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ABSTRACT 1 

 Many visual tasks involve looking for specific object features. But we also often 2 

solve generic tasks where we look for a specific property, such as finding an odd item, 3 

deciding if two items are same, or if an object has symmetry. How do we solve such 4 

tasks? Building on simple neural rules, we show that displays with repeating elements 5 

can be distinguished from heterogeneous displays using a property we denote visual 6 

homogeneity. In behavior, visual homogeneity predicted response times on visual 7 

search and symmetry tasks. Brain imaging during these tasks revealed that visual 8 

homogeneity in both tasks is highly localized to a region in the object-selective cortex. 9 

Thus, a novel image property, visual homogeneity, is encoded in a localized brain 10 

region, to solve generic visual tasks. 11 

  12 
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INTRODUCTION 13 

Many visual tasks involve looking for specific objects or features, such as a friend 14 

in a crowd or selecting vegetables in the market. In such tasks, which have been 15 

studied extensively, we form a template in our brain that helps guide eye movements 16 

and locate the target (Peelen and Kastner, 2014). However, we also easily perform 17 

tasks that do not involve any specific feature but finding a property or relation between 18 

items. Examples of these generic tasks include finding an odd item, deciding if two 19 

items are same and judging if an object is symmetric. While machine vision algorithms 20 

are extremely successful in solving feature-based tasks like object categorization 21 

(Serre, 2019), they struggle to solve these generic tasks (Kim et al., 2018; Ricci et al., 22 

2021).  23 

At first glance, these tasks appear completely different. Indeed, visual search 24 

(Verghese, 2001; Wolfe and Horowitz, 2017), same-different judgments (Nickerson, 25 

1969; Petrov, 2009) and symmetry detection (Wagemans, 1997; Bertamini and Makin, 26 

2014) have all been studied extensively, but always separately. However, at a deeper 27 

level, these tasks are similar because they all involve discriminating between items with 28 

repeating features from those without repeating features. We reasoned that if images 29 

with repeating features are somehow represented differently in the brain, this difference 30 

could be used to solve all these tasks without requiring separate computations for each 31 

task. Here we provide evidence for this hypothesis through behavioural and brain 32 

imaging experiments on humans.   33 

Our key predictions are depicted in Figure 1. Consider a visual search task 34 

where participants have to indicate if a display contains an oddball target (Figure 1A) or 35 
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contains no oddball targets (Figure 1B). According the well-known principle of divisive 36 

normalization in high-level visual cortex (Zoccolan et al., 2005; Agrawal et al., 2020; 37 

Katti and Arun, 2022), the neural response to multiple objects is the average of the 38 

single object responses. Accordingly, the response to an array of identical items will be 39 

the same as the response to the single item. Moreover, the response to an array 40 

containing a target among distractors would lie along the line joining the target and 41 

distractor in the (neural) representational space. These possibilities are shown for all 42 

possible arrays made from three objects in Figure 1C. It can be seen that the 43 

homogeneous (target-absent) arrays stand apart since they do not mix multiple items, 44 

whereas the heterogeneous (target-present) arrays come closer since they contain a 45 

mixture of items. Since displays with repeating items are further away from the center of 46 

this space, this distance can be used to discriminate them from heterogeneous displays 47 

(Figure 1C, inset).  48 

We reasoned similarly for symmetry detection: here, participants have to decide 49 

if an object is asymmetric (Figure 1D) or symmetric (Figure 1E). According to multiple 50 

object normalization, objects with two different parts would lie along the line joining 51 

objects containing the two repeated parts (Figure 1F). Indeed, both symmetric and 52 

asymmetric objects show part summation in their neural responses (Pramod and Arun, 53 

2018). Consequently, symmetric objects will be further away from the centre of this 54 

space compared to asymmetric objects, and this can be the basis for discriminating 55 

them (Figure 1F, inset).   56 

We define this distance from the center for each image as its visual homogeneity 57 

