- 1 **N⁶-methyladenosine (m⁶A) and reader protein YTHDF2 enhance innate**
- 2 immune response by mediating DUSP1 mRNA degradation and
- 3 activating mitogen-activated protein kinases during bacterial and viral
- 4 infections
- 5
- Jian Feng,^{a,b} Wen Meng,^{a,b} Luping Chen,^{a,b} Xinguan Zhang,^{a,b} Ashley
- 7 Markazi,^{a,b} Weiming Yuan,^c Yufei Huang,^{a,d,e,f} Shou-Jiang Gao^{a,b}
- 8
- ⁹ ^aCancer Virology Program, UPMC Hillman Cancer Center, University of
- 10 Pittsburgh, Pittsburgh, PA, USA
- ¹¹ ^bDepartment of Microbiology and Molecular Genetics, University of Pittsburgh,
- 12 Pittsburgh, PA, USA
- ¹³ ^cDepartment of Molecular Microbiology and Immunology, Keck School of
- 14 Medicine, University of Southern California School of Medicine, Los Angeles,
- 15 CA, USA
- ¹⁶ ^dDepartment of Electrical and Computer Engineering, University of Pittsburgh,
- 17 Pittsburgh, PA, USA
- ¹⁸ ^eDepartment of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA,
- 19 USA
- ¹Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Address correspondence to Shou-Jiang Gao, gaos8@upmc.edu.
- 22 The authors declare no conflict of interest.

23 Abstract

24	Mitogen-activated protein kinases (MAPKs) play critical roles in the
25	induction of numerous cytokines, chemokines, and inflammatory mediators
26	that mobilize the immune system to counter pathogenic infections.
27	Dual-specificity phosphatase-1 (DUSP1) is a member of dual-specificity
28	phosphatases, which inactivates MAPKs through a negative feedback
29	mechanism. Here we report that in response to viral and bacterial infections,
30	not only DUSP1 transcript but also its N^6 -methyladenosine (m ⁶ A) level rapidly
31	increase together with the m ⁶ A reader protein YTHDF2, resulting in enhanced
32	YTHDF2-mediated DUSP1 transcript degradation. Knockdown of DUSP1
33	promotes p38 and JNK phosphorylation and activation, thus increasing the
34	expression of innate immune response genes including IL1 β , CSF3, TGM2
35	and SRC. Similarly, knockdown of m ⁶ A eraser ALKBH5 increases DUSP1
36	transcript m ⁶ A level resulting in accelerated transcript degradation, activation
37	of p38 and JNK, and enhanced expression of IL1 β , CSF3, TGM2 and SRC.
38	These results demonstrate that m ⁶ A and reader protein YTHDF2 orchestrate
39	optimal innate immune response during viral and bacterial infections by
40	downregulating the expression of a negative regulator DUSP1 of the p38 and
41	JNK pathways that are central to innate immune response against pathogenic
42	infections.

43 **IMPORTANCE**

44	Innate immunity is central for controlling pathogenic infections and
45	maintaining the homeostasis of the host. In this study, we have revealed a
46	novel mechanism regulating innate immune response during viral and bacterial
47	infections. We have found that N^6 -methyladenosine (m ⁶ A) and the reader
48	protein YTHDF2 regulate dual-specificity phosphatase-1, a negative regulator
49	of mitogen-activated protein kinases p38 and JNK, to maximize innate immune
50	response during viral and bacterial infections. These results provide novel
51	insights into the mechanism regulating innate immunity, which could help the
52	development of novel approaches for controlling pathogenic infections.
53	
54	KEYWORDS: <i>N</i> ⁶ -methyladenosine, m ⁶ A; YTHDF2; Innate immunity;
55	dual-specificity phosphatase-1, DUSP1; mitogen-activated protein kinases,
56	MAPKs; p38; JNK

57 Introduction

58	The innate immune system is a highly efficient cellular and molecular
59	network in mammalian cells that protects the organism against pathogenic
60	infections (1). This first line of defense against invasion is achieved by sensing
61	the pathogens through pattern recognition receptors (2). Stimulation of pattern
62	recognition receptors on the cell surface and in the cytoplasm of innate
63	immune cells activates multiple mitogen-activated protein kinases (MAPKs)
64	including the extracellular signal-regulated kinase (ERK), p38 and Jun
65	N-terminal kinase (JNK) (3). MAPKs are a group of highly conserved
66	serine/threonine protein kinases in eukaryotes (4), which play a critical role in
67	inducing numerous cytokines, chemokines, and inflammatory mediators that
68	mobilize the immune system to counter pathogenic infections (5). Furthermore,
69	the induction of pro-inflammatory response promotes the recruitment of
70	additional immune cells to invoke secondary innate and adaptive immune
71	responses (6).
72	Dual-specificity phosphatase-1 (DUSP1, also known as MAPK
73	phosphatase-1 or MKP-1) was initially identified in cultured murine cells (7). It
74	is a member of dual-specificity phosphatases (DUSPs), which are key players
75	for inactivating different MAPKs (8). DUSP1 expression is enhanced upon
76	numerous pathogenic infections, and it is an important feedback mechanism
77	for controlling excessive immune response and inflammation (9, 10). By
78	dephosphorylation, DUSP1 inhibits the activation of specific threonine and

79	tyrosine residues on p38 and JNK, resulting in inactivation of inflammatory or
80	innate immune response through inhibiting the expression of numerous
81	effector genes at transcriptional or post-transcriptional levels (11).
82	<i>N6</i> -methyladenosine (m ⁶ A), a dynamic posttranscriptional RNA
83	modification, is critical for almost all aspects of RNA metabolism and functions
84	including structure, maturation, stability, splicing, export, translation, and decay
85	(12). Recent studies show that m ⁶ A modification not only directly regulates the
86	expression of innate immune response genes, but also indirectly affects the
87	mRNA metabolism pathway to further regulate the innate immune response
88	during bacterial and viral infections (13-16).
89	We have previously shown that m ⁶ A plays an important role in
90	regulating innate immune response against both bacterial and viral infections
91	by directly and indirectly regulating the expression of innate immune response
92	genes (13). More recent works indicate m ⁶ A is a vital factor for regulating
93	innate immune response and cytokines by affecting the IKKε/TBK1/IRF3,
94	MAPK and NF- κ B pathways (17, 18). In this study, we have discovered that
95	DUSP1 is a direct m ⁶ A target, and m ⁶ A and the reader protein YTHDF2
96	regulate DUSP1 stability to maximize innate immune response during bacterial
97	and viral infections.
98	

