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Abstract

Inference and interpretation of evolutionary processes - in particular of the types and targets of natural

selection affecting coding sequences, are critically influenced by the assumptions built into statistical

models for such analyses. If certain aspects of the substitution process (even when they are not of direct

interest) are presumed absent or are modeled with too crude of a simplification, estimates of key model

parameters can become biased - often systematically, and lead to poor statistical performance. Here, we

performed a detailed characterization of how modeling instantaneous multi-nucleotide (or multi-hit, MH)

substitutions impacts dN/dS based inference of episodic diversifying selection at the level of the entire

alignment. The inclusion of MH reduces the rate (1.37-fold or 26.8%) at which positive selection is called

based on the analysis of N=9,861 empirical data-sets, while offering significantly better statistical fit to

sequence data in 8.37% of cases. Through additional simulation studies, we show that this reduction is not

simply due to loss of power because of additional model complexity. After a detailed examination of 21

benchmark alignments and a new high-resolution analysis showing which parts of the alignment provide

support for positive selection, we reveal that MH substitutions occurring along shorter branches in the

tree are largely responsible for discrepant results in selection detection. Our results add to the growing

body of literature which examines decades-old modeling assumptions and finds them to be problematic

for biological data analysis. Because multi-nucleotide substitutions have a significant impact on natural

selection detection even at the level of an entire gene, we recommend that routine selection analysis of this

type consider their inclusion. To facilitate this procedure, we developed a simple model testing selection

detection framework able to screen an alignment for positive selection with two biologically important

confounding processes: synonymous rate variation, and multi-nucleotide instantaneous substitutions.

Key words: Molecular Evolution, Evolutionary shortcuts, Multi-nucleotide substitutions, codon
substitution models

Introduction

Reliable and robust detection of natural selection

from coding sequences continues to be of

significant interest in comparative genomics and

evolutionary biology literature. Estimation of

dN/dS (Kosakovsky Pond et al., 2020) analyses

using codon-substitution models is a workhorse

of selection detection. Its seminal methods have
c© The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.
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been published several decades ago (Goldman and

Yang, 1994; Muse and Gaut, 1994), and still enjoy

wide-spread use, testifying to their utility and

longevity. Because computers have gotten faster,

and datasets much larger, some of the simplifying

assumptions in the seminal dN/dS selection tests

have been re-examined, and generally found to

be wanting. For example, the assumption that

synonymous rates (dS) do not vary across sites in

a gene is nearly universally violated, and typically

inflates the rates of false positives of selection tests

(Pond and Muse, 2005). This led us to recommend

the inclusion of variable dS in all selection tests

(Wisotsky et al., 2020).

Another important modeling assumption, which

is the focus of this study, is that codon

substitutions which involve multiple nucleotides

(e.g., ACC→AGG) must be the result of several

evolutionary steps, each of which replaces a

single nucleotide (e.g., ACC→ACG→AGG).

This assumption is encoded in substitution rate

matrices of the models as 0 rates for any "multi-

hit" (MH) substitutions. The "single-hit" (SH)

assumption has been repeatedly investigated in

modeling literature and in every instance we

found, MH models provided a better fit to the

data, and (when examined) the performance of

positive selection tests was affected by MH (see a

brief review in (Lucaci et al., 2021; Venkat et al.,

2018), and also further discussion herein). For a

specific type of selection analysis: investigation of

genes subject to positive selection on the human

branch, standard (SH) branch-site selection tests

suffer unacceptably high rates of false positives

on neutrally evolving data simulated with MH

(Venkat et al., 2018). The intuition is quite simple:

a few (or even a single) MH substitutions occurring

on a short branch can push dN/dS estimates

above 1 with SH models.

So why have MH models not been more widely

adopted in selection analyses? Especially since

existing literature implies that not modeling

MH could invalidate a substantial fraction of

selection analyses? All of the following factors

appear plausible. First, a general biological

mechanism for generating MH substitutions that

are sufficiently widespread to matter for selection

analyses is not apparent, although candidate

processes do exist (e.g., polymerase zeta). Second,

it is unclear if a statistical improvement in

fit achieved by adding a layer of complexity

to already complex models may simply absorb

another, unmodelled, evolutionary factor, which

may have little to do with MH – an aptly

named phenomenological loading (Jones et al.,

2018). Third, high throughput analyses on

automatically generated alignments, even when

carefully curated, may be mistaking upstream

alignment or sequencing errors as evidence of non-

standard evolutionary features (Di Franco et al.,

2019; Rosenberg, 2005). Fourth, popular selection

tests which the users are familiar with and are

comfortable using do not provide support for MH,

and what effect un-modeled MHmay have on these
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tests has not been systematically explored. Fifth,

folding more parameters into a substitution model

can lead to loss of statistical power.

In this paper we present a practical approach

to handling MH when looking for signatures of

episodic diversifying positive selection (EDS)

at the level of an entire gene. We modified

the BUSTED method for EDS detection

(Murrell et al., 2015) to allow multi-nucleotide

substitutions (+MH), and investigated its

performance compared to the versions of BUSTED

without MH support. We based our comparisons

on 21 diverse benchmark alignments, i.e., those

studied for the purposes of selection detection in

literature, a large set of high-quality mammalian

gene alignments, and on simulated data. When

the inclusion of MH significantly altered the

results of selection detection tests, we endeavored

to understand the basis of such disagreement,

which prompted us to develop a set of exploratory

tools for interpreting BUSTED results. Based

on the synthesis of empirical and simulated data

analyses, we propose a simple model selection

framework to decide if the inclusion of MH

support in EDS analyses is important. This

framework may serve as a recommendation for

practical comparative selection analyses, which

attempts to balance the impetus to account for

increased false positive rates when MH is present

but unmodelled, and to mitigate statistical power

loss because of increased parametric complexity

of the models.

New Approaches

Results
High-level model description

We compared four different BUSTED class models

(see Methods for complete details), each of which

tests for evidence of a non-zero fraction of

branch-site combinations evolving with ω>1, but

makes different assumptions about confounding

evolutionary processes. We evaluate four models:

• the baseline model (BUSTED),

• a model which adds site-to-site synonymous rate

variation (+S),

• a model with support for instantaneous double-

and triple-nucleotide substitutions within a

single codon (+MH),

• and a model with support for both (+S+MH),

(cf Table 1 for additional details). These models

form a nested hierarchies (BUSTED⊂+S⊂

+S+MH and BUSTED⊂+MH⊂+S+MH)

and can be compared using either information

theoretic criteria or pairwise likelihood ratio tests.

Analysis of benchmark alignments

It is informative to begin by examining how

the four competing models (Table 2) perform

on a collection of empirical sequence alignments.

We screened 21 alignments for evidence of EDS.

These alignments were chosen because they have

each been previously analyzed (many in multiple

papers) for evidence of natural selection using

a variety of models, and because they represent

different alignment sizes, diversity levels, and
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Model Reference Non-synonymous rates Synonymous rates Multi-nucleotide
substitutions

Number of
parameters

BUSTED Murrell et al.
(2015)

Random effects branch-site
modeled by a K(=3)-bin
discrete distribution

None None B+13+2×K

+S Wisotsky et al.
(2020)

Random branch-site effects
modeled by a K(=3)-bin
general discrete distribution

Random site effects modeled
by an L(=3)-bin unit mean
general discrete distribution

None B+11+2×
(K+L)

+MH Lucaci et al.
(2021)

Random branch-site effects
modeled by a K(=3)-bin
general discrete distribution

None Alignment-wide double- (δ)
and triple-(ψ) nucleotide
substitution rates

B+15+2×K

+S+MH This paper Random branch-site effects
modeled by a K(=3)-bin
general discrete distribution

Random site effects modeled
by an L(=3)-bin unit mean
general discrete distribution

Alignment-wide double- (δ)
and triple-(ψ) nucleotide
substitution rates

B+13+2×
(K+L)

Table 1. Substitution models considered in this paper. B - the number of branches in the phylogenetic tree. K and L are
user-tunable parameters, set to 3 each by default.

taxonomic groups, all of which impact selection

analyses .

The inclusion of site-to-site synonymous rate

variation is strongly supported for all 21

datasets (in agreement with Wisotsky et al.

(2020)), and further addition of multi-nucleotide

substitution (MNS) support is preferred by AICc

in 12/21 datasets (Table 2). The addition of

model complexity reduces the rate at which

EDS is detected, with the simplest model

(BUSTED) returning significant test results for

14/21 datasets, and the most complex model

(+S+MH) – for 9/21. Because our primary

analytical endpoint is the detection of EDS, we can

categorize the alignments into those where models

agree, and those where they disagree. We begin

with the seven datasets where all four models

failed to detect EDS.

Primate lysozyme. (best model: +S) A version of

this dataset was originally used to show lineage

specific variation in dN/dS (or ω) in Yang (1998),

where tests assuming no site-to-site rate variation

(SRV) also identified positive selection (mean ω>

1) on the hominoid lineage. This evidence is no

longer statistically significant if a suitable multiple

testing correction is applied to the original results.

Overall, this is a low divergence dataset with

relatively few substitutions (Table 3).

Tick-borne flavivirus NS-5 gene. (+S+MH)

This dataset was analyzed in Yang et al. (2000a)

and originally sourced from Kuno et al. (1998);

no evidence of positive selection was found in

the original papers. This is a high-divergence

alignment, including 51 events when all three

nucleotides are inferred to have changed along a

single branch at a particular site (Table 3).

ADORA3 (+S) This alignment of adenosin A3

receptor (placental mammals) was analyzed using

Bayesian mutation selection models by Rodrigue

et al. (2021), who reported weak to no evidence of

adaptive evolution.