(VH). We made two key experimental predictions for behavioural and brain imaging 58 
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data. First, if visual homogeneity is being used to solve visual search and symmetry 59 

detection tasks, then responses should be slowest for displays with VH close to the 60 

decision boundary and faster for displays with VH far away (Figure 1G). This predicts 61 

opposite correlations between response time and VH: for target-present arrays and 62 

asymmetric objects, the response time should be positively correlated with VH. By 63 

contrast, for target-absent arrays and symmetric objects, response time should be 64 

negatively correlated with VH. Importantly, because response times can be positively or 65 

negatively correlated with VH, the net correlation between response time and VH will be 66 

close to zero. Second, if VH is encoded by a dedicated brain region, then brain activity 67 

in that region will be positively correlated with VH (Figure 1H). Such a positive 68 

correlation cannot be explained easily by cognitive processes linked to response time 69 

such as attention or task difficulty, since response times have a net zero correlation with 70 

the mean activity of this region.  71 

 72 

  73 
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 74 
Figure 1. Solving visual search and symmetry tasks using visual homogeneity.  75 

(A) Example target-present search display, containing a single oddball target (horse) 76 
among identical distractors (dog). Participants in such tasks have to indicate 77 
whether the display contains an oddball or not, without knowing the features of 78 
the target or distractor. This means they have to perform this task by detecting 79 
some property of each display rather than some feature contained in it.  80 

(B) Example target-absent search display containing no oddball target.  81 
(C) Hypothesized neural computation for target present/absent judgements. 82 

According to multiple object normalization, the response to multiple items is an 83 
average of the responses to the individual items. Thus, the response to a target-84 
absent array will be identical to the individual items, whereas the response to a 85 
target-present array will lie along the line joining the corresponding target-absent 86 
arrays. This causes the target-absent arrays to stay apart (red lines), and the 87 
target-present arrays to come closer due to mixing (blue lines). If we calculate 88 
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the distance (VH, for visual homogeneity) for each display, then target-absent 89 
arrays will have a larger distance to the center (VHa) compared to target-present 90 
arrays (VHp), and this distance can be used to distinguish between them. Inset: 91 
Schematic distance from center for target-absent arrays (red) and target-present 92 
arrays (blue).  93 

(D) Example asymmetric object in a symmetry detection task. Here too, participants 94 
have to indicate if the display contains a symmetric object or not, without knowing 95 
the features of the object itself. This means they have to perform this task by 96 
detecting some property in the display. 97 

(E) Example symmetric object in a symmetry detection task.  98 
(F) Hypothesized neural computations for symmetry detection. Following multiple 99 

object normalization, the response to an object containing repeated parts is equal 100 
the response to the individual part, whereas the response to an object containing 101 
two different parts will lie along the line joining the objects with the two parts 102 
repeating. This causes symmetric objects to stand apart (red lines) and 103 
asymmetric objects to come closer due to mixing (blue lines). Thus, the visual 104 
homogeneity for symmetric objects (VHs) will be larger than for asymmetric 105 
objects (VHa). Inset: Schematic distance from center for symmetric objects (red) 106 
and asymmetric objects (blue).  107 

(G) Behavioral predictions for VH. If visual homogeneity (VH) is a decision variable in 108 
visual search and symmetry detection tasks, then response times (RT) must be 109 
largest for displays with VH close to the decision boundary. This predicts 110 
opposite correlations between response time and VH for the present/absent or 111 
symmetry/asymmetry judgements. It also predicts zero overall correlation 112 
between VH and RT.  113 

(H) Neural predictions for VH. Left: Correlation between brain activations and VH for 114 
two hypothetical brain regions. In the VH-encoding region, brain activations 115 
should be positively correlated with VH. In any region that encodes task difficulty 116 
as indexed by response time, brain activity should show no correlation since VH 117 
itself is uncorrelated with RT (see Panel G). Right: Correlation between brain 118 
activations and RT. Since VH is uncorrelated with RT overall, the region VH 119 
should show little or no correlation, whereas the regions encoding task difficulty 120 
would show a positive correlation. 121 

