an important topic in the machine

learning community. [Cohen and Welling, 2016] Incorporating space group symmetries is critical

in molecular simulations [Cox and White, 2022, Zabrodsky et al., 1992]. In this work, we pro-

posed a method to incorporate symmetry for diffusion probabilistic models with applications in

generating large-scale protein complexes with arbitrary symmetry groups.

L.2 Symmetry breaking in sampling
Let G = {gi}N

i=0 be a collection of symmetry operations that form a group such as point groups

and space groups. For point sets in R
3, these symmetry operations can be represented as a set of

orthogonal transformations (rotation/reflection) and translations. The sampling SDE proposed in

our work can be generally cast in the following form:
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dx = F(xt, t)dt +
√

βt Rdw̄ (5)

For synthesizing symmetric protein complexes, we want to sample complexes Xt=0 ∈ R
N×n×3

which are built from N = |G| identical single-chain proteins X(i) ∈ R
n×3 where n is the number of

residues for each subunit. Under the time-dependent noise
√

βt RdW̄ ∈ R
N×n×3, the samples are

generated from:
X0 = SDESOLVE(X1)

= X1 +
∫ 0

t=1
F(Xt, t)dt +

∫ 0

t=1

√
βt RdW̄

(6)

To constrain the sample generation to respect symmetries for an arbitrary group G, the SDE/ODE

dynamics need to be G-invariant up to a permutation of subunits. Let · represent the symmet-

ric operations (rotation, reflection, and translation) performed on point sets in R
3, we define the

sampling procedure SDESOLVE : R|G|×n×3 → R
|G|×n×3 with X0 = SDESOLVE(X1) being the desired

samples. The sampling procedure needs to follow the following invariance condition:

SDESOLVE(gi ·X1) = gi ·SDESOLVE(X1) = σiSDESOLVE(X1) ,∀gi ∈ G (7)

where gi indicates the i-th group element in G and we impose an arbitrary order on G and our

method is equivariant to the permutation of subunits. σi is the induced permutation operation

satisfying the relation: giG = σiG, as computed from the group multiplication table (also called

the Caley table).

The first equality in eq. (7) is trivially satisfied if F(·) is E(3) equivariant, as G consists of only

orthogonal transformations and translations. However, the second equality is generally not satis-

fied. For molecular simulations where the Hamiltonian dynamics is used, the second equality can

be satisfied if (i) the energy function is E(3) invariant, and (ii) the initial X1 and dX1
dt are symmet-

ric, i.e gi ·X1 = σi X1,gi · dX1
dt = σi

dX1
dt . At each successive time step, Xt automatically satisfies the

prescribed G-symmetry. This approach confines both the position and momentum update to ensure

the sampled configurations remain symmetric.

However, this is not the case with SDE/ODE sampling in our framework. We list three origins of

symmetry-breaking error if eq. (6) is used: (i) F(Xt, t) uses distances as features and is automati-

cally E(3) equivariant. However, because the protein feature graphs are generated probabilistically,

F(gi ·Xt, t) �= gi ·F(Xt, t) with each subunit protein xi having different geometric graphs, albeit be-

ing symmetric. (ii) Our polymer structured noise is randomly sampled from N (xi; μ,RRᵀ), so each

subunit protein has different chain noises, i.e. gi ·RdW̄ �= RdW̄. (iii) The sampling procedure re-

quires solving an ODE/SDE which is vulnerable to accumulated integration error. Integration error

can induce unwanted geometric drifts such as rotation and translation[Harvey et al., 1998], and be

a substantial symmetry-breaking force.

L.3 Symmetric sampling
By leveraging the desired symmetry, we averaged the SDE/ODE update from symmetric subunit

proteins and broadcast with symmetry operation G. By performing the symmetric broadcasting,
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we remove the symmetry-breaking error for each symmetric subunit. The goal is to construct

sampling protocols that satisfy eq. (7) which also capture interactions between subunits.