99 Results

100

m⁶A mediates DUSP1 transcript expression during bacterial

101	infection. We have previously mapped the cellular expression profiles and
102	m ⁶ A epitranscriptomes, and identified a set of genes including innate immune
103	response genes that are differentially methylated and differentially expressed
104	during viral and bacterial infections (13). Among them, DUSP1, an important
105	regulator of innate immune response genes, was significantly
106	hyper-methylated during gram-negative bacteria Pseudomonas aeruginosa
107	infection, which peaked at 2 h post-infection (hpi), then decreased at 4 and 6
108	hpi (Fig. 1A). At the same time, DUSP1 transcript expression was upregulated
109	which also peaked at 2 hpi, then decreased at 4 and 6 hpi (Fig. 1B). These
110	results were consistent with the induction of DUSP1 by LPS or TLR ligands
111	reported in previous studies (19, 20).
112	We confirmed the increase of DUSP1 transcript m ⁶ A during <i>P.</i>
112 113	We confirmed the increase of DUSP1 transcript m ⁶ A during <i>P.</i> <i>aeruginosa</i> infection by m ⁶ A-immunoprecipitation reverse transcription
113	aeruginosa infection by m ⁶ A-immunoprecipitation reverse transcription
113 114	<i>aeruginosa</i> infection by m ⁶ A-immunoprecipitation reverse transcription quantitative real time PCR (MeRIP-qPCR). The DUSP1 transcript m ⁶ A level
113 114 115	<i>aeruginosa</i> infection by m ⁶ A-immunoprecipitation reverse transcription quantitative real time PCR (MeRIP-qPCR). The DUSP1 transcript m ⁶ A level was increased by 2.3-fold at 2 hpi of <i>P. aeruginosa</i> but then decreased at 4
113 114 115 116	<i>aeruginosa</i> infection by m ⁶ A-immunoprecipitation reverse transcription quantitative real time PCR (MeRIP-qPCR). The DUSP1 transcript m ⁶ A level was increased by 2.3-fold at 2 hpi of <i>P. aeruginosa</i> but then decreased at 4 and 6 hpi (Fig. 1C). Reverse transcription quantitative real time PCR
 113 114 115 116 117 	<i>aeruginosa</i> infection by m ⁶ A-immunoprecipitation reverse transcription quantitative real time PCR (MeRIP-qPCR). The DUSP1 transcript m ⁶ A level was increased by 2.3-fold at 2 hpi of <i>P. aeruginosa</i> but then decreased at 4 and 6 hpi (Fig. 1C). Reverse transcription quantitative real time PCR (RT-qPCR) further confirmed the increased DUSP1 transcript expression
 113 114 115 116 117 118 	<i>aeruginosa</i> infection by m ⁶ A-immunoprecipitation reverse transcription quantitative real time PCR (MeRIP-qPCR). The DUSP1 transcript m ⁶ A level was increased by 2.3-fold at 2 hpi of <i>P. aeruginosa</i> but then decreased at 4 and 6 hpi (Fig. 1C). Reverse transcription quantitative real time PCR (RT-qPCR) further confirmed the increased DUSP1 transcript expression following <i>P. aeruginosa</i> infection, which peaked at 2 hpi (Fig. 1D).
 113 114 115 116 117 118 119 	<i>aeruginosa</i> infection by m ⁶ A-immunoprecipitation reverse transcription quantitative real time PCR (MeRIP-qPCR). The DUSP1 transcript m ⁶ A level was increased by 2.3-fold at 2 hpi of <i>P. aeruginosa</i> but then decreased at 4 and 6 hpi (Fig. 1C). Reverse transcription quantitative real time PCR (RT-qPCR) further confirmed the increased DUSP1 transcript expression following <i>P. aeruginosa</i> infection, which peaked at 2 hpi (Fig. 1D). We then performed knockdown of ALKBH5, an m ⁶ A "eraser", to

123	transcript expression was reduced by 25% to 40% (Fig. 1G), which was also
124	reflected in the decreased DUSP1 protein level (Fig. 1E). These results
125	suggest that the increased m ⁶ A level during <i>P. aeruginosa</i> infection likely
126	serves to reverse the upregulation of DUSP1 transcript. Since one of the
127	functions of m ⁶ A modification is to mediate RNA decay (21, 22), we examined
128	DUSP1 transcript stability during <i>P. aeruginosa</i> infection. The half-life of
129	DUSP1 transcript was reduced by 12.7% to 37.1% following ALKBH5
130	knockdown (Fig. 1H), indicating m ⁶ A regulation of DUSP1 RNA decay during <i>P</i> .
131	aeruginosa infection.
132	
133	YTHDF2 mediates m ⁶ A-dependent DUSP1 transcript degradation.
134	In order to further delineate the role of m ⁶ A in innate immune response, we
134 135	In order to further delineate the role of m ⁶ A in innate immune response, we infected mouse RAW264.7 macrophage cells with different doses of
135	infected mouse RAW264.7 macrophage cells with different doses of
135 136	infected mouse RAW264.7 macrophage cells with different doses of gram-negative or -positive bacteria or human simplex virus type 1 (HSV-1),
135 136 137	infected mouse RAW264.7 macrophage cells with different doses of gram-negative or -positive bacteria or human simplex virus type 1 (HSV-1), and examined the expression of innate immune response genes (Fig. S1).
135 136 137 138	infected mouse RAW264.7 macrophage cells with different doses of gram-negative or -positive bacteria or human simplex virus type 1 (HSV-1), and examined the expression of innate immune response genes (Fig. S1). Infection with 10 ⁷ gram-positive bacteria <i>Corynebacterium diphtheriae</i> , 10 ⁷ <i>P</i> .
135 136 137 138 139	infected mouse RAW264.7 macrophage cells with different doses of gram-negative or -positive bacteria or human simplex virus type 1 (HSV-1), and examined the expression of innate immune response genes (Fig. S1). Infection with 10 ⁷ gram-positive bacteria <i>Corynebacterium diphtheriae</i> , 10 ⁷ <i>P.</i> <i>aeruginosa</i> or 1 multiplicity of infection (MOI) of HSV-1 induced maximum
 135 136 137 138 139 140 	infected mouse RAW264.7 macrophage cells with different doses of gram-negative or -positive bacteria or human simplex virus type 1 (HSV-1), and examined the expression of innate immune response genes (Fig. S1). Infection with 10 ⁷ gram-positive bacteria <i>Corynebacterium diphtheriae</i> , 10 ⁷ <i>P</i> . <i>aeruginosa</i> or 1 multiplicity of infection (MOI) of HSV-1 induced maximum expression of innate immune response genes including colony stimulating
 135 136 137 138 139 140 141 	infected mouse RAW264.7 macrophage cells with different doses of gram-negative or -positive bacteria or human simplex virus type 1 (HSV-1), and examined the expression of innate immune response genes (Fig. S1). Infection with 10^7 gram-positive bacteria <i>Corynebacterium diphtheriae</i> , 10^7 <i>P.</i> <i>aeruginosa</i> or 1 multiplicity of infection (MOI) of HSV-1 induced maximum expression of innate immune response genes including colony stimulating factor 3 (CSF3), interleukin-1 β (IL1 β), transglutaminase 2 (TGM2),

145	We examined the protein levels of m ⁶ A "writers", "erasers" and "readers"
146	during bacterial and viral infections (Fig. 2A). The m ⁶ A "writer" protein
147	METTL14 had marginal increases during P. aeruginosa, C. diphtheriae and
148	wild-type (WT) HSV-1 infections while another m ⁶ A "writer" protein METTL3
149	had marginal increases during <i>P. aeruginosa</i> and <i>C. diphtheriae</i> infections (Fig.
150	2A). The eraser protein ALKBH5 also had slight increase during <i>C. diphtheriae</i>
151	infection. Of the reader proteins examined, YTHDF1 had marginal increase
152	during C. diphtheriae infection. However, YTHDF2 had significant increases
153	during <i>C. diphtheriae</i> and <i>P. aeruginosa</i> infections by 3.89- and 4.21-fold,
154	respectively, at 8 hpi (Fig. 2A). Since YTHDF2 mediates m ⁶ A-dependent RNA
155	decay (23), we performed knockdown of YTHDF2 (Fig. 2B), and observed an
156	upregulation of the DUSP1 transcript (Fig. 2C), which was also reflected in an
157	increase of DUSP1 protein level (Fig. 2B). Knockdown of YTHDF2 almost
158	doubled the half-life of DUSP1 transcript (Fig. 2D). Furthermore, YTHDF2 RNA
159	immunoprecipitation reverse transcription quantitative real time PCR
160	(RIP-qPCR) showed the binding of YTHDF2 protein to the DUSP1 RNA
161	transcript, which was significantly increased at 4 and 6 hpi (Fig. 2E),
162	correlating with the increased YTHDF2 protein level at these time points (Fig.
163	2A). Together, these results indicate that the upregulation of YTHDF2 protein
164	promotes the degradation of DUSP1 transcript during <i>P. aeruginosa</i> infection.
165	
166	DUSP1 regulates p38 and JNK phosphorylation during bacterial

