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Abstract

The past decade has ushered in a resurgence of studies highlighting the importance of in-

trogression throughout the Tree of Life. Several methods exist for detecting and quantifying

introgression on a genomic scale, yet the majority of these methods primarily utilize signals of

derived allele sharing between donor and recipient populations. In this study, we exploit the

fact that introgression will not only result in derived allele sharing but also the reintroduction of

ancestral alleles to derive new estimators of the admixture proportion. Using coalescent simula-

tions, we assess the performance of our new methods and the methods proposed in Lopez Fang et

al. 2022 to assess the utility of incorporating shared ancestral variation into genome-wide infer-

ences of introgression. Using coalescent theory, simulations, and applying our methods to human

and canid data, we find that methods incorporating ancestral allele sharing are comparable to

their derived allele sharing counterparts, in turn providing researchers with the opportunity to

utilize more of the genomic signature of introgression.
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1 Introduction1

The field of evolutionary biology has seen a meteoric rise in the number of studies detecting2

and quantifying instances of introgression—the integration of foreign genomic blocks into a species’3

genomic background—throughout the Eukaryotic Tree of Life (Dagilis et al., 2022) since the pub-4

lishing of the draft Neanderthal genome in 2010 (Green et al., 2010). This is in large part due5

to the recent feasibility of next-generation sequencing technology, which has initiated a paradigm6

shift in how evolutionary biologists study introgression from comparing sequence similarity at some7

genetic markers between species to analyzing the whole genome via statistical methods—e.g., Pat-8

terson’s D—to make inferences of introgression by using site patterns as a proxy for genealogical9

relationships (Dagilis et al., 2022; Durand et al., 2011; Edelman & Mallet, 2021; Green et al., 2010).10

Recent years have ushered in an influx of studies demonstrating that introgression is not only more11

common than originally thought, but can also provide the raw genetic materials necessary for local12

adaptations (Hedrick, 2013; Huerta-Sánchez et al., 2014; Jagoda et al., 2022; Jones et al., 2018;13

Suarez-Gonzalez et al., 2018; Zhang et al., 2021), adaptive radiations (Malinsky et al., 2018; Meier14

et al., 2017; Pease et al., 2016; Richards & Martin, 2017; Stankowski & Streisfeld, 2015), and15

speciation (Bierne et al., 2013; Nelson et al., 2021; Rheindt & Edwards, 2011). However, even with16

keystone studies demonstrating that the evolutionary outcomes of introgression are diverse, it is17

challenging to assess its significance in evolution because the frequency of introgression across the18

Tree of Life is still unclear (Dagilis et al., 2022; Edelman & Mallet, 2021).19

The most popular statistical methods for making genome-wide inferences about introgression20

exploit asymmetries in observed site patterns (Dagilis et al., 2022). Statistical tests for site pattern21

asymmetries count the number of segregating sites that have a configuration of shared derived and22

ancestral alleles which are informative of introgression in a set of taxa. One example of these tests23

is Patterson’s D (Equation 1), where two configurations of derived allele sharing site patterns are24

used to test for the presence of introgression (Durand et al., 2011; Green et al., 2010). Genome-wide25

tests of introgression based on observed site patterns are relatively straight-forward to implement,26

computationally efficient to calculate, and provide a unified approach for detecting and quantifying27

introgression across the Tree of Life as they can be applied to both phylogenetic and population28

genetic data sets. Due to the utility of site pattern-based metrics of introgression, recent years have29

seen a rapid proliferation of site pattern-based statistics designed to detect and quantify genome-30
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wide levels of introgression (Durand et al., 2011; Hamlin et al., 2020; Lopez Fang et al., 2022;31

Martin et al., 2014; Pease & Hahn, 2015; Pfeifer & Kapan, 2019). However, until recently existing32

methods have strictly relied on the idea of derived allele sharing—where the donor and recipient33

populations both harbor the same derived allele—which only captures a small portion of the total34

genomic signature produced by introgression (Lopez Fang et al., 2022). Notably, Lopez Fang et al.35

2022 recently proposed the D+ statistic, which leverages both the sharing of derived and ancestral36

alleles between donor and recipient populations to detect genomic windows harboring introgressed37

segments in the genome.38

In this study we aim to assess if ancestral allele sharing site patterns are informative about39

introgression on a broader genomic scale. We first propose novel metrics to quantify the proportion40

of introgression that utilize ancestral allele sharing site patterns. Using coalescent simulations we41

assessed the performance of our newly proposed metrics and the metrics to detect introgression42

proposed by Lopez Fang et al. 2022. Lastly, we assessed the performance in empirical data by ap-43

plying all the introgression metrics to publicly available human and canid data sets (1000 Genomes44

