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ABSTRACT2

Recent large datasets measuring the gene expression of millions of possible gene promoter3
sequences provide a resource to design and train optimised deep neural network architectures4
to predict expression from sequences. High predictive performance due to the modelling of5
dependencies within and between regulatory sequences is an enabler for biological discoveries6
in gene regulation through model interpretation techniques.7

To understand the regulatory code that delineates gene expression, we have designed a novel8
deep-learning model (CRMnet) to predict gene expression in Saccharomyces cerevisiae. Our9
model outperforms the current benchmark models and achieves a Pearson correlation coefficient10
of 0.971. Interpretation of informative genomic regions determined from model saliency maps, and11
overlapping the saliency maps with known yeast motifs, support that our model can successfully12
locate the binding sites of transcription factors that actively modulate gene expression. We13
compare our model’s training times on a large compute cluster with GPUs and Google TPUs to14
indicate practical training times on similar datasets.15

Keywords: deep learning, big data, gene expression, yeast, genomics, HPC16

1 INTRODUCTION

Cis-regulatory sequences also referred to as cis-regulatory modules (CRMs), are composed of promoters,17
enhancers, silencers, and insulators (Davidson and Erwin, 2006). The DNA-binding regulatory proteins,18
transcription factors (TF), identify and bind to particular cis-regulatory sequences to control gene19
expression (Ni and Su, 2021). Alterations to the cis-regulatory sequences will influence the interaction with20
transcription factors, thereby influencing cell phenotype and cell-state transitions (de Boer et al., 2020).21
Increasing evidence demonstrates the significance of cis-regulatory element modification in relation to22
numerous diseases, such as cancer and diabetes (Mathelier et al., 2015). Thus, understanding how cis-23
regulatory elements regulate gene expression has become critical for us to understand transcriptional gene24
regulation. However, it has been extremely difficult to directly predict the expression of DNA sequences25
due to a lack of high quality data. Recently, more than 100 million random promoter sequences and26
their corresponding expression levels have been identified in a high-throughput manner by measuring the27
expression output of the sequences regulating yeast gene constructs using Gigantic Parallel Reporter Assay28
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(GPRA) (de Boer et al., 2020). This dataset provides the large training sets necessary for developing models29
to help decode the cis-regulatory logic. Consequently, sequence-to-expression models have been proposed30
to predict how changes in cis-regulatory sequences will affect gene expression (Vaishnav et al., 2022).31

This explosion of genomics data size presents a challenge to conventional analysis methods, and the32
subtle long-range interactions in genomic data challenge the explicit feature engineering stage required in33
other predictive modelling approaches. Deep learning, utilising deep neural network (DNN) models, which34
benefits greatly from large datasets, has therefore increasingly found application in genomics. Composed35
of multiple (“deep”) processing layers such as convolutional, recurrent, and dense layers, deep learning36
models can learn complex patterns and features in large datasets at various abstraction levels by combining37
such processing layers into appropriate DNN architectures.38

Concurrently with the research and development of increasing deep and complex DNN architectures,39
the development of parallel acceleration hardware such as graphical processing units (GPUs) and tensor40
processing units (TPUs), and high performance clusters/cloud computing, enables the training of these41
more complex models by reducing the overall training time (Wang et al., 2020). As neural networks are42
becoming more sophisticated and the volume of scientific data keeps growing, the model training time on43
these different high performance computing (HPC) architectures is an important issue.44

In this study, we propose a novel DNN model (CRMnet), a Transformer encoded U-Net, for predicting45
the expression levels of yeast promoter DNA sequences, which achieves a Pearson correlation coefficient46
of 0.971 in the test dataset, improving upon the benchmark models proposed in (Vaishnav et al., 2022). By47
accurately predicting the expression from promoter sequences, such models can be used predictively to48
design new regulatory sequences in synthetic biology, study the predicted effects of mutations (Vaishnav49
et al., 2022), and, by interpreting the model, help in understanding the determinants of gene regulation.50
Here we interpret the model by visualizing saliency maps, showing we are able to identify key regions in51
the promoter sequences which most affect the corresponding expression. We demonstrate that our model52
can learn biologically meaningful information by quantifying the saliency information over known yeast53
sequence motifs. We compare the performance of our model on large datasets on parallel hardware of54
graphical processing units (GPUs) and tensor processing units (TPUs) on a HPC cluster.55