167	and viral infections. As an important innate immune response gene, DUSP1
168	inactivates MAPKs by inhibiting their phosphorylation (11). Our results showed
169	upregulation of DUSP1 transcript during bacterial and viral infections, which
170	was reversed by m ⁶ A- and YTHDF2-mediated transcript degradation (Fig. 1
171	and 2). As expected, ERK, p38 and JNK MAPKs were activated at 2 hpi by <i>P.</i>
172	aeruginosa, C. diphtheriae, and HSV-1 WT and ICP34.5 mutant viruses (Fig.
173	3A). We included the HSV-1 ICP34.5 mutant virus because the ICP34.5
174	protein has been shown to prevent the induction of innate immune genes
175	during HSV-1 infection by directly inhibiting TBK1 activation and eIF2a function
176	(24, 25). To determine whether DUSP1 regulated the activation of MAPKs
177	during bacterial and viral infections, we performed DUSP1 knockdown.
178	Western-blotting results showed that the levels of phosphorylated p38 and
179	JNK (p-p38 and p-JNK) were increased following DUSP1 knockdown during
180	bacterial and viral infections (Fig. 3A). Activation of MAPKs can induce their
181	downstream transcriptional factors including AP-1 and C/EBP, resulting in
182	upregulation of target genes including numerous innate immune response
183	genes (26). Consistent with the increased levels of p-p38 and p-JNK following
184	DUSP1 knockdown, the levels of CSF3, IL1 β , TGM2 and SRC transcripts were
185	upregulated (Fig. 3B). We observed some variations of the effects of different
186	DUSP1 siRNAs on the expression of IL1 β , CSF3, TGM2 and SRC transcripts.
187	These might be due to the different knockdown kinetics of these siRNAs. The
188	IL1 β protein level was also upregulated after DUSP1 knockdown during

189	infections by P. aeruginosa, C. diphtheriae, and HSV-1 ICP34.5 mutant virus
190	(Fig. 3C). However, upregulation of the IL1 eta protein was weak during WT
191	HSV-1 infection and its increase was only marginal after DUSP1 knockdown
192	(Fig. S2A), which was likely due to the inhibition of innate immune response by
193	the HSV-1 ICP34.5 protein (24, 25). These results indicated that DUSP1
194	inhibited p-p38 and p-JNK activation to block innate immune response during
195	bacterial and viral infections.
196	
197	ALKBH5 regulates p38 and JNK phosphorylation, and their
198	downstream innate immune response genes during bacterial and viral
199	infections. Since DUSP1 inactivated the p38 and JNK during bacterial and
200	viral infections, and ALKBH5 knockdown reduced DUSP1 transcript stability by
201	increasing m ⁶ A level, we examined ALKBH5 regulation of p38 and JNK
202	activation. ALKBH5 knockdown increased the levels of p-p38 and p-JNK
203	during infection by <i>P. aeruginosa</i> , <i>C. diphtheriae</i> , or HSV-1 WT or ICP34.5
204	mutant virus (Fig. 4A-4D). Some minor increase of p-ERK was also observed
205	at 2 hpi of <i>C. diphtheriae</i> . Since the increased p-p38 and p-JNK levels could
206	lead to enhanced activation of their downstream transcriptional factors, we
207	examined de novo transcription of the target genes by performing nuclear
208	run-on assay during <i>P. aeruginosa</i> infection. ALKBH5 knockdown indeed
209	increased the transcriptional activities of IL1 eta , CSF3, TGM2 and SRC genes

210 (Fig. 4E).

211	We further examined the role of ALKBH5 on the expression of innate
212	immune response genes. ALKBH5 knockdown increased the levels of IL1 eta ,
213	CSF3, TGM2 and SRC transcripts during infection by <i>P. aeruginosa</i> , <i>C.</i>
214	diphtheriae, or HSV-1 WT or ICP34.5 mutant virus (Fig. 5A). Similar to DUSP1
215	knockdown, we noticed variations of the effects of different ALKBH5 siRNAs
216	on both the transcription and expression of IL1 β , CSF3, TGM2 and SRC genes
217	(Fig. 4E and 5). These might be due to the different knockdown kinetics of
218	these siRNAs, which might impact the m ⁶ A level of DUSP1 transcript, DUSP1
219	expression level, and p-p38 and p-JNK levels, leading to variable transcription
220	and expression levels of these downstream genes.
221	The protein level of IL1 eta was also upregulated after ALKBH5
222	knockdown during infections by P. aeruginosa, C. diphtheriae, and HSV-1
223	ICP34.5 mutant virus (Fig. 5B-5D). However, the upregulation of IL1 β protein
224	was marginal during WT HSV-1 infection (Fig. S2B). In contrast,
225	overexpression of ALKBH5 reduced the levels of IL1 β , CSF3, TGM2 and SRC
226	transcripts (Fig. 5E), and downregulated the IL1 β protein level (Fig. 5F) during
227	P. aeruginosa infection. It was interesting that the reduced expression of the
228	four transcripts had different kinetics following overexpression of ALKBH5 (Fig.
229	5E). The effect of ALKBH5 overexpression was observed for TGM2 and SRC
230	transcripts at as early as 2 hpi, which disappeared by 6 hpi. However, the
231	effect was not observed for CSF3 until 4 hpi and for IL1 β until 6 hpi. It is
232	possible that the promoters of these genes might endow them with different

kinetics in response to the activation of p38 and JNK pathways.

234	Because our results showed an important role of ALKBH5 in regulating
235	innate immune response, we further examined the impact of ALKBH5
236	knockdown on HSV-1 replication. ALKBH5 knockdown reduced the replication
237	of HSV-1 WT or ICP34.5 mutant virus (Fig. S3). These results are in
238	agreement with those of a previous study showing reduced HSV-1 replication
239	after ALKBH5 knockout (14).
240	In conclusion, bacterial and viral infections activate MAPKs to induce
241	innate immune response genes as well as a negative regulator of MAPKs,
242	DUSP1, to avoid excessive innate immune response. At the same time,
243	numerous m ⁶ A writer proteins and reader protein YTHDF2 are induced,
244	leading to hyper-methylation of DUSP1 transcript, which is targeted for
245	YTHDF2-mediated degradation. This mechanism of fine-tuned activation of
246	MAPKs optimizes the induction of innate immune response genes during
247	pathogenic infections (Fig. 6).
248	

249 Discussion

The innate immune system is a complex cellular and molecular network in mammalian cells that serves as the first line of defense against pathogenic infections and is regulated by diverse cellular pathways (1). DUSP1 is a critical regulator of MAPK pathways serving as a negative feedback mechanism to prevent excessive activation of these pathways (27, 28). In the context of

255	pathogenic infections, activation of MAPKs induces the expression of innate
256	immune response genes as well as DUSP1, which prevents overreactive
257	immune response (29-31). Our results showed that DUSP1 transcript was
258	indeed induced during bacterial and viral infections together with the activation
259	of the ERK, JNK and p38 MAPK pathways. At the same time, the m ⁶ A level of
260	DUSP1 transcript was significantly increased. During these processes, we only
261	observed marginal increases of m ⁶ A writer proteins METTL3 and METTL14
262	and no decrease of m^6A eraser proteins ALKBH5 and FTO, suggesting that the
263	observed m ⁶ A increase in the DUSP1 transcript likely depended on preexisting
264	writer proteins. Interestingly, despite the increased expression of DUSP1
265	transcript during bacterial and viral infections, we failed to detect an increase
266	of DUSP1 protein. It is unclear whether the increased DUSP1 transcript m ⁶ A
267	might affect its translation. In addition, it is unclear why the m ⁶ A level is only
268	increased in some <i>de novo</i> transcribed transcripts but not others. The specific
269	mechanism involved in this selection process might deserve further
270	investigations. Nevertheless, the results of ALKBH5 knockdown experiments
271	revealed that the m ⁶ A increase in the DUSP1 transcript targeted it for
272	YTHDF2-mediated degradation. Importantly, YTHDF2 was significantly
273	induced during bacterial infections, which maximized its negative regulation of
274	DUSP1 transcript stability. Taken together, these results suggest that m ⁶ A and
275	YTHDF2 are involved in fine-tuning the expression of DUSP1 protein, an
276	important regulator of innate immunity, during pathogenic infections.

