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Abstract1

Bayesian inference is an important method in the life and natural sciences for learning from2

data. It provides information about parameter uncertainties, and thereby the reliability3

of models and their predictions. Yet, generating representative samples from the Bayesian4

posterior distribution is often computationally challenging. Here, we present an approach5

that lowers the computational complexity of sample generation for problems with scaling,6

offset and noise parameters. The proposed method is based on the marginalization of the7

posterior distribution, which reduces the dimensionality of the sampling problem. We provide8

analytical results for a broad class of problems and show that the method is suitable for a9

large number of applications. Subsequently, we demonstrate the benefit of the approach10

for various application examples from the field of systems biology. We report a substantial11

improvement up to 50 times in the effective sample size per unit of time, in particular when12

applied to multi-modal posterior problems. As the scheme is broadly applicable, it will13

facilitate Bayesian inference in different research fields.14
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Introduction15

Mathematical models are important tools for understanding and predicting the dynamics of16

many processes, such as signaling processing in biological systems [1–3], patient progression17

[4, 5] and epidemics [6, 7]. However, the parameters of mathematical models are in general18

unknown and need to be inferred from experimental data. This is an inherently challenging19

problem and complicated by the fact that, in addition to the dynamical properties of interest20

(e.g. rate constants and initial conditions), also characteristics of the measurement process21

may be unknown. In systems biology, most measurement techniques, including Western22

blotting [8], fluorescence microscopy [9] and mass spectrometry [10], are not fully quantitative23

but provide only relative information. Moreover, there is often an unknown offset and/or24

noise level [11]. Accordingly, unknown observation parameters, such as scaling factors but25

also offsets and noise levels, have to be estimated along with parameters of the mathematical26

models [12–14].27

Bayesian inference is often used to determine unknown parameters [15–17]. A particularly28

common approach is to employ Markov chain Monte Carlo (MCMC) algorithms, such as29

(adaptive) Metropolis Hastings [18], Hamiltonian Monte Carlo methods [19, 20] and paral-30

lel tempering [21], to generate representative samples from the posterior distribution. Yet,31

with increasing number of unknown parameters, the application of MCMC algorithms be-32

comes challenging [22]. This is a bottleneck that leaves sampling methods on the edge of33

computational feasibility. In principle, the challenge can be addressed by reducing the di-34

mensionality of the sampling problem, e.g., by marginalizing over nuisance parameters (as35

e.g. demonstrated in cosmology [23]). However, there is no generic and broadly applicable36

framework.37

In frequentist inference, a template for the reduction of the dimensionality of parameter esti-38

mation problems has been provided [14, 24, 25]. Here, hierarchical optimization approaches39

have been developed to determine the maximum likelihood estimate. These methods ex-40

ploit that the observation parameters can be computed analytically for a given set of model41

parameters. It has been shown that this benefits the convergence of optimization methods42

and the computational efficiency, while providing the same results (see, e.g. [24]). Yet, these43

concepts cannot be directly translated to Bayesian inference as we are not interested in only44

optimal point estimates, but in (marginal) posterior distributions over parameters.45

In this manuscript, we introduce a generic method for improving sampling efficiency by46

marginalizing over observation parameters. We provide analytical results for the marginal-47

ization over complex posterior distributions for a broad class of observation models. The48

marginalization yields a lower dimensional posterior for MCMC sampling. Samples of the49

original posterior can be obtained by subsequent sampling of the observation parameters50

conditioned on the remaining parameters. To illustrate the properties of the proposed51
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Figure 1: Standard and marginalization-based Markov chain Monte-Carlo sam-

pling. (A) Illustration of the general marginalization concept. (B) Standard approach.

(C) Marginalization-based approach depicting: (Step 1) the sequential integration of the ob-

servation parameters s, b and σ2 to evaluate p(θ | D) , and (Step 2) the (optional) conditional

sampling of the marginalized observation parameters.

approach, we benchmark its performance with a collection of published models, including52

models for which current available sampling strategies are computationally infeasible. We53

demonstrate that the proposed method achieves higher sampling efficiencies by reducing the54

auto-correlation of the samples and increasing the transition probabilities between posterior55

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518841
http://creativecommons.org/licenses/by/4.0/


modes. Indeed, it turns a computationally infeasible sampling problems feasible, increasing56

the set of problems which can be tackled using Bayesian inference.57

Results58

Many model structures allow for analytical marginalization of pa-59

rameters and sampling in lower dimensional space60

To facilitate Bayesian inference for mathematical models with observation parameters, we61

developed and implemented a marginalization-based sampling approach (Figure 1). The62

approach allows for inferring the parameters of mathematical models, such as ordinary dif-63

ferential equation (ODEs) and partial differential equation models, from data via observation64

models with scaling, offset and noise parameters. For the case of a mathematical model with65

parameter θ and time- and parameter-dependent states x(t, θ), we consider for the case of a66

one-dimensional observable with additive Gaussian measurement noise the observation model67

ȳ = (s · h(x(t, θ), θ) + b) + ϵ, with ϵ ∼ N (0, σ2) (1)

in which h(x, θ) is the observable map, s is the scaling factor, b is the offset and σ2 is the68

variance of the measurement noise. Following Bayes’ theorem, the posterior distribution is69

given by70

p(θ, s, b, σ2 | D) =
p(D | θ, s, b, σ2)p(θ)p(s, b, σ2)

p(D)
, (2)

in which p(D | θ, s, b, σ2) denotes the likelihood of the data D, p(θ, s, b, σ2) = p(θ)p(s, b, σ2)71

denotes the prior distribution, and p(D) denotes the marginal probability of the data.72