2 CRMNET: SEQUENCE-TO-EXPRESSION DEEP LEARNING MODEL

The study of (Vaishnav et al., 2022) experimentally determined the gene expression driven by millions56
of random promoter sequences. This was performed by embedding random 80-bp DNA sequences in a57
promoter construct with the resultant expression assayed in yeast (S. cerevisiae) using high-throughput58
sequencing.59

In this study, we propose an improved novel DNN model to predict the measured expression level of60
yeast promoter DNA sequences with higher performance than the convolutional neural network (CNN) and61
transformer deep neural network models proposed in (Vaishnav et al., 2022). In this DNN architecture, we62
propose a transformer-encoded U-Net (CRMnet). Analogous to the original U-Net model (Ronneberger63
et al., 2015), our deep learning model has an initial encoding stage that extracts feature maps at progressively64
lower dimensions, optimised for the detection of features such as transcription factor binding sites (average65
length of approximately 11bp), and a decoder stage that upscales these feature maps back to the original66
sequence dimension, whilst concatenating with the higher resolution feature maps of the encoder at each67
level to retain prior information despite the sparse upscaling. This approach decodes a feature map at68
base-level precision. Recent work on transformer architectures has shown that their attention mechanisms69
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can extract more global dependency information compared with convolutional layers (Dosovitskiy et al.,70
2020); therefore, we included a transformer encoder stage after the convolutional layer to extract this71
information.72

Our model thus consists of four components (Figure 1): 1D convolutional neural network-based encoders73
to extract neighboring features in the input DNA sequences, a transformer encoder to extract longer74
range dependencies in the input sequence, 1D convolutional neural network-based decoders, with skip75
connections, to project the extracted features to the original sequence input dimension, and a multi-layer76
perceptron to predict the expression levels from the extracted features.77

2.1 1D CNN-based Encoder78

Our CNN-based encoder is built to extract features from genomic data inputs. The input is one-79
dimensional length 112bp DNA sequences (80bp promoter sequence plus padding, see Methods) which80
is one-hot encoded (A,C,G,T + N for padding). 1D convolutional layers then learn filter parameters to81
extract predictive features from combinations of adjacent bases, with a filter size set to 11 in order to cover82
the average length of transcription factor motifs (Stewart et al., 2012). Additionally, we add a squeeze83
excitation layer after each 1D convolutional layer because the squeeze and excitation operation has been84
demonstrated to improve the overall performance of CNN-based models by assigning importance scores to85
the different feature maps (Hu et al., 2018). Moreover, the original U-Net encoder block (Ronneberger et al.,86
2015) is modified by performing the down-sampling with a stride two convolution operation instead of max87
pooling, as the additional model parameterisation has been shown to improve performance (Springenberg88
et al., 2014).89

2.2 Transformer Encoder90

The transformer encoder accepts the CNN’s down-scaled feature maps as input. Each individual91
transformer encoder block follows the vanilla transformer architecture which is made up of a position-wise92
feed-forward network and a multi-head self-attention feed-forward network (FFN) module (Vaswani et al.,93
2017). Within each module, residual/skip connections and layer normalization are utilized in order to train94
a deeper neural network.95

Unlike convolutional neural network stages which implicitly extract dependency information in local96
neighbourhoods through the use of fixed-size kernels, transformer encoders use self-attention to extract97
global dependency information across the inputs, while explicitly encoding the positional information98
embedded into the input. Similar to other transformer-encoded models, we embed the positional information99
of the down-scaled input vectors (length 14) to our transformer encoder (Chen et al., 2021). We represent100
the positional information using sinusoidal position encodings and add it to the input token before feeding101
it to the transformer encoder.102