 122 

   123 
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RESULTS 124 

 In Experiments 1-2, we investigated whether visual homogeneity computations 125 

could explain decisions about targets being present or absent in an array. Since visual 126 

homogeneity requires measuring distance in perceptual space, we set out to first 127 

characterize the underlying representation of a set of natural objects using 128 

measurements of perceptual dissimilarity.  129 

 130 

Measuring perceptual space for natural objects  131 

In Experiment 1, 16 human participants viewed arrays made from a set of 32 132 

grayscale natural objects, with an oddball on the left or right (Figure 2A), and had to 133 

indicate the side on which the oddball appeared using a key press. Participants were 134 

highly accurate and consistent in their responses during this task (accuracy, mean ± sd: 135 

98.8 ± 0.9%; correlation between mean response times of even- and odd-numbered 136 

participants: r = 0.91, p < 0.0001 across all 32C2 = 496 object pairs). The reciprocal of 137 

response time is a measure of perceptual distance (or dissimilarity) between the two 138 

images (Arun, 2012). To visualize the underlying object representation, we performed a 139 

multidimensional scaling analysis, which embeds objects in a multidimensional space 140 

such that their pairwise dissimilarities match the experimentally observed dissimilarities 141 

(see Methods). The resulting two-dimensional embedding of all objects is shown in 142 

Figure 2B. In the resulting plot, nearby objects correspond to hard searches, and far 143 

away objects correspond to easy searches. Such representations reconstructed from 144 

behavioural data closely match population neural responses in high-level visual areas 145 

(Op de Beeck et al., 2001; Sripati and Olson, 2010). To capture the object 146 
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representation accurately, we took the multidimensional embedding of all objects and 147 

treated the values along each dimension as the responses of an individual artificial 148 

neuron. We selected the number of dimensions in the multidimensional embedding so 149 

that the correlation between the observed and embedding dissimilarities matches the 150 

noise ceiling in the data. Subsequently, we averaged these single object responses to 151 

obtain responses to larger visual search arrays, as detailed below.  152 

  153 

Visual homogeneity predicts target present/absent judgments (Experiments 1-2) 154 

 Having characterized the underlying perceptual representation for single objects, 155 

we set out to investigate whether target present/absent responses during visual search 156 

can be explained using this representation. In Experiment 2, 16 human participants 157 

viewed an array of items on each trial, and indicated using a key press whether there 158 

was an oddball target present or not (Figure 2C). This task was performed inside an 159 

MRI scanner to simultaneously observe both brain activity and behaviour. Participants 160 

were highly accurate and consistent in their responses (accuracy, mean ± sd: 95 ± 3%; 161 

correlation between average response times of even- and odd-numbered participants: r 162 

=  0.86, p < 0.0001 across 32 target-present searches, r = 0.63, p < 0.001 across 32 163 

target-absent searches).  164 

Next we set out to predict the responses to target-present and target-absent 165 

search displays containing these objects. We first took the object coordinates returned 166 

by multidimensional scaling in Experiment 1 as neural responses of multiple neurons. 167 

We then used a well-known principle of object representations in high-level visual areas: 168 

the response to multiple objects is the average of the single object responses (Zoccolan 169 
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et al., 2005; Agrawal et al., 2020). Thus, we took the response vector for a target-170 

present array to be the average of the response vectors of the target and distractor 171 

(Figure 2D). Likewise, we took the response vector for a target-absent array to be equal 172 

to the response vector of the single item. We then asked if there is any point in this 173 

multidimensional representation such that distances from this point to the target-present 174 

and target-absent response vectors can accurately predict the target-present and 175 

target-absent response times with a positive and negative correlation respectively (see 176 