L.3.1 Symmetric initialization

For samples to remain G-invariant throughout the sampling process, it is necessary to have the

initial noised structure X1 symmetrized. We define the following symmetrized “copying” opera-

tion:

X1 = G ·x1 = {gi ·x1| gi ∈ G},x1 ∼N (x1; μ,RRᵀ) (8)

By construction, the generated structures are symmetric under G, i.e.

gi ·X1 = (giG) ·x1 = σi X1, ∀gi ∈ G (9)

L.3.2 Symmetrized SDE

Trivial symmetrization Given symmetrically initialized X1, a trivial construction is to set

Fsym.(Xt, t) = (Gg−1
i ) ·F(X(i)

t , t), (10)

where i is the index to any subunit that is generated with gi and we dropped t-dependence in F
for a more compact notation. Note that one does not need to make a special choice of x(i)t and gi
as all subunits are symmetric. However, it is more convenient to select i where gi corresponds to

the identity transformation. The method only requires performing an update on a single subunit,

followed by symmetrized broadcasting. However, it satisfies eq. (7), because it fails to capture any

subunit-subunit interactions which are important in capturing protein complexes.

Symmetric broadcasting To incorporate subunit interactions, we use the entire symmetric com-

plex as input for F(·, ·) so that the subunit interactions are captured, and our backbone GNN is also

designed to capture large protein complexes. Similar to the trivial construction described above,

we select a particular gi and compute:

Fsym.(Xt , t)︸ ︷︷ ︸
|G|×n×3

= (Gg−1
i )︸ ︷︷ ︸

|G|×3×3

· [F(Xt, t)]i︸ ︷︷ ︸
n×3

(11)

For noise, we simply sample polymer structured noise and broadcast:

RdW̄sym = (Gg−1
i ) ·R[dW̄]i (12)

where [F(Xt)]i retrieves the gradient update for subunit i. Intuitively, the method computes the

gradient update globally and broadcasts the update vector to all symmetric positions.
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For simulating large complexes where certain long-range interactions are not as critical, we can

instead focus on updating a subset S ⊂ [1, ..., |G|] of subunits in Xt to save memory and time. Given

a chosen subunit i, we deduce S by choosing the k-nearest neighbor ((k-NN)) subunits based on

the distances between the subunits’ geometric centers, so that short-range subunit interactions are

included. We select K subunits in this way, and K is a hyperparameter.

Symmetric averaging An alternative symmetrization method is to average the F(Xt , t) at sym-

metric coordinates over all possible symmetry operations in G.

[Fsym(Xt, t)]i =
1

|G|(giG−1)︸ ︷︷ ︸
|G|×3×3

·F(Xt , t)︸ ︷︷ ︸
|G|×n×3

=
1

|G|∑i
gi · (σ−1

i F(Xt , t))
(13)

where (giG−1) aligns the [F(X, t)] j onto the symmetric subunit i and σ−1
i equivalently permute

symmetric gradient update to argree with order used to generate the seed geometry x1. Then we

average the symmetric F(x, t) contribution together to obtain [F(X, t)]i. In practice, one can just

pick i to compute [F(X, t)]i and broadcast to symmetric subunits via G. Similarly, the noise can

also be symmetrized by averaging:

[RdW̄sym]i =

√|G|
|G| (giG−1) ·RdW̄ (14)

where
√|G| is used to correct the shrinking in the noise covariance because chain noise is obtained

by averaging |G| symmetric subunits.

In summary, we proposed two methods of constructing Fsym.(·) and Rd̄W and replace the sampling

operation described in eq. (6) with the following modified SDE:

X0 = SDESOLVEsym.(X1)

= X1 +
∫ 0

t=1
Fsym(Xt, t)dt +

∫ 0

t=1

√
βt dW̄sym

(15)

The high-level algorithm is described in Figure 11 with an example that illustrates the C4 symmetric

sampling.