2.3 1D CNN-based Decoder103

The CNN-based decoder blocks are very similar to the original U-Net decoders, which use up-sampling104
to learn the representation (Ronneberger et al., 2015). Using a 1D transpose convolution operation to up-105
sample the resolution and attaching a squeeze excitation layer after each convolutional layer to up-weight106
the critical feature maps are the main differences in our implementation. The outputs are then concatenated107
with the skip connections from corresponding encoder levels to compensate for the potential loss of spatial108
information during downsampling.109
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2.4 SE Block110

It has been demonstrated that using Squeeze-and-Excitation (SE) blocks can significantly improve the111
generalization power of CNN-based models and achieve significant performance enhancements in several112
state-of-the-art CNN models with negligible increase in computational cost (Hu et al., 2018). The SE Block113
will initially compress the input feature map generated by learned convolutional filters using global max114
pooling. The channel-specific statistics will then be forwarded to the excitation operation, which will utilize115
two non-linear, fully connected layers to highlight the key channels. In other words, the SE Block can be116
regarded as a channel-specific self-attention function that compensates for the inability of the convolution117
operator to model the relationship among channels. As a result, we decided to adopt the SE operation after118
each convolutional layer and added a SE block in order to empower our model to focus on channel-specific119
feature responses of the convolution layers.120

2.5 MLP121

Our model will learn the expression levels from the extracted features utilizing a multi-layer perceptron122
(MLP). The fully connected dense layer will learn the non-linear combination of the extracted features123
from preceding layers. In the hidden layer of MLP, we use ReLU as the activation function (where alpha124
equals 0.1). Then, a linear activation is used to make the prediction of the expression levels in the final125
output neurons. To avoid overfitting, each dense layer is followed by a dropout layer. The first two dropout126
layers’ dropout values are equal to 0.2 and the rest have dropout values equal to 0.1.127

2.6 Pre-training and Fine-tuning of models128

We utilized a transfer learning approach to improve the performance of CRMnet. Specifically, to utilize129
the largest possible training set we pre-trained a more general model on a large dataset of randomly sampled130
data combining datasets from yeast grown in two different media types (“complex” and “defined” from131
(Vaishnav et al., 2022)). We then conducted a fine-tuning training stage in which the pre-trained model is132
retrained on the complex medium samples only, as used in the test sets of our study. The pre-trained model’s133
parameters were all unfrozen and trainable. The pre-trained model weights serve as good initializations for134
the fine-tuning of particular datasets to improve the model’s performance on a target task (You et al., 2021).135
As demonstrated in Figure 4, this method of transfer learning can improve model performance.136

3 RESULTS AND DISCUSSION

We first evaluate the predictive performance of our model and compare the performance to that of existing137
deep learning models. We then use ablation studies to understand the roles of the subparts of our model.138
To demonstrate the biological significance of our model, we further apply saliency maps for model139
interpretation and compare with enriched transcription factor binding site motifs discovered by probabilistic140
motif discovery. Finally, we compare the training time between TPUs and GPUs.141

3.1 Performance evaluation142

We here first present the predictive performance of our fine-tuned deep learning model on independent143
experimental test sets of both random and native (i.e. wild-type sequences found in yeast) promoter144
sequences in both complex and defined mediums (see Methods). To evaluate the performance of the deep145
learning models on the test datasets, we measured the Pearson Correlation Coefficient (r) and Coefficient146
of Determination (R2). The results show that our fine-tuned CRMnet model achieved excellent prediction147
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performance on both native and random sequences (r = 0.971, and r = 0.987, respectively) in complex148
medium (Figure 2) and in defined medium (r = 0.955, and r = 0.973, respectively, Supplementary figure149
S1).150