Methods). We note that this model has as many free parameters as the coordinates of 177 

this unknown point or center in multidimensional space. We used nonlinear optimization 178 

to find the coordinates of the center to best match the data (see Methods).  179 

We denoted the distance of each display to the optimized center as the visual 180 

homogeneity. As expected, the visual homogeneity of target-present arrays was 181 

significantly smaller than target-absent arrays (Figure 2E). The resulting model 182 

predictions are shown in Figure 2F-G. The response times for target-present searches 183 

were positively correlated with visual homogeneity (r = 0.68, p < 0.0001; Figure 2F). By 184 

contrast, the response times for target-absent searches were negatively correlated with 185 

visual homogeneity (r = -0.71, p < 0.0001; Figure 2G). This is exactly as predicted if 186 

visual homogeneity is the underlying decision variable (Figure 1G). We note that the 187 

range of visual homogeneity values for target-present and target-absent searches do 188 

overlap, suggesting that visual homogeneity contributes but does not fully determine 189 

task performance. Rather, we suggest that visual homogeneity provides a useful and 190 

initial first guess at the presence or absence of a target, which can be refined further 191 

through detailed scrutiny.  192 
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  193 
Figure 2. Visual homogeneity predicts target present/absent responses 194 

(A) Example search array in an oddball search task (Experiment 1). Participants 195 
viewed an array containing identical items except for an oddball present either on 196 
the left or right side, and had to indicate using a key press which side the oddball 197 
appeared. The reciprocal of average search time was taken as the perceptual 198 
distance between the target and distractor items. We measured all possible 199 
pairwise distances for 32 grayscale natural objects in this manner.  200 

(B) Perceptual space reconstructed using multidimensional scaling performed on the 201 
pairwise perceptual dissimilarities. In the resulting plot, nearby objects represent 202 
hard searches, and far away objects represent easy searches. Some images are 203 
shown at a small size due to space constraints; in the actual experiment, all 204 
objects were equated to have the same longer dimension. The correlation on the 205 
top right indicates the match between the distances in the 2D plot with the 206 
observed pairwise distances (**** is p < 0.00005).  207 

(C) Example display from Experiment 2. Participants performed this task inside the 208 
scanner. On each trial, they had to indicate whether an oddball target is present 209 
or absent using a key press.   210 

(D) Predicted response to target-present and target-absent arrays, using the 211 
principle that the neural response to multiple items is the average of the 212 
individual item responses. This predicts that target-present arrays become similar 213 
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due to mixing of responses, whereas target-absent arrays stand apart. 214 
Consequently, these two types of displays can be distinguished using their 215 
distance to a central point in this space. We define this distance as visual 216 
homogeneity. 217 

(E) Mean visual homogeneity relative to the optimum center for target-present and 218 
target-absent displays. Error bars represent s.e.m across all displays. Asterisks 219 
represent statistical significance (**** is p < 0.00005, unpaired rank-sum test 220 
comparing visual homogeneity for 32 target-absent and 32 target-present 221 
arrays).  222 

(F) Response time for target-present searches in Experiment 2 plotted against visual 223 
homogeneity calculated from Experiment 1. Asterisks represent statistical 224 
significance of the correlation (**** is p < 0.00005).  225 

(G) Response time for target-absent searches in Experiment 2 plotted against visual 226 
homogeneity calculated from Experiment 1. Asterisks represent statistical 227 
significance of the correlation (**** is p < 0.00005).  228 
 229 

To confirm that the above model fits are not due to overfitting, we performed a 230 

leave-one-out cross validation analysis, where we left out all target-present and target-231 

absent searches involving a particular image, and then predicted these searches by 232 

calculating visual homogeneity. This too yielded similar correlations (r = 0.63, p < 233 