COXI (+S) Primate cytochrome oxidase subunit I

mitochondrial sequences were previously analyzed

in (Seo et al., 2004) using Bayesian methods; they

found significant lineage-to-lineage variation in

absolute synonymous and non-synonymous rates,

but strong conservation (ω�1) overall. We find

no evidence of MNS, including 0 point estimates

4

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518889
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2022/12/2 — 18:25 — page 5 — #5i
i

i
i

i
i

i
i

TITLE · doi:10.1093/molbev/mst012 MBE

Alignment N S L AICc
+S+MH

∆AICc vs +S+MH p-value for EDS EDS detection

BUSTED+S +MH +S+MH BUSTED +S +MH Averaged
Mam. β−globin 17 144 3.85 7420.9 31.9 -5.2 36.4 0.2219 0.0000 0.0000 0.0485 0.0154 Discordant
Primate Lysozyme 19 130 0.25 2149.8 16.0 -4.2 20.3 0.5000 0.3668 0.5000 0.3845 0.5000 All, no
Sperm lysin 25 134 4.46 8765.3 156.3 -4.2 158.8 0.0000 0.0000 0.0000 0.0000 0.0000 All, yes
HIV vif 29 192 0.95 6911.0 190.8 2.8 187.2 0.5000 0.0002 0.0239 0.0424 0.4052 Discordant
Drosophila adh 23 254 1.76 9357.8 14.1 -3.9 17.2 0.0255 0.0003 0.0016 0.0197 0.0046 All, yes
Flavivirus NS5 18 342 9.42 18488.0 301.9 43.1 280.8 0.5000 0.4218 0.4999 0.5000 0.5000 All, no
Hepatitis D Ag 33 196 2.23 10416.1 281.1 8.0 259.9 0.0314 0.0000 0.0000 0.0019 0.0309 All, yes
ADORA3 67 107 4.61 12612.2 251.0 -3.6 255.2 0.5000 0.5000 0.5000 0.5000 0.5000 All, no
Streptococcus PTS 16 639 11.27 17344.6 206.5 31.5 169.1 0.0000 0.0007 0.0000 0.0879 0.0000 +S/+S+MH, yes
Primate COXI 21 510 11.25 24292.0 101.2 -3.4 106.3 0.5000 0.5000 0.5000 0.5000 0.5000 All, no
Encephalitis env 23 500 0.89 13703.1 42.3 -4.0 44.1 0.5000 0.5000 0.5000 0.5000 0.5000 All, no
Rhodopsin 38 330 5.32 25902.4 495.1 21.7 483.6 0.2279 0.0000 0.0000 0.0000 0.2279 Discordant
Camelid VHH 212 96 15.87 33665.6 1474.4 28.5 1424.7 0.0040 0.0000 0.0000 0.0000 0.0040 All, yes
Mammalian RBP3 54 412 4.71 43083.9 577.6 1.5 575.8 0.4939 0.4530 0.3321 0.5000 0.4427 All, no
Mammalian VWF 62 392 5.37 45992.5 940.3 5.5 931.8 0.5000 0.0767 0.1513 0.4988 0.4786 All, no
Mammalian mtDNA 20 3331 10.09 179797.7 1688.2 11.8 1697.3 0.1713 0.0061 0.0346 0.0204 0.1710 Discordant
IAV H3N2 HA 349 329 1.39 23228.2 637.2 14.4 630.8 0.5000 0.0000 0.1060 0.3637 0.4997 +S/+S+MH, no
HIV rt 476 335 7.19 52033.6 1717.5 1.4 1721.4 0.0006 0.0000 0.0000 0.0000 0.0004 All, yes
rbcL 483 466 11.88 152988.8 4341.6 76.5 4315.7 0.0000 0.0000 0.0000 0.0000 0.0000 All, yes
SARS-CoV-2 S 180 1284 0.13 17817.4 649.3 -3.7 624.7 0.0002 0.0000 0.0000 0.0002 0.0001 All, yes
IAV H1N1 HA 466 589 2.15 51414.6 912.0 -3.8 913.4 0.0000 0.0000 0.0000 0.0003 0.0000 All, yes

12 0 9 0 9 14 13 12 10

Table 2. Selection analysis on benchmark alignments (sorted by data matrix size, from smallest to largest). N - the number
of sequences, S - the number of codons, L - total tree length in expected substitutions/nucleotide, measured under the
BUSTED+S+MH model. AICc S+MH - small sample AIC score for the BUSTED+S+MH model (shown in boldface if
this model is the best fit for the data, i.e. has the lowest AICc score) , ∆AICc - differences between the AICc score for the
corresponding model and the BUSTED+S+MH. p-value for ESD: the likelihood ratio test p-value for episodic diversifying
selection under the corresponding model (4 digits of precision); shown in boldface if ≤0.05. The Averaged column shows
model averaged p-values (see text). The last column indicates model agreement with respect to detecting ESD at p≤0.05.
The last row shows the number of times each model was preferred by AICc, and the number of significant LRT tests for
each model and the model averaged approach.

for δ and ψ, despite >100 events with more than

one nucleotide being substituted along a single

branch at a given site (Table 3). As reported by

(Lucaci et al., 2021), standard models are often

able to properly account for multiple nucleotide

substitution events along long branches.

Japanese encephalitis env gene. (+S) This

alignment was included in Yang et al. (2000a), who

found it to be subject to strong purifying selection.

VWF (+S+MH) The von Willbrand factor gene

(placental mammals) from Rodrigue et al. (2021),

who found some evidence of positive selection

with mutation-selection Bayesian models (none

with standard site-heterogenous codon models),

although the authors caution that other un-

modeled evolutionary processes (e.g. CpG hyper-

mutability) could confound inference.

RBP3 (+S+MH) Retinol-binding protein 3

(placental mammals) from Rodrigue et al. (2021);

no evidence of positive selection was found in this

gene by the original authors.

Next, we describe the eight datasets where all

of our models found statistical evidence for EDS

(LRT p≤0.05).

adh (+S) Drosophila alcohol dehydrogenase (adh)

gene (originally from Hudson et al. (1987)),

studied in numerous selection detection papers,

including Yang et al. (2000a) and Rodrigue et al.

(2021). Most analyses failed to detect evidence

of diversifying selection, despite long-standing

supposition that balancing selection is acting

on this gene. Rodrigue et al. (2021) reported

that mutation-selection models detected numerous

sites subject to selection; our methods allocate
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Alignment ω3(p3) CV (α) δ ψ Substitutuons (%) L
+MH +S 1H 2H 3H 1H 2H 3H

β−globin 2.834 (6.08%) 8.925 (3.70%) 1.263 0.241 - 526 (11.78) 110 (2.46) 24 (0.54) 0.26 0.36 0.52
Lysozyme 1.002 (0.00%) 1.002 (0.00%) 1.242 - - 81 (2.08) 3 (0.08) 0 (0.00) 0.02 0.04 0.00
Lysin 17.459 (7.57%) 17.020 (7.70%) 0.867 - - 514 (8.16) 149 (2.37) 33 (0.52) 0.18 0.22 0.30
HIV vif 1.226 (1.00%) 2103.279 (0.05%) 1.049 0.004 0.163 446 (4.30) 20 (0.19) 5 (0.05) 0.03 0.04 0.04
adh 4.056 (2.38%) 4.144 (2.50%) 0.594 0.032 - 693 (6.34) 66 (0.60) 14 (0.13) 0.10 0.15 0.16
Flavivirus NS5 1.105 (0.00%) 1.006 (2.23%) 1.286 0.377 0.986 1956 (17.33) 270 (2.39) 58 (0.51) 0.48 0.58 0.58
Hepatitis D Ag 11.306 (1.71%) 16.249 (1.96%) 0.902 0.143 - 665 (5.39) 122 (0.99) 14 (0.11) 0.08 0.13 0.18
ADORA3 1.013 (0.00%) 1.000 (3.46%) 0.662 0.053 - 1135 (8.35) 75 (0.55) 3 (0.02) 0.06 0.09 0.14
Streptococcus PTS 9.489 (1.56%) 11.871 (1.85%) 1.046 0.310 1.054 1245 (6.72) 293 (1.58) 76 (0.41) 1.79 1.98 1.96
Mammalian COXI 1.021 (1.06%) 1.000 (1.09%) 2.342 - - 3160 (15.89) 132 (0.66) 6 (0.03) 0.43 0.45 0.59
Encephalitis env 3.166 (0.00%) 1.002 (0.00%) 0.671 0.012 - 1068 (4.97) 26 (0.12) 0 (0.00) 0.04 0.05 0.00
Rhodopsin 5.453 (0.37%) 6.376 (1.31%) 1.403 0.345 0.515 2488 (10.77) 257 (1.11) 45 (0.19) 0.12 0.15 0.16
Camelid VHH 9.193 (2.53%) 24.513 (2.04%) 0.817 0.157 - 2393 (6.91) 528 (1.52) 72 (0.21) 0.09 0.11 0.12
RPB3 1.258 (0.44%) 1.541 (2.03%) 0.593 0.111 0.054 4093 (9.46) 300 (0.69) 18 (0.04) 0.08 0.10 0.11
VWF 1.073 (0.36%) 1.973 (2.35%) 0.643 0.130 - 4608 (9.71) 381 (0.80) 22 (0.05) 0.08 0.11 0.17
Mammalian mtDNA 1.310 (1.04%) 1.434 (1.33%) 1.268 0.227 - 19892 (16.14) 1873 (1.52) 225 (0.18) 0.42 0.57 0.67
IAV H3N2 HA 1.002 (0.00%) 1.550 (29.48%) 1.064 0.062 0.015 1320 (0.74) 29 (0.02) 1 (0.00) 0.00 0.00 0.01
HIV rt 50.714 (0.07%) 48.230 (0.10%) 0.940 0.028 - 4149 (1.35) 129 (0.04) 10 (0.00) 0.02 0.02 0.03
rbcL 37.569 (0.14%) 49.827 (0.19%) 0.831 0.113 0.016 12185 (2.77) 653 (0.15) 72 (0.02) 0.02 0.03 0.02
SARS-CoV-2 S 5.990 (20.12%) 5.746 (29.04%) 3.132 0.012 - 421 (0.13) 13 (0.00) 0 (0.00) 0.00 0.00 0.00
IAV H1N1 HA 1039.054 (0.01%) 862.821 (0.01%) 0.835 - - 3216 (0.73) 43 (0.01) 2 (0.00) 0.01 0.02 0.00

Table 3. Substitution process characterization on benchmark alignments. ω3(p3) - the maximum likelihood estimate of the
ω ratio for the positively selected class, along with its estimated fraction, for +S and +S+MH models. CV (α) - coefficient of
variation for the inferred distribution of site-to-site synonymous substitutions rates (+S+MH model). δ – the MLE for the
two-hit substitution rate, ψ – the MLE for the three-hit substitution rate; 0 point estimates are shown as - for readability.
Substitutions - the counts (and fractions of total branch × sites pairs) where one (1H), two (2H) or three (3H) nucleotides
change along the branch under the +S+MH model. L - mean branch lengths for branches experiencing 1H, 2H, and 3H
substitutions under the +S+MH model.

2.5% (of branch-site pairs) to the positively

selected regime.

Lysin (+S) This alignment of abalone sperm lysin

from Yang et al. (2000b) is a canonical example

of diversifying positive selection, e.g., due to self-

incompatibility constraints. There is no support

for MNS in this alignment despite relatively high

divergence and numerous multi-nucleotide branch-

site substitution events (Table 3).

Hepatitis D Ag (+S+MH) Anisimova and Yang

(2004) analyzed an alignment of Hepatitis Delta

virus antigen gene with site-heterogeneous

methods, and reported extensive positive

selection. Our best fitting model (+S+MH)

estimates 1.7% fraction of branch-site pairs to

be subject to EDS (ω≈11.3). The MNS signal

is entirely due to double-nucleotide substitutions

(δ̂=0.143). While all models have p≤0.05 for

EDS, the p-value is highest for the +S+MH

model, as we show later, this is a common

pattern, when the addition of MNS support

reduces (or eliminates) statistical significance

levels of tests for EDS.

Camelid VHH (+S+MH) Su et al. (2002) studied

this variable regions of immunoglobulin heavy

chains in camelids using relatively underpowered

counting methods, and found extensive evidence

of positive selection. The best fitting model

(+S+MH) allocates 2.5% of branch-site pairs to

the positively selected class (ω≈9.2) and the MNS

signal is driven by double-nucleotide substitutions

(δ̂=0.157).

HIV-1 rt (+S+MH) A HIV-1 reverse

transcriptase alignment comprises pairs of

sequences from individuals prior to and following

antiretroviral treatment, studied by Seoighe et al.

