1	Enhanced Protection from SARS-CoV-2 Variants by MVA-Based Vaccines
2	Expressing Matched or Mismatched S Proteins Administered Intranasally to
3	hACE2 Mice
4	Catherine A. Cotter [#] , Jeffrey L. Americo [#] , Patricia L. Earl and Bernard Moss [*]
5	Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National
6	Institutes of Health, Bethesda, MD 20892 USA
7	
8	[#] Contributed equally
9	*E-mail: <u>bmoss@nih.gov</u>
10	

11 ABSTRACT

The continuous evolution of SARS-CoV-2 strains is contributing to the prolongation of the 12 global pandemic. We previously reported the prevention or more rapid clearance of SARS-CoV-13 14 2 from the nasal turbinates and lungs of susceptible K18-hACE2 mice that had been vaccinated 15 intranasally (IN) rather than intramuscularly (IM) with a recombinant MVA (rMVA) expressing 16 a modified S protein of the ancestor SARS-CoV-2 strain. Here, we constructed additional rMVAs and pseudoviruses expressing modified S protein of SARS-CoV-2 variants and 17 compared the ability of vaccines with S proteins that were matched or mismatched to neutralize 18 19 variants, bind to S proteins and protect K18-hACE2 mice against SARS-CoV-2 challenge. Although vaccines with matched S proteins induced higher neutralizing antibodies, vaccines with 20 21 mismatched S proteins still protected against severe disease and reduced virus and mRNAs in the 22 lungs and nasal turbinates, though not as well as vaccines with matched S proteins. In mice earlier primed and boosted with rMVA expressing ancestral S, antibodies to the latter increased 23 after one immunization with rMVA expressing Omicron S, but neutralizing antibody to Omicron 24 25 required a second immunization. Passive transfer of Wuhan immune serum with Omicron S binding but undetectable neutralizing activities reduced infection of the lungs by the variant. 26 27 Notably, the reduction in infection of the nasal turbinates and lungs was significantly greater when the rMVAs were administered IN rather than IM and this held true for vaccines that were 28 29 matched or mismatched to the challenge SARS-CoV-2. 30

31

32 INTRODUCTION

The speed with which safe and efficacious SARS-CoV-2 vaccines were developed was a 33 34 remarkable achievement. Clinical trials indicated that the mRNA vaccines were 94 to 95% effective in preventing COVID-19 illness ^{1,2} and adenovirus-based vaccines were about 74% 35 effective ^{3,4}. Those and most other vaccines are based on the spike (S) protein, which mediates 36 37 entry of the virus into cells. Initially, it was considered that the proof-reading mechanism employed by coronaviruses would greatly retard the development of escape mutants ⁵. However, 38 39 successive waves of variants and subvariants appeared with mutations in S including the receptor binding domain (RBD) and some such as Beta and Omicron exhibited resistance to antibodies 40 elicited by ancestor strains ⁶. Nevertheless, boosting with the original vaccines reduce serious 41 42 disease, though they appear less effective in preventing infection and transmission ⁷. Updated SARS-CoV-2 mRNA vaccines are based on expression of two S proteins: one from an ancestor 43 and the other from a recent isolate ⁸. Another consideration is whether intranasal (IN) or aerosol 44 delivery would prevent infection and transmission better than intramuscular (IM) vaccination. 45 Recombinant poxvirus platforms are valuable for identifying targets of humoral and 46 47 cellular immunity, have been developed into numerous veterinary vaccines and are undergoing clinical evaluation for vaccines against unrelated pathogens including SARS-CoV-2 and cancer 48 ⁹⁻¹¹. We and others described animal studies supporting use of the host-range restricted vaccinia 49 virus Ankara (MVA) as an alternative vector for COVID-19 vaccines ¹²⁻¹⁶. Recent animal studies 50 demonstrated advantages of IN delivery of recombinant MVAs (rMVAs) expressing S¹⁷⁻¹⁹. 51

52 Anti-SARS-CoV-2 IgA and IgG as well as specific T cells were detected in the lungs of IN

53 vaccinated mice and virus was diminished in the upper and lower respiratory tracts following

54	challenge of K18-hACE2 mice with SARS-CoV-2. Here we describe the construction and
55	immunogenicity of rMVAs expressing the S proteins of several variant SARS-CoV-2 strains.
56	The neutralizing and S binding activities of sera following matched and mismatched rMVA
57	boosts were determined as well as protection of K18-hACE2 mice vaccinated IN and IM and
58	challenged IN with SARS-CoV-2 variants. Vaccines that produced low neutralizing activities to
59	mismatched SARS-CoV-2 variants still provided durable protection, but vaccines matched to the
60	challenge virus elicited higher neutralizing activities and were more effective. For both matched
61	and mismatched immunizations, the IN route was better than IM at reducing virus infection of
62	the upper and lower respiratory tracts. In mice earlier primed and boosted with rMVA expressing
63	ancestral S, antibodies to the latter increased after one immunization with rMVA expressing
64	Omicron S, but neutralizing antibody to Omicron required a second immunization.
65	
66	RESULTS
67	Relative virulence of SAR-CoV-2 variants in the K18-hACE2 mouse model. We previously
68	reported that serum from mice vaccinated with an rMVA expressing the spike protein of the
69	ancestor Wuhan strain of SARS-CoV-2, that was modified to stabilize the pre-fusion structure
70	and enhance membrane localization (rMVA-W), neutralized recombinant vesicular stomatitis
71	virus (rVSV) pseudoviruses expressing divergent S proteins to varying degrees ¹⁸ . This cross-
72	reactivity led us to evaluate the ability of rMVA-W and rMVAs expressing variant S proteins to
73	protect K18-hACE2 mice against challenge with SARS-CoV-2 variants. Before undertaking

- 74 protection studies, we compared the relative virulence of four SARS-CoV-2 variants, CoV-
- 75 Washington (W, S identical to Wuhan), -Beta (B), -Delta (D), and -Omicron (O, BA.1.1) in the
- 76 mouse model system. Following IN infection of the hACE2 mice with CoV-W, -B and -D,

77	weight loss was detected with a dose of 10^2 TCID ₅₀ (Fig. S1A–C) and 100% death occurred with	
78	10^4 TCID ₅₀ (Fig. S1D-F). CoV-O was less virulent than the others, with only two of five mice	
79	succumbing on day 7 to a dose of $5x10^4$ (Fig. S1G). For a further comparison, the hACE2 mice	
80	were inoculated IN with varying doses of CoV-W or -O and the amounts of virus in the lungs	
81	and nasal turbinates determined. The lungs of CoV-W-infected mice contained 100- to 1,000-	
82	fold more virus than the lungs of CoV-O-inoculated mice on day 2 (Fig. S1H). At that early time,	
83	virus was detected in the nasal turbinates only of mice inoculated with CoV-W (Fig. S1I). Our	
84	finding that CoV-O is less virulent than other variants in mice is in accord with other studies ^{20,21} .	
85	In subsequent challenge experiments, a dose of $5x10^4$ TCID ₅₀ (highest possible dose due to titer)	
86	was used for CoV-O and 10^4 TCID ₅₀ for the others.	
87		
88	Protective immunity to SARS-CoV-2 variants following IM vaccination with rMVA-W.	
89	K18-hACE2 mice were vaccinated IM twice 3 weeks apart with the parental MVA as a control	
90	or with rMVA-W and challenged with CoV variants 2 weeks later (Fig. 1A). Antibody binding	
91	to the Wuhan RBD was detected by ELISA after the first immunization and was not increased	
92	significantly by the second (Fig. 1B). Pseudoviruses, named for the spike protein that they	
93	express, were neutralized in the order $rVSV-W > D > -B$ after the first immunization (Fig. 1C).	
94	The neutralization titers increased significantly after the second immunization for the vaccine	
95	mismatched rVSV-B and rVSV-D but not for the matched rVSV-W, which was already high.	
96	Following challenge with CoV-W, -B or -D, mice that received the control MVA vector	
97	lost weight and died by day 6, whereas mice that received rMVA-W lost no weight and survived	
98	infection with each of the variants (Fig. 1D, E). Five additional mice in each group were	