We next compared our model’s performance with the benchmark models on the same test datasets. Our151
CRMnet model outperforms the benchmark transformer model proposed by (Vaishnav et al., 2022) in both152
native and random promoter test datasets in both mediums (Figure 3), and also outperforms other existing153
deep learning models referred to in (Vaishnav et al., 2022).154

3.2 Ablation study155

To determine the contribution to the performance of the various components of our model, we performed156
an ablation study. Specifically, for each ablation experiment, we constructed a new model with the ablated157
block removed from the original CRMnet architecture and trained the new model using the same training158
dataset as the original CRMnet. We then evaluated the performance of our models using the native and159
random test datasets (complex medium) (Figure 4).160

Pre-training followed by fine-tuning on the particular dataset demonstrates substantial improvement161
compared with a model directly trained on the complex medium test set, due to the larger training data set162
size and improved starting point for fine-tuning model training by transfer learning. Overall performance163
decreased when the transformer and squeeze excitation blocks were removed, particularly for the random164
dataset, indicating that both blocks contribute to the model’s predictive performance.165

3.3 Model interpretation166

To explore the biological insights from our trained model, we used saliency maps to interpret the model167
by visualizing predictive motifs. Saliency maps based on gradient backpropagation have been commonly168
applied to highlight model-derived features in input data (Adebayo et al., 2018), and have been used to169
interpret the relationship between the input and prediction of the trained model, where a segment of the170
input with a higher saliency value indicates an influential region for the model’s prediction (Eraslan et al.,171
2019). By combining the gradient values with the input sequences, also known as input-masked gradients,172
we can visualize the segments that significantly impact the model’s prediction (Eraslan et al., 2019).173

For comparison, we first searched for significant TF motifs using probabilistic motif discovery based on174
expression levels (see Methods). We discovered the known yeast motifs associated with higher expression175
levels: NHP10 (High-mobility group (HMG) domain factors), REB1 (Myb/SANT domain factors), ABF1176
(Basic helix-loop-helix factors (bHLH), AZF1 (C2H2 zinc finger factors), and RAP1 (Myb/SANT domain177
factors) were the top 5 motifs.178

We then visualized the input-masked gradients by plotting the saliency map logos generated from our179
fine-tuned model over yeast native sequences compared to these significant motifs from probabilistic motif180
discovery. The results show that the saliency map matches the known yeast motif logos (Figure 5 A-E and181
supplementary figure S2). To quantify this, we further calculated mean saliency map gradients over the182
positions in the sequences matched by these top 5 motifs and showed that these motifs are associated with183
substantially higher saliency gradients than the mean over all sequences as a control (Figure 5F).184

Furthermore, we calculated the mean expression levels of yeast native sequences containing these top 5185
TF motifs compared to all sequences as a control. The result shows that these motifs are associated with186
higher expression levels as expected (Figure 5G). Notably, the saliency gradients showed that the TF motifs187
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associated with the highest expression levels contribute the most to the prediction of gene expression,188
supporting that our model extracts biologically meaningful features.189

3.4 Training time comparisons190

We next compared the training time between eight TPU V3 cores and eight GPU A100s under different191
batch sizes and precision settings (shown in Table 1). Training on the V100 GPU with batch size equal to192
1024 and default precision setting was used as the benchmark. The time-per-step is the average processing193
time to process one batch of data. The average epoch time represents how long it takes to run over all194
the data. The training time was estimated for the model to run 20 epochs without considering model195
convergence and the initialization time. The blank value indicates the batch size is too big and over the196
accelerating hardware’s memory limit.197

This study showed that: distributed training on multiple accelerator hardware can reduce training time198
significantly to feasible levels (from 70h to 4h); mixed precision can improve GPU performance, especially199
with large batch sizes, and can reduce the memory requirement; and the latest GPU A100 with 80 GB of200
graphics memory can take input with a larger batch size than TPU v3-8 where each TPU core has 32 GB of201
memory.202