(2007) to examine selective pressures due to the

development of drug resistance. There is marginal
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evidence of MNS based on AICc, and very strong

(ω∼50) positive selection on a small (∼0.1%)

fraction of branch-site pairs.

rbcL (+S+MH) Tamuri and Dos Reis (2022)

examined this alignment of plant RuBisCO with

a penalized likelihood mutation-selection model

(no MNS), and identified numerous sites subject

to pervasive positive selection. We find strong

evidence of MNS based involving both two- and

three-nucleotide substitutions, and very strong

(ω∼38) positive selection on a small (∼0.14%)

fraction of branch-site pairs.

SARS-CoV-2 S (+S) A collection of full-length

SARS-CoV-2 spike genes from variants of concern

and other representative lineages, obtained from

GISAID (Shu and McCauley, 2017). Numerous

previous studies (e.g. Martin et al. (2021, 2022);

Viana et al. (2022)) detected positive selection on

this gene, driven primarily by immune selective

pressure and enhanced transmissibility. The best-

fitting model (+S) infers that a very large fraction

of this gene (∼20%) is subject to positive selection

(ω≈5.7).

IAV H1NA1 (+S) Tamuri and Dos Reis (2022)

performed a detailed analysis of this H1N1

Influenza A virus (human hosts) hemagluttinin

dataset and found 14-18 (depending on model

parameters) sites under selection. Our analysis

detects very strong (ω∼1000) positive selection

on a very small (∼0.01%) fraction of branch-site

pairs, and no evidence of MNS.

Lastly, we discuss the six remaining datasets,

where EDS detection depends on the model. These

are the most important to address, because they

represent the cases where selection inference is, in

some sense, not robust to modeling assumptions.

β−globin (+S) Mammalian β−globin is one

of the datasets from Yang et al. (2000a) where

positive selection has been inferred, and confirmed

using many other studies and methods (e.g.,

Rodrigue et al. (2021)). All of our models, except

for +S+MH, including the best fitting model

(+S), also infer positive selection. However, the

addition of MNS (+S+MH) model results in the

elimination of statistical significance; this appears

to be the case of overfitting, because +S+MH is

supported neither by AICc, nor by direct nested

LRT between the two models (p∼0.5).

HIV-1 vif (+S+MH) HIV-1 viral infectivity

factor (vif) was inferred to be under positive

selection in Yang et al. (2000a), but not according

to our best-fitting model (+S+MH). The second

best fitting model (+S), whose AICc is only

slightly higher, returns a significant p-value for

EDS. To better understand which features of

the dataset leads to discordant conclusions, we

applied fit profiling techniques (see Methods), and

found that a single codon in the alignment (codon

6) contributes the majority of the cumulative

likelihood ratio test signal (Figure S1) for the

+S model. Furthermore, a single triple-nucleotide

substitution along a terminal tree branch at that

7
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A. Codon 6, HIV-1 vif B. Codon 19, vertebrate rhodopsin C. Codon 2555, mammalian mtDNA

FIG. 1. Example sites from benchmark alignments with discordant selection signal. Only substitutions involving
multiple nucleotides are labeled (codon/amino-acid). Coloring of the branches represents the ratio of empirical Bayes factors
for ω>1 at this branch/site (see Methods) between the +S+MH and +S models. Values <1 imply that the +S+MH model
has less support for ω>1 than the +S model. The scales are different for each of the examples because they have dramatically
different ranges.

site, CAG (Q) → GCA (A), contributes the bulk

of statistical support for EDS in the +S model

and the addition of MHS the model completely

eliminates this support (Figure 1.A). Multi-

nucleotide substitutions along short branches have

been shown to return false positive selection

detection results in simulations (Lucaci et al.,

2021; Venkat et al., 2018). Masking a single

codon (GCA) with gaps in the alignment and

rerunning BUSTED+S yields a non-significant p-

value for EDS. The fact that a single codon can be

responsible for the detection of gene-wide positive

selection does not inspire confidence in the positive

result with the +S model.

Streptococcus (+S+MH). Dunn et al. (2019)

analyzed this trehalose-specific PTS sugar

transporter system alignment (gene 2 in their

study) using parameter rich models including

MNS and found evidence of positive selection

(ω+ =4.9,p+ =0.028). Our best fitting model

(+S+MH) infers a 1.6% fraction of branch-site

pairs to be subject to EDS (ω≈9.5), and so

does the second best fitting model (+S). The

contrarian model (+MH) is a much poorer fit to

the data, and can be discounted.

Vertebrate Rhodopsin (+S+MH). This dim-

light vision protein was exhaustively analyzed

by Yokoyama et al. (2008) with comparative

methods and via experimental assays. They found

that amino-acid substitutions at 12 sites altered

a key phenotype (absorption wavelength, λmax

8
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of some sequences, but that traditional site-

level methods for diversifying selection detection

found fewer sites without significant phenotypic

impact. Our best (+S+MH) and second best (+S)

fitting models return strongly discordant results

for EDS (p=0.23 and p<0.0001, respectively).

Both double- (257 events) and triple-nucleotide

(45 events) substitution rates have non-zero

MLE (Table 3). Compared to the +S model,

the +S+MH model infers a smaller fraction

of branch site combinations (0.37% vs 1.31%)

with lower ω (5.5 vs 6.4). We noticed a similar

trend with simpler rate variation models in

Lucaci et al. (2021) – the inclusion of MNS

reduces ω estimates. Most of the sites which

contribute signal to EDS detection with the +S

model, contribute less (or no) signal under the

+S+MH model (Figure S1), with strong reduction

occurring at short branches which harbor multi-

nucleotide substitutions (Figure 1.B). One obvious

explanation for model discordance is loss of power

for the more parameter rich +S+MH model, but

it seems unlikely. When we simulate under the +S

model (using parameter fits from the data, which

includes EDS), the power to detect selection is

comparable between the models (0.99 for +S+MH

vs 1.00 for +S, please see the Simulated Data

section for more details).

Mammalian mtDNA (+S+MH). This concatenated

alignment of mammalian mitochondrial genomes

ships as a test dataset with the PAML package

and has been recently re-analyzed by Jones

et al. (2018) using several models including

those supporting MNS, which were preferred. Our

analyses also indicate support for MNS (both

double- and triple-nucleotide), but the +S+MH

model (best-fitting) and +S model (second best

fitting) disagree on the presence of EDS. The

+S model (Table 3) allocates 1.3% of branch-

site combinations to a weakly selected component

(ω=1.4), but the source of this support is

diffuse across many sites, with relatively little

signal contributed by individual sites (Figure S1).

Similarly, the reduction is EDS support under

+S+MH is also diffuse and less pronounced for

individual sites. Because of longer branches, even

sites with extensive MNS have a minor decrease

in inferred local support for EDS when comparing

+S+MH and +S models (Figure 1.C). Analysis

of 100 replicates generated under the +S model

shows that the lack of detection under S+MH is

probably not due to because of significant power

loss (0.50 for +S+MH vs 0.65 for +S, please see

the Simulated Data section for more details)

IAV H3N2 (+S+MH). Yang (2000) examined an

alignment of human isolates of H3N2 Influenza A

virus hemagluttinin sequences, originally studied

by Bush et al. (1999), for evidence of EDS

using site-level methods and found support for it.

With the exception of the poorly-fitting BUSTED

model, our analyses fail to find evidence of EDS,

potentially because of extensive synonymous rate

9
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variation (Wisotsky et al., 2020), although the

addition of MNS support without SRV (+MH

model), also removes the selection signal.

In summary, there is a good degree of agreement

between models in detecting episodic diversifying

selection on 21 benchmark datasets, with 15/21

agreements among all models and 17/21 for

the best fitting models (+S and +S+MH),

Cohen’s κ=0.63 (substantial agreement). In all

four substantively discordant cases, +S+MH did

not find evidence for selection, while +S – did

find such evidence. This greater "conservatism"

on the part of +S+MH is unlikely to be

due to significant loss of power relative to +S

(see Simulations), and manual examination of

discordant datasets points towards events which

involve multi-nucleotide changes along shorter tree

branches as a main driver of the differences.

In nearly all of the datasets, +S+MH model

infers a smaller proportion of sites subject to

weaker (smaller ω) selection, implying that the +S

model, at least for the datasets where +S+MH

is preferred by AICc may be absorbing some

of the un-modeled multi-nucleotide substitutions

into the ω distribution (Jones et al., 2018; Lucaci

et al., 2021).

Model averaged p-values

As a simple and interpretable approach to

synthesize the results different models fitted

to the same dataset, and account for different

goodness-of-fit, we propose a model averaged

p-value. It is defined as pMA=
∑M

m=1pmwm, where

the sum is taken over all models considered, pm is

the p-value returned by model m and wm is the

Akaike weight for model m (Wagenmakers and

Farrell, 2004). wm=exp([AICbest
c −AICm

c ])/2),

where AICbest
c is the score of the best-fitting

model normalized to sum to 1 over all M models.

The Akaike weight, wm, can be interpreted as

∼P (model = m|data), when M models are being

compared. Consequently, if model m returns

the likelihood ratio test of LRTm, then pMA∼∑M
m=1P (LRT ≥LRTm|null model m)P (model = m|data).

The model averaged approach detects the same

9 datasets as the +S+MH model, and also the

β−globin dataset, where the +S model (with

EDS signal) has a sufficiently significant edge in

goodness of fit to "outvote" the +S+MH model

(Table 2). As our simulation results show (next

section), the model averaged approach is a simple

and automated way to control false positives, while

maintaining very good power.

Analysis of simulated alignments
Four taxon tree null simulations.

We generated synthetic alignments of 4

sequences with 800 codons each, using

the tree shown in Figure 2, subject to

negative selection or neutral evolution

(ω1 =0.1(50%),ω2 =0.5(25%),ω3 =1.0(25%)),

under the +S or +S+MH models. We varied the

2H rate (δ), and the 3H rate (ψ) as well as lengths

of two of the 5 branches in the tree, generating

100 replicates for each parameter combination

10
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considered. We then fitted +S and +S+MH

models to all of the replicates, and tabulated false

positive rates (FPR).

False positive rates. As the 2H rate (δ)

increases (Figure 2), the +S model shows

progressively higher FPR (reaching 100%),

coupled with increasingly biased estimates of ω3

– the positive selection model component. On the

other hand, the +S+MH model shows nominal

or conservative FPR, and generally consistent

estimates of ω3. Because the +S+MH model has

increasingly better fit to the data as δ becomes

larger, the model averaged p-value (which gives

progressively more weight to +S+MH), also has

controlled FPR, with the exception of slightly

elevated rates for 0.15≤δ≤0.25. Therefore,

the +S model appears to "absorb" unmodeled

multiple-hit substitutions into biased ω estimates,

which leads to catastrophically high rates of false

positives. An identical pattern is observed for a

fixed δ and increasing rates of 3H substitutions

(ψ), seen in Figure 2. Finally, FPR of the +S

model also depends on branch lengths of the

tree. In these simple simulations branch lengths

∼0.05 show an elevation in +S FPR rates.

