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Abstract: 19 

 20 

Understanding host persistence with emerging pathogens is essential for conserving populations. 21 

Hosts may initially survive pathogen invasions through pre-adaptive mechanisms. However, 22 

whether pre-adaptive traits are directionally selected to increase in frequency depends on the 23 

heritability and environmental dependence of the trait and the costs of trait maintenance. Body 24 

condition is likely an important pre-adaptive mechanism aiding in host survival, although can be 25 

seasonally variable in wildlife hosts. We used data collected over seven years on bat body mass, 26 

infection, and survival to determine the role of host body condition during the invasion and 27 

establishment of the emerging disease, white-nose syndrome. We found that when the pathogen 28 

first invaded, bats with higher body mass were more likely to survive, but this effect dissipated 29 

following the initial epizootic. We also found that heavier bats lost more weight overwinter, but 30 

fat budgeting depended on infection severity. Lastly, we found little support that bat mass 31 

increased in the population after pathogen arrival, and there was high annual plasticity in 32 

individual bat masses. Overall, our results suggest that factors that contribute to host survival 33 

during pathogen invasion may diminish over time, and are potentially replaced by other host 34 

adaptations.  35 

 36 

Keywords: body mass, emerging infectious disease, wildlife disease, population impacts, white-37 

nose syndrome, Pseudogymnoascus destructans, disease ecology, host physiology, body 38 

condition  39 
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Introduction:         40 

 41 

The introduction of novel pathogens to naive hosts can have profound effects on 42 

populations [1-7]. Hosts may survive initial pathogen invasion through multiple mechanisms 43 

including evading infection or pre-adaptive traits that allow for survival despite infection or 44 

disease [8, 9]. Importantly, factors enabling hosts to survive during initial invasion may not 45 

confer any advantage subsequently, particularly if pre-adaptive traits have strong tradeoffs, or are 46 

highly plastic (e.g. environmentally dependent) [10, 11]. Ultimately, traits that determine long-47 

term host-pathogen coexistence may take longer to evolve and become widespread than traits 48 

allowing for initial survival, particularly if such traits provide stronger protection than pre-49 

adaptive mechanisms [10, 12-14]. 50 

Factors that affect the probability of host survival with invasive pathogens include age, 51 

chronic disease, prior exposure, and body mass [15]. In general, hosts with adequate fat stores, 52 

high nutrient levels, and access to high quality habitat should demonstrate improved disease 53 

outcomes over weaker hosts. However, host body condition can be highly variable across 54 

seasons and years, even within individuals, leading to heterogeneity in the relationship between 55 

host body condition and disease, and making it a less reliable mechanism long-term [16]. 56 

Variable effects of body condition may be particularly pronounced when there is highly seasonal 57 

availability of food sources, leading to high stochasticity among individuals in their ability to 58 

consistently maintain high body condition when faced with annual disease outbreaks.  59 

 White-nose syndrome (WNS) is a seasonal annual epizootic of bats caused by the fungal 60 

pathogen Pseudogymnoascus destructans [17-20]. White-nose syndrome was first detected New 61 

York, USA in 2006, and has caused widespread declines in hibernating bat populations across 62 

North America [6, 21, 22]. Pseudogymnoascus destructans grows optimally in cool conditions 63 

(1–17 ºC) [23], resulting in annual winter epidemics that occur when bats begin hibernating [18]. 64 

Invasion of P. destructans into bat skin tissue causes severe physiological disruption, elevating 65 

bat metabolic rate and increasing respiratory acidosis [24, 25]. Bats, in turn, arouse to normalize 66 

blood pH which further increases evaporative water loss and causes dehydration. Higher energy 67 

expenditure from infection, increases fat loss, and emaciation, which frequently leads to 68 

mortality [26-28].  69 
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 Increases in stored fat and improved budgeting of fat overwinter are therefore 70 

hypothesized to be important mechanisms determining bat survival with WNS [29-31], which 71 

typically increases within 4-5 years of WNS arrival after initially severe declines [6, 17, 32, 33]. 72 

However, other mechanisms of host persistence have also been described, including potential 73 

increases in host resistance through immunity or microbially-mediated reductions in pathogen 74 

growth [17, 33], and movement toward colder roosting conditions which limits fungal growth 75 