The standard approach is to use MCMC methods to obtain representative samples from the73

joint posterior distribution for model parameters θ and observation parameters s, b and σ2 (2)74

for subsequent analysis (Figure 1B). All parameters are sampled jointly, disregarding their75

nature (Figure 1B), in particular note that the state x(t, θ) and the value of the observation76

map h(x(t, θ), θ) only depends on θ but not on s, b or σ2. This approach is often challenging77

and even infeasible for models with large datasets, since the number of observation parameters78

can easily exceed the number of model parameters (see e.g. [26, 27]).79

To simplify the sampling process, we propose a marginalization-based approach, which

exploits a decomposition of the sampling problem in two steps (Figure 1C). In Step 1, we

consider the marginalization of the posterior distribution (2) with respect to the observation

parameters s, b and σ2, yielding

p(θ | D) =
p(D | θ)p(θ)

p(D)
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with p(D | θ) as the marginal likelihood given by80

p(D | θ) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
p(D | θ, s, b, σ2)p(s, b, σ2) ds db dσ2. (3)

For various choices of noise models and prior distributions (in particular conjugate priors),81

this marginal likelihood can be computed in closed-form. This is for instance the case for the82

combination of additive Gaussian noise with a joint prior distribution for s, b and σ2,83

p(s, b, σ2) = N (s | ν, σ2/τ) · N (b | µ, σ2/κ) · Γ−1(σ2 | α, β),

in which ν, µ ∈ R and τ, κ, α, β ∈ R+ denote hyperparameters of the Normal-Inverse-Gamma-84

distributed joint prior, and Γ−1(·) the Inverse-Gamma function. Here, we obtain for obser-85

vations ȳi with i = 1, . . . , nt the closed-form expression for the marginal likelihood as86

p(D | θ) = (β/C)α

Γ(α)(2πC)nt/2
· Γ
(
α +

nt

2

)
·
√

κτ

(nt + κ) (τ +
∑nt

i=1 h
2
i )− (

∑nt

i=1 hi)
2 (4)

with hi := h(x(ti, θ), θ) and parameter-dependent constant87

C := β +
1

2

(
κµ2 + τν2 +

nt∑
i=1

ȳ2i −
(κµ+

∑nt

i=1 ȳi)
2

nt + κ

−((κµ+
∑nt

i=1 ȳi) (
∑nt

i=1 hi)− (nt + κ) (τν +
∑nt

i=1 hiȳi))
2

(nt + κ)
(
(nt + κ) (τ +

∑nt

i=1 h
2
i )− (

∑nt

i=1 hi)
2
)

 .

The combination of additive Gaussian noise and Normal-Inverse-Gamma prior is a com-88

mon choice of conjugate distributions, which allow for an analytically tractable marginal89

likelihood. There are various other cases, including multiplicative Gaussian noise and even90

distributions with outliers. For the latter, Laplacian noise has shown to be more robust91

against measurement outliers [28]. Supplementary Tables S1–S2 summarize ten practically92

relevant cases for which we obtained closed-form expressions, and we are certain that many93

more are possible. For details on the derivation of all individual results (including two cases94

for Laplace distributed noise), we refer to the Supplementary Material.95

Given the marginalized likelihood function p(D | θ) and the prior p(θ), the posterior distri-96

bution p(θ | D) of the parameters of the mathematical model can be sampled using MCMC97

and related methods. The sampling can be performed in the space of θ, as the observation98

parameters are implicitly considered (Figure 1C).99

The samples of model parameters θ from p(θ | D) allow for the assessment of the model prop-100

erties and its uncertainties. In this regard, there is no difference of sampling the marginal-101

ized posterior distribution p(θ | D) compared to projecting the full posterior distribution102

p(θ, s, b, σ2 | D) onto the θ component. However, tasks like the assessment and plotting of103
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the model-data mismatch also require the posterior of the observation parameters. These104

can be obtained by sampling from the conditional distribution p(s, b, σ2 | θ,D). As the obser-105

vation parameters only influence the observation model (1) and not the calculation of state106

x(t, θ) and observable map h(x, θ), the conditional distribution can be expressed in closed-107

form and sampled efficiently. For the aforementioned case, a matching sample of observation108

parameters for a given model parameter θ can be obtained by drawing from Gamma and109

Normal distributions:110

σ2 = 1/λ with λ ∝ Γ
(
α′ = α +

nt

2
, β′ = C

)
,

b ∝ N
(
µ′ =

κµ+ (
∑nt

i=1 ȳi − hi)

κ+ nt

, λ′ = λ(nt + κ)

)
, and

s ∝ N

(
µ′ =

(κ+ nt) (τν +
∑nt

i=1 hiȳi)− (κµ+
∑nt

i=1 ȳi) (
∑nt

i=1 hi)

(κ+ nt) (τ +
∑nt

i=1 h
2
i )− (

∑nt

i=1 hi)
2 ,

λ′ = λ

(
τ +

nt∑
i=1

h2
i −

(
∑nt

i=1 hi)
2

(nt + κ)

))
,

with hi and C being evaluated for model parameter θ. This conditional sampling can be111

proven to provide the same correlation structure as directly sampling the full posterior dis-112

tribution. For details on the derivation of the conditional sampling for the observation113

parameters we refer to the Supplementary Material. As the conditional sampling can be per-114

formed independently and does not require model simulation, it is computationally efficient.115