277	The observed induction of YTHDF2 protein is consistent with results
278	from another study showing LPS induction of YTHDF2 expression (32).
279	Interestingly, there was no obvious change of YTHDF2 protein following HSV-1
280	infection, indicating possible involvement of the bacteria-associated pattern
281	recognition receptors in the induction of YTHDF2 protein. However, it is
282	possible that HSV-1 infection might have a YTHDF2 induction kinetic that is
283	different from those of bacterial infections. Alternatively, HSV-1 might have
284	evolved to prevent YTHDF2 induction as a mechanism to counter innate
285	immune response.
286	Our results showed that m ⁶ A- and YTHDF2-mediated degradation of
287	DUSP1 transcript resulted in enhanced activation of p38 and JNK. Both p38
288	and JNK pathways activate transcriptional factors such AP-1 and C/EBP that
289	are essential for the expression of innate immune response genes. Indeed,
290	knockdown DUSP1 or m ⁶ A eraser ALKBH5 enhanced the expression of innate
291	immune response genes including IL1 eta , CSF3, TGM2 and SRC during
292	bacterial or viral infections. We observed robust induction of the IL1 β precursor
293	by HSV-1 ICP34.5 mutant but not WT virus (Fig. S2). It has been reported that
294	the ICP34.5 protein can directly inhibit TBK1 and eIF2a proteins to prevent the
295	induction of innate immune genes during HSV-1 infection (24, 25). Interestingly,
296	activated MAPK pathways can promote HSV-1 viral replication by activating
297	downstream transcriptional factors (33, 34). However, we showed that
298	ALKBH5 knockdown inhibited HSV-1 replication, which was likely due to

m⁶A-mediated downregulation of DUSP1 and subsequent activation of MAPK pathways resulting in the induction of innate immune response. However, it is also possible that ALKBH5 and m⁶A might regulate HSV-1 replication through another mechanism in addition to targeting DUSP1 transcript for degradation and activating MAPK pathways.

304 We have previously shown that a set of innate immune response genes are subjected to m⁶A modification and might be directly regulated by m⁶A while 305 306 another set of innate immune response genes might be indirectly regulated by m^bA during bacterial and viral infections (13). In the current work, we have 307 provided an example of m⁶A and YTHDF2 indirect regulation of innate immune 308 309 response genes by mediating the stability of DUSP1 transcript. In fact, DUSP1 is under the tight control of m⁶A and YTHDF2 during bacterial and viral 310 311 infections. It can be speculated that other DUSP genes, which are involved in diverse cellular functions, could also be regulated by m⁶A and m⁶A-related 312 313 proteins, and therefore deserve further investigations.

314

315 Material and methods

Bacteria, viruses, and cells. *P. aeruginosa* and *C. diphtheriae* were purchased from ATCC. Herpes simplex virus type 1 (HSV-1) F strain and HSV-1 ICP34.5 mutant virus were obtained from Dr. Bernard Roizman (The University of Chicago, Chicago, IL). The ICP34.5 mutant virus (R3616) was generated by deleting the 1 kb fragment containing both copies of the gamma

321 34.5 gene between the BstEll and Stu I sites from the F strain HSV-1 genome 322 (35). RAW 264.7 cells were purchased from ATCC and cultured following the instructions of the vendor. 323 324 **Bacteria and virus infection.** RAW 264.7 cells at 4×10⁵ cells per mL 325 were infected with *P. aeruginosa* or *C. diphtheriae* at 10⁷ per mL, or with HSV-1 326 327 WT or ICP34.5 mutant virus at 1 MOI. Cells were harvested at the indicated 328 time points. 329 m⁶A-immunoprecipitation (m⁶A-IP). Isolation of m⁶A-containing 330 fragments was performed as previously described (13, 36). Briefly, total RNA 331 332 was extracted from cells using TRI Reagent (T9424-200ML, Sigma-Aldrich) 333 and fragmented using RNA fragmentation kit (AM8740, ThermoFisher). 334 Successful fragmentation of RNA with sizes close to 100 nucleotides was 335 validated using bioanalyzer (2100 Bioanalyzer Instrument, Agilent). Anti-m^bA 336 antibody (10 µg) (202-003, Synaptic Systems) was incubated with 30 µl slurry of Pierce Protein A Agarose beads (20365, ThermoFisher) by rotating in 250 µl 337 338 PBS at 4 °C for 3 h. The beads were washed three times in cold PBS followed 339 by one wash in IP buffer containing 10 mM Tris-HCl at pH 7.4, 150 mM NaCl, and 1% Igepal CA-630 (I8896-50ML, Sigma-Aldrich). To isolate the 340 m⁶A-containing fragments, 120 µg of fragmented total RNA was added to the 341 342 antibody-bound beads in 250 µl IP buffer supplemented with RNasin Plus

343	RNase inhibitor (PRN2615, Promega), and the mixture was incubated at 4 $^\circ C$
344	for 2 h. The beads were washed seven times with 1 ml IP buffer and eluted
345	with 100 μ I IP buffer supplemented with 6.67 mM of m ⁶ A salt (M2780,
346	Sigma-Aldrich) at 4 °C for 1 h. A second elution was carried out and the
347	eluates were pooled together before purification by ethanol 70% precipitation.
348	
349	siRNA knockdown. siRNA silencing was performed by transfecting 2.5
350	pmol of each siRNA per well in a 12-well plate into the RAW264.7 cells using
351	Lipofectamine RNAi Max (13778150, ThermoFisher) according to
352	manufacturer's instructions. Two days after transfection, the cells were
353	monitored for knockdown efficiency of the target gene by RT-qPCR and
354	Western-blotting. siRNAs purchased from Sigma-Aldrich are as follows:
355	DUSP1 si1: SASI_Mm02_00322441; DUSP1 si2: SASI_Mm01_00056586;
356	DUSP1 si3: SASI_Mm01_00056587; ALKBH5 si1: SASI_Mm01_00106232;
357	ALKBH5 si2: SASI_Mm02_00344968; ALKBH5 si3: SASI_Mm01_00106233;
358	and siNegative Control (NC): Sigma siRNA Universal Negative Control #1
359	(SIC001-10NMOL).
360	
361	RNA stability assay. Actinomycin D (10 µg/ml) (A9415-2MG,
362	Sigma-Aldrich) was added to cells to inhibit transcription. RNA was isolated at
363	0, 2, 4 and 6 h after actinomycin D treatment using Trizol and the transcripts

364 were quantified by RT-qPCR.