The intuition is simple: very short branches do

not accumulate many substitutions (no signal),

sufficiently long branches do not benefit as much

from access to instantaneous 2H substitutions,

because over longer branches it is nearly as

easy to obtain a 2H substitution via two (or

more) consecutive 1H substitutions allowed in

the standard models. Short branches with multi-

nucleotide substitutions force the +S model to

absorb these unmodeled changes into the ω rate,

and have the largest effect on FPR rates.
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BUSTED-MH 4-taxon simulation results
I generated synthetic data replicates using the BUSTED-MH model on the following
4-taxon tree.

tree = Phylotree {newick_string: "((a:0.25,b:0.25):0.25,c:0.1,d:0.1)", nodes: Zh, links: Array(5), parsed_tags: Array(0)

renderedTree = TreeRender {css_classes: Object, phylotree: Phylotree, container: undefined, separation: ƒ(_node, _previous)
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First, I varied the rate of two-nucleotide (2H) instananeous substitution rate (δ)
using the following grid of 16 values. The value of 0 corresponds to the standard
(single hit model), and with increasing values of δ the impact of instantaneous 2H
substitutions is progressively higher. 100 replicates were generated per value of δ.

grid = Array(16) [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

I used the following 3-bin distribution of ω ratios; this corresponds to neutral
evolution or negative selection.

0.0 0.2 0.4 0.6 0.8 1.0
dN/dS

As δ varied, I tracked the rate with which the BUSTED[S] (no MH) and
BUSTED+S+MH (MH) model detected positive selection, i.e. the rate of false
positives, the estimated ω3 (highest rate), and estimated δ.

0.15 0.19 0.02 0.05 1.48 1 2.69 1.07 1 1.71 0.09

0.2 0.26 0.01 0.07 1.66 1.14 2.97 1.08 1 1.88 0.2

0.25 0.25 0.03 0.06 1.86 1.17 3 1 1 1.55 0.21

0.3 0.4 0.02 0.04 2.09 1.37 3.65 1 1 1.63 0.25

0.35 0.47 0.01 0.03 2.12 1.35 3.54 1 1 1.27 0.28

0.4 0.65 0.01 0.03 2.61 1.84 6.11 1.06 1 1.46 0.32

0.45 0.69 0 0 2.43 1.64 4.73 1 1 1.39 0.39

0.5 0.75 0 0 2.98 1.87 6.89 1 1 1.41 0.46

0.6 0.89 0 0 3.78 2.17 10.01 1 1 1.37 0.57

0.7 0.98 0.01 0.02 3.8 2.65 17.83 1 1 1.48 0.67

0.8 0.97 0 0 5.15 2.68 36.13 1 1 1.34 0.77

0.9 1 0 0 6.93 2.94 45.33 1 1 1.19 0.87

1 1 0 0 8.23 3.87 34.43 1 1 1.27 0.94

δ Detection +MH Detection MA Detection Median ω3 ω3 Q1 ω3 Q3 +MH median ω3 +MH ω3 Q1 +MH ω3 Q3 median [δ] +MH preferred
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vegalite ({
  "data": {
    "values": simulation_summary,
  },
  "vconcat" : [{
      "hconcat" : [ 
        {  
            "resolve": {"scale": {"y": "independent"}},
            "title" : {"text" : "ψ = 0, baseline 4-taxon topology", "fontSize" : 20},
            "width" : 400,
            "encoding": {"x": {"field": "δ", "type": "quantitative", "title": "Simulated δ rate",  "axis" : 
{"labelFontSize" : 12, "titleFontSize" : "18", grid : false}, "scale" : {"type": "linear", "zero" : false, "domain" 
: [0,1]}},
                "color": {
                  "type": "nominal",
                  "scale": {"domain": ["+S", "+S+MH", "Averaged", "Nominal"], "range": ["firebrick", 
"steelblue","orange", "black"]}
                }
                        
            },
            "layer": [
              {
                "mark": {"type": "rule", "color": "black", "size": 4, "thickness" : 5, "opacity" : 1.},
                "encoding": {
                  "y": {"datum" : {"expr" : "0.05"}, "type" : "quantitative","axis" : null, "scale" : {"type": 
"linear", "zero" : "false", "domain" : [0,1]}}
                },
                
              },
              {
                "mark": {"type": "line", "color": "firebrick", "size": 2, "thickness" : 2, point : true},
                "encoding": {
                  "y": {"field": "Detection", "type": "quantitative", "axis" : null, "scale" : {"type": "linear", 
"zero" : "false", "domain" : [0,1]}},
                  "color": {"datum": "+S", "legend" : {"labelFontSize" : 14, "orient" : "top-left"}}
                },
                

FIG. 2. Model performance on null simulated data.
Left column : false positive detection rate for EDS (at
p≤0.05) as a function of rate parameters and branch
lengths, and the rate at which +S+MH is preferred to +S
by a nested LRT test. Right column: ω3 estimates (median,
IQR) for various simulation scenarios. 100 replicates were
generated using the four-taxon tree shown as inset in the
top left plot for each parameter combination. For the
bottom row, we varies the lengths of branches leading to
c and d in the tree

Power. On the same 4-taxon tree, we

next simulated alignments with a non-zero

fraction of the alignment subject to EDS, with

the distribution of rates (ω1 =0.1(50%),ω2 =

0.5(40%),ω3>1(10%). We iterated ω3 over the set

{1.25,1.5,2,4,8,16}, set ψ=0, and iterated δ over

the set {0,0.1,0.2,0.3,0.4,0.5}, for a total of 36

simulation scenarios. The three methods for EDS

detection (+S, +S+MH, and model averaged), all

gained power as the effect size (ω3) increased,

reaching 100% (Figure 3). When no multiple-

hits are allowed (δ=0), +S+MH shows a small
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loss of power compared to the +S model, but

because +S has better fit in nearly every dataset,

model averaging rescues most of the power. Both

+S and +S+MH return consistent estimates of

ω3. For δ>0 and for ω3<8 the +S model has

progressively higher power, but that power comes

at the cost of progressively more and more biased

estimates of ω3. This behavior mirrors what we

saw for null data, except, for data simulated with

positive selection (low or moderate effect sizes),

the bias results in a desirable outcome (higher

power). Model averaging becomes less effective as

δ grows, because the +S model loses goodness-

of-fit compared to the +S+MH model. Increasing

the fraction of alignments subject to selection

to 25% (ω1 =0.1(50%),ω2 =0.5(25%),ω3>1(25%))

shows the same qualitative behavior, except that

all methods have higher power for a given value of

δ and ω3 (Figure S2).

Benchmark datasets

We generated an additional 9 null and 18

power simulations (100 replicates each) based

on empirical data sets (details shown in Table

S1). These scenarios are more representative

of biological data because they use alignment

sizes, tree topologies, branch lengths, nucleotide

substitution biases, and other model parameters

based on biological data. We fixed all model

parameters except ω3, δ, ψ, and p3. These data

recapitulate the patterns found in the simple

4-taxon tree simulations.

FIG. 3. Model performance on data simulated with
EDS. Left column : detection rate for EDS (at p≤0.05)
as a function of rate ω3 (effect size) and δ (confounding
parameter), and the rate at which +S+MH is preferred
to +S by a nested LRT test. Right column: ω3 estimates
(median, IQR) for various simulation scenarios.

1. For null data, +S loses control of FPR as δ

and/or ψ are increased. +S+MH and model

averaging maintain FPR control regardless

of the values of 2H and 3H rates.

2. For data with EDS but without 2H or 3H,

+S has a slight power edge over +S+MH,

but model averaging rescues the power

because +S has a better goodness of fit.

3. For data with EDS and with 2H and/or

3H, +S has a power edge over +S+MH,
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FIG. 4. Alignments with evidence of episodic diversifying selection in the Enard et al dataset. The number of
alignments (9,861 total) which returned LRT p≤0.05 under each of the following scenarios: individual model (BUSTED,
+S, +MH, +S+MH), best model selected by AICc (Best), model averaged "p-value" (Averaged). The sizes of each of the
non-empty intersections of these six combinations are also shown. For example, 515 datasets are found to be subject to EDS
under all of the six considered criteria.

and model averaging is only partially able

to rescue the power because +S+MH has

a much better goodness of fit. This gain

in power for +S comes at a cost of

significant (often dramatic) upward biases in

ω3 estimates.

Because in real biological data, the presence

of selection is the object of inference and

it is not expected to be prevalent (e.g.,

a typical gene is more likely to not be

subject to EDS), therefore controlling FP

rates should be the prevailing concern. As

our simulations demonstrate, unmodeled multi-

nucleotide substitutions dramatically inflate the

estimates of ω rates, and result in significant and

often catastrophic FPR.

A Large-Scale Empirical Screen

We compared the inferences made by the four

BUSTED class models on a large-scale empirical

dataset (Enard et al., 2016) with 9,861 alignments

and phylogenetic trees of mammalian species (cf

Methods). This collection was originally prepared

to assess the influence of viruses on mammalian

protein evolution and includes sequences from 24

species.

As with the benchmark datasets, only two out

of four model (+S and +S+MH) had the best

goodness-of-fit (AICc) measures for most of the

alignments (Table 4). BUSTED and +MH were

the top model for 97(<1%) of the alignments

which were either very short alignments (<150

codons, e.g., SF3B6 in Table 5) or with minimal

divergence (tree length <0.01 substitutions/site).

Alignment length and total tree length were not

significantly associated (Mann-Whitney U test)

with the predilection towards the +S or +S+MH

model.

We next considered whether an alignment was

detected subject to EDS, using LRT p≤0.05,

under different selection criteria: model fixed
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Model Rank 1 Rank 2 Rank 3 Rank 4
BUSTED 93 60 7436 2272
+S 8943 853 61 4
+MH 4 62 2307 7488
+S+MH 821 8866 57 97

Table 4. Model goodness-of-fit ranking for the Enard
dataset. How each of the four models ranked for each of
the 9,861 alignments.

a priori, best fitting-model selected by AICc,

and the model averaged "p-value" (Fig 4). The

simplest model (BUSTED) has the highest raw

detection rate of 2805/9861 alignments (28.4%),

while the models with MH support have much

lower detection rates: 984/9861 (10%) for +S+MH

and 826/9861 for +MH (8.4%). Detection of EDS

is quite sensitive to which model/approach is

being used: there are only 515 alignments, where

EDS is detected by all of the models (including

the best fitting model), and by model averaging.

Requiring a complete model consensus does not

strike us as a sensible approach – why, for example,

should we give an equal vote to models that do

not describe the data well? Indeed, even for the

515 unanimous datasets, the median difference in

AICc (∆AICc) scores between the best and the

worst fitting model was >200 points, implying

that the worst models had much worse fits to the

data than the best, and should be discounted.

One solution, which has found common use in

comparative analysis is to simply pick the best

fitting model (such as ModelTest (Posada and

Buckley, 2004), and call EDS based on it. Here, the

best-fitting model detects EDS on 2,425 datasets.

One danger with simply picking the best-fitting

model, is that in cases when it detects EDS, but

the second-best model does not and the second-

best model is not dramatically worse fitting, we

are discounting a discordant signal from a credible

alternative model. The model averaging approach

is a simple way to account for this: if two models

have similar goodness-of-fit, and one has a low

EDS p-value, but the other has a high EDS

p-value, averaging the two will result in a non-

significant (conservative) call. The "averaging"

approach detects EDS on 1,908 datasets. On 524

datasets when the best model detects EDS, but

model averaging does not, the median Akaike

weight difference AICc for the second best fitting

model (defined as w=e−∆AICc/2, normalized to

sum to 1 over all four models) was 0.18, hence a

high p-value from the second-best fitting model is

sufficient to push the averaged p-value above 0.05.