For additional observation models see Supplementary Tables S1- S2.116

In summary, a broad spectrum of sampling problems occurring in scientific disciplines, such117

as systems and computational biology, can be reformulated by performing an analytically118

tractable marginalization of their observation parameters. Sampling of this lower dimensional119

posterior distribution for the model parameters θ in combination with conditional sampling120

for the observation parameters allows the construction of samples from the full posterior121

distribution. Accordingly, the original sampling problem is decomposed in two sub-problems,122

of which the conditional sampling is optional.123

Marginalization-based approach yields same results at lower com-124

putational cost125

To compare the performance for the standard and marginalization-based approach, we per-126

formed a range of studies using (i) a simple test problem and (ii) published models and127

datasets.128
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Table 1: Key numbers and features of the considered toy and benchmark models.

The number of unknown model parameters nθ, unknown scaling parameters ns, unknown

offset parameters nb and unknown noise parameters nσ, which are effectively sampled, are

reported.

Model ID nθ ns nb nσ Description Reference

Toy 2 1 1 1 Conversion reaction -

M1 13 3 - - EGF-AKT pathway [29]

M2 6 3 - 3 STAT5 dimerization [30]

M3 3 1 - 1 mRNA transfection [31]

M4 26 31 - - Gastric cancer signaling [27]

As a simple test problem we considered a model of a conversion reaction process, A ⇌ B.129

This process was considered in various other publications [28, 32] and can be described using130

a two-dimensional system of ODEs, with the concentrations of A and B as state variables.131

Here, we considered that the abundance of B is measured up to an unknown scaling, offset132

and noise level. Accordingly, the mathematical model possesses two model parameters: the133

forward rate A to B, θ1, and the backward rate B to A, θ2; and three observation parameters:134

the scaling s, the offset b and the noise variance σ2 (Table 1). A detailed description of the135

model is provided in the Methods section.136

In the first step, we used the model to assess the correctness of the analytical marginalized137

likelihood (4) by comparing its agreement with numerical integration of (3). The results show138

a perfect match for a range of different parameter values (Figure 2A). Yet, the evaluation of139

the analytical marginalized likelihood was five orders of magnitude faster than the numerical140

integration (Figure 2B), which highlights the importance of the analytical derivations. In141

the second step, we performed 100 independent MCMC sampling runs for the standard and142

marginalization-based approach. The runs employed a state-of-the-art adaptive Metropolis143

Hasting method [18]. We found a superior performance of the marginalization-based ap-144

proach, as the observed effective sample size per unit of time was twice as high as for the145

standard approach (Figure 2C). This indicates that the marginalization-based approach fa-146

cilitates already for simple problems the mixing of the MCMC chains and, hence, provides147

a more efficient exploration of the posterior. Moreover, the model fit for the best sample148

found (i.e. maximizing the posterior) coincided for both approaches (Figure 2D) as well as149

the marginal distributions for the model parameters θ1 and θ2 (Figure 2E–F), and the con-150

ditionally sampled observation parameters (Figure 2G–I).151

Following the promising results for the test problem, we evaluated the performance of the152

proposed marginalization-based approach for three already published models and datasets153
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Figure 2: Evaluation of the standard and marginalization-based approach for the

toy model. (A) Comparison of analytical vs. numerical integration. (B) Time comparison

of analytical vs. numerical integration. (C) Effective sample size per unit of time for 100

independent runs. (D) Model fit of the best sample found during sampling from the standard

(orange) and marginalization-based (purple) approach. (E–I) Parameter marginal posterior

distributions computed using a kernel density estimate for the model parameters (E) θ1 and

(F) θ2, and the conditionally sampled observation parameters: (G) scaling factor s, (H) offset

b, and (I) noise variance σ2.
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(D) Model fit of the best sample found during sampling. A subset of the experimental data

is shown for M1 and M2. Complete datasets are depicted in Supplementary Figures S2 and

S4.
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(Table 1 and Methods section). The models M1 to M3 describe cellular processes: (M1) EGF-154

induced AKT signalling; (M2) phosphorylation-dependent STAT5 dimerization; and155

(M3) mRNA transfection. The numbers of model and observation parameters differ, and so156

do the observation functions. Accordingly, different closed-form expressions for the marginal-157

ized likelihood function are used (Supplementary Tables S1– S2). More importantly, the full158

posterior distributions exhibit different characteristics, ranging for instance from uni- to bi-159

modal.160

For the considered application problems, the marginalization of the observation parameters161

reduced the dimensionality of the sampling problems by up to 50% (Figure 3A). To eval-162

uate the impact of this reduction on the sampling efficiency, we performed 50 independent163

MCMC sampling runs using the parallel tempering algorithm with 10 temperatures [21] af-164

ter assessing the correctness of the analytical marginalized likelihood for models M1–M3165

(Supplementary Figure S9). All the runs were initialized at the local optima found during166

multi-start optimization [12], and run for 106 iterations. Further details are provided in the167

Methods section. The high number of iterations allowed all MCMC runs of the standard and168

marginalized problem to converge according to the Geweke test [33]. Yet, the marginalization-169

based approach achieved a higher effective sample size per unit of computation time than170

the standard approach (Figure 3B). The improvement was problem dependent and ranged171

from 2 (M1 and M2) to nearly 50 (M3) times higher efficiency in the marginalization-based172

approach. As the computation time was similar, the core reasons for this is a reduction173

in the auto-correlation length (Figure 3C). The model fits for the best sample found were174

identical for both approaches (Figure 3D) as well as the parameter marginal distributions175