L.4 Additional symmetric samples
We include more generated samples for selected point groups including Cn (cyclic symmetry), Dn
(dihedral symmetry), T (tetrahedral symmetry), O (octahedral symmetry), I (icosahedral symme-

try). For each all the samples we use λ0 = 16 and φ = 2 with the Heun SDE solver that integrates

from 1 to 0 for 400 steps. We use subunit k-NN sampling with K = 6. When K > |G|, we set

K = |G|. We provide additional samples categorized by the imposed symmetry group in Figure 12

with a range of sequence lengths per subunit. Our method strictly imposes symmetries. However,

the sampled geometries can sometimes show poor contact while still being symmetric. We provide

such samples in Figure 13.
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Supplementary Figure 11: (a) The protein complexes are initialized by performing symmetry op-

erations on an initial protein. (b) F(X) and RdW̄ are symmetrized by averaging [F(X)] j at sym-

metric positions.

M Programmability: Shape

M.1 Motivation
Proteins often realize particular functions through particular shapes, and consequently being able

to sample proteins subject to generic shape constraints would seem to be an important tool for

fully realizing the potential of protein design. Pores allow molecules to pass through biological

membranes via a doughnut shape, scaffolding proteins spatially organize molecular events across

the cell with precise spacing and interlocking assemblies, and receptors on the surfaces of cells

interact with the surrounding world through precise geometries. Here we aim to explore and test

generalized tools for conditioning on volumetric shape specifications with Chroma.

M.2 Approach
Our shape conditioning approach is based on Optimal Transport [Peyré et al., 2019], which pro-

vides tools for identifying correspondences and geometric distances between objects, such as the

atoms in a protein backbone and a point cloud sampled from a target shape. We leverage two

metrics from the optimal transport theory: (i) the Wasserstein distance [Peyré et al., 2019], which

can measure the correspondence between point clouds in absolute 3D space and (ii) the Gromov-

Wasserstein distance, which can measure the correspondences between objects in different do-

mains by comparing their intra-domain distances or dissimilarities. Because it leverages relational
comparisons, Gromov-Wasserstein can measure correspondences between unaligned objects with

different sturctures and dimensionalities such as a skeleton graph and a 3D surface [Solomon et al.,
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Supplementary Figure 12: Additional generated complexes grouped based on imposed symmetry

groups.

Supplementary Figure 13: The generated complexes can form a poor protein-protein interface

while still respecting imposed symmetry.

2016] or even between unsupervised word embeddings in two different languages [Alvarez-Melis
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and Jaakkola, 2018].

We initially experimented with adding heuristic gradients to the diffusion based on just the Wasser-

stein distance (estimated with the Sinkhorn algorithm [Peyré et al., 2019]), but found that the huge

degeneracy in potential volume-filling conformations would often lead to jammed or high-contact-

order solutions. While long-run Langevin sampling might help to allow gentle annealing into a

satisfactory configuration in principle , we sought to accelerate convergence by breaking this de-

generacy with a very coarse ”space-filling plan” for how the fold should map into the target point

cloud, which the prior can then realize with a specific protein backbone.

Mapping 1D to 3D We can leverage Gromov-Wasserstein (GW) optimal transport to answer the

question “How would a protein with ideal distance scaling and a given length fill space in a target

3D volume?”. To do so, we (i) built an idealized distance matrix for a protein based on the scaling

law3 Di j = 7.21×|i− j|0.32, (ii) compute the distance matrix for our target shape, and (iii) solve for

the Gromov-Wasserstein optimal transport given these two distance matrices [Peyré et al., 2019]

yielding a coupling matrix KGromovWasserstein with dimensionality Natoms ×Npoints. This coupling

map sums to unity and captures the correspondence between each atom in the abstract protein

chain and each point in the target point cloud. We use a small amount of entropy regularization to

solve the optimal transport problem.

Optimal Transport loss In the inner loop of sampling, we can combine the GromovWasserstein

coupling with simple Wasserstein couplings as a form of regularization towards our fold “plan”.

Our final loss is then

ShapeLoss(x,r) = ∑
i, j

(
KGW

i j +KW
i j (x,r)

)
‖xi − r j‖

where we compute the Wasserstein optimal couplings KW
i j with the Sinkhorn algorithm [Peyré

et al., 2019]. This yields a fast, differentiable loss that can be used directly for sampling.

Generating 3D shapes We rendered letters and numbers from the English alphabet in the Lib-

eration Sans font, extruded these 2D images into 3D volumes, and then sampled isotropic point

clouds from these volumes.