100 RNAs in internal organs. Substantial amounts of each of the SARS-CoV-2 viruses were detected by infectivity assays in the lungs and turbinates of control mice that received the MVA vector, 101 102 whereas none was detected in mice that received rMVA-W regardless of the challenge strain of 103 virus (Fig. 1F, G). Analysis of sgRNAs provides an alternative and more sensitive assay for replication than the titer of infectious SARS-CoV-2 from tissues ²² and sgN is most abundant 104 followed by sgS²³. Digital droplet polymerase chain reaction (ddPCR) was used to detect sgN 105 106 and sgS in our study and the values normalized to 18s ribosomal RNA in each sample. High 107 levels of sgN and sgS RNAs were detected in the lungs of the control mice that received the 108 MVA vector following challenge with each of the variants. In contrast, sgRNAs were not 109 detected in mice immunized with rMVA-W and challenged with CoV-W and the levels were 110 significantly diminished in mice challenged with CoV-B and -D (Fig. 1H). High titers of 111 sgRNAs were also present in the nasal turbinates of challenged mice that had been immunized with the control MVA but were undetected or significantly diminished in mice that had been 112 immunized with rMVA-W (Fig. 1I). These results indicated that a vaccine expressing the Wuhan 113 114 S and administered IM protected against weight loss and death and significantly reduced the replication of CoV-B and -D by day 5, despite lower levels of neutralizing antibody to their S 115 116 proteins. Nevertheless, virus replication in the lungs as determined by sgRNAs was lowest when 117 the S proteins of the vaccine and challenge were matched.

118

Duration of cross-protective immunity following IM vaccination with rMVA-W. In the

above experiment, mice were challenged at 3 weeks after vaccination when antibody levels were

121 near their peak. To determine the duration of cross-protective immunity, additional groups of

122 K18-hACE2 mice were vaccinated IM twice and held for 9 months (Fig. 2A). Over this period,

the binding to the Wuhan S protein decreased by about 70% (Fig. 2B). The neutralizing titer for
each variant was boosted by the second immunization but then each also decreased substantially
over time (Fig. 2C).

126 After challenge with the SARS-CoV-2 variants, mice that had received the control MVA 127 vector lost ~ 10 to 20% of their starting weight by day 5; mice immunized with rMVA-W and 128 challenged with CoV-W lost little weight while those challenged with CoV-B and -D were 129 intermediate (Fig. 2D). Mice that received the control MVA vector had substantial amounts of 130 virus in the lungs and turbinates on day 5 following challenge, whereas mice that had been 131 vaccinated with rMVA-W had little or no virus regardless of which SARS-CoV-2 strain was 132 used for challenge (Fig. 2E, F). Substantial differences, however, were revealed by analysis of 133 sgRNAs. Mice vaccinated with rMVA-W and challenged with CoV-W had >3-log mean 134 reduction of sgRNAs in the lungs compared to controls whereas mice challenged with CoV-B and -D had 1- to 2-log mean reductions (Fig. 2G). The same trend was observed in the nasal 135 turbinates: mice challenged with CoV-W had no detectable sgRNAs, whereas sgRNAs were 136 137 significantly reduced relative to controls in mice challenged with CoV-B and -D (Fig. 2H). We concluded that protection was durable, but at a reduced level at 9 months and was greater when 138 139 the vaccine and challenge virus were matched.

140

141 Comparison of IM and IN immunizations with rMVA-W on inhibition of early stages of 142 variant infections. The experiments described thus far demonstrated that IM vaccination with 143 rMVA-W protected mice from lethal infection with Beta and Delta strains and reduced virus and 144 sgRNAs present in the lungs and nasal turbinates by day 5 after challenge. For the next 145 experiments, we analyzed virus titers and sgRNAs at 2 and 4 days after infection with SARS-

146 CoV-2 to determine the effect of vaccination on earlier stages of infection (Fig. 3A). Binding to 147 the Wuhan S RBD was detected after the first immunization and increased slightly after the 148 second (Fig. 3B). Neutralization titers obtained with pseudoviruses expressing variant spike 149 proteins were in the order rVSV-W >-D >-B >-O (Fig. 3C). Titers were boosted by the second 150 immunization but, even then, less than half of the mice had serum that neutralized rVSV-O 151 above the limit of detection.

152 Following challenge of mice receiving the control MVA vector, the virus titers in the 153 lungs were highest on day 2 and reduced to varying degrees on day 4 for each variant (Fig. 3D). 154 Notably, no virus was recovered from the lungs on either day from mice vaccinated with rMVA-W and challenged with CoV-W, -B, -D or -O. Mice that received the control MVA vector and 155 156 were subsequently challenged had substantial amounts of virus in the nasal turbinates that were 157 higher on day 2 than day 4 except for CoV-O, in which none was detected (Fig. 3E). For mice vaccinated with rMVA-W, the CoV-W, -B or -D titers in the turbinates were reduced relative to 158 the controls on day 2 and undetectable on day 4. The presence of SARS-CoV-2 in the turbinates 159 160 of vaccinated mice was missed in the previous experiment (Fig. 2F) when only day 5 was 161 examined. High amounts of sgRNAs were found in the lungs of mice inoculated with the control 162 MVA, on days 2 and 4 after challenge with the variants including CoV-O (Fig. 3F). In contrast to the controls, mice that had been immunized with rMVA-W and challenged with CoV-W had 163 164 little or no sgRNA in the lungs on either day, whereas virus was reduced but still detected on 165 both days after challenge with the other variants (Fig. 3F). In the nasal turbinates, sgRNAs were 166 detected on days 2 and 4 of mice that received the control MVA vector and challenged with each of the variants including CoV-O, whereas sgRNAs were detected in vaccinated mice challenged 167 168 with CoV-W or variants only on day 2 (Fig. 3G). These data indicated that IM vaccination with

rMVA-W reduced replication of each of the variants but did not prevent infection as judged by
the detection of virus and sgRNAs in the lungs and turbinates. Interestingly, although rMVA-W
induced low Omicron neutralizing activity as measured *in vitro*, the lung titers of Omicron were
significantly reduced in vaccinated mice.

We previously reported that IN administration of rMVA-W prevented or more rapidly 173 eliminated upper respiratory infection with CoV-W than when administered IM¹⁸. Here, we 174 wanted to determine whether IN delivery is advantageous for cross-protection of variants. Mice 175 176 were inoculated with the MVA control or rMVA-W as in the previous experiment, except that 177 the route was IN (Fig. 4A). Antibody binding to the RBD of the Wuhan spike protein was 178 detected after the first immunization with rMVA-W and increased slightly after the second (Fig. 179 4B). The second immunization with rMVA-W significantly increased neutralizing antibodies in 180 the blood to each of the variants except Omicron (Fig. 4C), as was the case for IM immunization. Following challenge of mice that received the control MVA, the CoV-W and variant strains were 181 182 detected in the lungs and turbinates on day 2 and decreased on day 4 (Fig. 4D, E). In addition, 183 considerable amounts of CoV-B and lesser amounts of CoV-D were recovered from the brains of the control mice on day 4 (Fig. 4F). However, in mice vaccinated IN with rMVA-W, virtually no 184 185 virus of any strain was detected on days 2 or 4 in lungs, nasal turbinates or brains of mice (Fig. 4D-F), whereas considerable virus had been detected on day 2 in the turbinates of mice that had 186 been vaccinated IM (Fig. 3E). Furthermore, sgRNAs were greatly reduced on day 2 and virtually 187 188 absent on day 4 in the lungs of IN-vaccinated mice following challenge with CoV-W, -B or -D and were significantly reduced after challenge with CoV-O compared to controls (Fig. 4G). 189 190 Moreover, sgRNAs were undetectable or detected at very low levels in the turbinates of mice 191 infected with any of the variants on day 2 and none was detected on day 4 (Fig. 4H), in contrast

to the results obtained by IM vaccination (Fig. 3G). For each variant, there was a greater