0.0001 for target-present, r = -0.63, p < 0.001  for target-absent).  234 

These findings are non-trivial for several reasons. First, it suggests that there are 235 

highly specific computations that can be performed on perceptual space to solve 236 

oddball tasks. This result is by no means straightforward from the mere measurement of 237 

perceptual dissimilarities. Second, while target-present response times are known to be 238 

driven by target-distractor similarity, target-absent response times are known to vary 239 

systematically but the reasons have been unclear. To the best of our knowledge our 240 

model provides the first unified mechanistic explanation for the systematic variations in 241 

both target-present and target-absent responses.  242 

We performed several additional analyses to validate these results and confirm 243 

their generality. First, if heterogeneous displays elicit similar neural responses due to 244 
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mixing, then their average distance to other objects must be related to their visual 245 

homogeneity. We confirmed that this was indeed the case, suggesting that the average 246 

distance of an object from all other objects is an useful estimate of visual homogeneity 247 

(Section S1). Second, the above analysis was based on taking the neural response to 248 

oddball arrays to be the average of the target and distractor responses. To confirm that 249 

averaging was indeed optimal, we repeated the above analysis by assuming a range of 250 

relative weights between the target and distractor. The best correlation was obtained for 251 

almost equal weights in LO, consistent with averaging and its role in the underlying 252 

perceptual representation (Section S1). Third, we performed several additional 253 

experiments on a larger set of natural objects as well as on silhouette shapes. In all 254 

cases, present/absent responses were explained using visual homogeneity (Section 255 

S2). 256 

In sum, we conclude that visual homogeneity can explain oddball target 257 

present/absent judgements during visual search.  258 

 259 

Visual homogeneity predicts same/different responses 260 

We have proposed that visual homogeneity can be used to solve any task that 261 

requires discriminating between homogeneous and heterogeneous displays. In 262 

Experiments 1-2, we have shown that visual homogeneity predicts target 263 

present/absent responses in visual search. We performed an additional experiment to 264 

assess whether visual homogeneity can be used to solve an entirely different task, 265 

namely a same-different task. In this task, participants have to indicate whether two 266 

items are the same or different. We note that instructions to participants for the 267 
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same/different task ("you have to indicate if the two items are same or different") are 268 

quite different from the visual search task ("you have ot indicate if there’s an odd-one-269 

out target present or absent "). Yet both tasks involve discriminating between 270 

homogeneous and heterogeneous displays. We therefore predicted that "same" 271 

responses would be correlated with target-absent judgements and "different" responses 272 

would be correlated with target-present judgements. Remarkably, this was indeed the 273 

case (Section S3), demonstrating that same/different responses can also be predicted 274 

using visual homogeneity.  275 

 276 

Visual homogeneity is independent of experimental context 277 

In the above analyses, visual homogeneity was calculated for each display as its 278 

distance from an optimum center in perceptual space. This raises the possibility that 279 

visual homogeneity could be modified depending on experimental context since it could 280 

depend on the set of objects relative to which the visual homogeneity is computed. We 281 

performed a number of experiments to evaluate this possibility: we found that target-282 

absent response times, which index visual homogeneity, are unaffected by a variety of 283 

experimental context manipulations (Section S4). We therefore propose that visual 284 

homogeneity is an image-computable property that remains stable across tasks.  285 

 286 

A localized brain region encodes visual homogeneity (Experiment 2) 287 

So far, we have found that target present/absent response times had opposite 288 

correlations with visual homogeneity (Figure 2F-G), suggesting that visual homogeneity 289 

is a possible decision variable for this task. Therefore, we reasoned that visual 290 

homogeneity may be localized to specific brain regions, such as in the visual or 291 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.03.518965doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.03.518965
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

Page 15 of 52 

prefrontal cortices. Since the task in Experiment 2 was performed by participants inside 292 

an MRI scanner, we set out to investigate this issue by analyzing their brain activations.  293 