N Programmability: Residue, Domain, and Complex-level Clas-
sification

N.1 Model Inputs
Noised backbone coordinates obtained from the PDB are passed as input to the model, along with

a scalar 0 < t < 1 denoting the time during diffusion (indexed between zero and one) that the noise

was sampled at. The model optionally can consume sequence information if available.

3This scaling law was fit on a large single-domain protein 6HYP.
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Supplementary Figure 14: ProClass model architecture.

N.2 Featurization
The time component is encoded with a random fourier featurization (e.g., see Tancik et al. [2020]).

Provided sequence is encoded with a learnable embedding layer of amino acid identity. Backbone

coordinates are passed to our ProteinFeatureGraph that extracts 2-mer and chain-based dis-

tances and orientations. These components are summed and passed to the neural network.

N.3 Architecture
The encoder is a message passing neural network. The graph is formed by taking K=20 nearest

neighbors and sampling additional neighbors from a distribution according to a random exponential

method.

Node and edge embeddings are passed to each layer, with each node being updated by a scaled

sum of messages passed from neighbors. The message passed from node i to node j is obtained by

stacking the embeddings at node i, those at node j, and E , and passing these to a multi-layer per-

ceptron (1 hidden layer). Edges are updated similarly. Each layer also applies layer normalization

(along the channel dimension) and dropout (dropout probability=0.1).

After processing by the MPNN, node embeddings are passed to a different classification head for

each label. If a head corresponds to a chain-level label, residues from each chain are pooled using

an attentional pooling layer. The resulting embeddings are then passed to an MLP with 1 hidden

layer to output logits for each label.

N.4 Labels and loss functions
The model is trained to predict the following labels: CATH, PFAM, Funfam, Organism, Secondary

Structure, Interfacial Residue. The loss for predicting each label is quantified using cross entropy

loss, and all components are summed and weighted equally.

N.5 Training
The model is trained for 50 epochs with an Adam optimizer [Kingma and Ba, 2014] with default

momentum settings (betas=(0.9,0.999)), the learning rate is linearly annealed from 0 up to 0.0001
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over the first 10,000 steps then kept constant. During training, first a time stamp 0 < t < 1 is sam-

pled uniformly, then noise is sampled from the globular covariance distribution, injected into the

backbone coordinates, and fed to the model. Next, label predictions are made, loss are computed,

and parameters are updated with the Adam optimizer.

N.6 Hyperparameters
The classification model has 4 layers, the size of node feature dimension is 512 and the edge

feature dimension is 192, node update MLP has hidden dimension 256 with 2 hidden layers, and

edge update MLP has hidden dimension 128 with 2 hidden layers.

O Programmability: Natural Language Annotations

O.1 Motivation
Recent advances in text-to-image diffusion models such as DALL-E 2 [Ramesh et al., 2022] and

Imagen [Saharia et al., 2022] have produced qualitatively impressive results using a natural lan-

guage interface. Given the open availability of pre-trained language models and a corpus of protein

captions form large scientific databases such as the PDB [Berman, 2000] and UniProt [Consortium,

2020], we explore the possibility of creating a natural language interface to protein backbone gen-

eration. To do this, we build a protein captioning model (ProCap), which predicts p(y|xt), where y
is a text description of a protein and xt is a noised protein backbone. This conditional model, when

used in conjunction with the structural diffusion model presented in the main text, can be used as

a text to protein backbone generative model.

O.2 Dataset curation
To build a caption model, we begin by curating a paired dataset of protein structures and captions

from both the PDB and UniProt databases. Caption information is collected for the structures used

for the backbone diffusion model training, as well as the individual chains within these structures.

For each structure, we use the PDB descriptive text as an overall caption. For each chain in a

structure, we obtain a caption by concatenating all available functional comments from UniProt.

Structures containing more than 1000 residues are not used, corresponding to a minority (10%) of

all structures. The final set used to train and validate the caption model contains approximately

45 thousand captions, including those from both PDB and UniProt. Unlike for the backbone

model, the splits used for training are completely random. The small size of the dataset constrained

architecture choices to those with relatively few free parameters.