In Table 5, we show examples of patterns for

comparative model fit and EDS inference, and

discuss them (below) in terms of the selective

patterns:

No selection detected by any method, pattern

(000000). Nearly two thirds (6396, or 64.9%)

of the datasets have no evidence of episodic

diversifying selection under any of the six possible

detection criteria : (+S+MH, BUSTED, +S,

+MH, Averaged, Best). These alignments (e.g.,

RCOR1), tended to be shorter compared to the

alignments with some selection signal (median

427 codons, vs median 599 codons, p<10−16,

Wilcoxson test), have lower overall divergence
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(median tree length, 1.04 vs 1.27, p<10−16), and

have a smaller fraction of datasets where a model

with support for 2H or 3H (odds ratio 0.6, p<

10−12, Fisher exact test).

Selection detected by every method (111111). A

total of 515 datasets supported EDS with every

detection approach (e.g., PDIK1L), For 489 of

those, +S was the best fitting model, and for

the remaining 26 – +S+MH was the best fitting

model, with longer and more divergent alignments

falling into the second bin (+S+MH model),

with Wilcoxson p-values of <0.02. Compared to

datasets where only some of the methods detected

EDS (not consensus), the consensus collection had

a larger estimated EDS effect size, approximated

by the
√
ω3p3 (scaled weight assigned to the

positive selection regime), median 0.0133 vs 0.0024

(Wilcoxson p=0.001).

Selection detected by all but one model. These

datasets are "near-consensus" in that all but

one of the individual models (e.g., +MH for the

(111011) pattern), including the best fitting model

and the model-averaged p-value, support EDS

(e.g., TIMM50). There are 428 alignments in this

bucket, including 401 for which +S is the best

fitting model, 25 – +S+MH, and 2 – BUSTED.

The most common "outlier" model was +MH

(321), followed +S+MH (103), and 2 each for

BUSTED and +S.

The best model drives EDS selection detection.

CDC123 is a prototypical example, where +S is

the best model, is the only model that shows

evidence of EDS, yet is sufficient for both the Best

model and the Averaged model criteria to also

indicate EDS. Of the 268 alignments in this group,

EDS detection was driven by the +S model for

all but two datasets, where the +S+MH model

drove detection (DRC7, for example). For all

266 datasets with +S as the best-fitting model,

+S+MH was the second-best model, receiving a

median Akaike weight of only 0.046, i.e. making it

irrelevant for model averaged p-value calculations.

+S and +S+MH models both detect EDS. For

genes like ADAMTS1and ELP2, +S and +S+MH

are the two credible models, which both detect

EDS, together with the Best and Averaged

approaches. There are 125 of such datasets for

which +S is the best-fitting model, and 3 with

+S+MH as the best-fitting model.

The best model drives EDS selection detection,

but model averaging disagrees. The first class of

datasets where important disagreement occurs,

are those where EDS is detected with the best

fitting model but not detected with the model

averaged approach. ODF1 is an example: the best

fitting model (+S) supports EDS with p=0.0187,

but the second-best model (+S+MH), finds no

evidence EDS (p=0.5). Model-averaging takes

both of those indications into account and arrives

at a non-significant p-value of 0.06. There are 524

datasets in this bucket, and for all but 9 of those,

+S is the best model, and +S+MH is second best
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Gene S L AICc
+S+MH

∆AICc vs +S+MH p-value for EDS EDS

BUSTED+S +MH +S+MH BUSTED+S +MH Averaged Pattern Best Count
RCOR1 429 1.00 10966.0 116.3 -4.0 120.1 0.5000 0.5000 0.5000 0.5000 0.5000 (000000) * 6396
PDIK1L 341 0.47 6374.4 23.0 -4.1 27.1 0.0080 0.0038 0.0035 0.0118 0.0041 (111111) +S 489
TIMM50 439 1.38 12513.2 102.1 -3.6 124.0 0.0008 0.0000 0.0004 0.5000 0.0005 (111011) +S 297
CDC123 336 0.93 9464.4 59.0 -3.9 63.2 0.1573 0.0575 0.0244 0.5000 0.0409 (001011) +S 268
ODF1 250 1.56 7735.3 108.7 -4.7 111.1 0.5000 0.5000 0.0187 0.5000 0.0609 (001001) +S 202
ADAMTS1 967 1.44 33306.6 301.0 -4.0 305.0 0.0443 0.0798 0.0464 0.1532 0.0462 (101011) +S 125
SDC1 310 1.94 12722.5 166.9 0.8 162.5 0.0697 0.0000 0.0010 0.1243 0.0419 (****10) * 7
SF3B6 125 0.64 2646.7 -6.6 -4.9 -3.7 0.3904 0.0070 0.0060 0.1240 0.0308 (011011) BUSTED 6
DRC7 868 2.66 30617.4 298.5 3.2 300.8 0.0169 0.2034 0.1472 0.5000 0.0390 (100011) +S+MH 2
ELP2 886 1.18 27640.2 204.8 1.8 207.2 0.0240 0.1074 0.0184 0.2524 0.0224 (101011) +S+MH 3

Table 5. Examples of patterns of agreement and disagreement of different approaches to detecting EDS on the Enard et
al dataset, sorted from most to least common. There are 24 sequences in each alignment. Gene – gene name, S - the
number of codons, L - total tree length in expected substitutions/nucleotide, measured under the BUSTED+S+MH model.
AICc S+MH - small sample AIC score for the BUSTED+S+MH model (shown in boldface if this model is the best fit
for the data, i.e. has the lowest AICc score) , ∆AICc - differences between the AICc score for the corresponding model
and the BUSTED+S+MH. p-value for ESD: the likelihood ratio test p-value for episodic diversifying selection under the
corresponding model (4 digits of precision); shown in boldface if ≤0.05. Averaged - the model averaged p-value for ESD
(bolded if f ≤0.05. Pattern - a bit vector of whether or not the EDS was detected at p≤0.05 with each of the six models:
(+S+MH, BUSTED, +S, +MH, Averaged, Best); * denotes a wildcard (0 or 1). Best, best fitting model (AICc). Count -
the number of datasets matching this detection pattern.

and plays the role of spoiler. Median MLEs for MH

rates were higher in the datasets than where +S

and +S+MH disagreed (only +S supports EDS),

compared to where they agreed (both models

support EDS): 0.03 vs 0.0, p<10−10 for δ; 0.03

vs 0.05, p<10−10 for ψ). The models also had

significantly different (p<10−10) estimates for ω3,

with median differences ω+S
3 −ω+S+MH

3 of 24.7

(EDS only for +S) vs 0.01 (EDS in both). These

patterns are consistent with false positive EDS

detection by the +S model as seen on simulated

data.

Model averaging finds EDS, but the best-fitting

model disagrees. There are only 7 datasets

(e.g., SDC1), in this counter-intuitive class of

an important disagreement. For these types of

datasets, the best fitting model has a borderline

significant p-value, the second best fitting model

has a highly significant p-value (and is a very

close in terms of AICc), and the model averaging

approach arrives at a significant p-value.

Discussion

Evolutionary substitution models that are

practically useful and computable must make

many simplifying assumptions about the biological

processes. Many, if not most, of these assumptions

are not justifiable on biological grounds. However,

certain classes of inference problems appear

to be quite robust to even severe model mis-

specifications. Examples include phylogenetic

inference (Abadi et al., 2019), and relative

evolutionary rate estimates for individual

sites (Spielman and Kosakovsky Pond, 2018).

Other inference problems, including selection

detection, seem to be highly sensitive to modeling

assumptions (Kosakovsky Pond et al., 2011;

Venkat et al., 2018). Such sensitivity is not

surprising for methods that are tuned to extract

statistical signal from a small subset of branches

and sites in a sequence alignment. In extreme

cases, a single substitution event is sufficient to

power selection detection, as seen in the HIV-1
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v if example in this paper and for human lineage

selection detection in Venkat et al. (2018).

Statistical tests which compare the ω ratio

of non-synonymous and synonymous substitution

rates to 1 and interpret significant differences as

evidence of non-neutral evolution are susceptible

to confounding processes which bias ω estimates.

We have previously demonstrated that ω estimates

are strongly biased (and resulting in high Type

1 and 2 error rates) when the distribution

used to model ω variation across branches and

sites is too restrictive (Kosakovsky Pond et al.,

2011), and when synonymous substitution rates

are assumed to be constant across sites in the

alignment (Wisotsky et al., 2020). Furthermore,

these confounding processes are not rare, but

instead are very likely present in biological data.

Because "the scientist must be alert to what is

importantly wrong" (Box, 1976), and these models

are clearly wrong in important ways, as they

misinterpret widespread confounding evolutionary

processes as evidence of selection, continued use of

such models is unsound.

In this study, we demonstrate that not

accounting for instantaneous multi-nucleotide

substitutions or "hits" (MH) when looking for

evidence of positive selection can be similarly

fraught with statistical error (Venkat et al.,

2018; Wisotsky et al., 2020). Estimates of ω

become inflated with standard codon substitution

models when they are used to analyze data

with MH, and progressively more so as the

degree of MH is increased. This bias, in turn,

produces uncontrolled rates of false positives for

positive selection on simulated data for MH

parameter values that appear realistic. However,

the inclusion of MH in models can lead to some

loss of statistical power in cases as compared to

standard models. A large-scale empirical analysis

of mammalian genes (Enard et al., 2016) suggests

that 10% of alignments are best fit with

models supporting MH, and that roughly 80%

of positively selected genes are robustly detected

even when accounting for MH using a model-

averaging procedure. Consequently, confounding

due to MH can be viewed as a "second-order"

effect, compared, for example, to the inclusion

of synonymous site-to-site rate variation. We

argue that the effect is sufficiently important to

be considered in routine analyses of selection.

Our practical recommendation, supported by

simulated data and empirical analyses, is to fit

multiple flavors of selection models followed up

by model-averaged selection detection to obtain

a good tradeoff between power and false positive

rate control. We also developed a series of visual

tools to assist researchers in interpreting selection

analysis results, exploring which branches and

sites in the alignment provide support for various

evolutionary processes (selection and/or MH), and

understanding how much a positive selection result

is influenced by information from a small number

of sites.
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It remains unclear just how pervasive MH

is in different types of biological sequence

data, although our current and previous results

(Lucaci et al., 2021), and other studies (Cohen

et al., 2021; Freitas and Nery, 2022; Hensley

et al., 2021; MacLean et al., 2021; Steward

et al., 2022) suggest that MH occurs broadly

over diverse taxonomic groups. We expect that

future research with interdisciplinary design

combining computational and experimentally-

informed approaches may shed light on the

application of our method(s) and the patterns

and processes underlying the contribution of

MH to gene evolution. Creative investigation

may help discover additional mechanisms and

interpretations of the biological underpinnings of

the mutational spectrum as it applies to rare

mutations in natural populations. Additionally,

we see a strong tailwind in this field as

technological improvements for functional studies

designed with the precise manipulation of DNA

(Wang et al., 2020) including CRISPR-Cas9,

and detection of MH polymorphisms (J. Huang

et al., 2014) continue to emerge, draw interest,

and be fine-tuned. Downstream innovations

and technological design are critical in the

detection of natural selection, where models

such as ours can be of particular interest to

researchers interested in gene-drug target design

for particular fitness effects. Additionally, our

work supports an emerging body of information

on the underlying trends, biological mechanisms,

and genetic signaling pathways under selective

pressure. These results can feed directly into a

number of post hoc analyses to qualify or quantify

an exploratory genetic profile and evolutionary

history across lineages.