366	RT-qPCR for gene expression, RIP-qPCR for YTHDF2 RNA binding								
367	quantification and MeRIP-qPCR for m ⁶ A-seq validation. Total RNA was								
368	isolated with TRI Reagent (T9424-200ML, Sigma-Aldrich) according to the								
369	manufacturer's instructions. Reverse transcription was performed with 1 μg of								
370	total RNA using Maxima H Minus First Strand cDNA Synthesis Kit (Cat.#								
371	K1652, ThermoFisher). Quantitative PCR was done using SsoAdvanced								
372	Universal SYBR Green Supermix (1725271, Bio-Rad). Relative gene								
373	expression levels were obtained by normalizing the cycle threshold (CT)								
374	values to yield $2^{-\Delta\Delta Ct}$ values. For validation of m ⁶ A-seq, eluted or input mRNA								
375	was subjected to RT-qPCR. Fold enrichment was obtained by calculating the								
376	$2^{-\Delta Ct}$ value of eluate in relative to the input sample. The primers used for gene								
377	expression are:								
378	5'CTGGTGGGTGTGTCAAGCAT3' (forward) and								
379	5'GAGGCAGTTTCTTCGCTTGC3' (reverse) for DUSP1; and								
380	5'CCCTGAAGTACCCCATTGAA3' (forward) and								
381	5'GGGGTGTTGAAGGTCTCAAA3' (reverse) for β -actin; and								
382	5'GAGTGTGGATCCCAAGCAAT3' (forward) and								
383	5'ACGGATTCCATGGTGAAGTC3' (reverse) for IL1 β ; and								
384	5'CCGGTACCCTCTCCTGTTGTGTTTA3' (forward) and								
385	5'AACTCGAGCTAAAAAGGAGGACGGC3' (reverse) for CSF3; and								
386	5'AAGAGCTCCAAACAAGGTCTGCCTT3' (forward) and								

- 387 5'AACTCGAGACGTGCCATATAAGCAC3' (reverse) for TGM2; and
- 388 5'AAGGTACCCTGCCAGGCCAGACCAA3' (forward) and
- 389 5'AACTCGAGCCAGCCTTGACCCTGAG3' (reverse) for SRC; and
- 390 5'ACGGTTTACTACGCCGTGTT3' (forward) and
- 391 5'TGTAGGGTTGTTTCCGGACG3' (reverse) for US6; and
- 392 5'GACGAACATGAAGGGCTGGA' (forward) and
- 393 5'CGACCTGTTTGACTGCCTCT3' (reverse) for VP16; and
- 394 5'CCCACTATCAGGTACACCAGCTT3' (forward) and
- 395 5'CTGCGCTGCGACACCTT3' (reverse) for ICP0; and
- 396 5'GCATCCTTCGTGTTTGTCATTCTG3' (forward) and
- 397 5'GCATCTTCTCCCGACCCCG3' (reverse) for ICP27.
- 398

399 Western-blotting. Protein samples were lysed in Laemmli buffer,

separated by SDS-PAGE and transferred to a nitrocellulose membrane (37).

- 401 The membrane was blocked with 5% milk and then incubated with primary
- 402 antibody to GAPDH (5174s, CST), p38 (8690S, CST), p-p38 (4511S, CST),
- 403 ERK (4695S, CST), p-ERK (4370S, CST), JNK (9252S, CST), p-JNK (4668S,

404 CST), DUSP1 (NBP2-67909, Novus), IL1 β (AB-401-NA, R&D system), or

405 ALKBH5 (HPA007196, Sigma) overnight at 4 °C. The membrane was washed

- 406 with TBS-Tween (TBS-T) and probed with a secondary antibody conjugated to
- 407 horseradish peroxidase (HRP). After further washing with TBS-T, the blot was
- 408 visualized using SuperSignal[™] West Femto Maximum Sensitivity Substrate

- 409 (34096, Thermo) and imaged on a ChemiDoc™ MP Imaging System
- 410 (12003154, Bio-Rad).
- 411
- 412 **Nuclear run-on assay.** Nuclear run-on assay was conducted as
- 413 previously described (38).
- 414
- 415 **RNA immunoprecipitation (RIP) assay.** RIP assay was conducted as
- 416 previously described (39).
- 417

418 SUPPLEMENTAL MATERIAL

- 419 Supplemental material is available online only.
- 420 FIG S1, PDF file, 0.5 MB.
- 421 FIG S2, PDF file, 1 MB.
- 422 FIG S3, PDF file, 0.8 MB.
- 423

424 ACKNOWLEDGMENTS

425 This work was supported by grants from the National Institutes of Health

426 (CA096512 and CA124332 to S.-J. Gao), and in part by award P30CA047904.

- 427 We thank members of Dr. Shou-Jiang Gao's laboratory for technical
- 428 assistance and helpful discussions.
- J.F. performed most of the experiments. W.M., L.P.C., X.Q.Z. and A.M.
- 430 performed a subset of experiments. Y.F.H. performed the bioinformatic

- 431 analysis. W.Y. provides the HSV-1 wild-type and mutant viruses. J.F. and S.J.G.
- 432 prepared the manuscript. S.J.G. planned, managed, and supervised the study,
- 433 and secured funding.
- 434

435 **REFERENCES**

- Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124:783-801.
- 438 2. Medzhitov R, Janeway C, Jr. 2000. Innate immunity. N Engl J Med
 439 343:338-44.
- Arthur JS, Ley SC. 2013. Mitogen-activated protein kinases in innate
 immunity. Nat Rev Immunol 13:679-92.
- 442 4. Nishida E, Gotoh Y. 1993. The MAP kinase cascade is essential for
 443 diverse signal transduction pathways. Trends Biochem Sci 18:128-31.
- 5. Dong C, Davis RJ, Flavell RA. 2002. MAP kinases in the immune
 response. Annu Rev Immunol 20:55-72.
- 446 6. Iwasaki A, Medzhitov R. 2010. Regulation of adaptive immunity by the447 innate immune system. Science 327:291-5.
- Charles CH, Abler AS, Lau LF. 1992. cDNA sequence of a growth
 factor-inducible immediate early gene and characterization of its encoded
 protein. Oncogene 7:187-90.
- 451 8. Theodosiou A, Ashworth A. 2002. MAP kinase phosphatases. Genome452 Biol 3:REVIEWS3009.
- Bode JG, Ehlting C, Haussinger D. 2012. The macrophage response
 towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell
 Signal 24:1185-94.
- 456 10. Caceres A, Perdiguero B, Gomez CE, Cepeda MV, Caelles C, Sorzano
 457 CO, Esteban M. 2013. Involvement of the cellular phosphatase DUSP1 in
 458 vaccinia virus infection. PLoS Pathog 9:e1003719.
- 459 11. Abraham SM, Clark AR. 2006. Dual-specificity phosphatase 1: a critical
 460 regulator of innate immune responses. Biochem Soc Trans 34:1018-23.
- 461 12. Tan B, Gao SJ. 2018. The RNA Epitranscriptome of DNA Viruses. J Virol
 462 92:e00696-18.
- 463 13. Feng J, Zhang T, Sorel O, Meng W, Zhang X, Lai Z, Yuan W, Chen Y,
 464 Huang Y, Gao SJ. 2022. Global profiling reveals common and distinct
 465 N6-methyladenosine (m6A) regulation of innate immune responses during

466		bacterial and viral infections. Cell Death Dis 13:234.
467 468 469	14.	Liu Y, You Y, Lu Z, Yang J, Li P, Liu L, Xu H, Niu Y, Cao X. 2019. N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science 365:1171-1176.
470 471	15.	Wang L, Wen M, Cao X. 2019. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 365:eaav0758.
472 473 474	16.	Zheng Q, Hou J, Zhou Y, Li Z, Cao X. 2017. The RNA helicase DDX46 inhibits innate immunity by entrapping m(6)A-demethylated antiviral transcripts in the nucleus. Nat Immunol 18:1094-1103.
475 476 477 478 479	17.	Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, He Y, Ma H. 2022. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKepsilon/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer 21:97.
480 481 482 483	18.	Zheng Y, Li Y, Ran X, Wang D, Zheng X, Zhang M, Yu B, Sun Y, Wu J. 2022. Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-kappaB/IL-6 signaling pathway. Cell Mol Life Sci 79:311.
484 485 486	19.	Clark AR, Martins JR, Tchen CR. 2008. Role of dual specificity phosphatases in biological responses to glucocorticoids. J Biol Chem 283:25765-9.
487 488 489 490 491	20.	Ichikawa T, Zhang J, Chen K, Liu Y, Schopfer FJ, Baker PR, Freeman BA, Chen YE, Cui T. 2008. Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1. Endocrinology 149:4086-94.
492 493 494	21.	Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. 2016. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7:12626.
495 496 497 498	22.	Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, Cheng Y, Luo G, Dai Q, Liu M, Guo X, Sha J, Shen B, He C. 2017. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115-1127.
499 500 501	23.	Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117-20.
502 503 504 505	24.	Liu X, Ma Y, Voss K, van Gent M, Chan YK, Gack MU, Gale M, Jr., He B. 2021. The herpesvirus accessory protein gamma134.5 facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathog 17:e1009446.