Project Consortium et al., 2015; Freedman et al., 2014). We find that in both simulated and empir-45

ical data, all introgression metrics perform comparably, allowing researchers the opportunity to use46

multiple lines of evidence across more segregating sites throughout the genome to make inferences47

about introgression.48

2 New Approaches49

In practice, most site pattern-based metrics of introgression assume a four-taxon tree—Newick50

format: (((P1, P2 ), P3 ), O); site pattern format: (P1’s allelic state, P2’s allelic state, P3’s allelic51

state, O’s allelic state)—where P1 and P2 represent potential recipients of introgression from the52

donor population P3, and O represents an outgroup used to polarize ancestral states, in which A53

denotes the ancestral allele and B denotes the derived allele. Thus, the ABBA site pattern indicates54

that the derived allele is shared between P2 and P3, while the BABA site pattern indicates that55

the derived allele is shared between P1 and P3. Patterson’s D (Equation 1) specifically tests for56

patterns of derived allele sharing between donor and recipient populations and a significant excess57

of either aforementioned site pattern is suggestive of introgression (Durand et al., 2011; Green et al.,58

2010)59
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D (P1, P2, P3, O) =

∑n
i=1CABBA(i)− CBABA(i)∑n
i=1CABBA(i) + CBABA(i)

(1)

where CABBA(i) and CBABA(i) are indicator variables that take a value of either zero or one condi-60

tioned on observing an ABBA or BABA site pattern at site i for all n sites where we have data for61

all four samples (Durand et al., 2011; Green et al., 2010). Due to its computational efficiency and62

ability to discriminate between coalescent histories of incomplete lineage sorting (ILS)—the process63

where two lineages fail to coalesce in their most recent common ancestral population—and intro-64

gression, Patterson’s D is the most widely used summary statistic to detect introgression (Dagilis65

et al., 2022). However, there is no theoretical or biological reason to believe that introgression will66

only result in the sharing of derived alleles. This is because introgressed genomic segments contain67

both new derived alleles and re-introduced ancestral alleles. Using this logic, Lopez Fang et al.68

2022 derived the expected branch lengths where a single mutation would generate a BAAA and69

ABAA site pattern respectively, which represents the ancestral allele sharing analogs to the ABBA70

and BABA site patterns. Notably, the authors demonstrated that the expected difference in the71

number of ABBA and BABA sites is equivalent to the expected difference in the number of BAAA72

and ABAA sites in the instantaneous unidirectional admixture (IUA) model of introgression—see73

the Appendix for the model description—providing the motivation to construct Danc (Equation 2),74

a statistic that leverages ancestral allele sharing to detect local introgressed regions75

Danc (P1, P2, P3, O) =

∑n
i=1CBAAA(i)− CABAA(i)∑n
i=1CBAAA(i) + CABAA(i)

(2)

where CBAAA(i) and CABAA(i) are indicator variables that take a value of either zero or one76

conditioned on observing a BAAA or ABAA site pattern at site i for all n sites where we have77

data for all four samples. They also defined D+, a statistic (Equation 3) which leverages both the78

sharing of derived and ancestral alleles to strengthen inferences for detecting locally introgressed79

genomic regions80

D + (P1, P2, P3, O) =
(
∑n

i=1CABBA(i)− CBABA(i)) + (
∑n

i=1CBAAA(i)− CABAA(i))

(
∑n

i=1CABBA(i) + CBABA(i)) + (
∑n

i=1CBAAA(i) + CABAA(i))
(3)

and found that D+ was a more reliable statistic than D to detect introgression in small genomic81

windows (Lopez Fang et al., 2022). As researchers are also interested in quantifying the amount82
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of introgression, here we construct estimators to infer the fraction of the genome shared through83

introgression—hereafter referred to as the admixture proportion. One approach to infer the ad-84

mixture proportion is to assess the ratio of observed differences in allele sharing between the donor85

and recipient populations—i.e., the P3 and P2 populations respectively—in the numerator and86

the expected differences assuming the entire genome was introgressed—i.e., complete homogeniza-87

tion of allele sharing—from P3 to P2 in the denominator (Martin et al., 2014). This approach88