Methods
Statistical Methodology

We adapted two existing models: the BUSTED

model, a test of episodic diversifying selection,

by (Murrell et al., 2015), and the +S model by

(Wisotsky et al., 2020), which was created as a

modification of the BUSTED model, to account

for the presence of synonymous rate variation

(SRV). The +S+MH model is a straightforward

extension of +S which allows it to account

for instantaneous multiple nucleotide changes

occurring within a codon (MH) and SRV, while

the BUSTED+MH model is an extension of the

BUSTED model where SRV is not modeled (Table

1). In this framework, the nucleotide substitution

process is described using the standard discrete-

state continuous-time Markov process approach

of (Muse and Gaut, 1994), with entries in the

instantaneous rate matrix (Q) corresponding to

substitutions between sense codons i and j and

defined as follows:
Type Expression for Qij

1 step synonymous change αsθijπ
p
j

1 step nonsynonymous change αsωbsθijπ
p
j

2 step synonymous change δαs
∏2

n=1θ
n
ijπ

n
j

2 step nonsynonymous change δαsωbs
∏2

n=1θ
n
ijπ

n
j

3 step synonymous change ψαs
∏3

n=1θ
n
ijπ

n
j

3 step nonsynonymous change ψαsωbs
∏3

n=1θ
n
ijπ

n
j
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Here, θij(=θji) denote nucleotide substitution

bias parameters. For example, θACT,AGT =θCG and

because we incorporate the standard nucleotide

general time-reversible (GTR) (Tavare, 1986)

model there are five identifiable θij parameters:

θAC , θAT , θCG, θCT , and θGT with θAG=1.

The position-specific equilibrium frequency of

the target nucleotide of a substitution is πpj ;

for example, it is π2
G for the second-position

change associated with qACT,AGT . The πpj and

the stationary frequencies of codons under this

model are estimated using the CF3×4 procedure

(Pond et al., 2010), adding nine parameters

to the model. The ratio of nonsynonymous to

synonymous substitution rates for site s along

branch b is ωbs, and this ratio is modeled

using a 3-bin general discrete distribution (GDD)

with five estimated hyperparameters: 0≤ω1≤

ω2≤1≤ω3, p1 =P (ωbs=ω1), and p2 =P (ωbs=ω2).

The procedure for efficient computation of the

phylogenetic likelihood function for these models

was described in Kosakovsky Pond et al. (2011).

The quantity αs is a site-specific synonymous

substitution rate (no branch-to-branch variation is

modeled) drawn from a separate 3-bin GDD. The

mean of this distribution is constrained to one to

maintain statistical identifiability, resulting in four

estimated hyperparameters: 0≤cα1≤α2 =c≤cα3,

f1 =P (αs=α1), and f2 =P (αs=α2), with c chosen

to ensure that E[αs]=1.

The key parameters are global relative rates

of multiple hit substitutions: δ is the rate for

two substitutions relative to the one substitution

synonymous rate (baseline), ψ is the relative

rate for non-synonymous three substitutions. All

parameters, except π, including branch lengths

are fitted using a directly optimized phylogenetic

likelihood in HyPhy.

Typical implementations, including ours, allow

the number of α and ω rate categories to be

separately adjusted by the user, for example, to

minimize cAIC or to optimize some other measure

of model fit. The default setting of three categories

generally provides a good balance between fit

and performance when using this GDD approach

for modeling. Our implementation of +S+MH,

and BUSTED+MH will warn the user if there

is evidence of model overfitting, such as the

appearance of rate categories with very similar

estimated rate values or very low frequencies.

The +S+MH procedure for identifying positive

selection is the likelihood ratio test comparing

the full model described above to the constrained

model formed when ω3 is set equal to 1 (i.e., no

positively selected sites). Critical values of the test

are derived from a 50:50 mixture distribution of χ2
0

and χ2
2 (Murrell et al., 2015; Wisotsky et al., 2020).

Both +S and +S+MH analyses in the current

work use the same 50:50 mixture test statistic.

+S+MH reduces to +S by setting the MH rates to

0. The method is implemented as a part of HyPhy

(version 2.5.42 or later) (Kosakovsky Pond et al.,

2020) .
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Empirical Data and Alignments

The (Enard et al., 2016) data collection includes

9,861 orthologous coding sequence alignments

of 24 mammalian species and is available at

https://datadryad.org/stash/dataset/doi:

10.5061/dryad.fs756. Phylogenetic trees were

inferred for each alignment using RAxML (Kozlov

et al., 2019).

Synthetic data

Simulated data sets can be downloaded from

https://data.hyphy.org/web/busteds-mh/.

Additional information is present in the

README.md file, including details of how to

generate alignments under the +S and +S+MH

models.

Implementation

All analyses were performed in HyPhy version

2.5.41 or later. The BUSTED+MH and +S+MH

models are implemented as part of the standard

HyPhy library. You can run this option using the

"–multiple-hits" option from the command line

with either "Double" to consider DH substitutions

or "Double+Triple" to consider DH and TH

substitutions. The HyPhy Batch Language (HBL)

implementation is located in a dedicated GitHub

repository at https://github.com/veg/hyphy

Site-level support

In order to identify which individual sites show

preference for MH models, we use evidence ratios

(ER), defined as the ratio of site likelihoods

under two models being compared. We previously

showed that ERs are useful for identifying the sites

driving support for one model over another, and

they incur trivial additional overhead to compute

once model fits have been performed.

Empirical Bayes support

We can estimate statistical support for selection

(ω3>1) or multiple hit substitutions (δ>0

or ψ>0) at a particular site (s) and branch

(b), using a straightforward empirical Bayes

calculation. For example, P
(
ωbs3 >1|Ds

)
=

P (Ds|ωbs3 >1)×P (ωbs3 >1)/P (Ds), where P (Ds)

is the standard phylogenetic likelihood of Ds

(summed over all ω combinations), P (Ds|ωbs3 >1)

is the phylogenetic likelihood at site s, computed

by setting the distribution of ω at branch b

to assign all weight to ω3>1, and P (ωbs3 >1)

is the mixture weight estimated from the

entire alignment (MLE for the corresponding

hyperparameter). The corresponding empirical

Bayes factor (EBF) is
P(ωbs3 >1|Ds)/(1−P(ωbs3 >1|Ds))

P (ωbs3 >1)/(1−P (ωbs3 >1))
.

As discussed in Murrell et al. (2012), these

empirical estimates are quite noisy and should

only be used for exploratory purposes, e.g., to

look for "hot-spots" in a tree (cf Figure 1).

Hypothesis testing

Nested models are compared using likelihood

ratio tests with asymptotic distribution used to

assess significance. A conservative χ2
2 asymptotic

distribution is used to compare the fit of +S and

+S+MH (null hypothesis : δ=ψ=0).
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Computational complexity

Treating BUSTED as a baseline, we expect the

+S model to require about a relative ×L (L =

number of synonymous rate classes) more time

per likelihood calculation and longer convergence

time due to an extra random effects distribution.

Because +MH models have dense rate matrices,

there is a computational cost incurred for

computing transition matrices since optimizations

available for standard (sparse) matrices no longer

apply. +S+MH models are expected to be the

slowest, but have the same order of complexity as

+S. On 24-sequence alignments from Enard et al.

(2016), we observed the following performance for

each of the four models.
Model Median, sec Mean, sec Relative
BUSTED 50 60 -
+S 174 219.1 3.3
+MH 279 379.1 6.1
+S+MH 1405 1788.5 28.6

Table 6. Model run-times for the Enard dataset. Run
times on 4 cores on an AMD EPYC 7702 CPU compute
node are shown. Relative : median of the relative run times
on the same dataset compared to BUSTED.

BUSTED ModelTesting

We recommend our BUSTED model testing and

averaging procedure (see main text) in order to

select the best fitting model, to interpret the

results of natural selection acting on your gene

of interest. Our goal is to understand which

underlying model and its parameters are able to

detect the areas of the dataset which drive the

greatest degree of evolutionary signals. We screen

the dataset for episodic diversifying selection

acting on the whole gene while accounting for SRV

across the alignment, and MH substitutions.

Analysis is conducted as a series of experiments

in the BUSTED framework of selection analysis

with our methods under analysis in the

hierarchical structure described in Table 1

and includes BUSTED, +S, BUSTED+MH, and

+S+MH.

We implement a Snakemake (Mölder et al.,

2021) version of our model testing procedure,

available at https://github.com/veg/BUSTED_

ModelTest. This application takes the same

input as a normal BUSTED analysis, a multiple

sequence alignment and inferred phylogenetic, and

returns JavaScript Object Notation (JSON) files

(one for each model described above).

We recommend performing model averaging to

determine whether or not an alignment is subject

to episodic diversifying selection. Alternative

approaches could include selecting the best fitting

model, or model consensus, however, as shown

by our simulations, these approaches are less

statistically efficient (lower power and/or higher

rate of false positives).

Acknowledgments

We thank members of the HyPhy and Datamonkey

teams for their contribution to this work.

This research was supported in part by

grants GM144468 (NIH/NIGMS), AI140970

(NIH/NIAID), and AI134384 (NIH/NIAID).

References

Abadi, S., Azouri, D., Pupko, T., and Mayrose, I. 2019.

Model selection may not be a mandatory step for

phylogeny reconstruction. Nat Commun, 10(1): 934.

21

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518889
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2022/12/2 — 18:25 — page 22 — #22i
i

i
i

i
i

i
i

Lucaci et al. · doi:10.1093/molbev/mst012 MBE

Number: 1 Publisher: Nature Publishing Group.

Anisimova, M. and Yang, Z. 2004. Molecular evolution of

the hepatitis delta virus antigen gene: recombination or

positive selection? J Mol Evol , 59(6): 815–26.

Box, G. E. P. 1976. Science and Statistics. Journal of

the American Statistical Association, 71(356): 791–799.

Publisher: [American Statistical Association, Taylor &

Francis, Ltd.].

Bush, R. M., Fitch, W. M., Bender, C. A., and Cox, N. J.

1999. Positive selection on the h3 hemagglutinin gene of

human influenza virus a. Mol Biol Evol , 16(11): 1457–

65.

Cohen, Z. P., Brevik, K., Chen, Y. H., Hawthorne,

D. J., Weibel, B. D., and Schoville, S. D. 2021.

Elevated rates of positive selection drive the

evolution of pestiferousness in the Colorado

potato beetle (Leptinotarsa decemlineata, Say).

Molecular Ecology , 30(1): 237–254. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/mec.15703.

Di Franco, A., Poujol, R., Baurain, D., and Philippe, H.

2019. Evaluating the usefulness of alignment filtering

methods to reduce the impact of errors on evolutionary

inferences. BMC Evolutionary Biology , 19(1): 21.

Dunn, K. A., Kenney, T., Gu, H., and Bielawski, J. P.

2019. Improved inference of site-specific positive

selection under a generalized parametric codon model

when there are multinucleotide mutations and multiple

nonsynonymous rates. BMC Evol Biol , 19(1): 22.

Enard, D., Cai, L., Gwennap, C., and Petrov, D. A. 2016.

Viruses are a dominant driver of protein adaptation in

mammals. eLife, 5.