4 MATERIALS AND METHODS

4.1 Data Collection203

In the study of Vaishnav et al. (2022), the yeast cells were grown under different mediums to exercise204
different metabolic pathways. Here we used data from cells grown in the complex (yeast extract, peptone205
and dextrose) and defined (lacking uracil) medium as specified in (Vaishnav et al., 2022). The training206
data was downloaded from https://zenodo.org/record/4436477, containing 30,722,376 and 20,616,659207
random sequences from complex and defined medium, respectively, with their expression values evaluated208
by Gigantic Parallel Reporter Assay experiment (Supplementary table S1).209

For model testing data, we used independent test sets drawn from experimental replicate datasets,210
which were generated in Vaishnav et al. (2022), consisting of native and random promoter sequences211
(N=61,150 and N=2,954, respectively) from complex medium and (N=3,782 and N=5,284, respectively)212
from defined medium (Supplementary table S1). The test data was downloaded from GitHub repository (at213
https://github.com/1edv/evolution ).214

4.2 Model Training Setup215

We first trained individual models using data from complex medium and defined medium separately.216
Specifically, 30,722,376 random sequences from the complex medium and 20,616,659 random sequences217
from the defined medium were used to train the individual models. For the pre-trained model, we evenly218
sampled data from both mediums. In total, 51,339,035 sequences and their experimentally measured219
expression levels were used for pre-training the model. We then trained the pre-train model on complex220
and defined medium separately in the fine-tuning process.221

The model’s performance was assessed using independent test datasets as described above, and none of222
the sequences in the test datasets were used during model training. It is important to note that the test data223
library was measured in separate experiments from the training data and that the test data library contains224
fewer sequences than the experiments used to generate the training data. As a result, the expression value225
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associated with each sequence was precisely measured in the test data (by averaging 100 yeast cells per226
sequence).227

4.3 Data Pre-processing228

We first used TensorFlow 2 tf.keras.preprocessing.pad sequence function to pad the original sequence229
to a length equal to 112 nt, as the original input sequences do not have a fixed length. We truncated the230
sequences from the end for sequences longer than 112 nt; for sequences shorter than 112 nt, we padded the231
sequences from the end with “N”. We then used one-hot encoding to encode the nucleotides based on the232
order of “A”, “C”, “G”, and “T”. Specifically, we used tf.keras.layer.StringLookup function to encode the233
input sequences and define the vocabulary as [‘A’, ‘C’, ‘G’, ’T’] while characters not in the vocabulary (i.e.,234
“N”) are encoded in the fifth dimension. Therefore, “A”, “C”, “G”, “T” and “N” are encoded to [1,0,0,0,0],235
[0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0] and [0,0,0,0,1], respectively.236

4.4 Model Execution237

Since we mainly used TPU v3-8 VM to train our model, which contains eight tensor processing cores,238
we set the global batch size to 8192, where each TPU core is assigned 1024 samples. To accelerate239
the efficiency of feeding data into the model, we prefetch the training data into the memory using the240
tf.data.Dataset.prefetch() function. This operation reduced the latency and improved the data pipeline241
throughput. And we set the buffer size for prefetching the data equal to tf.data.AUTOTUNE, which will242
optimize the number of data prefetched automatically.243

We distributed the training process of our model in two different hardware: TPUs and GPUs. For Tensor244
Processing Units (TPU) provided by Google TPU Research Cloud, we trained the model with the TPU245
v3-8 virtual machine. The TPU v3-8 virtual machine comes with 8 processing cores. So, we set the global246
batch size equals to 8,192, in which each core is allocated a local minibatch size equal to 1,024. For the247
GPUs, we trained the model with the Nvidia DGX A100 provided by Australian National Computational248
Infrastructure, which comes with eight A100 GPUs. Thus, following the same setup with TPUs, we set the249
global batch size equal to 8,192 to ensure each A100 GPU processes a minibatch with 1,024 samples in250
parallel.251