(Equation 4) was first described only in terms of derived allele sharing between recipient and donor89

populations in Martin et al. 2015 as an alternative to the original estimator of the admixture90

proportion described in Durand et al. 2011 where two pseudo-haploid genomes are created by91

randomly sub-sampling chromosomes from the P3 individual. In the simplest case of only having92

four whole-genome alignments—which are monoploid—this pseudo-haploid approach is not possi-93

ble, so Martin et al. 2015 proposed to use the sampled P3 sequence twice in the denominator to94

circumvent the need for creating pseudo-haploid genomes. The original estimator of the admixture95

proportion from Martin et al. 2015 is fhom (Equation 4)96

S (P1, P2, P3, O) =

n∑
i=1

CABBA(i)− CBABA(i) (4a)

fhom (P1, P2, P3, O) =
S (P1, P2, P3, O)

S (P1, P3, P3, O)
(4b)

where homogenization is accomplished by replacing P2 with P3 in the assumed underlying species97

tree—i.e., in Newick format (((P1, P3 ), P3 ), O)—when computing the denominator. It should be98

noted that when written in terms of derived allele frequencies and in the most simplest case of only99

having four whole-genome sequences, fhom is equivalent to F4-ratio (Patterson et al., 2012). Given100

that patterns of ancestral allele sharing between donor and recipient populations mirror those of101

their derived allele sharing counterparts we can re-derive fhom in terms of BAAA and ABAA site102

patterns resulting in fanc (Equation 5).103

Sanc (P1, P2, P3, O) =

n∑
i=1

CBAAA(i)− CABAA(i) (5a)

fanc (P1, P2, P3, O) =
SANC (P1, P2, P3, O)

SANC (P1, P3, P3, O)
(5b)
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Lastly, given that introgressed segments are inherited in blocks consisting of both new derived104

alleles and re-introduced ancestral alleles one can formulate quantification metrics that consider all105

possible site patterns that represent allele sharing between recipient and donor populations; such106

as f+ (Equation 6).107

S + (P1, P2, P3, O) =

(
n∑

i=1

CABBA(i)− CBABA(i)

)
+

(
n∑

i=1

CBAAA(i)− CABAA(i)

)
(6a)

f + (P1, P2, P3, O) =
S + (P1, P2, P3, O)

S + (P1, P3, P3, O)
(6b)

Note that all coalescent based expectations and equations written in terms of derived allele fre-108

quencies can be found in the Appendix.109

3 Results110

3.1 Ancestral & Derived Allele Sharing Site Pattern Differences Are Equivalent111

Across All Admixture Proportions112

We first validated the theoretical result proposed by Lopez Fang et al. 2022 that the (ABBA –113

BABA) and (BAAA – ABAA) site pattern differences are equivalent by simulating whole-genome114

sequences under an IUA model of introgression using parameters that reflect the demographic115

history of humans (Figure S1) using the coalescent simulator msprime v1.1.1 (Baumdicker et116

al., 2022). For each simulation replicate, we sample one chromosome from each population, and117

computed the difference—i.e., (ABBA – BABA) – (BAAA – ABAA). We simulated 100 replicates118

under the demographic model to generate a distribution of the difference. We calculated the mean119

of the difference over the number of replicates and we take the absolute value of the mean—so that120

the mean difference is always positive. We then test to see if the mean is statistically significantly121

different from zero. For different values of the admixture proportion ranging from 0% to 50%,122

we find that the difference of site pattern differences does not significantly differ from zero under123

the IUA model (see Figure 1 and Table S4). This is also true in the case of a more complex124

demographic history—e.g. such as the one in Ragsdale and Gravel 2019—or when we consider a125

larger sample size (n=100), where the variance of the differences gets smaller (see Figure 1; Tables126

S4-S6 and S19-S20). These results suggest that the theoretical expectation is robust to sampling127
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scheme, demographic history, and the amount of introgression, providing us with justification for128

constructing introgression metrics that incorporate ancestral allele sharing site patterns.129
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Figure 1: The mean (dots), standard deviation (error bars), and the theoretical expectation (dashed

line and y = 0) for the difference of site pattern differences in simulations under an IUA model of

introgression (panels A and D) and a more realistic model of human demography modified from

Ragsdale and Gravel 2019 (panels B-C and E-F) with a sampling scheme of n = 1 and n = 100

genomes from each of the potential recipient populations.