193	reduction of sgRNAs in mice immunized IN compared to IM as depicted for the nasal turbinates
194	on day 2 (Fig. 4I). Thus, IN vaccination with rMVA-W was advantageous for protection against
195	variant as well as matched challenges.
196	
197	Construction and immunogenicity of rMVAs with variant spikes. Thus far, we immunized
198	mice with rMVA expressing the Wuhan S protein and challenged with variant SARS-CoV-2. For
199	the next experiments, we constructed rMVAs expressing the S proteins of variant strains.
200	Equivalent S protein expression was verified by analysis of infected HeLa cells by Western
201	blotting using antibody to the FLAG tag (Fig. S2A, B), although there was some difference in
202	binding of anti-Wuhan RBD to the variants reflecting sequence differences (Fig. S2A, C). Cell
203	surface expression of the S proteins and binding to hACE2 were demonstrated by flow cytometry
204	(Fig. S2D). To compare their immunogenicity, C57BL/6 mice were vaccinated IM with rMVAs
205	expressing variant S proteins followed by a boost with the same rMVA used for the first
206	vaccination (Fig. 5A). The neutralization of pseudoviruses expressing spike proteins matched or
207	mismatched to the vaccines were determined (Fig. 5B). Sera from mice immunized with rMVA-
208	W neutralized rVSV-W significantly better than rVSV-D and had no detectable activity against
209	rVSV-O. After the second vaccination with rMVA-W, neutralizing antibody to rVSV-W and -D
210	were increased but most of the mice still made no detectable neutralizing antibody to rVSV-O.
211	Sera from mice vaccinated with rMVA-D neutralized rVSV-W almost as well as rVSV-D but
212	also had low neutralizing activity to rVSV-O and only small increases occurred after the second
213	immunization. Sera from mice that received rMVA-O had little or no neutralizing activity to
214	rVSV-W or -D but had detectable activity against the matching rVSV-O. After two and three

rMVA-O vaccinations, neutralization of rVSV-O was boosted but the neutralizing titers to
rVSV-W and -D were minimally increased.

217	The S proteins expressed by the rMVA vectors had been modified to stabilize the pre-
218	fusion form, prevent furin cleavage and increase cell surface expression as described previously
219	¹² . To be certain that these changes were not responsible for diminished cross-neutralizing
220	activity, we obtained sera from K18-hACE2 mice that had been sublethally infected with CoV-
221	W, CoV-B, CoV-D or CoV-O in the experiment of Fig. S1). The cross-neutralizing activities of
222	these serum samples were similar to serum obtained from vaccinated mice (Fig. 5D).
223	In contrast to the low neutralizing antibody, sera from mice immunized twice with
224	rMVA-W exhibited substantial binding to the S proteins of Delta and Omicron, although
225	significantly less than to the Wuhan S protein, whereas sera from mice immunized multiple
226	times with rMVA-O bound to similar extents to Wuhan and Omicron S proteins (Fig. 5C). We
227	considered that the relatively greater binding of sera to mismatched S proteins compared to their
228	neutralizing ability may have significance for cross-protection in vivo. To investigate this, pooled
229	sera from mice vaccinated IM with rMVA-W or rMVA-O were inoculated IP into K18-hACE2
230	mice. One day after serum transfer and just before challenge with CoV-O, the NT50 values of
231	the sera from rMVA-W-vaccinated mice were >400 for rVSV-W and undetectable for rVSV-O
232	(Fig. 5E). The corresponding NT50 values for the mice receiving sera from rMVA-O-vaccinated
233	mice were >100 for rVSV-O and undetectable or barely detectable for rVSV-W. Despite the
234	difference in neutralizing titers, no CoV-O was recovered from the lungs at 4 days after
235	challenge of mice receiving anti-Wuhan or anti-Omicron sera (Fig. 5F). However, the mice that
236	received anti-Omicron serum also had reduced sgN and sgS RNAs in the lungs, whereas the
237	mice that received anti-Wuhan serum did not (Fig. 5G). These data indicated that the anti-Wuhan

serum without detectable *in vitro* neutralizing activity for Omicron was partially protective *in vivo* but that the neutralizing anti-Omicron serum was more potent

240

241 Neutralizing antibody responses to mismatched prime and boost vaccinations. A related 242 question is whether heterologous boosting with variant spike proteins will increase neutralizing 243 activity to the original spike protein, the variant or both. To investigate this, C57BL/6 mice were vaccinated twice with rMVA-W. After 30 weeks, the mice were bled and groups of 9 to 10 mice 244 245 were re-vaccinated with rMVA-W, -B, -D or -O (Fig. 5H). The neutralizing titer against the 246 original immunogen rVSV-W as well as rVSV-B and rVSV-D increased after boosting with each 247 of the variant rMVAs with the exception of rVSV-O (Fig. 5I). Because of the low neutralization 248 titer against Omicron obtained following immunization twice with rMVA-W and once with 249 rMVA-O or other rMVA variants, we decided to boost all the mice a second time with the same rMVAs used in the previous boost. None of the boosts increased the neutralizing titer to rVSV-250 251 W, rVSV-B or rVSV-D. However, the rMVA-O boost significantly increased the neutralizing 252 titer to rVSV-O, whereas none of the other boosts did (Fig. 5J). These results indicated that a 253 second immunization with rMVA-O is beneficial both for naïve mice as well as mice primed 254 with the rMVA expressing the ancestor S protein.

255

Protective immunogenicity of rMVAs expressing variant S proteins. Next, we analyzed
replication of CoV-W and CoV-O in mice that had been vaccinated IM with rMVA-W or
rMVA-O (Fig. 6A). As shown earlier in this study, immunization of K18-hACE2 mice with
rMVA-W elicited high neutralizing antibody to rVSV-W and very little to rVSV-O, whereas the
converse occurred following immunization with rMVA-O (Fig. 6B). Nevertheless, Immunization

with either rMVA-W or rMVA-O significantly reduced the titer of CoV-W in the lungs (Fig. 6C)
and turbinates (Fig. 6D) although immunization with rMVA-W was more effective on day 2. No
virus was detected in the lungs or turbinates of mice immunized with either rMVA-W or rMVAO and challenged with CoV-O, although it is important to note the low amount of CoV-O in the
lungs and barely detectable CoV-O in the nasal turbinates.

266 Analysis of sgRNAs provided a better basis for comparison of the protection afforded by the different immunizations. Immunization with rMVA-W provided complete protection of the 267 268 lungs from CoV-W on days 2 and 4, whereas immunization with rMVA-O provided significant 269 but partial protection (Fig. 6E). Nevertheless, the two vaccines provided similar 2-log reduction 270 of sgRNAs in the lungs of mice infected with CoV-O (Fig. 6E). In the nasal turbinates, sgRNAs were reduced on day 2 and undetectable on day 4 after challenge with CoV-W regardless of 271 272 whether the mice were immunized with rMVA-W or rMVA-O (Fig. 6F). CoV-O sgRNAs were 273 also reduced by similar amounts in the nasal turbinates when vaccinated with either rMVA-W 274 and rMVA-O. These data indicated that significant protection can occur even if low neutralizing 275 antibody is induced.

276 Next, we investigated the use of rMVA-O as a nasal vaccine (Fig. 7A). After the second 277 immunization with rMVA-O, neutralizing antibody to rVSV-O was similar or higher than that 278 obtained by IM but again there was little or no neutralization of rVSV-W (Fig. 7B). The control 279 mice challenged with CoV-W succumbed to the infection, whereas those challenged with CoV-O 280 had only a transient weight loss due to the low pathogenicity of the latter (Fig. 7C). Mice 281 vaccinated IN with rMVA-O had no weight loss following challenge with either CoV-W or 282 CoV-O (Fig. 7C). There was low or no recovery of virus (Fig. 7D) and significantly diminished 283 sgRNAs in the lungs of mice challenged with either CoV-W or CoV-O (Fig. 7E). Even more

striking was the reduction of virus (Fig. 7F) and sgRNAs (Fig. 7G) in the nasal turbinates of

284

304

305

306

14

285	mice challenged with CoV-W or CoV-O. The much greater reduction of sgRNAs following IN
286	vaccination than IM vaccination is shown for the turbinates on day 2 in Fig. 7H.
287	
288	DISCUSSION
289	The SARS-CoV-2 pandemic has entered a phase in which large segments of the population have
290	some immunity due to previous infection or vaccination. While there has been a drop in serious
291	disease and hospitalization, variants continue to arise and spread. In the present study we
292	investigated several topics related to vaccine efficacy in the current situation, including cross-
293	neutralization of variants, boosting with variant S proteins, role of non-neutralizing antibody and
294	particularly enhanced protection by IN administration of matched and mismatched vaccines. We
295	used MVA, an attenuated vaccinia virus vector, that has been extensively used for
296	immunological studies and is currently in clinical vaccine trials for a variety of infectious
297	diseases including SARS-CoV-2. Before carrying out these investigations, we compared the
298	abilities of variant SARS-CoV-2 strains to infect susceptible K18-hACE2 mice. Whereas,
299	Washington, Beta and Delta strains were highly lethal, Omicron was less so and lower titers of
300	the latter virus were recovered from the upper and lower respiratory tract. However, the amounts
301	of sgRNAs in the lungs and nasal turbinates of the different strains were more similar allowing a
302	better comparison of their replication. In addition, we constructed a panel of rMVA vaccines and
303	a panel of rVSV pseudoviruses expressing variant S proteins. Initially we focused on the ability

of rMVA-W, expressing the ancestor Wuhan S protein, to induce cross-neutralizing antibodies.