(Supplementary Figures S1, S3 and S5).176

In summary, test and application problems demonstrates the acceleration potential of the177

marginalization-based approach. The improvement was problem specific, with no clear de-178

pendence on the degree of dimensionality reduction, but in all cases substantial.179

Marginalization-based approach improves transition rates between180

posterior modes181

To understand for which problems the marginalization-based approach is expected to achieve182

a large acceleration, we considered the model M3. The posterior distribution for M3 is bi-183

modal and a simple explanation for the acceleration would have been that the bimodality184

is eliminated. Yet, this is not the case as the bimodality is related to a symmetry in model185

parameters. Numerical simulations as well as analytical results reveal that the observable tra-186

jectory remains unchanged when the mRNA and protein degradation rates are interchanged.187

As long as the optimal point is not located on the line of equal degradation rates, standard188

and marginalized posterior are bimodal.189
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Figure 4: Comparison of the minimum energy path for model M3. Landscape of

the optimized (A,B) posterior and (C,D) marginalized posterior for different fixed values of

the model parameters β and δ. The difference with respect to the maximal posterior value

is depicted. (E) Transition coordinates for the minimum energy path.

We hypothesized that the large efficiency improvement is related to a lower minimum en-190

ergy path for the transitions in the marginalized posterior. To assess this, we computed the191

minimum energy paths [34] for the standard (Figure 4A,B) and marginalized posterior (Fig-192

ure 4C,D) (see details in the Methods section). To our surprise, the minimum energy path193

is almost identical for both approaches (Figure 4E). Hence, there is at least no difference in194

the minimum energy path.195

In order to understand the improvement observed for runs of adaptive parallel tempering196

methods, we performed 10 runs of a single-chain adaptive Metropolis algorithm [18] with 106197

iterations. This simplified the interpretation as it excludes the possibility of chain swaps. Yet,198

we found that for the given number of iterations this single-chain algorithm does essentially199

not transition between the modes (see T = 1 in Figure 5A). To assess the relative complexity200

of the sampling problem for standard and marginalization-based approach, we repeated the201

evaluation for the tempered posterior. We found that the marginalization-based approach202

allows already at lower temperatures for transitions between the modes unlike the standard203

sampling approach (Figure 5A and Supplementary Figures S7–S8). For temperatures such204

as T = 16, the standard approach showed an average number of only 5 transitions between205

the modes with many runs only sampling from a single mode (Figure 5B,C), while for the206

marginalization-based approach on average 1.6× 104 transitions occurred (Figure 5D,E). As207
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Figure 5: Quantification of the transitions between the posterior modes for dif-

ferent temperatures T for model M3. (A) Number of transitions per 106 iterations for

a range of temperatures for the standard (orange) and marginalization-based (purple) ap-

proach. A total of 10 chains per temperature value are depicted. (B,D) Marginal distribution

computed using a kernel density estimate and (C,E) parameter trace for the model parameter

β of a representative chain obtained with the (B,C) standard and (D,E) marginalization-

based approach for T = 16. (F,G) Direct transitions between the posterior modes of a

representative chain along with the minimum energy path obtained with the (F) standard

and (G) marginalization-based approach for T = 16.
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the minimum barrier energy is conserved also for higher temperatures (Supplementary Fig-208

ure S6), this increase in the transition rate by four orders of magnitude for the same algorithm209

implies a lower overall complexity of the marginalization-based sampling problem.210

As the increased transition rate is not caused by an altered energy path, we studied the211

transition paths. This revealed that the employed single-chain algorithm facilitates jumps212

over the valley in the objective function (Figure 5F,G), meaning that it transitions between213

high-probability regions around the local optima. These direct transitions appear at a high214

rate for the marginalization-based approach (Figure 5G), while they rarely happen for the215

standard approach (Figure 5F). For the latter, most transitions are along low-energy paths216

with posterior probabilities dropping below the minimum energy path. Accordingly, the217

transition behaviour is for the marginalization-based approach more efficient than for the218

standard approach.219

In summary, the in-depth study of the mRNA transfection model (M3) showed that the220

marginalization-based approach can achieve substantial accelerations as the structure of the221

sampling problem is simplified, e.g. by facilitating transitions between modes. The improve-222

ments are related to the interplay of sampling approach and problem geometry. In particular223

for challenging (e.g. multi-modal) problems a much greater improvement could be observed.224

Marginalization-based approach enables Bayesian inference for large225

models226

As the marginalization-based approach appeared beneficial for challenging problems, we as-227

sessed in a next step whether it enables Bayesian inference for problems for which standard228

approaches did not provide reproducible results in a reasonable time-frame. Specifically, we229

considered an ODE model for signal transduction in gastric cancer cells (cell line MKN1)230

that was developed to unravel response and resistance markers [27]. This model possesses231

in total 57 unknown parameters, of which 26 are model parameters and 31 are observation232

parameters (Table 1, M4).233

The application of the marginalization-based approach resulted in a reduction of the dimen-234

sionality of the sampling problem by over 50% (Figure 6A). For the 26 model parameters235

which remain to be sampled, we compared the marginal likelihoods as computed using the236

previously derived analytical formulas and numerical integration (Figure 6B). The agree-237

ment of the results (Pearson correlation r ≈ 1.0) confirmed the correctness of our analytical238

integration.239

To determine the parameters of the model, we performed sampling using standard and240

marginalization-based approach. The adaptive Metropolis-Hastings algorithm [18] and the241

adaptive parallel tempering algorithm [21] employed in the previous sections were run 10242
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Figure 6: Convergence of the marginalization-based approach for model M4.