We used Huber loss to calculate the difference between predictions and true values for the loss function252
since it is less sensitive to outliers than the mean-square error in regression problems (Huber, 1992). We253
use Adam optimizer to optimize the Huber loss function. For the learning rate scheduler, we set a learning254
rate warm-up in the first 10 epochs, which gradually increase the learning rate of the optimizer from 0.0001255
x NUM of HARDWARE (i.e., 0.0008) to 0.001 x NUM of HARDWAR (i.e., 0.008). A cosine decay256
learning rate scheduler was then used to gradually reduce the learning rate 0.0001 x NUM of HARDWARE257
(i.e., 0.0008). To avoid overfitting, an early stop call-back function was used. This call-back function258
monitors the model’s performance over the validation dataset. If the model’s validation R-square value is259
not improved in the most recent ten epochs, it stops training and restores the model weight with the best260
performance over validation data.261

We use the Tensorflow 2 tf.distribute for distributed training.MirroredStrategy to train the model on a262
DGX A100 box which contains eight A100 GPUs. We used the tf.distribute.TPUStrategy for training on263
TPU v3-8 virtual machine, which has eight tensor cores. Both strategies are synchronous training processes264
intended to distribute training across multiple processing units on a single machine. The synchronous265
strategy first copied all of the model’s variables to each processor. The gradients from each processor266
were then fused using all-reduce. The resulting value will be synchronized to all instances stored in each267
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processor. Since our model training does not require high precision and training on TPUs automatically268
uses float16, so for training on GPUs, we use the mix precision policy by setting up precision equal to269
mixed float16. The mixed precision policy improves our model training speed on Amber GPUs without270
losing accuracy.271

We further compared the training speed between A100 GPUs and TPU V3-8 with different local batch272
sizes and mixed precision policy. To reduce the impact of other factors, such as the time used to build the273
computational graph, we exclude the time reported in the first epoch and take the maximum value from274
the time-per-step column. The time-per-step report is the average time the hardware processes each batch275
in one epoch. The training speed comparison is shown in Figure 1. Note that the final training time is an276
optimistic estimation for training the model for 20 epochs, which doesn’t guarantee the model coverage277
and doesn’t consider the overhead time used for inter-core communication.278

For the software and packages, we used Python 3.8.10 to write the code for training and evaluation. For279
data pre-processing, we mainly use NumPy 1.22.1 and Pandas 1.5.0 packages. For building a deep learning280
model, we use TensorFlow 2.8.0 framework to implement and train the neural network. Functions from281
TensorFlow Addons 0.16.1 and SciPy 1.9.3 are used to evaluate models’ performance. Matplotlib 3.6.1 and282
Seaborn 0.12.1 are used for visualization.283

4.5 Motif Discovery284

We used the motif discovery tool MEME suite (Bailey et al., 2015) “Differential Enrichment mode” to285
detect the motif enrichment in the top 2000 sequences with high gene expression against the bottom 2000286
sequences with low gene expression. We used FIMO in the MEME suite to search for motif hits in yeast287
native promoter sequences.288

We further used two ranking-based methods, Discovering Ranked Imbalanced Motifs using Suffix Trees289
(DRIMust) (Leibovich et al., 2013) and rGADEMm (Mercier et al., 2011), to determine thede novo290
motifs in a ranked list of sequences, which were ranked from high to low expression values. DRIMust291
uses suffix trees to identify overrepresented motifs in the top-ranked sequences and further evaluates292
the obtained k-mers by minimum-hypergeometric (mHG) approach (Leibovich et al., 2013). rGADEM293
combines spaced dyads and an expectation-maximization (EM) algorithm. The spaced dyads are identified294
by their overrepresentation in the input sequences, and a genetic algorithm is further employed to mark295
them significant and to declare them as motifs (Mercier et al., 2011). We used Bioconductor packages296
“TFBStools” (Tan and Lenhard, 2016), “JASPAR” (Castro-Mondragon et al., 2022), to match the identified297
motifs with known JASPAR Yeast motifs.298

We selected the top 5 motifs ranked by E-value in MEME that were reproduced by the rank-based299
methods.300