In line with studies using other vaccine platforms, we found that neutralization was in the order

of Wuhan > Delta > Beta > Omicron. Repeated immunizations with rMVA-W increased

307 neutralization titers to Delta and Beta but hardly to Omicron, which has the most divergent Sprotein, and none approached that to Wuhan itself. Nevertheless, vaccination with rMVA-W 308 309 protected hACE2 mice against weight loss and death and reduced virus replication in the upper 310 and lower respiratory tracts for at least 9 months. However, whereas no replication of the 311 ancestral strain of SARS-CoV-2 was detected in the lungs by sensitive sgRNA analysis, some 312 replication of other strains was found though significantly reduced compared to controls. Although rMVA-W elicited little anti-Omicron neutralizing antibody, there was appreciable 313 314 Omicron S-binding antibody that provided partial protection when passively transferred to mice. In another study, Kaplonek and co-workers ²⁴ determined that mRNA-1273 vaccine-induced 315 316 antibodies maintain Fc effector functions across variants, which could explain the protection seen here. We previously reported that rMVA-W stimulated antigen-specific T cells ¹² and the 317 318 majority of the peptides in the positive pools are present in the variant S proteins. The conclusion 319 from this phase of the study was that the mouse model mimicked clinical experience in that immunity to the ancestral SARS-CoV-2 protected against severe disease by variants but only 320 321 partially prevented infection and replication.

322 To better understand whether the differences in neutralization and protection were mainly 323 due to the mismatching of antibodies or to intrinsic resistance of variants to neutralization, we 324 immunized mice with rMVAs-W, -D or -O and determined the neutralization titers to matched and mismatched pseudoviruses. In each case, neutralization of the matched pseudovirus was 325 326 greater than mismatched though the difference was least between Wuhan and Delta and greatest between Omicron and the others. Nevertheless, even though rMVA-O induced antibodies that 327 328 significantly neutralized rVSV-O, the titers were less than those elicited by rMVA-W for Wuhan 329 or rMVA-D for Delta. Similar diminished cross-neutralizing antibodies were found in sera from

hACE2 mice infected with sublethal doses of SARS-CoV-2 variants demonstrating that this wasnot a problem with the vaccines.

332	Another pertinent question was whether boosting mice that had been vaccinated with
333	rMVA-W with rMVA-B, -D, or -O would increase antibodies to Wuhan S (original antigenic
334	sin), to the variants or both. Following two vaccinations with rMVA-W, a single vaccination
335	with rMVA-B or rMVA-D boosted the neutralization titers to Wuhan as well as to self. Although
336	a single immunization with rMVA-O boosted neutralizing antibody to the other variants, a
337	second vaccination with rMVA-O was required to induce neutralizing antibody to itself. Thus,
338	two rMVA-O vaccinations were needed to raise Omicron neutralizing antibody in both naïve
339	mice and mice that had been previously vaccinated with rMVA-W. Although not directly
340	measured, it seems likely that in each case the first Omicron vaccination elicited Omicron-
341	specific memory cells that were activated on the second vaccination.
342	By analyzing virus and sgRNAs in nasal turbinates and lungs at 2 and 4 days after SARS-
343	CoV-2 infection of K18-hACE2 mice, we confirmed our previous data on the better protection
344	afforded by IN compared to IM vaccination with rMVA-W. In the latter study, induction of
345	antigen-specific IgA and higher numbers of CD8+ T cells were found in the lungs. Here we
346	showed that IN vaccination also provided greater protection against other SARS-CoV-2 variants
347	following immunization with matched as well as mismatched S vaccines. These studies should
348	encourage the evaluation of nasal or aerosol vaccines to boost immunity in clinical trials.
349	

350 MATERIALS AND METHODS

351	Mice. Five- to six-week-old female C57BL/6ANTac and B6.Cg-Tg(K18-hACE2)2Prlmn/J mice	
352	were obtained from Taconic Biosciences and Jackson Laboratories, respectively. Typically, 3-5	
353	mice were housed per sterile, ventilated microisolator cage in an ABSL-2 or ABSL-3 facility.	
354		
355	MVA viruses and cells. rMVA-B, rMVA-D and rMVA-O viruses were constructed as described	
356	previously ¹² . All rMVA viruses were purified by two consecutive sucrose gradients. Vero E6	
357	cells (ATCC CRL-1586) and Vero E6 hTMPRSS2 hACE2 ¹⁸ were maintained in Dulbecco's	
358	Modified Eagle Medium supplemented with 8% heat-inactivated fetal bovine serum, 2 mM L-	
359	glutamine, 10 U/ml penicillin, and 10 µg/ml streptomycin.	
360		
361	Vaccination. Viruses used for vaccination were thawed, dispersed by sonication, and 10-fold	
362	serial dilutions were made in phosphate buffered saline containing 0.05% bovine serum albumin,	
363	resulting in concentrations ranging from $2x10^8$ to $2x10^4$ PFU/ml. The rMVAs in 50 µl were	
364	injected IM into each hind leg of the mouse. For IN vaccination, mice were lightly sedated with	
365	isoflurane and 50 µl of rMVAs administered.	
366		
367	Infection with SARS-CoV-2. SARS-CoV-2 USA-WA1/2020 from BEI resources (Ref# NR-	
368	52281) was propagated in Vero cells (CCL81); SARS-CoV-2 Beta (RSA 1.351 501Y) from the	
369	NIAID Integrated Research Facility at Ft. Detrick; SARS-CoV-2 Delta (hCoV-19/USA/MD-	
370	HP05285/2021 VOC G/478K.V1 B.1.617.2+AY.1+AY.2) from Andrew Pekosz at Johns	
371	Hopkins University, and SARS-CoV-2 Omicron BA.1 (Ref EPI-ISL_7171744) from Vincent	
372	Munster of the NIAID Laboratory of Virology were propagated in TMPRSS2 VeroE6 cells . The	
373	clarified culture medium was titrated on Vero E6 hTMPRSS2 cells and the TCID ₅₀ was	