(A) Number of sampled parameters. (B) Scatter plot for the agreement of analytical and

numerical integration. (C,D) Model fit of the best sample found during sampling for, (C) a

subset of the experimental data and (D) the complete dataset in form of a scatter plot, the

standard (orange) and marginalization-based approach (purple). (E–H) Results from adap-

tive Metropolis (top) and parallel tempering (bottom) are shown. (E,F) Parameter marginal

posterior distribution obtained using the (E) standard and (F) marginalization-based ap-

proach computed using a kernel density estimate for model parameter θ1. (G,H) Dimension-

ality reduction for all samples from all runs for the (G) standard and (H) marginalization-

based approach using the UMAP representation. Different shades correspond to individual

runs. The UMAPs were constructed using the Python package umap [35].

times with different starting points and random seeds for 106 iterations for the adaptive243

Metropolis-Hastings and 105 iterations for the adaptive parallel tempering algorithm. The244

maximum a posteriori estimates observed in the different runs provided similar fits (Fig-245

ure 6C,D). In contrast, the marginal distributions of the model parameters differed, with the246
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marginalization-based approach mostly providing broader parameter distributions than the247

standard approach (Figure 6E,F). The assessment of the reproducibility of the marginal dis-248

tributions revealed a high variability between different runs performed using the standard ap-249

proach (Figure 6E and Supplementary Figure S10). On the contrary, for the marginalization-250

based approach a good agreement between runs was observed (Figure 6F and Supplemen-251

tary Figure S11), indicating reproducibility. To verify that the behavior observed for the252

individual parameters is maintained in the full parameter space, we analyzed the overall253

agreement of all parameter samples across all runs for the standard and marginalization-254

based approach by visualizing the samples using the uniform manifold approximation and255

projection (UMAP) representation [35]. We found that the individual runs of the standard256

approach represent individual clusters in the UMAP (Figure 6G), while the individual runs of257

the marginalization-based approach were indistinguishable (Figure 6H). This revealed that:258

(i) in the marginalization-based approach all the individual runs sample from the same dis-259

tribution, and (ii) the standard approach failed for both algorithms considered here.260

The study of the model of signal processing in gastric cancer cells revealed that marginalization-261

based approach allows for reproducible sampling in problems, where the standard approach262

failed. While for the marginalization-based approach all runs provided consistent results, the263

standard approach failed to converge within an average CPU time of 150 hours rendering264

its application impracticable. Furthermore, our study provides improved estimates for the265

parameters (Supplementary Figure S12) of important processes of a drug used in clinical266

practice.267

In summary, the application of our marginalization-based approach to Bayesian inference for268

models with relative measurement data shows consistently that our approach yields the same269

marginal distributions for the parameters as the standard approach, while being highly more270

efficient in exploring the parameter space and enabling Bayesian inference of larger models,271

which was not possible before with the standard approach.272

Discussion273

Bayesian inference for models of biological processes requires the consideration of parame-274

ters of the dynamical systems as well as the measurement process. The unknown scaling275

factors, offsets and noise levels often resemble large fraction of the overall parameters [12].276

This complicates sampling and can render the generation of representative samples practi-277

cally infeasible. Here, we address this challenge by introducing a framework which employs278

(analytical) marginalization. This approach allows for the construction of a sample from the279

full posterior by (i) sampling a marginalized posterior for the parameters of the dynamical280

systems and (ii) conditional sampling of the observation parameters.281
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We evaluated the performance of our marginalization-based approach and compared it to282

the standard approach for four published models, with differences in their complexity. This283

revealed an increased effective sample size per unit of time, and increased transition proba-284

bilities between posterior modes. The marginalization-based approach was for all considered285

problems more efficient than the standard approach, but – more importantly – it also en-286

abled the assessment of the posterior distribution for larger models for which the standard287

approach failed to converge in the considered time-frame. Interestingly, there was no strong288

relation between the reduction of the problem dimensionality and the improvement in ef-289

ficiency. This is consistent with previous finding for hierarchical optimization [25]. Based290

on our observations we expect the sampling behavior to benefit substantially even from the291

removal of a small number of parameters, as (i) the likelihood value is often very sensitive292

to them, which produces narrow rims in the posterior distribution, and as (ii) the removal293

of a small number of parameters can result in a substantially increased probability to jump294

between modes. The latter was observed for the model of mRNA transfection.295

The approach presented here is not limited to relative measurement data, but also applicable296

to absolute measurements. As for these, the noise parameters would still have to be inferred297

(Supplementary Tables S1 and S2). We provide the detailed derivation in the Supplementary298