Freitas, L. and Nery, M. F. 2022. Positive selection in

multiple salivary gland proteins of Anophelinae reveals

potential targets for vector control. Infection, Genetics

and Evolution, 100: 105271.

Goldman, N. and Yang, Z. 1994. A codon-based model

of nucleotide substitution for protein-coding DNA

sequences. Molecular biology and evolution, 11(5): 725–

736. ISBN: 0737-4038 (Print)\textbackslashn0737-4038

(Linking).

Hensley, N. M., Ellis, E. A., Leung, N. Y., Coupart, J.,

Mikhailovsky, A., Taketa, D. A., Tessler, M., Gruber,

D. F., De Tomaso, A. W., Mitani, Y., Rivers, T. J.,

Gerrish, G. A., Torres, E., and Oakley, T. H. 2021.

Selection, drift, and constraint in cypridinid luciferases

and the diversification of bioluminescent signals in sea

fireflies. Molecular Ecology , 30(8): 1864–1879. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/mec.15673.

Hudson, R. R., Kreitman, M., and Aguadé, M. 1987. A

test of neutral molecular evolution based on nucleotide

data. Genetics, 116(1): 153–9.

J. Huang, C., F. Fang, W., S. Ke, M., E. Chou, H. Y.,

and T. Yang, J. 2014. A biocompatible open-surface

droplet manipulation platform for detection of multi-

nucleotide polymorphism. Lab on a Chip, 14(12): 2057–

2062. Publisher: Royal Society of Chemistry.

Jones, C. T., Youssef, N., Susko, E., and Bielawski, J. P.

2018. Phenomenological load on model parameters can

lead to false biological conclusions. Mol Biol Evol , 35(6):

1473–1488.

Kosakovsky Pond, S. L., Murrell, B., Fourment, M., Frost,

S. D. W., Delport, W., and Scheffler, K. 2011. A

random effects branch-site model for detecting episodic

diversifying selection. Mol Biol Evol , 28(11): 3033–43.

Kosakovsky Pond, S. L., Poon, A. F. Y., Velazquez,

R., Weaver, S., Hepler, N. L., Murrell, B., Shank,

S. D., Magalis, B. R., Bouvier, D., Nekrutenko, A.,

Wisotsky, S., Spielman, S. J., Frost, S. D. W., and

Muse, S. V. 2020. Hyphy 2.5-a customizable platform

for evolutionary hypothesis testing using phylogenies.

Mol Biol Evol , 37(1): 295–299.

Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., and

Stamatakis, A. 2019. RAxML-NG: a fast, scalable and

user-friendly tool for maximum likelihood phylogenetic

inference. Bioinformatics (Oxford, England), 35(21):

4453–4455.

Kuno, G., Chang, G. J., Tsuchiya, K. R., Karabatsos,

N., and Cropp, C. B. 1998. Phylogeny of the genus

22

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518889
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2022/12/2 — 18:25 — page 23 — #23i
i

i
i

i
i

i
i

TITLE · doi:10.1093/molbev/mst012 MBE

flavivirus. J Virol , 72(1): 73–83.

Lucaci, A. G., Wisotsky, S. R., Shank, S. D., Weaver,

S., and Kosakovsky Pond, S. L. 2021. Extra base

hits: Widespread empirical support for instantaneous

multiple-nucleotide changes. PLoS One, 16(3):

e0248337.

MacLean, O. A., Lytras, S., Weaver, S., Singer, J. B.,

Boni, M. F., Lemey, P., Kosakovsky Pond, S. L., and

Robertson, D. L. 2021. Natural selection in the evolution

of SARS-CoV-2 in bats created a generalist virus and

highly capable human pathogen. PLoS biology , 19(3):

e3001115.

Martin, D. P., Weaver, S., Tegally, H., San, J. E., Shank,

S. D., Wilkinson, E., Lucaci, A. G., Giandhari, J.,

Naidoo, S., Pillay, Y., Singh, L., Lessells, R. J., NGS-SA,

COVID-19 Genomics UK (COG-UK), Gupta, R. K.,

Wertheim, J. O., Nekturenko, A., Murrell, B., Harkins,

G. W., Lemey, P., MacLean, O. A., Robertson, D. L.,

de Oliveira, T., and Kosakovsky Pond, S. L. 2021.

The emergence and ongoing convergent evolution of the

sars-cov-2 n501y lineages. Cell , 184(20): 5189–5200.e7.

Martin, D. P., Lytras, S., Lucaci, A. G., Maier, W.,

Grüning, B., Shank, S. D., Weaver, S., MacLean, O. A.,

Orton, R. J., Lemey, P., Boni, M. F., Tegally, H.,

Harkins, G. W., Scheepers, C., Bhiman, J. N., Everatt,

J., Amoako, D. G., San, J. E., Giandhari, J., Sigal, A.,

NGS-SA, Williamson, C., Hsiao, N.-Y., von Gottberg,

A., De Klerk, A., Shafer, R. W., Robertson, D. L.,

Wilkinson, R. J., Sewell, B. T., Lessells, R., Nekrutenko,

A., Greaney, A. J., Starr, T. N., Bloom, J. D., Murrell,

B., Wilkinson, E., Gupta, R. K., de Oliveira, T.,

and Kosakovsky Pond, S. L. 2022. Selection analysis

identifies clusters of unusual mutational changes in

omicron lineage ba.1 that likely impact spike function.

Mol Biol Evol , 39(4).

Murrell, B., Wertheim, J. O., Moola, S., Weighill, T.,

Scheffler, K., and Pond, S. L. K. 2012. Detecting

Individual Sites Subject to Episodic Diversifying

Selection. PLOS Genetics, 8(7): e1002764. Publisher:

Public Library of Science.

Murrell, B., Weaver, S., Smith, M. D., Wertheim, J. O.,

Murrell, S., Aylward, A., Eren, K., Pollner, T., Martin,

D. P., Smith, D. M., Scheffler, K., and Kosakovsky Pond,

S. L. 2015. Gene-wide identification of episodic

selection. Mol Biol Evol , 32(5): 1365–71.

Muse, S. V. and Gaut, B. S. 1994. A likelihood approach for

comparing synonymous and nonsynonymous nucleotide

substitution rates, with application to the chloroplast

genome. Molecular Biology and Evolution, 11(5): 715–

724.

Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B.,

Tomkins-Tinch, C. H., Sochat, V., Forster, J., Lee, S.,

Twardziok, S. O., Kanitz, A., Wilm, A., Holtgrewe,

M., Rahmann, S., Nahnsen, S., and Köster, J. 2021.

Sustainable data analysis with Snakemake. F1000Res,

10: 33.

Pond, S. K. and Muse, S. V. 2005. Site-to-Site Variation

of Synonymous Substitution Rates. Molecular Biology

and Evolution, 22(12): 2375–2385.

Pond, S. K., Delport, W., Muse, S. V., and Scheffler,

K. 2010. Correcting the Bias of Empirical Frequency

Parameter Estimators in Codon Models. PLOS ONE ,

5(7): e11230. Publisher: Public Library of Science.

Posada, D. and Buckley, T. R. 2004. Model selection

and model averaging in phylogenetics: advantages of

akaike information criterion and bayesian approaches

over likelihood ratio tests. Syst Biol , 53(5): 793–808.

Rodrigue, N., Latrille, T., and Lartillot, N. 2021. A

bayesian mutation-selection framework for detecting

site-specific adaptive evolution in protein-coding genes.

Mol Biol Evol , 38(3): 1199–1208.

Rosenberg, M. S. 2005. Multiple sequence alignment

accuracy and evolutionary distance estimation. BMC

Bioinformatics, 6: 278.

Seo, T.-K., Kishino, H., and Thorne, J. L. 2004. Estimating

absolute rates of synonymous and nonsynonymous

nucleotide substitution in order to characterize natural

selection and date species divergences. Mol Biol Evol ,

23

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518889
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2022/12/2 — 18:25 — page 24 — #24i
i

i
i

i
i

i
i

Lucaci et al. · doi:10.1093/molbev/mst012 MBE

21(7): 1201–13.

Seoighe, C., Ketwaroo, F., Pillay, V., Scheffler, K., Wood,

N., Duffet, R., Zvelebil, M., Martinson, N., McIntyre, J.,

Morris, L., and Hide, W. 2007. A model of directional

selection applied to the evolution of drug resistance in

hiv-1. Mol Biol Evol , 24(4): 1025–31.

Shu, Y. and McCauley, J. 2017. Gisaid: Global initiative on

sharing all influenza data - from vision to reality. Euro

Surveill , 22(13).

Spielman, S. J. and Kosakovsky Pond, S. L. 2018. Relative

Evolutionary Rates in Proteins Are Largely Insensitive

to the Substitution Model. Molecular Biology and

Evolution, 35(9): 2307–2317.

Steward, R. A., de Jong, M. A., Oostra, V., and Wheat,

C. W. 2022. Alternative splicing in seasonal plasticity

and the potential for adaptation to environmental

change. Nature Communications, 13(1): 755. Number:

1 Publisher: Nature Publishing Group.

Su, C., Nguyen, V. K., and Nei, M. 2002. Adaptive

evolution of variable region genes encoding an unusual

type of immunoglobulin in camelids. Mol Biol Evol ,

19(3): 205–15.

Tamuri, A. U. and Dos Reis, M. 2022. A mutation-selection

model of protein evolution under persistent positive

selection. Mol Biol Evol , 39(1).

Tavare, S. 1986. Some probabilistic and statistical problems

in the analysis of DNA sequences. Some mathematical

questions in biology / DNA sequence analysis edited by

Robert M. Miura. Publisher: Providence, R.I. American

Mathematical Society, c1986.

Venkat, A., Hahn, M. W., and Thornton, J. W. 2018.

Multinucleotide mutations cause false inferences of

lineage-specific positive selection. Nat Ecol Evol , 2(8):

1280–1288.

Viana, R., Moyo, S., Amoako, D. G., Tegally, H., Scheepers,

C., Althaus, C. L., Anyaneji, U. J., Bester, P. A.,

Boni, M. F., Chand, M., Choga, W. T., Colquhoun, R.,

Davids, M., Deforche, K., Doolabh, D., du Plessis, L.,

Engelbrecht, S., Everatt, J., Giandhari, J., Giovanetti,

M., Hardie, D., Hill, V., Hsiao, N.-Y., Iranzadeh,

A., Ismail, A., Joseph, C., Joseph, R., Koopile, L.,

Kosakovsky Pond, S. L., Kraemer, M. U. G., Kuate-

Lere, L., Laguda-Akingba, O., Lesetedi-Mafoko, O.,

Lessells, R. J., Lockman, S., Lucaci, A. G., Maharaj, A.,

Mahlangu, B., Maponga, T., Mahlakwane, K., Makatini,

Z., Marais, G., Maruapula, D., Masupu, K., Matshaba,

M., Mayaphi, S., Mbhele, N., Mbulawa, M. B., Mendes,

A., Mlisana, K., Mnguni, A., Mohale, T., Moir, M.,

Moruisi, K., Mosepele, M., Motsatsi, G., Motswaledi,

M. S., Mphoyakgosi, T., Msomi, N., Mwangi, P. N.,

Naidoo, Y., Ntuli, N., Nyaga, M., Olubayo, L., Pillay,

S., Radibe, B., Ramphal, Y., Ramphal, U., San, J. E.,

Scott, L., Shapiro, R., Singh, L., Smith-Lawrence, P.,

Stevens, W., Strydom, A., Subramoney, K., Tebeila,

N., Tshiabuila, D., Tsui, J., van Wyk, S., Weaver, S.,

Wibmer, C. K., Wilkinson, E., Wolter, N., Zarebski,

A. E., Zuze, B., Goedhals, D., Preiser, W., Treurnicht,

F., Venter, M., Williamson, C., Pybus, O. G., Bhiman,

J., Glass, A., Martin, D. P., Rambaut, A., Gaseitsiwe,

S., von Gottberg, A., and de Oliveira, T. 2022. Rapid

epidemic expansion of the sars-cov-2 omicron variant in

southern africa. Nature, 603(7902): 679–686.