374	determined by the Reed-Muench method. SARS-CoV-2 were amplified and purified in a BSL-3
375	laboratory by Reed Johnson and Nicole Lackemeyer of the NIAID COVID Virology Core
376	Laboratory. Aliquota consisting of 10^2 to 5 x 10^4 TCID ₅₀ of SARS-CoV-2 in 50 µl were
377	administered IN to mice that were lightly sedated with isoflurane. After infection, the weights
378	and morbidity/mortality status were assessed and recorded daily for up to 14 days.
379	
380	Detection of Wuhan S, Omicron S, and RBD binding IgG and antibodies by ELISA. SARS-
381	CoV-2 (2019-nCoV) spike (S1+S2 ECD protein, Sino Biologicals), Omicron BA 1.1 spike (from
382	Dr. Raul Cachau, NIAID) or CoV-2 Spike RBD (His-Tag, Genscript) was diluted in phosphate
383	buffered saline (PBS) to a concentration of 1 μ g/ml. MaxiSorp 96-well flat-bottom plates
384	(Thermo Fisher) were filled with 100 μ l of diluted S protein (0.1 μ g/well) and incubated
385	overnight at 4°C. After adsorption, wells were washed three times with 250 μl PBS + 0.05%
386	Tween-20 (PBS-T, Accurate Chemical). Plates were blocked for 2 h at room temperature with
387	200 μ l PBS-T + 5% nonfat milk and subsequently washed three times with PBS-T prior to
388	incubation with a series of eight 4-fold dilutions of mouse sera for 1 h at room temperature. To
389	detect S-specific IgG antibodies, plates were washed three times with PBS-T and incubated with
390	horse radish peroxidase (HRP)-conjugated goat anti-mouse IgG (H+L) (Thermo Fisher) for 1 h
391	at room temperature. After incubation plates were washed three times with PBS-T and 100 μl of
392	pre-warmed SureBlue TMB substrate (SeraCare) was added to the plate for 10 min at room
393	temperature. To stop the colorimetric reaction, 100 μ l of 1N sulfuric acid was added to each well
394	and absorbance was measured at A_{450} and A_{650} using a Synergy H1 plate reader with Gen5
395	analysis software (Agilent Technologies). IgG endpoint titers were determined as 4-fold above
396	the average absorbance of those wells not containing primary antibody.

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.03.518963; this version posted December 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

19

397

397	
398	Pseudovirus neutralization assays. BHK-21 cell lines expressing SARS-CoV-2 codon
399	optimized spikes with truncation of the 19 C-terminal amino acids were prepared and used to
400	generate rVSVDG–GFP-CoV2 spike pseudoviruses as previously described ¹⁸ . For the rVSVDG
401	pseudoviral neutralization assay, serial dilutions of heat-inactivated sera were incubated with
402	rVSVDG pseudoviruses and anti-VSV-G I1 hybridoma supernatant (ATCC# CRL-2700) for 45
403	min at 37°C. The mixture was then added to VeroE6 cells expressing hTMPRSS2 and hACE2
404	and incubated for 20 h at 37°C. The cells were fixed in 2% paraformaldehyde and GFP measured
405	by flow cytometry. NT50 values were calculated using Prism (Graphpad) to plot dose-response
406	curves, normalized using the average of the no virus wells as 100% neutralization, and the
407	average of the no serum wells as 0%. The limit of detection (LOD) of 25 was determined by
408	taking 1.96 standard deviation of the mean titer of the control MVA samples.
409	
410	Quantitation of infectious SARS-CoV-2. Lungs, brains, and nasal turbinates were
411	homogenized, cleared of debris by centrifugation at 3800xg for 10 min and serial 10-fold
412	dilutions were applied in quadruplicate to Vero E6 hTMPRSS2 cells in DMEM+Glutamax
413	(ThermoFisher) supplemented with 2% heat-inactivated FBS and 1% Antibiotic-Antimycotic in
414	96-well microtiter plates. After 72 h, the plates were stained with crystal violet and the Reed-
415	Muench method was used to determine the concentration at which 50% of the cells displayed a
416	cytopathic effect (TCID ₅₀).

417

418 Quantitation of SARS-CoV-2 sgRNAs. RNA was extracted from homogenates of lungs and
419 turbinates using Trizol; contaminating DNA was removed and RNA was reverse-transcribed.

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.03.518963; this version posted December 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20

420	SARS-CoV-2 sgS and sgN transcripts and 18S rRNA were quantified by ddPCR with specific
421	primers using an automated droplet generator and droplet reader (BioRad).
422	
423	Safety and Ethics. All experiments and procedures involving mice were approved under
424	protocol LVD29E by the NIAID Animal Care and Use Committee according to standards set
425	forth in the NIH guidelines, Animal Welfare Act, and US Federal Law. Euthanasia was carried
426	out using carbon dioxide inhalation in accordance with the American Veterinary Medical
427	Association Guidelines for Euthanasia of Animals (2013 Report of the AVMA Panel of
428	Euthanasia). Experiments with SARS-CoV-2 were carried out under BSL-3 containment.
429	
430	Data Availability. All data is included in the manuscript and supporting information.
431	
432	ACKNOWLEDGEMENTS
433	We thank Reed Johnson and Nicole Lackemeyer of the NIAID COVID Virology Core
434	Laboratory and Vincent Munster of the NIAID Laboratory of Virology for stocks of SARS-CoV-
435	2. The technical staff of the NIAID Comprehensive Medical Branch provided excellent animal
436	care. The work was supported by the Division of Intramural Research of NIAID.
437	
438	AUTHOR CONTRIBUTIONS
439	B.M. and P.E. designed experiments, C.A.C. and J.L.A. carried out experiments, B.M. wrote the
440	paper, C.A.C. prepared the figures, and all authors edited the final manuscript.
441 442	COMPETING INTEREST STATEMENT

443 The authors declare no competing interest.

^	1
,	
~	÷.

445 **REFERENCES**

444

- 446 1 Polack, F. P. *et al.* Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N
- 447 *Engl J Med* **383**, 2603-2615, doi:10.1056/NEJMoa2034577 (2020).
- 448 2 Baden, L. R. *et al.* Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N
- 449 *Engl J Med* **384**, 403-416, doi:10.1056/NEJMoa2035389 (2021).
- 450 3 Sadoff, J. *et al.* Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against
- 451 Covid-19. *N Engl J Med* **384**, 2187-2201, doi:10.1056/NEJMoa2101544 (2021).
- 452 4 Falsey, A. R. *et al.* Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19)
- 453 Covid-19 Vaccine. *N Engl J Med* **385**, 2348-2360, doi:10.1056/NEJMoa2105290 (2021).
- 454 5 Robson, F. *et al.* Coronavirus RNA Proofreading: Molecular Basis and Therapeutic

455 Targeting. *Mol Cell* **80**, 1136-1138, doi:10.1016/j.molcel.2020.11.048 (2020).

456 6 Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev*

457 *Microbiol* **19**, 409-424, doi:10.1038/s41579-021-00573-0 (2021).

- 458 7 Riemersma, K. K. *et al.* Shedding of infectious SARS-CoV-2 despite vaccination. *PLoS*
- 459 *Pathog* 18, e1010876, doi:10.1371/journal.ppat.1010876 (2022).
- 460 8 Chalkias, S. *et al.* A Bivalent Omicron-Containing Booster Vaccine against Covid-19. N

461 *Engl J Med* **387**, 1279-1291, doi:10.1056/NEJMoa2208343 (2022).

- 462 9 Moss, B. Genetically engineered poxviruses for recombinant gene expression,
- 463 vaccination, and safety. *Proc. Natl. Acad. Sci. USA* **93**, 11341-11348 (1996).
- 464 10 Volz, A. & Sutter, G. in Advances in Virus Research, Vol 97 Vol. 97 Advances in Virus
- 465 *Research* (eds M. Kielian, T. C. Mettenleiter, & M. J. Roossinck) 187-243 (2017).
- 466 11 Chiuppesi, F. et al. Safety and immunogenicity of a synthetic multiantigen modified
- 467 vaccinia virus Ankara-based COVID-19 vaccine (COH04S1): an open-label and

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.03.518963; this version posted December 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

