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complex ontogenic shift in the ACC metabolism. During waterlogging, ACC is transported from the roots 272 

to the shoot, and is most likely converted into ethylene in older leaves due to a high ACO activity. In 273 

contrast, the lower ACO and higher basal AMT activity in young leaves resulted in a lower ethylene 274 

production rate, leading to ACC accumulation and conversion into MACC. The increase of AMT activity of 275 

middle-aged leaves might limit ethylene production levels. 276 

 277 

Figure 4: Ontogenic differentiation of ethylene biosynthesis during waterlogging. (A) Ethylene production of tomato petioles after 278 

24 h of waterlogging (n = 5). (B – E) Changes in (B) the ethylene precursor ACC (n = 10), (C) the primary ACC conjugate MACC (n = 279 

10), (D) enzyme activity of ACO (n = 10) and (E) enzyme activity of AMT (n = 5) after 24 h of waterlogging. Significant differences 280 

are indicated with an asterisk (α = 0.05). 281 

Waterlogging induces differential regulation of the ACO gene family  282 

In order to unravel the differences in ethylene production observed in leaves of different ages, we 283 

quantified total ACO protein abundance and the expression of several important ACO genes. Western blot 284 

analysis confirmed an ontogenic trend in ACO abundance, but did not show any increase after the hypoxia 285 

treatment (Figure 5A), matching the  ACO in vitro activity (Figure 4D), with the exception of the oldest leaf 286 

(leaf 1), which had a high in vitro ACO activity and a low ACO protein abundance (Figure 4D & Figure 5A). 287 

Possibly, other ACO isoforms not detected by our antibody contribute to the ACO activity of leaf 1. A RT-288 
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Ethylene sensitivity steers the epinastic response and its recovery 300 

The ontogenic discrepancy between the ethylene production and its genetic and metabolic regulation at 301 

the leaf level prompted us to investigate the role of ontogeny in ethylene responsiveness. Although we 302 

did not observe waterlogging induced changes in an EBS::GUS reporter line, GUS levels seemed to change 303 

slightly during development. In general, the intensity of the GUS signal decreased in older petioles 304 

(Supporting Information Fig. S6), similar to petiole ethylene production levels (Figure 4A). Next, we 305 

evaluated ethylene sensitivity during waterlogging using a 1-MCP treatment and the Nr mutant, a natural 306 

mutant of ethylene receptor 3 (SlETR3) (Chen et al., 2019; Hackett et al., 2000; Lanahan et al., 1994). Our 307 

results showed that a 1-MCP pre-treatment strongly inhibited waterlogging-induced epinasty for leaves 308 

of all ages (Figure 6A). Dynamic leaf angle data of the Nr mutant supported these results, showing a strong 309 

reduction of the epinastic curvature during root hypoxia, especially for young leaves, followed by a faster 310 

recovery (Figure 6B & C). Altogether, these data confirm that ethylene signaling is key for epinasty during 311 

root hypoxia, but also reveal that ethylene sensitivity is differentially regulated in leaves of different ages.  312 

 313 

Figure 6: Ethylene sensitivity of leaves of different ages during waterlogging. (A) Effect of a 1-MCP (1 ppm) pre-treatment on the 314 

epinastic curvature after 48 h of waterlogging (n = 5 – 6). Significant differences are indicated with an asterisk (α = 0.05). (C – D) 315 

Epinastic response to waterlogging in the (B) Pearson background and (C) the Nr mutant. Lines in (C – D) represent average leaf 316 

angles +/- the confidence interval (90%). 317 
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mutant potentially affects cell elongation, but also enhances auxin transport in the hypocotyl, but not in 516 

roots (Negi et al., 2010). As a result, reduced epinasty in the Nr mutant might be the result of reduced 517 

ethylene sensitivity, but also of enhanced auxin transport (Figure 6; Negi et al., 2010) and disrupted auxin 518 

signaling (Lin et al., 2008). Altered ethylene signaling in this mutant causes development-dependent 519 

petiole bending (Figure 6), which might be due to ethylene and auxin responses. This is not surprising, 520 

given that ethylene and auxin signaling are integrated in regulatory hubs, such as SlIAA3 (Chaabouni et 521 

al., 2009) and SlERF.B3 (Liu et al., 2018) to establish tissue specific responses to both hormones. SlIAA3, a 522 

positive regulator of auxin responses in tomato petioles, is differentially expressed in petioles after 523 

ethylene treatment (Chaabouni et al., 2009), suggesting that it acts as an ethylene-mediated activator of 524 

auxin responses. The actual mechanism integrating ethylene and auxin responses in the petiole of tomato 525 

remains to be discovered.  526 
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   527 

Figure 9: Schematic overview of the ontogenic differentiation of the epinastic response during waterlogging in tomato. Low 528 

oxygen conditions in the roots stimulate ACC production, at least by ACS2, ACS3 and ACS7 (Olson et al., 1995; Shiu et al., 1998), 529 

leading to accumulation of ACC in the root zone. This ACC is transported to the shoot, where it is distributed mainly towards 530 

young sink leaves, capable of effectively conjugating ACC into the inactive MACC. Differential expression of the ACO gene family 531 

allows for intricate regulation of local ethylene production, which is stimulated mainly in older leaves. Ethylene itself activates 532 

cellular elongation, in part through NR signaling and the regulation of local auxin levels. Auxin export is inhibited in old leaves by 533 

reduced expression of PIN4 and PIN9 auxin exporters, promoting its accumulation at the base of the petiole. This in turn disrupts 534 
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local elongation dynamics within the petiole, leading to a relatively higher adaxial cell elongation and ultimately epinastic bending 535 

(and reduction in canopy cover, CC). In young leaves, auxin export capacity is sustained and hormonal balances are faster 536 

restored, leading to enhanced morphological plasticity and resilience during waterlogging and recovery. Most likely, other factors 537 

come into play to define the proper transduction of polar responsiveness within the petiole, as inhibition of auxin export from 538 

the leaf alone (by TIBA) evokes specific secondary and age-related responses regarding leaf positioning, independent of 539 

waterlogging-induced epinasty. 540 
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