[34, 35]. Nonetheless, changes in body mass have the potential to have strong effects on bat 76 

survival, but comprehensive analyses on the effect of body mass on individual bat survival with 77 

WNS in the field have yet to be conducted. In addition, because host body condition may exhibit 78 

high annual variability [36], the importance of body mass as a sustained factor affecting 79 

population persistence with WNS merits additional investigation. Here, we investigate changes 80 

in the effect of body mass on survival of individual little brown bats (Myotis lucifugus) during 81 

the invasion and establishment of P. destructans across 24 sites. We hypothesized that while 82 

fatter bats might initially exhibit higher survival, the positive effects of higher body condition 83 

could diminish over time as host disease resistance increases in bat populations.  84 

 85 

Methods: 86 

 We studied the arrival and establishment of P. destructans at 24 hibernacula (caves and 87 

mines where bats spend the winter) in Virginia, Wisconsin, Illinois, and Michigan over seven 88 

years (Tables S1-S3). We visited sites twice per winter and collected data on infection status and 89 

body mass of bats. At each site, we sampled up to 25 individual bats stratified across site 90 

sections. Because sites used in this study were primarily small mines where it was possible to 91 

observe all bats present, in many instances, all individuals in the population were sampled. For 92 

each bat, we collected a standardized epidermal swab sample [18], attached a unique aluminum 93 

band, and measured body mass using a digital scale (GDealer, accuracy +/- 0.03 grams). Because 94 

common condition indices are no more effective than body mass for estimating fat stores [37], 95 

we did not include information on bat forearm size in order to reduce handling disturbance. At 96 

every visit, we recorded and resampled any previously banded bats present. We stored swabs in 97 

RNAlater until processing. We tested samples for P. destructans DNA using real-time PCR and 98 

quantified fungal loads [21, 38]. Animal handling protocols were approved by Virginia Tech 99 

IACUC (#17-180, #20-150).  100 
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 We investigated the effect of bat early hibernation (November) body mass on the 101 

probability an individual was recaptured overwinter using a generalized linear mixed model 102 

(GLMM) with a binomial distribution and a probit link, with site as a random effect, and body 103 

mass and disease phase (epidemic = 1- 3 years since pathogen arrival, or established = 4-7 years 104 

since pathogen arrival) as interacting fixed effects. Phases were established based on previous 105 

results demonstrating that populations approach stability by year 4 following WNS arrival [6, 32] 106 

For analyses of individual survival and body mass, results were similar whether we used 107 

categorical disease phase or years since WNS as a continuous variable (Appendix) and grouping 108 

by phase maximized the number of bats in the epidemic years when mortality was high and the 109 

number of recaptured bats was low. For bats that were recaptured overwinter, we examined the 110 

effect of early winter body mass and infection on the amount of mass lost overwinter during both 111 

the epidemic and established phase using a linear mixed model with site as a random effect and 112 

the change in body mass as the response variable and fixed effects of early winter mass 113 

interacting early winter fungal loads with additional additive effect of disease phase. Finally, we 114 

explored changes in mass over time since the invasion of P. destructans on an individual and 115 

population level to examine both plasticity and phenotypic change. For bats that were recaptured 116 

in multiple years, we used a linear mixed model with mass as a response variable, years since 117 

WNS as a fixed effect, and bat band ID as a random effect to explore plasticity in whether 118 

individual bat mass changed over time. At a population level, declines in sites with the best 119 

invasion mass data limited our ability to explore changes in mass, so we restricted our analyses 120 

to N=5 sites that were measured during invasion and had sufficient bats to estimate during  121 

established periods using log10 mass as our response variable (logged to normalize) and years 122 

since WNS interacting with season with site as a random effect.  123 

 124 

Results: 125 

 126 

 As WNS invaded and caused massive declines in bat populations, bats that were heavier 127 

in early winter were more likely to be recaptured than lighter ones (Fig. 1; slope of mass ± SE: 128 

0.320 ± 0.14, P = 0.0220). However, after WNS established in sites (years 4-7 following P. 129 

destructans detection), recapture overall was higher than during the epidemic (invasion vs 130 

establishment coef: 3.551 ± 1.46, P = 0.0152), and the effect of mass on the probability of 131 
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recapture was significantly lower than the epidemic phase (interaction slope: -0.357 ± 0.16, P = 132 