O.3 Model architecture
O.3.1 Architecture overview

To predict captions given noised structures, we construct ProCap using a pretrained language

model and a pretrained protein encoder. The pretrained language model is the GPT-Neo 125

million parameter model [Black et al., 2021]. GPT-Neo was trained on the Pile [Gao et al., 2021]
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Supplementary Figure 15: ProCap model architecture. ProCap connects a pretrained graph neu-

ral network encoder to an autoregressive language model trained on a large data corpus including

scientific documents. We use the 125M parameter GPT-Neo as the language model, with internal

dimension D= 768. Conditioning is achieved with pseudotokens generated from encodings of pro-

tein complex 3D backbone coordinates (batch size B, number of residues N, embedding dimension

H) and a task token indicating whether a caption describes the whole complex or a single chain.

The R relevant pseudotokens for each caption, consisting of the chain/structure residue tokens and

the task token, are passed to the language model along with the caption. When used in the forward

mode, ProCap can describe the protein backbone by outputting the probabilities of each word in

the language model’s vocabulary of size V for each of the L tokens of a caption. When used in

conjunction with the prior model, it can be used for text to protein backbone synthesis. In training,

ProCap uses a masked cross entropy loss applied only to the caption logits.

which contains articles from arXiv and Pubfed. Its choice is motivated to maximize the chance that

the model would begin training with some understanding of protein-related text. We also use the

pretrained graph neural network encoder from ProClass, the protein structure classification model

introduced above, to encode protein backbones. Analogously to the choice of the language model,

the purpose of the structure encoder is to start ProCap with semantic knowledge of protein struc-

ture. To condition the autoregressive language model, GPT-Neo, pseudotokens are formed from

structures using the ProClass encoder and prepended to the caption as context, similar to [Lester

et al., 2021].

O.3.2 Data embedding

Here, we describe the embedding of task, caption, and structure data into a shared tensor represen-

tation for input to the language model. Captions and task tokens are encoded using a modified ver-

sion of the GPT-Neo tokenizer, whose vocabulary we augment with a special token to distinguish

between prediction tasks involving single chains and those relating to entire structures. Structure

inputs are converted into pseudotokens with the same shape as text embeddings through the graph
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neural network encoder of the pre-trained ProClass model. The task, structure, and caption embed-

dings are concatenated into a representation that is passed to the language model to obtain logits

representing the probabilities of caption tokens. The model is trained on a standard masked cross

entropy loss of the caption. The overall architectural flow is detailed in Fig. 15. We proceed to

discuss the details of the embedding procedure.

Structure encoding in ProCap relies on a pretrained ProClass model. This classifier model consists

of a GNN with multiple heads to extract different class information, as described previously. The

GNN portion of the classifier network is used to obtain embeddings of each residue in the latent

space of the classifier, with the intent that the pre-trained classifier weights should help ProCap

learn the relationship between structures and captions. Besides the 3D information of the atoms in

each structure, the diffusion timestep (noise level) is input to the GNN via a Fourier featurization

layer which converts the diffusion time to a vector with the same dimension as the GNN node

embedding space using randomly chosen frequencies between 0 and 16. To allow for ProCap to

learn the optional use of sequence information, in 25% of the training data sequences are randomly

passed along with structures. In these cases, the amino acid information for each residue is con-

verted through a single embedding layer with output size equal to that of the GNN node embedding

space dimension, then added to the time step vector.

Task tokens are added to the model to allow for captions of both single chain and full complex

captions. For the prediction of UniProt captions describing single chains within structures, only

the embeddings of the residues in the relevant chain are passed to the language model. For the

prediction of the PDB captions related to entire structures, all residue embeddings are passed. In

addition, a linear layer is added after the ProClass embeddings to go between the ProClass latent

space and the embedding space of the language model, which are of different dimensionality.

Finally, in order to help the model distinguish between PDB and UniProt prediction tasks, the

encodings of the entire structures are each prepended with an embedding vector of a newly defined

PDB marker token. We normalize the components of all structure vectors such that each one has

zero mean and unit variance.