5 CONCLUSION

In this study, we introduced CRMnet, a novel neural network architecture that accurately predicts the301
gene expression levels of yeast promoter sequences. First, we adopted the U-Net architecture from the302
image semantic segmentation task and applied it to genomic sequences as a feature extractor. Furthermore,303
we utilized transformer encoders, which leverage self-attention mechanisms to extract additional useful304
information from genomic sequences. The extracted features were then fed into an MLP to predict the305
expression levels as a regression problem. By testing on data not used during the training process, our model306
surpassed the benchmark networks of Vaishnav et al. (2022). Our ablation studies of the CRMnet model307
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demonstrated the potential for improvements in predictive performance for a given biological problem by308
the design of custom DNN architectures. In particular, augmentation of a model with a combination of309
CNN and additional transformer stages guided by training and testing results on large high-throughput310
datasets can give useful increments in performance.311

Importantly, high performance DNN models extracting dependency information via attention mechanisms312
allow for biological insights through model interpretation. In this study, we visualized regions of key313
importance for expression regulation by plotting the saliency map over the input yeast DNA sequences.314
Notably, we found that the logo plots constructed from saliency maps over the input sequences are315
correlated with the sequence motifs of known yeast transcription factors. Future improvements in DNN316
model architectures along with improved model interpretation methods will be key enablers for future317
biological discoveries of subtle regulatory signals.318

6 FIGURE LEGEND

Figure 1: CRMnet model’s architecture. Our CRMnet consists of Squeeze and Excitation (SE) Encoder319
Blocks, Transformer Encoder Blocks, SE Decoder Blocks, SE Block and Multi-Layer Perceptron (MLP).320
Similar to the UNet architecture, the encoder and corresponding decoder at the same level have a321
skip connection (SC) so the decoder utilizes the concatenation of the upsampled feature map with the322
corresponding higher resolution encoder feature map at that level.323

Figure 2: Prediction of expression from yeast native sequences from CRMnet. CRMnet tested on A:324
native promoter sequences; and B: random promoter sequences. The y-axes represent measured expression325
levels, while the x-axes represent predicted expression levels. As a benchmark, the model performance326
metrics of the Pearson r value, associated two-tailed p-values, and R-square for the transformer model327
from (Vaishnav et al., 2022) showed: A: r=0.963, P < 5× 10−324, R2=0.927; B: r=0.978, P < 5× 10−324,328
R2=0.95.329

Figure 3: Benchmarking the CRMnet’s performance against existing neural network architectures.330
The prediction performance of CRMnet on yeast native promoters and random promoters was compared331
with the transformer and CNN models from (Vaishnav et al., 2022) and other existing DNNs (DeepAtt (Li332
et al., 2021), DanQ (Quang and Xie, 2016) and DeepSEA (Zhou and Troyanskaya, 2015)). The performance333
of DeepAtt, DanQ and DeepSEA on random promoters not published in (Vaishnav et al., 2022)334

Figure 4: Prediction performance for ablation study. Comparisons of prediction performance of models335
testing on native promoters and random promoters are shown: the full model (fine-tuned CRMnet), the336
model without transfer learning (CRMnet without pre-training), the model without transformer block337
(CRMnet without transformer), and the model without squeeze excitation (SE) block (CRMnet without SE338
block).339