506 507 508	25.	Manivanh R, Mehrbach J, Knipe DM, Leib DA. 2017. Role of Herpes Simplex Virus 1 gamma34.5 in the Regulation of IRF3 Signaling. J Virol 91:e01156-17.
509 510 511	26.	Dainichi T, Matsumoto R, Mostafa A, Kabashima K. 2019. Immune Control by TRAF6-Mediated Pathways of Epithelial Cells in the EIME (Epithelial Immune Microenvironment). Front Immunol 10:1107.
512 513 514 515	27.	Gunzl P, Bauer K, Hainzl E, Matt U, Dillinger B, Mahr B, Knapp S, Binder BR, Schabbauer G. 2010. Anti-inflammatory properties of the PI3K pathway are mediated by IL-10/DUSP regulation. J Leukoc Biol 88:1259-69.
516 517 518	28.	Salojin K, Oravecz T. 2007. Regulation of innate immunity by MAPK dual-specificity phosphatases: knockout models reveal new tricks of old genes. J Leukoc Biol 81:860-9.
519 520 521 522	29.	Cornell TT, Fleszar A, McHugh W, Blatt NB, Le Vine AM, Shanley TP. 2012. Mitogen-activated protein kinase phosphatase 2, MKP-2, regulates early inflammation in acute lung injury. Am J Physiol Lung Cell Mol Physiol 303:L251-8.
523 524 525 526	30.	Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P, Chandrasekar B. 2012. Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal 24:560-568.
527 528 529 530	31.	Vattakuzhi Y, Abraham SM, Freidin A, Clark AR, Horwood NJ. 2012. Dual-specificity phosphatase 1-null mice exhibit spontaneous osteolytic disease and enhanced inflammatory osteolysis in experimental arthritis. Arthritis Rheum 64:2201-10.
531 532	32.	Yu R, Li Q, Feng Z, Cai L, Xu Q. 2019. m6A Reader YTHDF2 Regulates LPS-Induced Inflammatory Response. Int J Mol Sci 20:1323.
533 534 535 536	33.	Perkins D, Pereira EF, Gober M, Yarowsky PJ, Aurelian L. 2002. The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76:1435-49.
537 538 539 540	34.	Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. 2000. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 74:10417-29.
541 542 543 544	35.	Chou J, Roizman B. 1994. Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci U S A 91:5247-51.
545	36.	Tan B, Liu H, Zhang S, da Silva SR, Zhang L, Meng J, Cui X, Yuan H,

546 547 548		Sorel O, Zhang SW, Huang Y, Gao SJ. 2018. Viral and cellular N(6)-methyladenosine and N(6),2'-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat Microbiol 3:108-120.
549 550 551 552	37.	Gao SJ, Kingsley L, Li M, Zheng W, Parravicini C, Ziegler J, Newton R, Rinaldo CR, Saah A, Phair J, Detels R, Chang Y, Moore PS. 1996. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nat Med 2:925-8.
553 554 555 556	38.	Patrone G, Puppo F, Cusano R, Scaranari M, Ceccherini I, Puliti A, Ravazzolo R. 2000. Nuclear run-on assay using biotin labeling, magnetic bead capture and analysis by fluorescence-based RT-PCR. Biotechniques 29:1012-4, 1016-7.
557 558 559	39.	Hao H, Hao S, Chen H, Chen Z, Zhang Y, Wang J, Wang H, Zhang B, Qiu J, Deng F, Guan W. 2019. N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res 47:362-374.

560

561 Figure legend

562	FIG 1 m ⁶ A mediates DUSP1 transcript stability during bacterial infection. (A)
563	Tracks of m ⁶ A peaks on DUSP1 transcript at 0, 2, 4, and 6 hpi of <i>P. aeruginosa</i> .
564	(B) Expression levels of DUSP1 transcript at 0, 2, 4, and 6 hpi of <i>P. aeruginosa</i>
565	quantified by RNA-seq. (C) m ⁶ A levels on DUSP1 transcript at 0, 2, 4, and 6
566	hpi of <i>P. aeruginosa</i> examined by MeRIP-qPCR. (D) Expression levels of
567	DUSP1 transcript at 0, 2, 4, and 6 hpi of <i>P. aeruginosa</i> quantified by RT-qPCR.
568	(E) Examination of DUSP1 and ALKBH5 protein levels following ALKBH5
569	knockdown in RAW264.7 cells by Western-blotting. (F) m ⁶ A levels on DUSP1
570	transcript following ALKBH5 knockdown in RAW264.7 cells examined by
571	MeRIP-qPCR. (G) Expression levels of DUSP1 transcript following ALKBH5
572	knockdown in RAW264.7 cells examined by RT-qPCR. (H) Alterations of
573	half-lives of DUSP1 transcript following ALKBH5 knockdown in RAW264.7
574	cells during <i>P. aeruginosa</i> infection examined by RT-qPCR at the indicated
575	time points following addition of 10 μ g/ml actinomycin D.
576	
577	FIG2 YTHDF2 mediates m ⁶ A-dependent DUSP1 transcript stability during
578	bacterial and viral infections. (A) Protein levels of m ⁶ A writers METTL3,
579	METTL14 and WTAP, erasers ALKBH5 and FTO, and readers YTHDF1 and
580	YTHDF2 with or without infection by C. diphtheriae, P. aeruginosa or HSV-1 at
581	the indicated time points examined by Western-blotting. (B) Examination of
582	DUSP1 and YTHDF2 protein levels following YTHDF2 knockdown in

583	RAW264.7 cells by Western-blotting. (C) Expression levels of DUSP1										
584	transcript following YTHDF2 knockdown in RAW264.7 cells examined by										
585	RT-qPCR. (D) Alterations of half-lives of DUSP1 transcript following YTHDF2										
586	knockdown in RAW264.7 cells during <i>P. aeruginosa</i> infection examined by										
587	RT-qPCR at the indicated time points following addition of 10 μ g/ml										
588	actinomycin D. (E) Binding of YTHDF2 to DUSP1 transcript at the indicated										
589	time points following <i>P. aeruginosa</i> infection examined by RIP-qPCR.										
590											
591	FIG 3 DUSP1 regulates p38 and JNK phosphorylation and expression of										
592	innate immune response genes during bacterial and viral infections. (A)										
593	DUSP1 knockdown enhanced the p38 and JNK phosphorylation during										
594	infection of P. aeruginosa, C. diphtheriae, or HSV-1 or HSV-1 ICP34.5 mutant										
595	virus. (B) DUSP1 knockdown enhanced the expression of IL1 β , CSF3, TGM2										
596	and SRC genes during infection of <i>P. aeruginosa</i> , <i>C. diphtheriae</i> , or HSV-1 or										
597	HSV-1 ICP34.5 mutant virus. (C) DUSP1 knockdown enhanced the protein										
598	level of IL1 β during infection of <i>P. aeruginosa</i> , <i>C. diphtheriae</i> or HSV-1 ICP34.5										
599	mutant virus.										
600											
601	FIG 4 ALKBH5 regulates p38 and JNK phosphorylation and transcription of										
602	innate immune response genes during bacterial and viral infections. (A-D)										
603	ALKBH5 knockdown enhanced the p38 and JNK phosphorylation during										