Material. Accordingly, our approach can be used for combinations of relative and absolute299

data. Also, it is applicable to different measurement process functions and noise models300

to the ones considered here. We hypothesize that also an extension to correlated noise is301

possible, but this remains to be assessed.302

The choice of conjugate priors for the marginalized parameters eased the analytical derivation303

of the marginal posterior. This implies in our case that observable and noise parameters304

are not independent under the prior. Mostly, this is not a problem since both parameters305

are related to the measurement process. However, in some cases, there might be known306

to be independent, therefore other prior distribution assumptions must be considered. It307

should be noted that the concept of marginalization is not restricted to integrals that are308

analytically solvable, but also numerical integration schemes can be considered. However,309

this would increase the required computation time (as observed in Figure 2B), but very likely310

the improved mixing properties would be maintained.311

The proposed method was beneficial in combination with adaptive Metropolis-Hastings and312

adaptive parallel tempering algorithms. We expect that the same will hold true for sampling313

algorithms exploiting gradient information, such as Hamilton Monte Carlo sampling [19, 20].314

As the marginal likelihood is differentiable, merely the derivation and implementation of315

the gradient is required. The usage of methods which exploit the Riemann geometry of316

the parameter space of statistical models, e.g., Metropolis-adjusted Langevin algorithm [36],317

might be slightly more involved. This requires the derivation of the marginalized Fisher318

information matrix. While we assume that this can be derived in closed-form or at least319
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be accurately approximated, the corresponding results are not yet available. Alternatively,320

automatic differentiation could be employed to obtain gradients [37].321

In this study, we focused on the assessment of parameter uncertainties for ODE models. Yet,322

as the marginalization-based approach provides a complete parameter sample, it facilitates323

also the evaluation of prediction uncertainties [16]. Accordingly, we expect that it might324

contribute to resolving reliability problems of Bayes prediction uncertainty analysis encoun-325

tered in recent studies [38]. Furthermore, the proposed approach is not limited to ODEs,326

but directly applicable for other deterministic models, e.g. partial differential equations. As327

well, the idea might be incorporated in likelihood-free inference schemes used for stochastic328

and multi-scale models [39, 40]. Among other things, it might be used in exact Approximate329

Bayesian Computation schemes [41] by reformulating the acceptance probability.330

In summary, the marginalization-based approach provides a new tool for Bayesian inference331

for models with observation-related parameters. It substantially benefits the efficiency of332

sampling-based approaches, and renders the generation of representative posterior samples333

for large models possible. As it is agnostic to the structure of the underlying dynamical334

model, it is widely applicable to mathematical models from different research fields, such as335

engineering, physics and ecology.336

Methods337

Mechanistic modeling of biological systems338

We consider models based on ODEs of the form339

ẋ(t, θ) = f(x(t, θ), θ), x(t0, θ) = x0(θ),

in which the vector field f : Rnx ×Rnθ → Rnx determines the temporal evolution of the states340

x(t, θ) ∈ Rnx . The unknown model parameters, which are estimated from the measurements,341

are denoted by θ ∈ Rnθ . Usually, θ includes reaction rate constants and initial amounts of342

species. Here, nx is the total number of modeled species, and nθ the total number of model343

parameters. The states x(t, θ) and model parameters θ are linked to the observables via344

the observation map h : Rnx × Rnθ → Rny , where ny is the total number of observables.345

The observables are the measured properties of the model. Most measurement techniques346

only provide relative information about the absolute concentrations of interest [8, 9] and,347

frequently, measurements are noise corrupted. Hence, to obtain the measurements ȳ (i) the348

model observables must be rescaled by introducing scaling factors and offsets, and (ii) the349

model also must capture experimental errors by defining a noise model. Most commonly,350
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independent and additive Gaussian distributed noise models are assumed351

ȳj,i = sj,i · hj(x(ti, θ), θ) + bj,i + εj,i, with εj,i ∼ N (0, σ2
j,i), (5)

with observable index j, time index i, scaling factors s ∈ Rny×nt , offsets b ∈ Rny×nt , and noise352

parameters σ ∈ Rny×nt . Here, nt denotes the total number of time points. These parameters353

are often unknown and, therefore, also need to be estimated along with the unknown model354

parameters. Other usual noise assumptions include log-normal distributed noise models [11]355

and Laplace distributed noise models [28]. In this study, we focus on the case of additive356

Gaussian noise (5), but implementations for log-normal and Laplace distributed noise models357

are provided in Supplementary Tables S1–S2 and Supplementary Material.358

We denoted the group of all measurements as D = {ȳj,i}j=(1,...,ny)

i=(1,...,nt)
.359

Benchmark models360

For the evaluation of the marginalization-based approach, we employed in total five models361

(one toy model and four published M1–M4) and their corresponding datasets (Table 1).362

Toy: Model of a conversion reaction363

The conversion reaction model was introduced in [28] and describes a reversible chemical364

reaction, which converts a biochemical species A to a species B with rate θ1, and B to A365

with rate θ2 (Figure 2). We modified the observation model to include scaling and offsets. For366

the evaluation of the proposed method, we generated one artificial dataset which is depicted367

in Figure 2D. For details on the model structure and synthetic data generation we refer to368

the Supplementary Material.369

M1: Model of EGF-dependent AKT pathway370

The model of EGF-dependent AKT pathway has been introduced in [29] and possesses in371

total 16 unknown parameters: 13 model parameters and 3 scaling factors (Table 1, M1).372

The available experimental data are a total of 144 data points under 6 different experimental373

conditions for 3 observables. For each data point, the corresponding variance of the measure-374

ment noise is provided, therefore it does not need to be estimated. The complete dataset is375

depicted in Supplementary Figure S2.376
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M2: Model of STAT5 dimerization377