468		randomised, phase 1 trial. Lancet Microbe 3, e252-e264, doi:10.1016/S2666-
469		5247(22)00027-1 (2022).
470	12	Liu, R. K. et al. One or two injections of MVA-vectored vaccine shields hACE2
471		transgenic mice from SARS-CoV-2 upper and lower respiratory tract infection.
472		Proceedings of the National Academy of Sciences of the United States of America 118,
473		doi:10.1073/pnas.2026785118 (2021).
474	13	Routhu, N. K. et al. A modified vaccinia Ankara vector-based vaccine protects macaques
475		from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity
476		54, 542-+, doi:10.1016/j.immuni.2021.02.001 (2021).
477	14	Tscherne, A. et al. Immunogenicity and efficacy of the COVID-19 candidate vector
478		vaccine MVA-SARS-2-S in preclinical vaccination. Proc Natl Acad Sci US A 118,
479		doi:10.1073/pnas.2026207118 (2021).
480	15	Garcia-Arriaza, J. et al. COVID-19 vaccine candidates based on modified vaccinia virus
481		Ankara expressing the SARS-CoV-2 spike induce robust T- and B-cell immune
482		responses and full efficacy in mice. J Virol, doi:10.1128/JVI.02260-20 (2021).
483	16	Meseda, C. A. et al. MVA vector expression of SARS-CoV-2 spike protein and
484		protection of adult Syrian hamsters against SARS-CoV-2 challenge. Npj Vaccines 6,
485		doi:10.1038/s41541-021-00410-8 (2021).
486	17	Bosnjak, B. et al. Intranasal Delivery of MVA Vector Vaccine Induces Effective
487		Pulmonary Immunity Against SARS-CoV-2 in Rodents. Frontiers in Immunology 12,
488		doi:10.3389/fimmu.2021.772240 (2021).
489	18	Americo, J. L., Cotter, C. A., Earl, P. L., Liu, R. & Moss, B. Intranasal inoculation of an
490		MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from

- 491 SARS-CoV-2 infection. *Proc Natl Acad Sci U S A* **119**, e2202069119,
- doi:10.1073/pnas.2202069119 (2022).
- 493 19 Perez, P. et al. Intranasal administration of a single dose of MVA-based vaccine
- 494 candidates against COVID-19 induced local and systemic immune responses and protects
- 495 mice from a lethal SARS-CoV-2 infection. *Frontiers in Immunology* 13,
- doi:10.3389/fimmu.2022.995235 (2022).
- 497 20 Halfmann, P. J. *et al.* SARS-CoV-2 Omicron virus causes attenuated disease in mice and
 498 hamsters. *Nature*, doi:10.1038/s41586-022-04441-6 (2022).
- 499 21 Suryawanshi, R. K. et al. Limited cross-variant immunity from SARS-CoV-2 Omicron
- 500 without vaccination. *Nature* **607**, 351-355, doi:10.1038/s41586-022-04865-0 (2022).
- 50122Speranza, E. *et al.* Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics
- 502 in lungs of African green monkeys. *Sci Transl Med* **13**,
- 503 doi:10.1126/scitranslmed.abe8146 (2021).
- 50423Kim, D. et al. The Architecture of SARS-CoV-2 Transcriptome. Cell 181, 914-921 e910,
- 505 doi:10.1016/j.cell.2020.04.011 (2020).
- 506 24 Kaplonek, P. et al. mRNA-1273 vaccine-induced antibodies maintain Fc effector
- 507 functions across SARS-CoV-2 variants of concern. *Immunity* 55, 355-365 e354,
- 508 doi:10.1016/j.immuni.2022.01.001 (2022).

511 FIGURE LEGENDS

512

510

513 Fig. 1. Protective immunity to SARS-CoV-2 variants following IM vaccination with rMVA-

- 514 W. (A) K18-hACE2 mice were vaccinated IM twice with MVA control (n=40) or rMVA-W
- 515 (n=40), divided into groups of n=10 and challenged with CoV-W, -B, or -D two weeks later. (B,
- 516 C) Serum antibody binding to the Wuhan S RBD and neutralization of pseudoviruses rVSV-W, -
- 517 B or -D at 3 and 5 weeks after vaccination. (D, E) Time course of weight loss and survival on
- 518 days after challenge. (F, G) Recovery of SARS-CoV-2 from lungs and nasal turbinates on day 5
- 519 after challenge. (H, I) Copies of sgRNAs N and S normalized to 18s RNA from lungs and nasal
- 520 turbinates on day 5 after challenge. Abbreviation: D, day; sac, sacrifice. * p=/<0.03; **
- 521 p=/<0.002; *** p=/<0.0002; **** p<0.0001. Significance not calculated when values of one
- 522 group were all below the limit of detection.
- 523

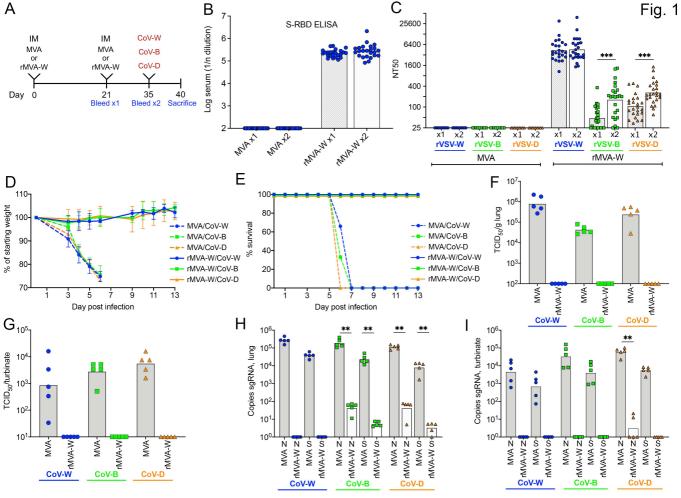
524 Fig. 2. Duration of cross-protective immunity following IM vaccination with rMVA-W. (A)

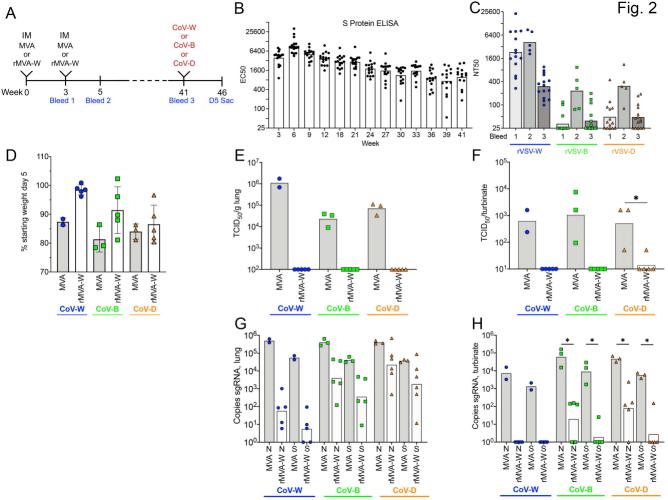
- 525 K18-hACE2 mice were vaccinated IM twice with MVA control (n=8) divided into groups of 2 –
- 526 3 or rMVA-W (n=15), divided into groups 5 and challenged with CoV-W, -B, or -D
- 527 approximately 9 months later. (B) Binding of serum antibodies to Wuhan S protein determined
- 528 by ELISA. (C) Neutralization of pseudoviruses rVSV-W, -B and -D by serum obtained at weeks
- 529 3, 5 and 41. (D) Weights of mice on day 5 after challenge relative to starting weights. (E, F)
- 530 Recovery of SARS-CoV-2 from lungs and nasal turbinates on day 5 after challenge. (G, H)
- 531 Copies of sgRNAs N and S normalized to 18s RNA from lungs and nasal turbinates on day 5
- 532 after challenge.
- 533