0.0250), and the slope did not differ significantly from 0 (Appendix 1.0.3).   133 

 For bats that survived overwinter and were recaptured, mass lost overwinter depended on 134 

both early hibernation weight and infection, and their interaction (Fig. 2A; P = 0.00948). There 135 

was little support for including disease phase as a predictor (P = 0.27), likely due to the paucity 136 

of bats recaptured during the epidemic phase when mortality was high (Table S2). Generally, 137 

bats that were heavier lost more weight overwinter than bats that were lighter (coef: -0.737 ± 138 

0.16, t = -4.613). In addition, as infection increased, so did the amount of mass lost (coef: 1.002 139 

± 0.41, t = 2.467), but only for bats that were heavier in early winter; lighter bats lost less weight 140 

and weight loss did not vary with higher fungal loads (early mass:early loads coef: -0.106 +- 141 

0.04, t=-2.594, Appendix 2.0.2).  142 

 We found limited support for increases in mass at a population-level. Including years 143 

since pathogen arrival as a continuous effect, we found no clear support for increases in mass at a 144 

population-level (years since pathogen invasion coef: 0.002 ± 0.002, t=0.983, Fig. 2B, Table S3, 145 

Appendix 3.0.2). We did find support for a modest increase in log10 early hibernation body mass 146 

between the epidemic and established periods at 5 sites that were sampled at all time points in 147 

most years (established coef: 0.011 ± 0.005, t=2.031, Fig. S1, Appendix 3.0.4), however this was 148 

largely due to an increase between one annual time step (Year 3 to Year 4). We found no support 149 

for an increase in mass due to plasticity (Appendix 4). Using just recaptured bats, we found weak 150 

and unclear support for increases in log10 early hibernation body mass with years since WNS 151 

establishment (0.0037 ± 0.003, t=1.508, Fig. S1 closed circles, Table S2, Appendix 4.0.2). 152 

Furthermore, masses of individual bats that were recaptured in multiple years decreased non-153 

significantly (-0.0023 ± 0.003, t=-0.701, Fig. S2, Appendix 4.03). Among individual bats 154 

recaptured annually, there was high plasticity in body mass which ranged from -1.78 : +1.09 g, 155 

suggesting that bat fat stores may be highly dependent on local conditions in summer and 156 

autumn.  157 

 158 

 159 

 160 
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161 

Figure 1. The effects of body mass during early hibernation on the probability of little brown bat 162 

recapture vary with time since P. destructans arrival. In years 0–3 post P. destructans arrival, the 163 

probability a bat was recaptured overwinter increased as early hibernation mass increased. 164 

However, after WNS established (>3 years since P. destructans arrival), there was no longer a 165 

clear trend between early hibernation body mass and bat survival. Solid points of early 166 

hibernation body masses during each phase show the fraction recaptured at 0.5 g bins (e.g. 9.75-167 

10.25) and sample sizes for binned data.  168 
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 169 

Figure 2. (A) Fungal loads and early hibernation (November) body mass of little brown bats 170 

strongly influences the change in individual bat mass over winter. Points show individual bats 171 
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captured in both early and late hibernation. Colors denote masses of bats during early hibernation 172 

and labeled lines show predictions based on the 25th (8.7 g), 50th (9.3 g), 85th (9.8 g), and 95th 173 

(11.1 g) percentiles of the early hibernation masses. Bats that have higher initial body mass lose 174 

more weight over winter than bats with lower body mass (i.e. darker lines are higher), suggesting 175 

that bats budget fat stores accordingly over winter. In addition, fungal loads significantly modify 176 

the effect of early hibernation mass on mass lost overwinter. Bats with high infections that were 177 

heavier lose more mass than similarly infected bats that were lighter, suggesting that highly 178 

infected bats that survive to be recaptured budget fat in accordance with their infection status. 179 

(B) Average body mass of banded little brown bats in early (November) and late (March) that 180 

were recaptured (filled circles) or not recaptured (open circles) overwinter during the WNS 181 

epidemic (Years 0-3) and WNS established period (Years 4+) at the same sites over time (N=5). 182 