In summary, the ProCap architecture consists of a pre-trained GNN model for structure embedding

and a pre-trained language model for caption embedding, with a learnable linear layer to interface

between the two and a learnable language model head to convert the raw language model outputs

to token probabilities.

O.4 Model training
We train ProCap to be compatible with conditional generation using the structural diffusion prior

model. Like the other conditional models in this paper, each structure is noised according to the

schedule of the structural diffusion model. During ProCap training, the graph neural network

encoder weights from the pre-trained ProClass model are frozen. In addition, the internal weights

of the GPT-Neo language model are also frozen, except for the head whose parameters are allowed

to train. We choose to freeze these model parameters because of the relatively small training data

size compared to that which was used to pre-train the language model. The language model head

is allowed to learn, both to improve the embeddings of its usual tokens, as well as to optimize the

encoding of new tokens. In training, we add a <|PDB|> task token to the GPT-Neo vocabulary to
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cue the model to predict whole complex captions from the PDB.

Training is conducted on a single V100 with a constant learning rate of 5× 10−5 and the Adam

optimizer with hyperparameters β1 = 0.9, β2 = 0.999. We evaluate loss on a validation set after

every 2000 training examples. During training, we set an early stopping patience of 40 iterations,

which was triggered after approximately 20 epochs at a cross entropy loss of 3.29.

O.5 Performance
In order to test ProCap as a generative model, we draw high-quality conditional and correspond-

ing unconditional low-temperature samples from the model. To that end, we employ a structural

denoising approach in a similar fashion to the method described in [Song et al., 2021]. Specifi-

cally, the hybrid Langevin-reverse time SDE of Appendix B is used to evolve noisy random sample

structures drawn from the diffusion model prior, with gradients of the ProCap loss with respect to

structure added to the gradients of the structure diffusion model. When the size of the ProCap

gradients is too small relative to those from the prior model, there is little appreciable difference

between a caption-conditioned sample and an unconditional sample drawn from the same seed. We

thus scale the ProCap gradients up by a factor of 100 and find that the resulting samples are better

conditioned, analogously to previous work on classifier guidance [Dhariwal and Nichol, 2021].

Simultaneously, we observe that the sample quality decreases as ProCap gradients are scaled up

further, resulting in the loss of secondary structure and even breakdown of backbone bond length

constraints. To mitigate this effect, we limit the size of the gradient,

∇x log pt(y|x)→ ∇x log pt(y|x)
|∇x log pt(y|x) |min(|∇x log pt(y|x) |,cmax)

with the choice cmax = 10.

Examples of our generated samples are presented in the right two columns of Fig. 5. To evaluate

ProCap model performance, we measure the improvement in caption loss during the SDE evo-

lution between the unconditioned and conditioned samples. As an independent check, we also

examine the gain in the TM-score between our sample (conditioned over unconditioned) and a

target PDB structure which exemplifies the caption being used for conditioning. Finally, we an-

alyze the generated structures visually for structural coherence. Qualitatively, starting from the

same noisy random structure, the diffusion model yields denoised structures which demonstrate

desirable characteristics including secondary structure elements, both with and without guidance

from the caption model.

The caption loss and TM-score metrics for the sampling trajectories leading to the structures in

Fig. 5 are shown in Fig. 16. Both are initially quite noisy, and the conditioned and unconditioned

samples are equally likely at high t to have lower ProCap loss and/or better alignment with the

target structure. However, over the course of the reverse diffusion, the effect of the conditioning is

demonstrated in both panels. It is particularly notable that the TM-score is relatively stable at low

t, indicating a regime where the SDE evolution is fine-tuning structural details rather than making

significant changes.
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Supplementary Figure 16: ProCap evaluation metrics show effect of natural language condi-
tioning compared to unconditioned samples from the same noised seed structure. Panel a
shows the caption model cross-entropy loss as a function of diffusion timestep, for two sample

trajectories with and without the use of caption gradients. Panel b shows the TM-score between

sampled structures and example structures from the PDB corresponding to the captions used for

conditioning.
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