3.2 The Power To Detect Introgression Is Comparable Across All Metrics130

Simulating under the IUA demographic model, we generated distributions of D, Danc, and D+131

and subsequently computed the mean simulated value per admixture proportion. Table S10 shows132

that the mean simulated values for these statistics match the values of D, Danc and D+ calcu-133

lated using the theoretical expectations of the number of ABBA, BABA, BAAA, and ABAA site134

patterns (Equations A1-A3). We next assessed how the power to correctly detect introgression in135

simulated data differed between D, Danc, and D+. We define power as the number of replicates136
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that significantly differ from zero out of 100 total simulated replicates per admixture proportion; to137

test for statistical significance we constructed 1000 bootstrapped genomes per simulation replicate138

and calculate each introgression dection metric, which were used to generate a z -distribution and139

subsequent p-values. Like D, D+ and Danc are able to correctly identify instances of introgression140

and we observe that the power to correctly identify instances of introgression is largely consistent141

across all metrics (Figure 2; Tables S7-S9). Notably, in simulations with no introgression (i.e.,142

when f = 0 ) D+ and Danc either always incorrectly detect introgression at the same rate or lower143

rate as D, suggesting that on average D+ and Danc have a lower false positive rate (FPR) than144

D. Under the IUA model of introgression D and D+ are always able to correctly identify intro-145

gression at comparable rates and outperform Danc. For more realistic demographic histories, on146

average D slightly outperforms D+ for smaller amounts of introgression while both statistics tend147

to outperform Danc (Tables S8-S9). Additionally, the power to correctly detect introgression always148

increased when the sample size increases in all models explored (Figure 2; Tables S7-S9).149
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Figure 2: The power to correctly detect introgression in simulations under an IUA model of in-

trogression (panels A and D) and a more realistic model of human demography modified from

Ragsdale and Gravel 2019 (panels B-C and E-F) with a sampling scheme of n = 1 and n = 100

genomes from each of the potential recipient populations. Note that the power at f = 0 corresponds

to the false positive rate since no introgression has occurred.

3.3 The Power To Quantify Introgression Is Nearly Identical Across All Metrics150

Simulating under the IUA model with varying admixture proportions from 0% to 50% we gen-151

erated distributions and computed the simulated mean values of fhom, fanc, and f+. Notably, the152

coalescent based expectations closely mirror the mean inferred admixture proportions across all153

simulations, providing evidence that fhom, fanc, and f+ are all accurate metrics for quantifying in-154

trogression given the underlying IUA model (Figure 3; Table S16). We next evaluated the power of155

fhom, fanc, and f+ to infer the true admixture proportion in simulated data under the assumption156

that a perfect estimator of the admixture proportion would infer the same value as the simulated ad-157

mixture proportion—i.e., f̂ = f . Under this assumption we calculated the root-mean-square-error158
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(RMSE ) and mean-absolute-error (MAE ) of each quantification metric for all simulated admixture159

proportions. Despite that fhom, fanc, and f+ all generally underestimate the true admixture propor-160

tion for our demographic models, the power to infer the admixture proportion is nearly identical161

across all metrics (Table S13-S15). In fact, Tables S16-S18 demonstrate that the mean inferred162

admixture proportions varied at most by 0.1% across all metrics for any given demographic model,163

sampling scheme, and simulated admixture proportion. However this is to be expected given that164

fhom, fanc, and f+ all have the same coalescent based expectation—i.e., (f)•(TP3−TGF )
TP3+2N (see equations165

A7-A9 in the Appendix).166
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Figure 3: The mean (dots), standard deviation (error bars), and the theoretical expectation (solid

horizontal lines) of fhom, fanc, and f+ in simulations under an IUA model of introgression with a

sampling scheme of n = 1 (panel A) and n= 100 (panel B) genomes from each of the potential

recipient populations.
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3.4 All Introgression Metrics Perform Similarly In Human & Canid Data167

Before calculating fhom, fanc, and f+ in empirical data, we wanted to investigate the behavior of168

ancestral and derived allele sharing site patterns. We first calculated ABBA, BABA, BAAA, and169

ABAA using the modern-day humans in the 1000 Genomes Project (TGP) and the high-coverage170

Altai Neanderthal genome (1000 Genomes Project Consortium et al., 2015; Prüfer et al., 2014).171

We first wanted to test if the difference of site pattern differences significantly deviated from zero172

by calculating site pattern counts for every non-African individual in the TGP and calculating the173

mean difference of site pattern differences per chromosome for every population. Concordant with174

our theoretical and simulated results, on average the mean difference of site pattern differences175

per chromosome was within two standard deviations of the theoretical expectation of zero (Figure176

4). However, it should be noted that not all chromosomes were within two standard deviations,177

particularly, this was the case for chromosome 19 in every non-African population (Figure 4).178