 We estimated brain activations in each voxel for individual target-present and 294 

target-absent search arrays (see Methods). To identify the brain regions whose 295 

activations correlated with visual homogeneity, we performed a whole-brain searchlight 296 

analysis. For each voxel, we calculated the mean activity in a 3x3x3 volume centered 297 

on that voxel (averaged across voxels and participants) for each present/absent search 298 

display, and calculated its correlation with visual homogeneity predictions derived from 299 

behavior (see Methods). The resulting map is shown in Figure 3A. Visual homogeneity 300 

was encoded in a highly localized region just anterior of the lateral occipital (LO) region, 301 

with additional weak activations in the parietal and frontal regions. To compare these 302 

trends across key visual regions, we calculated the correlation between mean activation 303 

and visual homogeneity for each region. This revealed visual homogeneity to be 304 

encoded strongly in this region VH, and only weakly in other visual regions (Figure 3D).  305 

To ensure that the high match between visual homogeneity and neural 306 

activations in the VH region is not due to an artefact of voxel selection, we performed 307 

subject-level analysis (Section S5). We repeated the searchlight analysis for each 308 

subject and defined VH region for each subject. We find this VH region consistently 309 

anterior to the LO region in each subject. Next, we divided participants into two groups, 310 

and repeated the brain-wide searchlight analysis. Importantly, the match between mean 311 

activation and visual homogeneity remained significant even when the VH region was 312 

defined using one group of participants and the correlation was calculated using the 313 

mean activations of the other group (Section S5).  314 
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 To confirm that neural activations in VH region are not driven by other cognitive 315 

processes linked to response time, such as attention, we performed a whole-brain 316 

searchlight analysis using response times across both target-present and target-absent 317 

searches. Proceeding as before, we calculated the correlation between mean 318 

activations to the target-present, target-absent and all displays with the respective 319 

response times. The resulting maps show that mean activations in the VH region are 320 

uncorrelated with response times overall (Section S5). By contrast, activations in EVC 321 

and LO are negatively correlated with response times, suggesting that faster responses 322 

are driven by higher activation of these areas. Finally, mean activation of parietal and 323 

prefrontal regions were strongly correlated with response times, consistent with their 324 

role in attentional modulation (Section S5).  325 

 326 

Object representations in LO match with visual search dissimilarities 327 

 To investigate the neural space on which visual homogeneity is being computed, 328 

we performed a dissimilarity analysis. Since target-absent displays contain multiple 329 

instances of a single item, we took the neural response to target-absent displays as a 330 

proxy for the response to single items. For each pair of objects, we took the neural 331 

activations in a 3x3x3 neighborhood centered around a given voxel and calculated the 332 

Euclidean distance between the two 27-dimensional response vectors (averaged across 333 

participants). In this manner, we calculated the neural dissimilarity for all 32C2 = 496 334 

pairs of objects used in the experiment, and calculated the correlation between the 335 

neural dissimilarity in each local neighborhood and the perceptual dissimilarities for the 336 

same objects measured using oddball search in Experiment 1. The resulting map is 337 
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shown in Figure 3B. It can be seen that perceptual dissimilarities from visual search are 338 

best correlated in the lateral occipital region, consistent with previous studies (Figure 339 

3E). To compare these trends across key visual regions, we performed this analysis for 340 

early visual cortex (EVC), area V4, LO and for the newly identified region VH (average 341 

MNI coordinates (x, y, z): (-48, -59, -6) with 111 voxels in the left hemisphere; (49, -56, -342 

7) with 60 voxels in the right hemisphere). Perceptual dissimilarities matched best with 343 

neural dissimilarities in LO compared to the other visual regions (Figure 3E). We 344 

conclude that neural representations in LO match with perceptual space. This is 345 

concordant with many previous studies (Haushofer et al., 2008; Kriegeskorte et al., 346 