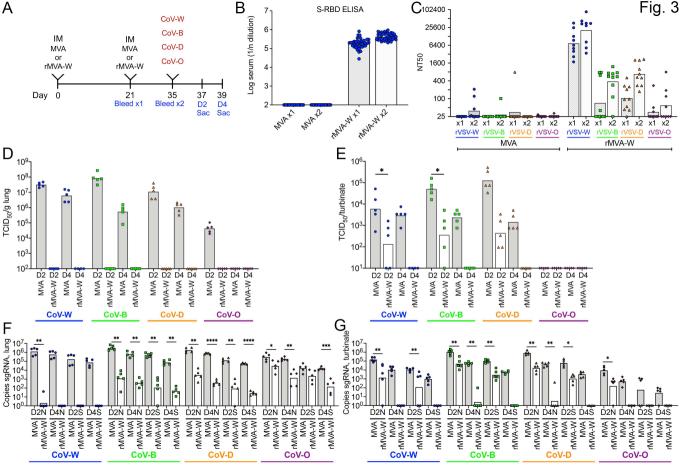
534	Fig. 3. Inhibition of early stages of variant SARS-CoV-2 infections in mice immunized IM
535	with rMVA-W. (A) K18-hACE2 mice were vaccinated IM twice with MVA control (n=40) or
536	rMVA-W (n=40), divided into groups of 10 and challenged 2 weeks later with CoV-W, -B, -D or
537	-O 3. (B) Binding of serum antibodies to Wuhan RBD after first and second immunizations
538	determined by ELISA. (C) Neutralization of pseudoviruses rVSV-W, -B, -D and -O by sera
539	obtained after the first and second immunizations. (D, E) Recovery of SARS-CoV-2 from lungs
540	and nasal turbinates on days 2 and 4 after challenge. (F, G) Copies of sgRNAs N and S
541	normalized to 18s RNA from lungs and nasal turbinates on days 2 and 4 after challenge.
542	
543	Fig. 4. Greater inhibition of early stages of variant SARS-CoV-2 infections in mice
544	immunized IN with rMVA-W. (A) K18-hACE2 mice were vaccinated IN twice with MVA
545	control (n=31) or rMVA-W (n=32), divided into groups of 7 or 8 and 2 weeks later challenged
546	with CoV-W, -B, or -D. (B) Serum antibody binding to Wuhan RBD determined by ELISA after
547	the first and second immunizations. (C) Neutralization of pseudoviruses rVSV-W, -B, -D and -O
548	by serum obtained after the first and second immunizations. (D , E , F) Recovery of SARS-CoV-2
549	from lungs and nasal turbinates on days 2 and brain on day 4 after challenge. (G,H) Copies of
550	sgRNAs N and S normalized to 18s RNA from lungs and nasal turbinates on days 2 and 4 after
551	challenge. (I) Fold-reduction of sgRNAs in nasal turbinates on day 2 for mice immunized IN and
552	IM. Data replotted from Fig. 3G and 4H.
553	
554	Fig. 5. Neutralizing antibody responses following boosts with rMVAs expressing matched
555	or mismatched S. (A-C, E-) Matched prime and boost IM vaccinations of C57BL/6 mice (n= 40

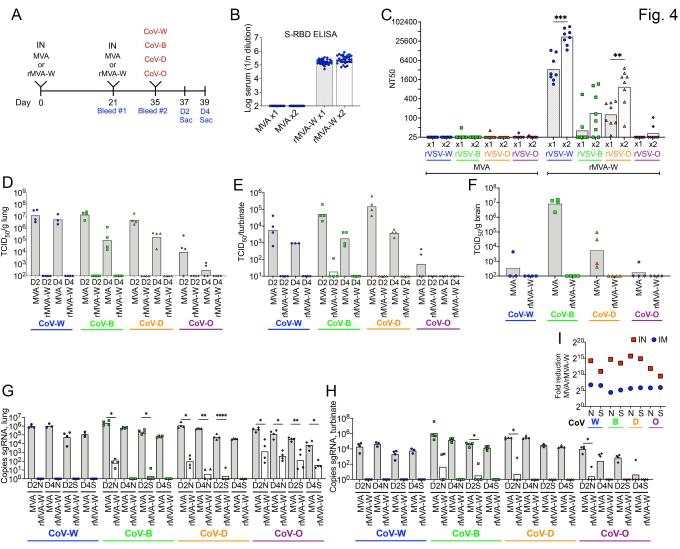
556 per group) with rMVA-W, -D, and -O. (A) Timeline. (B) Neutralization of pseudoviruses rVSV-

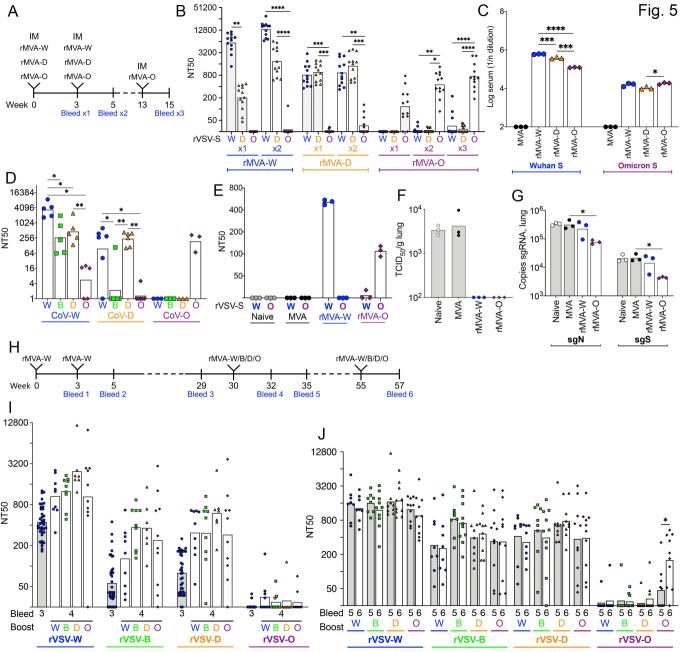
557	W, -D and -O by serum obtained after the prime with rMVA-W, -D and -O and after the matched
558	boost. (C) Binding of pooled serum from the second bleed to Wuhan and Omicron S determined
559	by ELISA. (D) Neutralization of pseudoviruses by sera from mice sublethally infected with
560	CoV-W, CoV-D or CoV-O, (E) Serum neutralizing titers of mice one day after receiving pooled
561	serum IP from naïve mice or mice immunized twice with MVA, rMVA-W or rMVA-O. (F, G)
562	Recovery of SARS-CoV-2 and sgRNAs from the lungs at 4 days after challenge of passively
563	immunized mice. (H, I) C57BL/6 mice immunized twice with rMVA-W and boosted with
564	rMVA-W, -B, -D, or -O. (H) Timeline. (I) Neutralization of pseudoviruses rVSV-W, -B, -D and
565	-O by serum obtained after the third immunization. (i) Neutralization of pseudoviruses by sera
566	obtained after the fourth immunization.
567	
568	Fig. 6. Protection of SARS-CoV-2 challenged mice that received matched or mismatched
569	rMVAs IM. (A) Timeline showing IM immunizations of K18-hACE2 mice (n=9 per group)
570	with MVA, rMVA-W and rMVA-O and matched and mismatched challenges with CoV-W and
570 571	with MVA, rMVA-W and rMVA-O and matched and mismatched challenges with CoV-W and CoV-O. (B) Neutralization of pseudoviruses rVSV-W and -O by serum obtained after one and
571	CoV-O. (B) Neutralization of pseudoviruses rVSV-W and -O by serum obtained after one and
571 572	CoV-O. (B) Neutralization of pseudoviruses rVSV-W and -O by serum obtained after one and two IM immunizations with MVA, rMVA-W or rMVA-O. (C , D) Recovery of SARS-CoV-2
571 572 573	CoV-O. (B) Neutralization of pseudoviruses rVSV-W and -O by serum obtained after one and two IM immunizations with MVA, rMVA-W or rMVA-O. (C , D) Recovery of SARS-CoV-2 from lungs and nasal turbinates on days 2 and 4 after challenge with CoV-W or CoV-O. (E , F)
571 572 573 574	CoV-O. (B) Neutralization of pseudoviruses rVSV-W and -O by serum obtained after one and two IM immunizations with MVA, rMVA-W or rMVA-O. (C , D) Recovery of SARS-CoV-2 from lungs and nasal turbinates on days 2 and 4 after challenge with CoV-W or CoV-O. (E , F) Copies of sgRNAs N and S normalized to 18s RNA from lungs and nasal turbinates on days 2
571 572 573 574 575	CoV-O. (B) Neutralization of pseudoviruses rVSV-W and -O by serum obtained after one and two IM immunizations with MVA, rMVA-W or rMVA-O. (C , D) Recovery of SARS-CoV-2 from lungs and nasal turbinates on days 2 and 4 after challenge with CoV-W or CoV-O. (E , F) Copies of sgRNAs N and S normalized to 18s RNA from lungs and nasal turbinates on days 2
571 572 573 574 575 576	CoV-O. (B) Neutralization of pseudoviruses rVSV-W and -O by serum obtained after one and two IM immunizations with MVA, rMVA-W or rMVA-O. (C , D) Recovery of SARS-CoV-2 from lungs and nasal turbinates on days 2 and 4 after challenge with CoV-W or CoV-O. (E , F) Copies of sgRNAs N and S normalized to 18s RNA from lungs and nasal turbinates on days 2 and 4 after challenge.