Additionally, we computed the distribution of the difference across the whole genome (Figure179

5) to assess if the genomic mean difference of site pattern differences significantly differed from180

zero in each population. After correcting for multiple comparisons, we found that only the CDX181

population did not meet our theoretical expectation (Figure 5; Table S21). Next, we inferred the182

Altai Neanderthal admixture proportion in each non-African individual and again concordant with183

our theoretical and simulated results we find that all estimates of the admixture proportion are184

concordant among trios with the mean fhom, fanc, and f+ values all being within one standard185

deviation of one another within each non-African population (Figure 6; Table S22). As all the186

statistics studied here can also be defined as functions of allele frequency (see Equations A4-A6187

and A10-A12), we also used the derived allele population frequencies to infer the presence and188

amount of introgression in every non-African population. Remarkably, we find that all D, Danc,189

and D+ estimates are statistically significant after correcting for multiple comparisons and that190

estimates of fhom, fanc, and f+ are nearly identical with nearly identical standard deviations (Table191

S23). Furthermore, estimates of the admixture proportion are in agreement with previous estimates192

of roughly 1% of Neanderthal introgression (Green et al., 2010; Mafessoni et al., 2020; Prüfer et al.,193

2017; Prüfer et al., 2014).194

We also sought out to apply our methods in a non-human data set, and we chose canid data195

to investigate the behavior of ancestral and derived allele sharing site pattern-based introgression196
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metrics when only one individual per population is sequenced. To do so, we calculated all site197

patterns and introgression metrics from high-coverage whole-genome sequences for the ((Dingo,198

Basenji), Israeli Wolf) trio where we used the Golden Jackal as an outgroup—we chose this trio as199

it has the largest significant Z-score for Patterson’s D reported in the original paper (Freedman et200

al., 2014). It should be noted that it is highly unlikely that any biological system has experienced201

a demographic history that mirrors the IUA model which the underlying expectations for site202

pattern differences are based on; to this extent we propose a definition of approximately equivalent,203

which is defined as site pattern differences having the same sign and same order of magnitude.204

Notably, even though the demographic history of canids is known to violate the underlying IUA205

model, the site pattern differences are concordant with our definition of approximately equivalent206

(Table S24). Additionally, concordant with the original findings from Freedman et al. 2014, we find207

that all introgression detection metrics are statistically significant and that all inferred admixture208

proportions varied at most by 1.4% Israeli Wolf ancestry between quantification metrics (Table209

S24).210
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(dashed line and y = 0) for the mean difference of site pattern differences among trios per chromo-

some for every non-African population in the 1000 Genomes Project.
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Figure 6: The mean (dots, triangles, and squares) and standard deviation (error bars) of fhom, fanc,

and f+ among trios for every non-African population in the 1000 Genomes Project.

4 Discussion211

The genomic era continues to provide evidence that post-divergence gene flow events are much212

more common than previously appreciated. Characterizing what are the effects and consequences213

of introgression across the tree of life requires providing robust tools that are able to efficiently214

and confidently detect and quantify such events. Here, in addition to using derived allele sharing215

between a putative donor and recipient population, we proposed to also incorporate ancestral allele216

sharing to construct estimators of the admixture proportion—e.g. fanc and f+. In our study we217

benchmark D, Danc, D+, fhom, fanc, and f+ which can be used to detect and quantify introgression.218

In particular, we use coalescent theory, simulations, and publicly available empirical data, to show219

that genome-wide site pattern-based tests of introgression that rely on ancestral, derived, and both220

patterns of allele sharing perform comparably, providing researchers the opportunity to corroborate221

claims of introgression from multiple metrics that exploit different genomic signals.222
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Our results show that D, Danc, and D+ can detect the presence of introgression. On average223

Danc has less power to detect introgression when compared to D and D+, but Danc on average also224

exhibits the lowest FPR (Tables S7-S9). D tends to slightly have more power to detect introgression225

than D+ but also tends to have higher FPR compared to D+ (Tables S7-S9). In empirical data226

we found that D, Danc, and D+ gave concordant results, suggesting that all of the aforementioned227

statistics are appropriate for detecting introgression on genome-wide data sets. The power to228

correctly infer the admixture proportion suffers from theoretical constraints. Specifically, fhom,229

fanc, and f+ all have the same theoretical expectation of (f)•(TP3−TGF )
TP3+2N (see equations A7-A9 in the230