The model of STAT5 dimerization has been introduced in [30] and possesses in total 9378

unknown parameters: 6 model parameters and 3 noise parameters. To this model, we have379

added 3 scaling factors (Table 1, M2), one per observable, for the sake of testing the proposed380

method. The available experimental data are a total of 48 data points for 3 observables. The381

complete dataset is depicted in Supplementary Figure S4.382

M3: Model of mRNA transfection383

The model for mRNA transfection has been introduced in [31] and possesses in total 5384

unknown parameters: 3 model parameters, 1 scaling factor, and 1 noise parameter (Table 1,385

M3). The complete dataset is depicted in Figure 3D. For further details of the model structure386

we refer to the Supplementary Material.387

M4: Model of gastric cancer signaling388

The model for gastric cancer signalling has been introduced in [27]. Here, we considered the389

Cetuximab responder cell line MKN1. The available experimental data for the responder390

cell line were a total of 303 data points under 106 different experimental conditions for 31391

observables. For each data point, the corresponding variance of the measurement noise was392

provided, therefore it did not need to be estimated.393

Parameter optimization394

To determine the maximum a posteriori (MAP) estimates, we minimized the negative log-395

posterior function. This minimization was performed using multi-start local optimization,396

an approach which was previously shown to be reliable [12, 42]. For local optimization, we397

used the trust-region optimizer fides [43]. Parameters were log10-transformed to improve398

numerical properties [42, 44, 45]. We generated 100 starting points for local optimization,399

except for model M4 for which we used 500 starting points.400

Bayesian parameter inference401

To perform Bayesian parameter inference, we used MCMC sampling following the pipeline402

presented in [46]. The MAP estimates were used to initialize the MCMC chains [46]:403

the full optimal vector (θ, s, b, σ2)∗ to initialize the standard approach runs, while for the404

marginalization-based approach runs the corresponding subset θ∗ from (θ, s, b, σ2)∗ was used.405
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The parameter posterior distribution was sampled using the adaptive Metropolis [18] and406

parallel tempering [47, 48] algorithms implemented in the Python toolbox pyPESTO [49].407

For the parallel tempering algorithm, we used 10 chains initialized at the 10 best local optima408

found during multi-start optimization for both approaches.409

Convergence after burn-in was assessed using the Geweke test [33] and auto-correlation

length using Sokal’s adaptive truncated periodogram-estimator [50], both also available under

pyPESTO. The effective sample size is given by

neff =
n

1 + 2
∑∞

τ=1 ρτ

where n is the number of samples remaining after discarding burn-in period, and ρτ is the410

estimated auto-correlation at lag τ .411

For all models, the prior hyperparameters for both sampling approaches were the same as412

used for optimization.413

Tempering scheme for the posterior analysis414

The posterior for standard and marginalization-based approach were tempered to assess415

transition characteristics (Figure 5). We used the tempered posteriors416

pT (θ, s, σ
2 | D) ∝

(
p(D | θ, s, σ2)p(θ)p(s, σ2)

)1/T
.

and417

pT (θ | D) ∝ (p(D | θ)p(θ))1/T .

with temperature T .418

Implementation and data availability419

Models M1, M2 and M4 were taken from the PEtab benchmark collection [51] which is based420

on [44] and available at https://github.com/Benchmarking-Initiative/Benchmark-Models-421

PEtab. As model M3 is analytically solvable, we implemented the solution in Python code.422

For ODE integration (models M1, M2 and M4) we used the Python toolbox AMICI [52]. For423

optimization and sampling, we used the Python toolbox pyPESTO [49]. pyPESTO already424

offers an interface to the fides optimizer [43]. For the UMAP visualizations and the mini-425

mum energy path calculation, we used respectively the Python packages umap [35] and mep426

https://github.com/chc273/mep.427

All code and models used in this study are available from the Zenodo database at https:428

//doi.org/10.5281/zenodo.7199473.429
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Figure S1: Parameter marginal posterior distributions computed using a kernel

density estimate for model M1. The marginalized parameters, which are conditionally

sampled, correspond to those denoted with scaling ∗.
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Figure S2: Complete dataset and model fit for model M1. Model simulation of the best

sample found for the standard approach is depicted in orange and for the marginalization-

based approach in purple. Different shades indicate different experimental conditions.
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Figure S3: Parameter marginal posterior distributions computed using a kernel

density estimate for model M2. The marginalized parameters, which are conditionally

sampled, correspond to those denoted with scaling ∗ and precision ∗.
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Figure S4: Complete dataset and model fit for model M2. Model simulation of the best

sample found for the standard approach is depicted in orange and for the marginalization-

based approach in purple.

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518841
http://creativecommons.org/licenses/by/4.0/


0.295 0.300 0.305
log10(t0)

0

50

100

150

200

250

300

kd
e

Standard

Marginalization-based

0.8 0.6 0.4 0.2 0.0
log10( )

0

1

2

3

4

5

6

0.8 0.6 0.4 0.2 0.0
log10( )

0

1

2

3

4

5

6

0.96 0.98 1.00
log10(kTL*m0)

0

20

40

60

80

2.0 2.1 2.2 2.3
log10(precision)

0

2

4

6

8

10

mRNA
transfection

Figure S5: Parameter marginal posterior distributions computed using a kernel

density estimate for model M3. The marginalized parameters, which are conditionally

sampled, correspond to kTL ∗m0 and precision.
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Figure S6: Minimum energy path of the tempered posteriors for a range of tem-

peratures considered in Figure 5A for model M3.
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Figure S7: Representative parameter traces for the model parameter β for a range

of temperatures considered in Figure 5A for model M3.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518841
http://creativecommons.org/licenses/by/4.0/


mRNA
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Figure S8: Representative parameter traces for the model parameter β for a range

of temperatures considered in Figure 5A for model M3.
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Figure S9: Correctness of the analytical integration for model M1, M2 and M3.