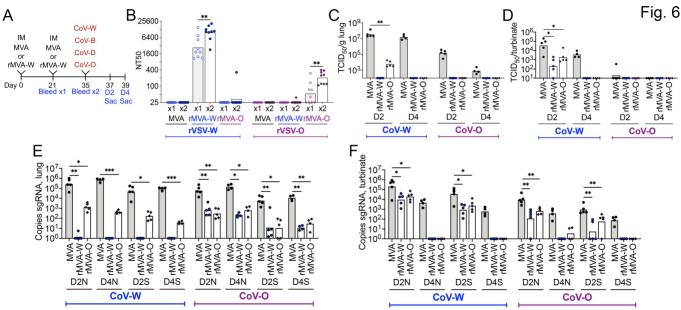

579 and matched and mismatched challenges with CoV-W and CoV-O. (B) Neutralization of

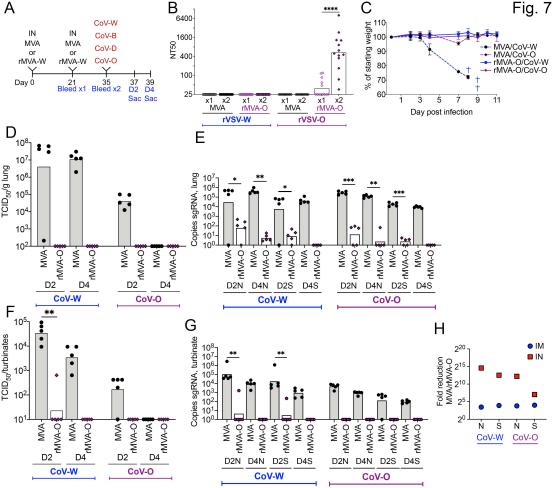

580	pseudoviruses rVSV-W and -O by serum obtained after one and two IN immunizations with
581	MVA or rMVA-O. (C) Weight loss of mice following challenge with CoV-O or CoV-W. (D, E)
582	Recovery of virus and sgRNAs in the lungs of mice challenged with CoV-W or CoV-O. (F, G)
583	Recovery of virus and sgRNAs in the nasal turbinates of mice challenged with CoV-W or CoV-
584	O. (H) Fold-reduction of sgRNAs in nasal turbinates on day 2 for mice immunized IN and IM.
585	
586	Fig. S1. Relative virulence of SAR-CoV-2 variants. (A -F) K18-hACE2 mice (n=3 per group)
587	were infected IN with 10 ² to 10 ⁴ TCID ₅₀ of indicated SARS-CoV-2 strains Washington (CoV-W,
588	Beta (CoV-B), Delta (CoV-D) and weight loss and survival plotted. (G) K18-hACE2 mice (n=5)
589	were infected IN with 5 x 104 TCID50 of CoV-O and weight loss plotted. †, death. (H, I) K18-
590	hACE2 mice (n=3 per group) were infected IN with 5 x 10^3 to 5 x 10^4 TCID ₅₀ of CoV-W or
591	CoV-O and virus titers in the lungs and nasal turbinates determined on day 2.
592	
593	Fig. S2. Expression of S by variant rMVAs. (A) Cells were mock-infected or infected with
594	rMVA-W, -B, -D, or -O and Western blots probed with mouse anti-Flag (Millipore Sigma),
595	rabbit anti-Wuhan S-RBD (Sino Biologicals), rabbit anti-GFP (Thermofisher), mouse anti-actin
596	(Santa Cruz), donkey anti-mouse IRDye 680RD (LiCor) and donkey anti-rabbit IRDye800CW
597	(LiCor). The positions of size markers with mass in kDa are shown on the left. (B) Ratios of
598	intensities of the bands probed with anti-Flag and anti-GFP plotted. (C) Ratios of intensities of
599	bands probed with anti-RBD and anti-GFP plotted. (D) Cells were infected with MVA, rMVA-
600	A, -W, -B, -D and -O, fixed without permeabilization and incubated with biotinylated his-tag
601	hACE2 (Sino Biologicals) followed by APC streptavidin (BD Pharmagin). Stained cells were

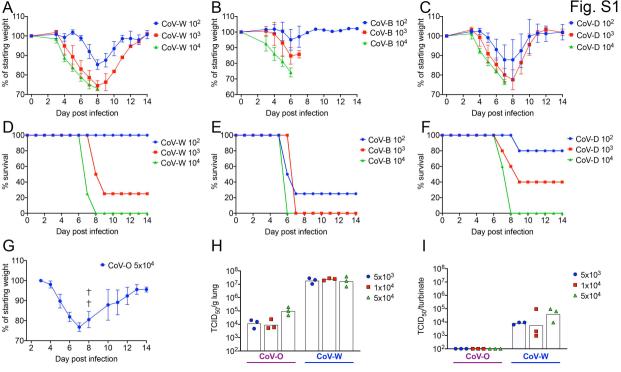

- analyzed by flow cytometry. Cells were first gated for GFP fluorescence and then for APC.
- 603 Percent of GFP+ cells that stained with hACE2 are indicated.
- 604

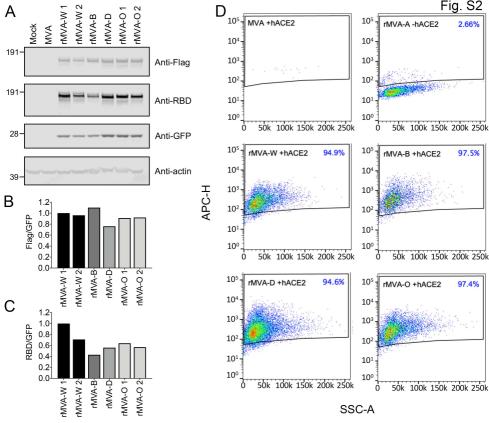

605 Fig. S3. Comparison of sequences of S in rMVAs, rVSVs and SARS-CoV-2 variants. All


- sequences are compared to Wuhan Genbank# MN908947.3 and only differences are listed.
- 607 Amino acids in red are in RBD; amino acids in purple represent modifications in rMVAs for
- stability of the prefusion form of S, prevent furin cleavage and endoplasmic retrieval, and add a 3
- x Flag tag as previously described for Wuhan ¹². Abbreviation: del, deletion.









F	ig.	S3

Pseudovirus S	Changes compared to Reference Wuhan Sequence Genbank# MN908947.3
Wuhan	No changes
Beta	L18F, D80A, D215G, del241-243, R246I, <mark>K417N, E484K, N501Y</mark> , D614G, A701V
Delta	T19R, G142D, del156-157, R158G, <mark>L452R, T478K</mark> , D614G, P681R, D950N
Omicron	A67V, del69-70, T95I, G142D, del143-145, del211N, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F
CoV challenge S	Changes compared to Reference Wuhan Sequence Genbank# MN908947.3
Washington	No changes
Beta	L18F, D80A, D215G, del241-243, <mark>K417N, E484K, N501Y</mark> , D614G, Q677H, R682W, A701V
Delta	T19R, G142D, del156-157, R158G, A222V, <mark>L452R, T478K</mark> , D614G, P681R, D950N
Omicron	A67V, del69-70, T95I, G142D, del143-145, del211N, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F
rMVA-S	Changes compared to Reference Wuhan Sequence Genbank# MN908947.3
Wuhan	R682G, R683S, R685S, K986P, V987P, del1255-1273, 3XFlag
Beta	L18F, D80A, D215G, del241-243, R246I, K417N, E484K, N501Y, D614G, R682G, R683S, R685S, A701V, K986P, V987P, del1255-1273, 3XFlag
Delta	T19R, G142D, del156-157, R158G, K417N, L452R, T478K, D614G, P681R, R682G, R683S, R685S, D950N, K986P, V987P, del1255-1273, 3XFlag
Omicron	A67V, del69-70, T95I, G142D, del143-145, del211N, L212I, ins212EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493K, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, R682G, R683S, R685S, N764K, D796Y, N856K, Q954H, N969K, L981F, K986P, V987P, del1255-1273, 3XFlag