Appendix), which makes it clear that we will always underestimate the admixture proportion. In231

simulated data the mean fhom, fanc, and f+ values closely mirrored the theoretical expectations232

(Figure 3; Table S13) and all quantification metrics exhibit nearly identical RMSE and MAE233

with respect to the simulated admixture proportion (Tables S13-S15). Additionally, in human234

data not only do we observe nearly identical estimates of the admixture proportions between all235

metrics studied here, but also nearly identical standard deviations for both trio and population236

level estimates (Figure 3; Table S23 and S22). Taken together we propose that researchers make237

use of both derived and ancestral allele sharing site pattern-based tests of introgression to make238

more thorough assessments about the presence and amount of introgression. To this extent we also239

developed a lightweight python package RIPTA (Re-evaluating Introgression site Patterns Through240

Ancestral alleles) to calculate all site patterns and introgression metrics studied in here.241

Our theoretical and simulation results have shown that the expectation of site pattern differences—242

i.e., (ABBA – BABA) – (BAAA – ABAA)—is zero. This is true even when we consider complex243

demographic histories (Figure 1). When we count these site patterns using human and archaic244

genomes, we found that most non-African chromosomes in the TGP do not depart from this theo-245

retical expectation (Figures 4-5; Table S21). One exception is chromosome 19 (see Figure 4), where246

the difference of (BAAA – ABAA) is larger than (ABBA – BABA), and this is true across all247

non-African populations. We tested to see if more complex demographic histories that have been248

proposed for human populations could lead to deviations from zero. For example, we tried incor-249

porating population expansions and contractions, multiple pulses of introgression, and a dilution250

in the recipient population, and none of these models result in a difference that deviates from zero251

(Tables S5-S6 and S19-S20).252
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Another explanation for this observation, could be a component of evolution that our simulations253

ignored, such as natural selection. Studies have shown that Neanderthal alleles were originally costly254

on the modern human genetic background due to genetic load (Harris & Nielsen, 2016; Kim et al.,255

2018). It has also been shown that the effects of Neanderthal ancestry is negatively correlated with256

exon density under an additive fitness model (Kim et al., 2018). Given that chromosome 19 has257

the highest gene density in the genome (Grimwood et al., 2004), we hypothesize that the effects of258

natural selection may influence these site patterns. However, while some studies have shown that259

derived archaic alleles were likely mostly deleterious in modern humans, we know very little about260

what evolutionary forces (if any) acted on ancestral alleles that were re-introduced into modern261

humans with archaic introgression. We acknowledge that the BAAA and ABAA site patterns262

are likely to be more sensitive to differences in mutations rate in the two sister populations—i.e.,263

P1 and P2—than ABBA and BABA sites. This might be contributing to observation that the264

difference of (BAAA – ABAA) is larger than (ABBA – BABA), where more BAAA sites could265

indicate a higher mutations rate in P1 vs P2. As this is only observed in chromosome 19, we think266

it is more likely that other evolutionary forces might be contributing to this signature, but more267

work is needed to characterize what can lead to deviations from zero.268

In summary, we have provided further evidence that ancestral allele sharing site patterns are269

informative for detecting introgression on a genome-wide scale and are robust to realistic models270

of human demography. Additionally, we have derived novel estimators of the admixture propor-271

tion and demonstrated that these methods provide reliable estimates of the admixture proportion.272

Applying it to empirical data in humans suggests that chromosome 19 is an outlier with respect to273

the difference in ancestral allele sharing site patterns. None of the demographic histories that we274

simulated lead to deviations, so we hypothesize that other non-neutral processes may be at play.275

More work to investigate how natural selection acted on ancestral alleles that were reintroduced276

into human populations through introgression with archaic humans might provide insights into how277

evolutionary forces have shaped introgressed genetic variation.278

5 Materials and Methods279

All annotated code to recreate all analyses and annotated Jupyter Notebooks with walk-280

throughs of how to perform all analyses described in this paper can be found at https://github.com/281
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David-Peede/anc-der-intro-proj. The RIPTA package to calculate site patterns and all introgression282

metrics studied here can be found at https://github.com/David-Peede/RIPTA.283

5.1 Simulation Design284

All demographic models were quality controlled using msprime v1.1.1 and visualized using285

demesdraw v0.3.0 (Baumdicker et al., 2022; Gower et al., 2022). All demes .yaml files with de-286

mographic histories needed to reproduce our results can be found https://github.com/David-Peede/287

anc-der-intro-proj/tree/main/simulations/yamls.288

5.1.1 IUA Model289

To assess the statistical power of all introgression metrics discussed in this study we simu-290

lated whole-genome sequences based on a three-taxon tree following IUA model described in Du-291

rand et al., 2011, and in Green et al., 2010. Using the coalescent simulator msprime v1.1.1 we292

simulated 100 Mb genomes under a demographic model with the following parameters: TP3 =293