2008; Agrawal et al., 2020; Storrs et al., 2021; Ayzenberg et al., 2022).  347 

 348 

Equal weights for target and distractor in target-present array responses 349 

 In the preceding sections, visual homogeneity was calculated using behavioural 350 

experiments assuming a neural representation that gives equal weights to the target 351 

and distractor. We tested this assumption experimentally by asking whether neural 352 

responses to target-present displays can be predicted using the response to the target 353 

and distractor items separately. The resulting maps revealed that target-present arrays 354 

were accurately predicted as a linear sum of the constituent items, with roughly equal 355 

weights for the target and distractor (Section S5).  356 
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 357 
Figure 3: A localized brain region encodes visual homogeneity 358 

A. Searchlight map showing the correlation between mean activation in each 3x3x3 359 
voxel neighborhood and visual homogeneity.  360 

B. Searchlight map showing the correlation between neural dissimilarity in each 361 
3x3x3 voxel neighborhood and perceptual dissimilarity measured in visual 362 
search. 363 

C. Key visual regions identified using standard anatomical masks: early visual 364 
cortex (EVC), area V4, lateral occipital (LO) region. The visual homogeneity (VH) 365 
region was identified using the searchlight map in Panel A.   366 

D. Correlation between the mean activation and visual homogeneity  in key visual 367 
regions EVC, V4, LO and VH. Error bars represent standard deviation of the 368 
correlation obtained using a boostrap process, by repeatedly sampling 369 
participants with replacement for 10,000 times. Asterisks represent statistical 370 
significance, estimated by calculating the fraction of bootstrap samples in which 371 
the observed trend was violated (* is p < 0.05, ** is p< 0.01, **** is p < 0.0001).  372 

E. Correlation between neural dissimilarity in key visual regions with perceptual 373 
dissimilarity. Error bars represent the standard deviation of correlation obtained 374 
using a bootstrap process, by repeatedly sampling participants with replacement 375 
10,000 times. Asterisks represent statistical significance, estimated by calculating 376 
the fraction of bootstrap samples in which the observed trend was violated (** is 377 
p < 0.001).  378 
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Visual homogeneity predicts symmetry perception (Experiments 3-4)  379 

The preceding sections show that visual homogeneity predicts target 380 

present/absent responses as well same/different responses. We have proposed that 381 

visual homogeneity can be used to solve any task that involves discriminating 382 

homogeneous and heterogeneous displays. In Experiments 3 & 4, we extend the 383 

generality of these findings to an entirely different task, namely symmetry perception. 384 

Here, asymmetric objects are akin to heterogeneous displays whereas symmetric 385 

objects are homogeneous displays. In Experiment 3, we measured perceptual 386 

dissimilarities for a set of 64 objects (32 symmetric, 32 asymmetric objects) made from 387 

a common set of parts. On each trial, participants viewed a search array with identical 388 

items except for one oddball, and had to indicate the side (left/right) on which the 389 

oddball appeared using a key press. An example search array is shown in Figure 4A. 390 

Participants performed searches involving all possible 64C2 = 2,016 pairs of objects. 391 

Participants made highly accurate and consistent responses on this task (accuracy, 392 

mean ± sd: 98.5 ± 1.33%; correlation between average response times from even- and 393 

odd-numbered subjects: r = 0.88, p < 0.0001 across 2,016 searches). As before, we 394 

took the perceptual dissimilarity between each pair of objects to be the reciprocal of the 395 

average response time for displays with either item as target and the other as distractor. 396 

To visualize the underlying object representation, we performed a multidimensional 397 

scaling analysis, which embeds objects in a multidimensional space such that their 398 

pairwise dissimilarities match the experimentally observed dissimilarities. The resulting 399 

plot for two dimensions is shown in Figure 4B, where nearby objects correspond to 400 

similar searches. It can be seen that symmetric objects are generally more spread apart 401 
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than asymmetric objects, suggesting that visual homogeneity could discriminate 402 

between symmetric and asymmetric objects.  403 

In Experiment 4, we tested this prediction experimentally using a symmetry 404 

detection task that was performed by participants inside an MRI scanner. On each trial, 405 

participants viewed a briefly presented object, and had to indicate whether the object 406 

was symmetric or asymmetric using a key press (Figure 4C). Participants made 407 

accurate and consistent responses in this task (accuracy, mean ± sd: 97.7 ± 1.7%; 408 

correlation between response times of odd- and even-numbered participants: r = 0.47, p 409 