Figure 5: Model interpretation by saliency maps. A-E: The top 5 yeast TF motifs detected by motif340
discovery: NHP10, REB1, ABF1, AZF1, and RBP1. Shown is an example sequence with its saliency map341
gradients over 80-nt for each motif, aligned with the known TF motif logo and E-values. F: Mean saliency342
map gradients over these top 5 motif matches in yeast native sequences, and mean saliency map gradients343
over all sequences as the controls. G: Mean expression levels of yeast native sequences containing these344
top 5 TF motifs, and all native sequences as the control.345
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Figure 1. CRMnet model’s architecture. Our CRMnet consists of Squeeze and Excitation (SE) Encoder
Blocks, Transformer Encoder Blocks, SE Decoder Blocks, SE Block and Multi-Layer Perceptron (MLP).
Similar to the UNet architecture, the encoder and corresponding decoder at the same level have a
skip connection (SC) so the decoder utilizes the concatenation of the upsampled feature map with the
corresponding higher resolution encoder feature map at that level.
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Figure 2. Prediction of expression from yeast native sequences from CRMnet. CRMnet tested on A:
native promoter sequences; and B: random promoter sequences. The y-axes represent measured expression
levels, while the x-axes represent predicted expression levels. As a benchmark, the model performance
metrics of the Pearson r value, associated two-tailed p-values, and R-square for the transformer model
from (Vaishnav et al., 2022) showed: A: r=0.963, P < 5× 10−324, R2=0.927; B: r=0.978, P < 5× 10−324,
R2=0.95.
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Figure 3. Benchmarking the CRMnet’s performance against existing neural network architectures.
The prediction performance of CRMnet on yeast native promoters and random promoters was compared
with the transformer and CNN models from (Vaishnav et al., 2022) and other existing DNNs (DeepAtt (Li
et al., 2021), DanQ (Quang and Xie, 2016) and DeepSEA (Zhou and Troyanskaya, 2015)). The performance
of DeepAtt, DanQ and DeepSEA on random promoters not published in (Vaishnav et al., 2022)
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Figure 4. Prediction performance for ablation study. Comparisons of prediction performance of models
testing on native promoters and random promoters are shown: the full model (fine-tuned CRMnet), the
model without transfer learning (CRMnet without pre-training), the model without transformer block
(CRMnet without transformer), and the model without squeeze excitation (SE) block (CRMnet without SE
block).
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Figure 5. Model interpretation by saliency maps. A-E: The top 5 yeast TF motifs detected by motif
discovery: NHP10, REB1, ABF1, AZF1, and RBP1. Shown is an example sequence with its saliency map
gradients over 80-nt for each motif, aligned with the known TF motif logo and E-values. F: Mean saliency
map gradients over these top 5 motif matches in yeast native sequences, and mean saliency map gradients
over all sequences as the controls. G: Mean expression levels of yeast native sequences containing these
top 5 TF motifs, and all native sequences as the control.
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local
batch size Hardware Number

of processor
Mixed
Precision

time
per step(s)

average
epoch(min)

Training
time(hour)

1024 V100 32G 1 float32 0.434 210.37 70.12
A100 80G 8 float32 0.187 11.81 3.94
A100 80G 8 mixed float16 0.187 11.81 3.94
TPU-V3 8 float32 0.172 10.86 3.62

1024 TPU-V3 8 mixed bfloat16 0.165 10.42 3.47
A100 80G 8 float32 0.675 10.65 3.55
A100 80G 8 mixed float16 0.477 7.51 2.51
TPU-V3 8 float32 0.726 11.46 3.82

4096 TPU-V3 8 mixed bfloat16 0.611 9.64 3.21
A100 80G 8 float32 1.337 10.54 3.51
A100 80G 8 mixed float16 0.889 7.01 2.34
TPU-V3 8 float32 - - -

8192 TPU-V3 8 mixed bfloat16 1.353 10.67 3.56
A100 80G 8 float32 - - -
A100 80G 8 mixed float16 1.718 6.76 2.25
TPU-V3 8 float32 - - -

16384 TPU-V3 8 mixed bfloat16 - - -

Table 1. Summary of training speed for different batch sizes and accelerator hardware configurations.
The benchmark training time was calculated by training the model on complex medium data with a single
V100 GPU, with a local batch size of 1,024 and no mixed precision policy. The final training time is
based on training the model for 20 epochs without considering the model’s convergence. The training time
was left empty if the local batch was too large and exceeded the hardware’s graphic memory limit. For
distributed training on multiple hardware, we compared the training time between TPU v3-8 and DGX box
with eight A100s, where each configuration contains eight accelerator hardware.
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