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Figure 2. Prediction of expression from yeast native sequences from CRMnet. CRMnet tested on A:
native promoter sequences; and B: random promoter sequences. The y-axes represent measured expression
levels, while the x-axes represent predicted expression levels. As a benchmark, the model performance
metrics of the Pearson r value, associated two-tailed p-values, and R-square for the transformer model
from (Vaishnav et al., 2022) showed: A: r=0.963, P < 5 � 10�324 , R2=0.927; B: r=0.978, P < 5 � 10�324 ,
R2=0.95.
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Figure 3. Benchmarking the CRMnet’s performance against existing neural network architectures.
The prediction performance of CRMnet on yeast native promoters and random promoters was compared
with the transformer and CNN models from (Vaishnav et al., 2022) and other existing DNNs (DeepAtt (Li
et al., 2021), DanQ (Quang and Xie, 2016) and DeepSEA (Zhou and Troyanskaya, 2015)). The performance
of DeepAtt, DanQ and DeepSEA on random promoters not published in (Vaishnav et al., 2022)
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Figure 4. Prediction performance for ablation study. Comparisons of prediction performance of models
testing on native promoters and random promoters are shown: the full model (fine-tuned CRMnet), the
model without transfer learning (CRMnet without pre-training), the model without transformer block
(CRMnet without transformer), and the model without squeeze excitation (SE) block (CRMnet without SE
block).
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Figure 5. Model interpretation by saliency maps. A-E: The top 5 yeast TF motifs detected by motif
discovery: NHP10, REB1, ABF1, AZF1, and RBP1. Shown is an example sequence with its saliency map
gradients over 80-nt for each motif, aligned with the known TF motif logo and E-values. F: Mean saliency
map gradients over these top 5 motif matches in yeast native sequences, and mean saliency map gradients
over all sequences as the controls. G: Mean expression levels of yeast native sequences containing these
top 5 TF motifs, and all native sequences as the control.
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local
batch size Hardware Number

of processor
Mixed
Precision

time
per step(s)

average
epoch(min)

Training
time(hour)

1024 V100 32G 1 float32 0.434 210.37 70.12
A100 80G 8 float32 0.187 11.81 3.94
A100 80G 8 mixed float16 0.187 11.81 3.94
TPU-V3 8 float32 0.172 10.86 3.62

1024 TPU-V3 8 mixed bfloat16 0.165 10.42 3.47
A100 80G 8 float32 0.675 10.65 3.55
A100 80G 8 mixed float16 0.477 7.51 2.51
TPU-V3 8 float32 0.726 11.46 3.82

4096 TPU-V3 8 mixed bfloat16 0.611 9.64 3.21
A100 80G 8 float32 1.337 10.54 3.51
A100 80G 8 mixed float16 0.889 7.01 2.34
TPU-V3 8 float32 - - -

8192 TPU-V3 8 mixed bfloat16 1.353 10.67 3.56
A100 80G 8 float32 - - -
A100 80G 8 mixed float16 1.718 6.76 2.25
TPU-V3 8 float32 - - -

16384 TPU-V3 8 mixed bfloat16 - - -

Table 1. Summary of training speed for different batch sizes and accelerator hardware configurations.
The benchmark training time was calculated by training the model on complex medium data with a single
V100 GPU, with a local batch size of 1,024 and no mixed precision policy. The final training time is
based on training the model for 20 epochs without considering the model’s convergence. The training time
was left empty if the local batch was too large and exceeded the hardware’s graphic memory limit. For
distributed training on multiple hardware, we compared the training time between TPU v3-8 and DGX box
with eight A100s, where each configuration contains eight accelerator hardware.
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