604 infection of C. diphtheriae (A), P. aeruginosa (B), or HSV-1 (C) or HSV-1

605	ICP34.5 mutant virus (D). (E) <i>De novo</i> transcription of IL1 β , CSF3, TGM2 and
606	SRC genes following ALKBH5 knockdown at 2 hpi of P. aeruginosa examined
607	by nuclear run-on assay. Cells treated with 4-thiouridine for 1 h after ALKBH5
608	knockdown were infected P. aeruginosa for 4 h and collected for nuclear
609	run-on assay.
610	
611	FIG 5 ALKBH5 regulates the expression of innate immune response genes
612	during bacterial and viral infections. (A) ALKBH5 knockdown enhanced the
613	expression levels of IL1 β , CSF3, TGM2 and SRC transcripts during <i>P</i> .
614	aeruginosa, C. diphtheriae, or HSV-1 or HSV-1 ICP34.5 mutant virus infection.
615	(B-D) ALKBH5 knockdown enhanced the protein level of IL1 β during infection
616	by <i>C. diphtheriae</i> (B), <i>P. aeruginosa</i> (C), or HSV-1 ICP34.5 mutant virus (D). (E)
617	ALKBH5 overexpression inhibited the expression of IL1 β , CSF3, TGM2 and
618	SRC genes during <i>P. aeruginosa</i> infection measured by RT-qPCR. (F)
619	ALKBH5 overexpression inhibited the protein level of IL1 β during <i>P</i> .
620	aeruginosa infection measured by Western-blotting.
621	
622	FIG 6 A working model of regulation of DUSP1, MAPKs and innate immune
623	response genes by m ⁶ A and m ⁶ A-related proteins YTHDF2 and ALKBH5
624	during pathogenic infections.

626 SUPPLEMENTAL MATERIAL

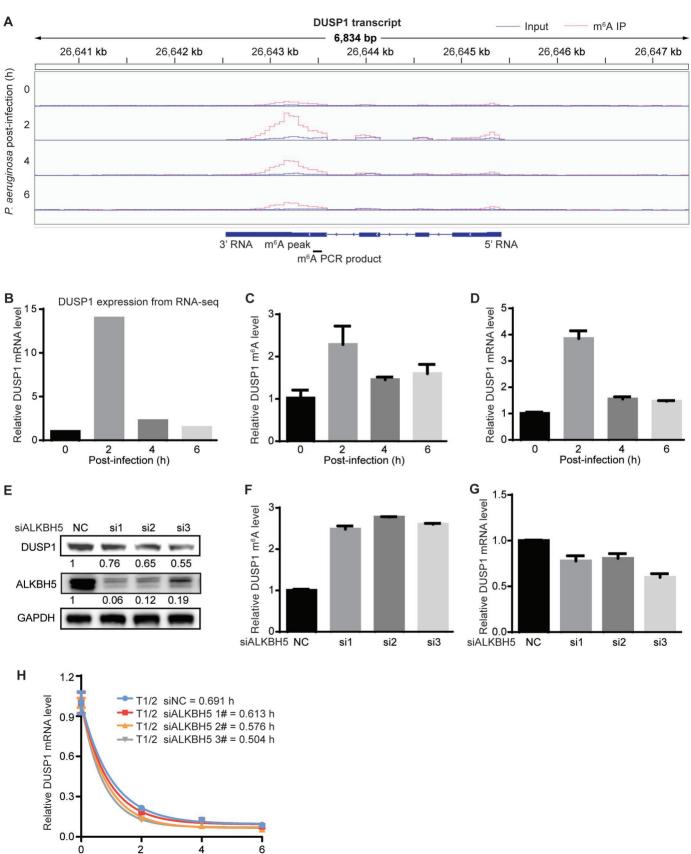
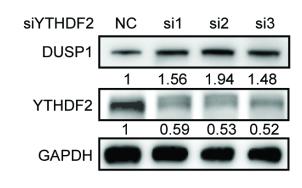
- **FIG S1** Expression of CSF3, IL1β, TGM2 and SRC transcripts following
- 628 infection with different doses of C. diphtheriae, P. aeruginosa or HSV-1 at the
- 629 indicated time points examined by RT-qPCR.
- 630
- **FIG S2** Protein level of IL1 β precursor following knockdown of DUSP1 (A) or
- ALKBH5 (B) at different time points following HSV-1 infection.
- 633
- **FIG S3** ALKBH5 knockdown inhibits HSV-1 replication. RAW264.7 cells
- transfected with ALKBH5 shRNAs or a scrambled control (NC) were infected
- with 1 MOI of HSV-1 for 48 h, and the supernatants were collected for plaque
- assay to determine the viral titers.

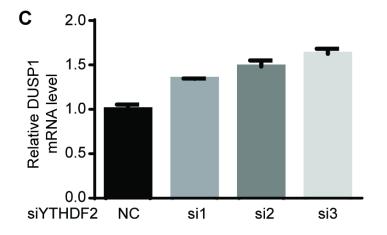
Figure 1

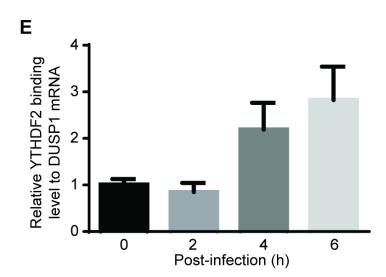
0

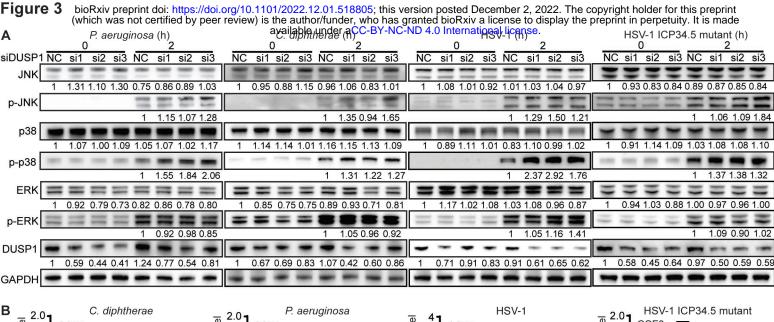
4

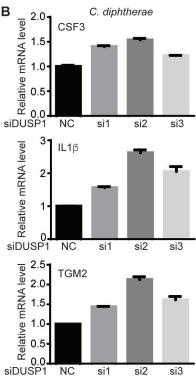
Post-infection (h)