We found no clear support that hibernation body masses of bats increased over time when 183 

examining these data continuously (top) but marginal support categorically (Fig S1).  184 

 185 

Discussion 186 

 187 

 We found that the effect of body mass on survival waned as the epidemic progressed. 188 

Furthermore, fat loss in bats increased with initial stored fat, as has been previously found in 189 

another species [39], suggesting that bats surviving with disease are budgeting fat stores to 190 

mitigate the physiological disruption posed by WNS. Importantly, we did not find evidence that 191 

bat survival once the disease established was enhanced by increases in the amount of stored fat 192 

[29]. We also found little support that fat increased at the population level as the disease 193 

established. When treating years since pathogen arrival continuously, there was no clear trend of 194 

increases in fat at the population-level. In some years, annual increases in fat occurred, but these 195 

were modest relative to the range of body conditions at the start of hibernation (recaptured bats 196 

during the established WNS period ranged from 7-12 grams and gains were an average of 0.18 197 

grams. We also found no support of consistent mass increases in individual bats, and year to year 198 

fat stores were highly variable (range -1.78: +1.09 grams).  199 

 There are several potential reasons that could explain why the importance of fat changed 200 

as P. destructans established. First, the initial epizootic may have selected for fatter individuals, 201 

thus making the effects of fat less apparent as the pathogen established. However, body mass 202 
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differences between the invasion and established phases were very modest relative to annual 203 

plasticity in bat masses, suggesting that this is unlikely. Second, bats in some populations have 204 

evolved higher pathogen resistance [33, 35] which may have reduced selection for increased 205 

body mass, particularly if fatter bats face other tradeoffs, such as reduced flight abilities [40, 41]. 206 

Third, bats have shifted to using cooler microclimates that also reduce the growth of the fungus, 207 

resulting in less severe disease [34]. Fourth, changes in the pathogen (e.g. a reduction in 208 

virulence) could have enabled more hosts to survive, thus experiencing fewer adverse effects 209 

(e.g. excess fat loss) from the pathogen [42, 43]. Lastly, bats may have adapted to the 210 

physiological disruption posed by infection, as evidenced by the relationship between mass loss, 211 

infection, and early hibernation weight. This finding is consistent with the hibernation 212 

optimization hypothesis [44-46], suggesting that bats do not use a fixed amount of fat during 213 

hibernation [47, 48], and generally aligns with findings conducted on unaffected little brown bats 214 

that demonstrated increases in arousals with increases in early hibernation fat [44]. Overall, 215 

increased fat stores may have been beneficial initially, but changes in other host or pathogen 216 

traits may have relaxed selection on fat over time. 217 

 Our results have important implications for the conservation of bats impacted by WNS. 218 

Supplemental feeding and enhancement of autumn bat habitat to increase insect prey abundance 219 

have been explored as a management strategy to increases bat fat stores to reduce WNS impacts 220 

[49]. Our results strongly suggest that while this may have been effective prior to or during 221 

pathogen invasion, it provides little benefit to bats once the pathogen has been established for 222 

several years. We find that bats budget fat in accordance with their infection severity and initial 223 

fat stores, suggesting that supplemental feeding might not achieve the desired benefit of 224 

enhancing bat survival if bats simply alter fat use accordingly. In addition, supplemental feeding 225 

of wildlife may have unexpected negative consequences, including increases in predation, 226 

increases in susceptibility due to less nutritious food sources, and enhancement of pathogen 227 

spread due to host aggregation [50], and these potential negative effects should be carefully 228 

considered before widescale implementation. 229 

 Species survival in the face of global change will likely require rapid adaptation and 230 

change itself may outpace the speed at which species can evolve [51, 52]. For species and 231 

populations that persist, some traits that may be beneficial for initial survival may prove less 232 

important over time [9, 53]. This phenomenon may be partly explained by coevolutionary theory 233 
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which suggests that both hosts and pathogen must constantly adapt and innovate in order to 234 

maintain high fitness [12]. Ultimately, developing a more comprehensive understanding of the 235 

pre-adaptive factors that aid in population health can enable us to build more resilient 236 

populations in the Anthropocene.  237 
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