16,000 generations ago, TP2 = 4,000 generations ago, TGF = 1,600 generations ago, constant294

and equal Ne = 10,000 for all populations, r = 1e-8 per bp per generation, and µ = 1.5e-8295

per bp per generation under a Jukes-Cantor substitution model (Baumdicker et al., 2022). Our296

parameter space was constructed to reflect a simplified version of human evolution with intro-297

gression from the Neanderthal population into the Eurasian population as was originally de-298

scribed in Racimo et al., 2017. The divergence times, timing and direction of introgression,299

and mutation and recombination rates are all direct reflections of the original parameter space,300

and represent plausible parameter values for the well studied case of Neanderthal introgression301

(Racimo et al., 2016). The only model parameter varied was the simulated admixture propor-302

tion f ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5} which was used to303

determine the behavior of the introgression metrics studied here, for both plausible and theoretical304

amounts of introgression. For each of the 15 admixture proportions, 100 replicate simulations were305

performed, either n = 1 or n = 100 simulated genomes were sampled per potential recipient popu-306

lation per replicate, and one simulated genome was sampled from the donor population, which were307

then used to calculate site pattern counts and all introgression metrics described in this paper.308
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5.1.2 Non-IUA Models309

To determine the statistical power of all introgression metrics in a more realistic model of human310

demographic history, we used the used the demographic model proposed by Ragsdale and Gravel311

2019 implemented in stdpopsim v0.1.2 (Adrion et al., 2020; Ragsdale & Gravel, 2019). To make312

this model more comparable to our analyses using the IUA model we modified the model (see Figure313

S2) to consist of discrete pulses of introgression—one pulse into the Eurasian population, and one314

pulse into CEU and CHB populations respectively—by taking the midpoint of the two periods of315

continuous bidirectional gene flow described in the original model. The simulation design for the316

modified Ragsdale and Gravel 2019 model is the exact same as described in the previous section.317

Additionally, we ran all sets of analyses on the original model (see Figure S3) using the original318

estimates of bidirectional gene flow (Ragsdale & Gravel, 2019). Lastly, to assess if the difference of319

site pattern differences would significantly deviate from zero we chose to simulate multiple pulses of320

introgression, ghost introgression, and a dilution event from a so called ”Basal Eurasian” population321

(see Figures S4-S5). We used demographic parameters described in Rogers and Bohlender 2015,322

Villanea and Schraiber 2019, and Ragsdale and Gravel 2019 to run 100 replicate simulations per323

all pairwise possibilities of plausible Neanderthal fNEA ∈ {0, 0.005, 0.01, 0.015, 0.02} and Denisovan324

fDEN ∈ {0, 0.005, 0.01, 0.015, 0.02} admixture proportions for sampling schemes of n = 1 and n =325

100 simulated genomes from the potential recipient populations, and one simulated genome from326

the Neanderthal population (Ragsdale & Gravel, 2019; Rogers & Bohlender, 2015; Villanea &327

Schraiber, 2019).328

5.2 Assessing Introgression Metrics In Simulated Data329

For all 100 replicate simulations per admixture proportion we assessed the theoretical expec-330

tation that (ABBA – BABA) is equivalent to (BAAA – ABAA) by computing the difference of331

site pattern differences—i.e., (ABBA – BABA) – (BAAA – ABAA)–per replicate to construct a332

z -distribution. We then assessed if the absolute value of the mean difference of site patterns dif-333

ferences significantly differed from the theoretical expectation of zero using the scipy.stats.sf334

function in scipy v1.7.2, and corrected for multiple comparisons using the Bonferroni correc-335

tion (Virtanen et al., 2020). To determine the significance of introgression detection metrics—i.e.,336

D, Danc, and D+—for each simulation replicate we built a bootstrapped distribution of 1,000337
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bootstrapped replicates, where each bootstrapped replicate consists of concatenating 1,000 100 kb338

windows that were randomly sampled with replacement to build 100 Mb bootstrapped genomes339

for each focal population. The bootstrapped genomes were then used to construct z -distributions340

of D, Danc, and D+ per replicate, and a nominal p-value of < 0.05 was used as the significance341

threshold. The power to detect introgression using D, Danc, and D+ was then determined by the342

proportion of replicates that were statistically significant per admixture proportion. The power343

to accurately infer the true—i.e., simulated—admixture proportion using fhom, fanc, and f+ was344

assessed by calculating root-mean-square-error (RMSE ) and mean-absolute-error (MAE ) using the345

following equations:346

RMSE =

√√√√∑100
i=1

(
f̂i − ftrue

)2
100

(7)