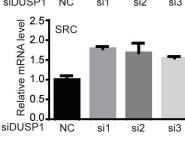



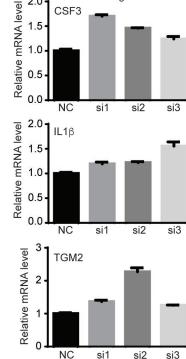

Figure (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

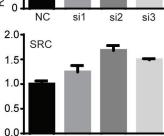

Α	No treatment (h)			C. di	ohthera	e infec	tion (h)	P. aeruginosa infection (h))	HSV-1 infection (h)					
	0	2	4	8	0	2	4	8	0	2	4	8	0	2	4	6	8	12
YTHDF1	1	-	-	-			1	ł	inter .	-		1	-	-	1	1	1	i
	1	0.88	0.77	0.79	1	1.28	3 1.29	9 1.33	1	0.93	0.99	1.13	1	1.02	1.01	1.06	0.98	1.01
YTHDF2	1	-	100	199	-	• •	-	-	-	(Berl	-	-	-	-	-	-	-	-
	1	0.96	0.91	1.05	1	2.5	5 2.76	3.89	1	0.65	4.08	4.21	1	1.01	0.97	0.99	1.05	0.92
ALKBH5		-			٠		-		-	-	-	-	-	-	-	-	-	-
	1	1.16	1.23	1.09	1	1.34	1.35	1.60	1	0.91	0.91	0.96	1	0.86	0.84	0.83	0.79	0.92
FTO		-					-	-	-	-	-	-		-	-	-	-	-
	1	1.04	1.05	0.96	1	1.1	1.00	1.08	1	1.02	1.15	1.20	1	1.17	1.17	1.03	1.13	1.02
METTL3	1	-	-	1	-	-	-		-	-	-		-	-	-	-	-	-
	1	0.93	1.00	1.05	1	1.07	' 1.14	1.20	1	1.28	1.15	1.35	1	1.05	0.91	0.95	0.95	0.96
METTL14))	-	l			-		-	-	-	-	-	-	-		-	-
	1	0.75	0.82	0.91	1	1.18	3 1.14	1.33	1	1.18	1.20	1.50	1	1.17	1.30) 1.29	1.39	1.40
WTAP				ł			1	ł	-	-	1	١	1	-				
	1	1.02	1.02	1.01	1	1.0	1 1.12	1.08	1	0.94	0.97	1.13	1	0.81	0.97	0.94	1.08	1.04
GAPDH		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-



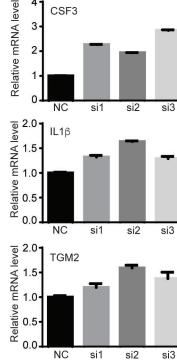


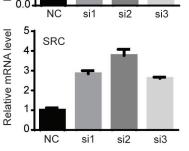


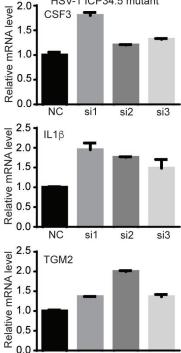


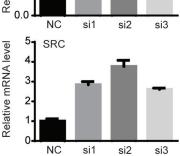

4

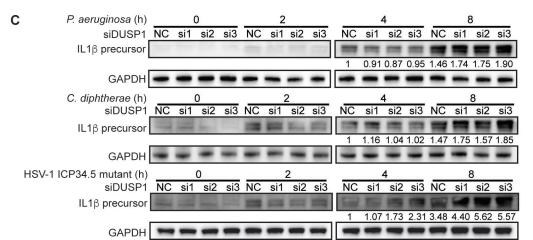
CSF3

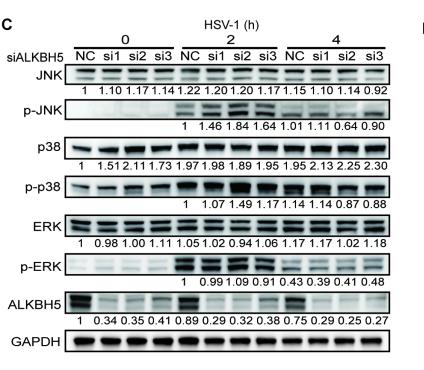

si1

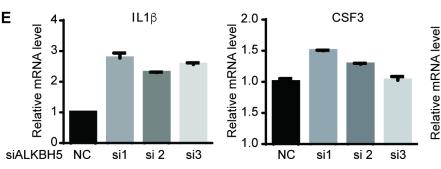

si2

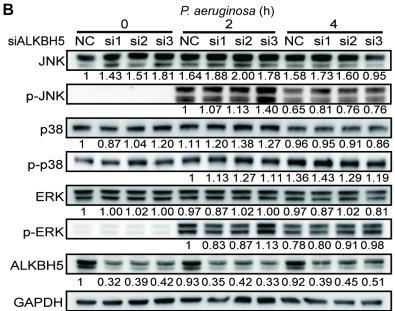

si3

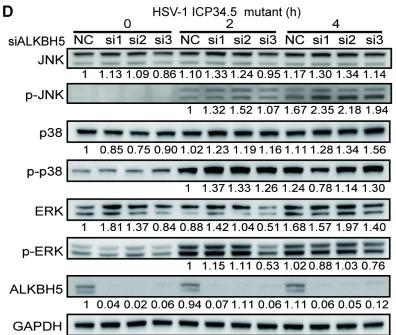

NC

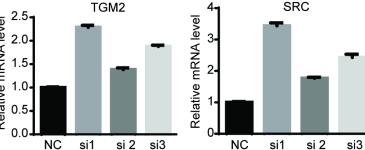

Relative mRNA level

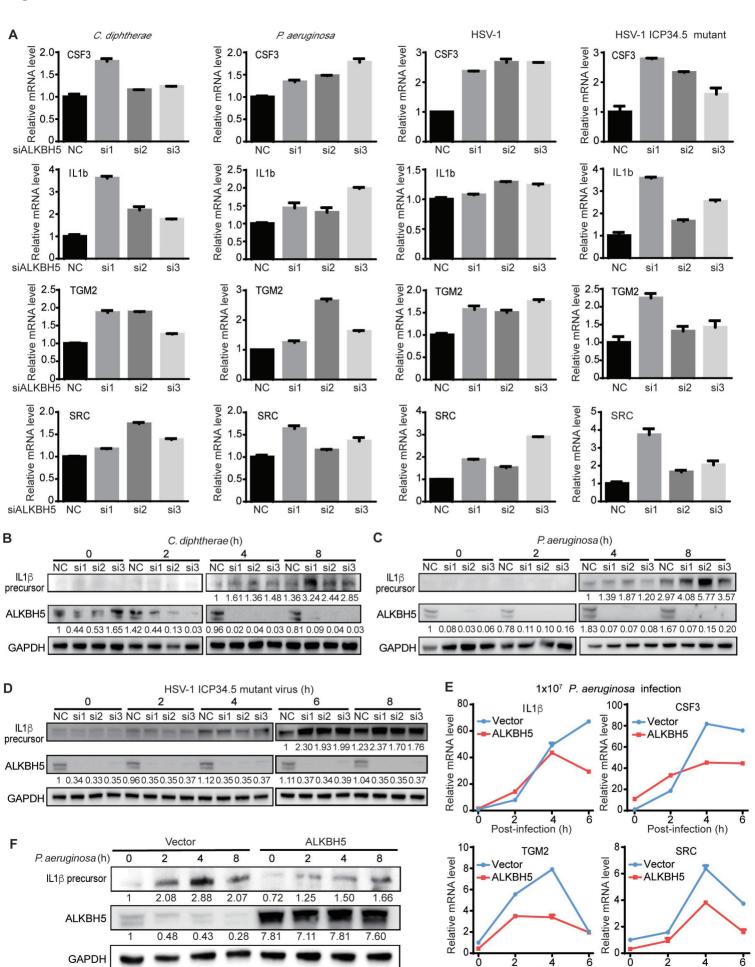


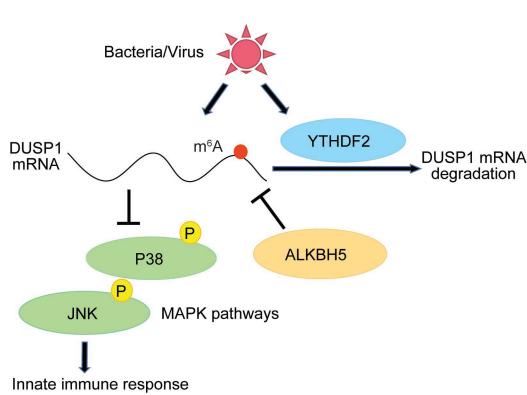





Figure 4






Figure 5

Post-infection (h)

Post-infection (h)

Figure 6