Scatter plot for the agreement of analytical and numerical integration for 50 different param-

eter vectors. The integration results are shown for each model observable.
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Figure S10: Parameter marginal posterior distributions using the standard ap-

proach for model M4. Results from two sampling algorithms (adaptive Metropolis and

parallel tempering) and only the subset of model parameters are shown. The marginals were

computed using a kernel density estimate.
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Figure S11: Parameter marginal posterior distributions using the marginalization-

based approach for model M4. Results from two sampling algorithms (adaptive Metropo-

lis and parallel tempering) and only the subset of model parameters are shown. The marginals

were computed using a kernel density estimate.
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Figure S12: Credible intervals for the model parameters of model M4. The credible

intervals were extracted from the MCMC samples obtained with the marginalization-based

approach. The credible levels 90%, 95% and 99% are shown. Parameter bounds used for

sampling are indicated in black dashed lines. Only the subset of model parameters are shown.
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Table S1: Overview of the marginalization-based approach applied to different observable combinations under unknown additive

and multiplicative Gaussian measurement noise. Observation parameters considered are scaling factors (s) and offsets (b). The noise

is denoted as precision λ := 1/σ2. For multiplicative noise, the logarithm of the scaling factor (slog) is used. Unknown/estimated observation

parameters are denoted by ✓, otherwise the fixed numerical value is shown. Further details for each case are in the Supplementary Material.
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i=1 ȳi)(
∑nt

i=1 hi)
(κ+nt)(τ+

∑nt
i=1 h

2
i )−(

∑nt
i=1 hi)

2 ,

λ′ = λ

(
τ +

∑nt

i=1 h
2
i −

(
∑nt

i=1 hi)
2

(κ+nt)

))

✓ 0 ✓

p(s, λ | µ, κ, α, β) =

= N (s | µ, (λκ)−1) · Γ(λ | α, β)

= βα√κ

Γ(α)
√
2π
λα−1/2 exp

(
−βλ− κλ(s−µ)2

2

)
p(D | θ) = (β/C)α

Γ(α)(2πC)nt/2
· Γ
(
α + nt

2

)
·
√

κ
κ+

∑nt
i=1 hi

2

with C := β + 1
2

(
κµ2 +

∑n
i=1 ȳ
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Table S2: Overview of the marginalization-based approach applied to different observable combinations under experimentally

measured additive and multiplicative Gaussian measurement noise. Observation parameters considered are scaling factors (s) and

offsets (b). The experimentally measured noise is denoted as precision λ̄ := 1/σ̄2. For multiplicative noise, the logarithm of the scaling factor

(slog) is used. Unknown/estimated observation parameters are denoted by ✓, otherwise the fixed numerical value is shown. Further details for

each case are in the Supplementary Material.
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[14] Weber, P., Hasenauer, J., Allgöwer, F. & Radde, N. Parameter estimation and identifia-473

bility of biological networks using relative data. In Bittanti, S., Cenedese, A. & Zampieri,474

S. (eds.) Proc. of the 18th IFAC World Congress, vol. 18, 11648–11653 (Milano, Italy,475

2011).476

33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518841doi: bioRxiv preprint 

https://doi.org/10.1101/pdb.top071795
https://doi.org/10.1101/2022.12.02.518841
http://creativecommons.org/licenses/by/4.0/


[15] Xu, T.-R. et al. Inferring signaling pathway topologies from multiple perturbation mea-477

surements of specific biochemical species. Sci. Signal. 3, ra20 (2010).478

[16] Raue, A., Kreutz, C., Theis, F. J. & Timmer, J. Joining forces of Bayesian and frequen-479

tist methodology: A study for inference in the presence of non-identifiability. Philos T480

Roy Soc A 371 (2013).481

[17] Hug, S. et al. High-dimensional Bayesian parameter estimation: Case study for a model482

of JAK2/STAT5 signaling. Math. Biosci. 246, 293–304 (2013).483

[18] Haario, H., Saksman, E. & Tamminen, J. An adaptive Metropolis algorithm. Bernoulli484

7, 223–242 (2001).485

[19] Graham, M. M. & Storkey, A. J. Continuously tempered hamiltonian monte carlo. In486

UAI (2017).487

[20] Hoffman, M. D. & Gelman, A. The No-U-turn sampler: Adaptively setting path lengths488

in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15, 1593–1623489

(2014).490

[21] Lacki, M. K. &Miasojedow, B. State-dependent swap strategies and automatic reduction491

of number of temperatures in adaptive parallel tempering algorithm. Stat. Comput. 26,492

951–964 (2015).493

[22] Bellman, R. E. Adaptive Control Processes (Princeton University Press, 1961). URL494

https://doi.org/10.1515/9781400874668.495

[23] Taylor, A. N. & Kitching, T. D. Analytic methods for cosmological likelihoods. Monthly496

Notices of the Royal Astronomical Society 408, 865–875 (2010). URL https://doi.org/497

10.1111/j.1365-2966.2010.17201.x.498

[24] Loos, C., Krause, S. & Hasenauer, J. Hierarchical optimization for the efficient499

parametrization of ODE models. Bioinf. 34, 4266–4273 (2018).500
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