MAE =

∑100
i=1

∣∣∣f̂i − ftrue

∣∣∣
100

(8)

where f̂i represents the inferred admixture proportion for the ith replicate simulation out of 100 total347

replicates and where ftrue represents the admixture proportion used in the simulation to infer f̂ . We348

chose to assess the performance of each introgression quantification metric using both the RMSE349

and MAE because both values are in the same units as the admixture proportion and because both350

quantify the amount of dispersion in the estimates of the inferred admixture proportion around the351

simulated admixture proportion where the RMSE values gives more weight to inferred estimates352

that have the large amounts of error while MAE values equally weight the amount of error in all353

inferred estimates.354

5.3 Human Application355

The all sites VCF files for the high-coverage genome of the Altai Neanderthal were downloaded356

from https://www.eva.mpg.de/genetics/genome-projects, the curated and imputed high quality357

genotypes from the phase three release of the 1000 Genomes Project (TGP) in VCF format was358

download from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502, and the ancestral al-359

lele calls in fasta format for the Hg19 assembly using the Enredo, Pecan, Ortheus (EPO) pipeline360

was download from http://ftp.ensembl.org/pub/release-74/fasta/ancestral alleles (1000 Genomes361
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Project Consortium et al., 2015; Herrero et al., 2016; Prüfer et al., 2014). The autosomal TGP362

and Altai Neanderthal VCF files were merged using the merge command from the bcftools v1.13363

package and the resulting merged VCF files were then filtered to only contain sites with no missing364

data, an ancestral allele call, and bi-allelic SNPs with a mapping quality of 25 or higher and a365

genotype quality of 40 or higher (Li, 2011). Site patterns and all introgression metrics were then366

calculated for every non-African individual using the following configuration P1 = NA18486 (a367

randomly chosen individual from Yoruba in Ibadan, Nigeria), P2 = non-African individual, P3 =368

Altai Neanderthal, and O = EPO ancestral allele call. Statistical tests based on the difference369

of site pattern difference distributions per non-African TGP population were carried out in the370

same manner as described in previous methods subsection for both individual chromosomes and371

the entire genome. Next, site patterns and all introgression metrics were additionally calculated372

from derived allele frequencies using the following configuration P1 = Yoruba in Ibadan, Nigeria373

(YRI), P2 = non-African population, P3 = Altai Neanderthal, and O = EPO calls. Lastly, for374

the population level comparisons, the significance of introgression detection metrics—including cor-375

recting for multiple comparisons using the Bonferroni correction—and standard deviations for the376

introgression quantification metrics were determined from bootstrapped distributions consisting of377

1,000 replicates, which were generated from 1,000 bootstrapped genomes per population, where378

a single bootstrapped genome was constructed from concatenating 303 randomly sampled with379

replacement 10 Mb windows.380

5.4 Canid Application381

The merged VCF files for the high-coverage canid data-set were downloaded from https://doi.382

org/10.5061/dryad.sk3p7 (Freedman et al., 2014). The autosomal VCF files were then filtered by383

the genomic-feature (GF=1) flag using the view command from the bcftools v1.13 package. Ad-384

ditionally, when performing calculations we only used sites where all focal individuals passed their385

respective sample filters—i.e., SF=1 flag. We calculated site patterns and all introgression metrics386

for the configuration P1 = Dingo, P2 = Basenji, P3 = Israeli Wolf, and O = Golden Jackal387

because the aforementioned trio had the highest degree of confidence for a significant Patterson’s388

D reported in the original paper (Freedman et al., 2014). Lastly, the significance of introgres-389

sion detection metrics and standard deviations for the introgression quantification metrics were390
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determined from bootstrapped distributions consisting of 1,000 replicates, which were generated391

from 1,000 bootstrapped genomes per individual canid, where a single bootstrapped genome was392

constructed from concatenating 220 randomly sampled with replacement 10 Mb windows.393

6 Data Availability394

All annotated code and previously published publicly available data sets needed to reproduce395

the entirety of this manuscript can be found at the url links described in the methods section.396
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Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., Vernot, B., Skov, L.,499
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