Wagenmakers, E.-J. and Farrell, S. 2004. AIC model

selection using Akaike weights. Psychon Bull Rev , 11(1):

192–196.

Wang, S., Zong, Y., Lin, Q., Zhang, H., Chai, Z., Zhang,

D., Chen, K., Qiu, J.-L., and Gao, C. 2020. Precise,

predictable multi-nucleotide deletions in rice and wheat

using APOBEC–Cas9. Nature Biotechnology , 38(12):

1460–1465. Number: 12 Publisher: Nature Publishing

Group.

Wisotsky, S. R., Kosakovsky Pond, S. L., Shank, S. D., and

Muse, S. V. 2020. Synonymous site-to-site substitution

rate variation dramatically inflates false positive rates

of selection analyses: Ignore at your own peril. Mol Biol

Evol , 37(8): 2430–2439.

Yang, Z. 1998. Likelihood ratio tests for detecting positive

selection and application to primate lysozyme evolution.

24

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518889
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2022/12/2 — 18:25 — page 25 — #25i
i

i
i

i
i

i
i

TITLE · doi:10.1093/molbev/mst012 MBE

Mol Biol Evol , 15(5): 568–73.

Yang, Z. 2000. Maximum likelihood estimation on large

phylogenies and analysis of adaptive evolution in human

influenza virus a. J Mol Evol , 51(5): 423–32.

Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A. M.

2000a. Codon-substitution models for heterogeneous

selection pressure at amino acid sites. Genetics, 155(1):

431–49.

Yang, Z., Swanson, W. J., and Vacquier, V. D. 2000b.

Maximum-likelihood analysis of molecular adaptation in

abalone sperm lysin reveals variable selective pressures

among lineages and sites. Mol Biol Evol , 17(10):

1446–55.

Yokoyama, S., Tada, T., Zhang, H., and Britt, L.

2008. Elucidation of phenotypic adaptations: Molecular

analyses of dim-light vision proteins in vertebrates. Proc

Natl Acad Sci U S A, 105(36): 13480–5.

25

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518889
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2022/12/2 — 18:25 — page 1 — #26i
i

i
i

i
i

i
i

TITLE · doi:10.1093/molbev/mst012 MBE

Supplementary Material

1

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518889
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2022/12/2 — 18:25 — page 2 — #27i
i

i
i

i
i

i
i

Lucaci et al. · doi:10.1093/molbev/mst012 MBE

HIV-1 vif Rhodopsin Mammalian mtDNA

+S

+S+MH

FIG. S1. Site-level support for Episodic Diversifying Selection in three benchmark alignments. Each dataset /
model panel includes two views of the same data: the top plot is the cumulative value of the likelihood ratio test statistic
(LRT) for the EDS test over sites, where site-level LRT are sorted from smallest to largest; the bottom plot is the histogram
of site-level LRTs.

Scenario ω3(p3) δ ψ Detection (# if AICc is better) +S+MH pref
Truth +S +S+MH Truth +S+MH Truth +S+MH +S +S+MH Averaged by LRT

Null simulations (no positive selection, MH present)
adh/N1 1.0(2.38%) 1.00−2.42 (1.6%) 1.00−2.63 (1%) 0.003 0.00−0.04 0.0 0.00−0.00 0.03 (97) 0.01 (3) 0.01 0
adh/N2 1.0(2.38%) 1.00−3.60 (1.7%) 1.00−1.93 (0.98%) 0.1 0.00−0.12 0.0 0.00−0.07 0.1 (80) 0 (20) 0.04 0.14
adh/N3 1.0(2.38%) 1.30−5.21 (2.3%) 1.00−2.26 (1.2%) 0.25 0.10−0.27 0.0 0.00−0.08 0.26 (47) 0.03 (53) 0.05 0.39
adh/N4 1.0(2.38%) 2.07−7.98 (2.3%) 1.00−2.69 (1.3%) 0.5 0.33−0.56 0.0 0.00−0.06 0.61 (6) 0.02 (94) 0.02 0.9
adh/N5 1.0(2.38%) 3.05−19.29 (2.1%) 1.00−2.32 (1.1%) 0.75 0.57−0.79 0.0 0.00−0.12 0.87 (0) 0.03 (100) 0.03 1
Hepatitis D Ag/N1 1.0(1.71%) 1.19−10.93 (13%) 1.00−1.04 (6.9%) 0.14 0.08−0.15 0.0 0.00−0.00 0.34 (32) 0.01 (68) 0.06 0.54
HIV vif /N1 1.0(1.00%) 1.07−50.21 (14%) 1.00−1.90 (7.2%) 0.004 0.00−0.00 0.16 0.08−0.22 0.32 (32) 0.01 (68) 0.01 0.63
Rhodopsin/N1 1.0(0.37%) 3.37−14.11 (1.1%) 1.00−1.69 (0.6%) 0.35 0.27−0.37 0.52 0.27−0.64 0.9 (1) 0.02 (100) 0.03 0.99
Strep. PTS/N1 1.0(1.56%) 1.48−12.41 (1.6%) 1.00−5.59 (0.93%) 0.31 0.15−0.40 1.1 0.70−1.46 0.31 (1) 0.03 (99) 0.03 0.99
Power simulations (positive selection, MH absent)
adh/P1 4.14(2.50%) 3.21−4.79 (2.9%) 3.30−4.91 (2.8%) 0.0 0.00−0.00 0.0 0.00−0.00 0.91 (99) 0.85 (1) 0.92 0.01
β-globin/P1 8.925(3.70%) 5.53−10.96 (5%) 5.73−9.67 (4.8%) 0.0 0.00−0.00 0.0 0.00−0.03 1 (91) 0.98 (9) 1 0.05
HIV vif /P1 2103(0.05%) 1.09−3142.84 (9.7%) 1.00−2.54 (6.2%) 0.0 0.00−0.02 0.0 0.00−0.11 0.56 (80) 0.1 (20) 0.53 0.14
Mam. mtDNA/P1 1.434(1.33%) 1.29−1.63 (1.3%) 1.21−1.49 (1.4%) 0.0 0.00−0.03 0.0 0.00−0.05 0.65 (90) 0.5 (10) 0.64 0.06
Rhodopsin/P1 6.376(1.31%) 5.13−7.38 (1.4%) 5.16−7.50 (1.4%) 0.0 0.00−0.00 0.0 0.00−0.10 1 (99) 0.98 (2) 0.99 0.01
Power simulations (positive selection, MH present)
adh/P2 4.05(2.38%) 3.23−5.40 (2.6%) 3.04−5.05 (2.5%) 0.003 0.00−0.03 0.0 0.00−0.06 0.9 (94) 0.75 (6) 0.86 0.02
β-globin/P2 2.834(6.08%) 2.71−6.40 (7%) 1.88−4.54 (7.4%) 0.24 0.01−0.28 0.19 0.00−0.14 0.88 (56) 0.4 (44) 0.55 0.33
Hepatitis D Ag/P1 11.3(1.71%) 8.93−19.65 (3.7%) 2.40−9.86 (9.4%) 0.14 0.07−0.17 0.0 0.00−0.07 1 (32) 0.58 (68) 0.65 0.57
HIV vif /P2 1.226(1.00%) 1.64−319.54 (9.4%) 1.00−3.12 (6.2%) 0.004 0.00−0.00 0.16 0.08−0.23 0.46 (35) 0.01 (65) 0.04 0.52
Rhodopsin/P2 5.453(0.37%) 5.61−15.94 (0.96%) 1.00−6.27 (0.73%) 0.35 0.26−0.35 0.52 0.25−0.81 1 (1) 0.24 (100) 0.25 0.99
Rhodopsin/P3 5.453(0.37%) 4.14−9.24 (1.1%) 1.00−5.47 (0.61%) 0.35 0.26−0.37 0.0 0.00−0.18 0.96 (0) 0.22 (100) 0.22 0.97
Rhodopsin/P4 5.453(0.37%) 3.59−8.65 (0.72%) 2.23−7.11 (0.71%) 0.10 0.03−0.13 0.0 0.00−0.08 0.87 (70) 0.32 (30) 0.55 0.18
Rhodopsin/P5 5.453(0.37%) 3.15−8.12 (1.1%) 1.37−6.64 (0.83%) 0.20 0.14−0.24 0.0 0.00−0.09 0.85 (21) 0.27 (79) 0.37 0.7
Rhodopsin/P6 5.453(0.37%) 4.47−20.37 (0.6%) 1.62−6.06 (0.71%) 0.00 0.00−0.01 0.52 0.35−0.60 0.96 (26) 0.28 (74) 0.39 0.62
Rhodopsin/P7 5.453(2.1%) 7.21−11.00 (2.2%) 4.65−6.46 (2.2%) 0.35 0.28−0.38 0.0 0.00−0.12 1 (3) 0.98 (97) 0.99 0.97
Rhodopsin/P8 5.453(4.2%) 7.51−9.64 (4.1%) 4.78−6.15 (4.4%) 0.35 0.26−0.36 0.0 0.00−0.06 1 (3) 0.99 (97) 1 0.97
Strep. PTS/P1 9.489(1.56%) 17.10−71.54 (1.4%) 7.55−12.88 (1.6%) 0.31 0.15−0.43 1.1 0.65−1.45 0.99 (0) 0.97 (100) 0.97 1
SARS-CoV-2 S/P1 5.990(20.12%) 4.64−7.63 (27%) 4.86−8.94 (22%) 0.012 0.00−0.00 0.0 0.00−0.00 0.99 (100) 0.97 (0) 0.99 0

Table S1. BUSTED test performance on synthetic data, under model fits from benchmark datasets to parametrize various
simulation scenarios simulations (100 replicates each). Truth – values used for data generation; parameters changed from
their MLE values from the corresponding empirical dataset are shown in boldface. For model rate estimates, interquartile
range is shown. For proportion estimates, mean value is shown. Detection columns shows the fraction of replicates where
the LRT for episodic diversifying selection yields p≤0.05; and the value in parentheses – the number of replicates where
the corresponding model was preferred by AICc. Detection / Averaged – the fraction of replicates where model-averaged
LRT p-value was ≤0.05. The last column shows the fraction of replicates for which the +S+MH model was preferred to the

+S model, using the χ22 based LRT p≤0.05.
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FIG. S2. Model performance on data simulated with
EDS (25% selected fraction). Left column : detection
rate for EDS (at p≤0.05) as a function of rate ω3 (effect
size) and δ (confounding parameter), and the rate at which
+S+MH is preferred to +S by a nested LRT test. Right
column: ω3 estimates (median, IQR) for various simulation
scenarios.
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