< 0.0001).  410 

We next wondered whether visual homogeneity can be used to predict symmetry 411 

judgments. To this end, we took the embedding of all objects from Experiment 3, and 412 

asked whether there was a center in this multidimensional space  such that the distance 413 

of each object to this center would be oppositely correlated with response times for 414 

symmetric and asymmetric objects (see Methods). Model predictions are shown in 415 

Figure 4E-G. As predicted, visual homogeneity was significantly larger for symmetric 416 

compared to asymmetric objects (visual homogeneity, mean ± sd: 0.60 ± 0.24 s-1 for 417 

asymmetric objects; 0.76 ± 0.29 s-1 for symmetric objects; p < 0.05, rank-sum test; 418 

Figure 4E). For asymmetric objects, symmetry detection response times were positively 419 

correlated with visual homogeneity (r = 0.56, p < 0.001; Figure 4F). By contrast, for 420 

symmetric objects, response times were negatively correlated with visual homogeneity 421 

(r = -0.39, p < 0.05; Figure 4G). These patterns are exactly as expected if visual 422 

homogeneity was the underlying decision variable for symmetry detection. However, we 423 

note that the range of visual homogeneity values for asymmetric and symmetric objects 424 
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do overlap, suggesting that visual homogeneity contributes but does not fully determine 425 

task performance. Rather, we suggest that visual homogeneity provides a useful and 426 

initial first guess at symmetry in an image, which can be refined further through detailed 427 

scrutiny.  428 

To confirm that these model fits are not due to overfitting, we performed a leave-429 

one-out cross validation analysis, where we left out one object at a time, and then 430 

calculated its visual homogeneity. This too yielded similar correlations (r = 0.44 for 431 

asymmetric, r = -0.39 for symmetric objects, p < 0.05 in both cases).  432 

In sum, we conclude that visual homogeneity can predict symmetry perception. 433 

Taken together, these experiments demonstrate that the same computation (distance 434 

from a center) explains two disparate generic visual tasks: symmetry perception and 435 

visual search.  436 

 437 

 438 
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 439 
Figure 4. Visual homogeneity predicts symmetry perception  440 

(A) Example search array in Experiment 3. Participants viewed an array containing 441 
identical items except for an oddball present either on the left or right side, and 442 
had to indicate using a key press which side the oddball appeared. The 443 
reciprocal of average search time was taken as the perceptual distance between 444 
the target and distractor items. We measured all possible pairwise distances for 445 
64 objects (32 symmetric, 32 asymmetric) in this manner.  446 

(B) Perceptual space reconstructed using multidimensional scaling performed on the 447 
pairwise perceptual dissimilarities. In the resulting plot, nearby objects represent 448 
hard searches, and far away objects represent easy searches. Some images are 449 
shown at a small size due to space constraints; in the actual experiment, all 450 
objects were equated to have the same longer dimension. The correlation on the 451 
top right indicates the match between the distances in the 2D plot with the 452 
observed pairwise distances (**** is p < 0.00005).  453 

(C) Two example displays from Experiment 4. Participants had to indicate whether 454 
the object is symmetric or asymmetric using a key press.  455 
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(D) Using the perceptual representation of symmetric and asymmetric objects from 456 
Experiment 3, we reasoned that they can be distinguished using their distance to 457 
a center in perceptual space. The coordinates of this center are optimized to 458 
maximize the match to the observed symmetry detection times.  459 

(E) Visual homogeneity relative to the optimum center for asymmetric and symmetric 460 
objects. Error bar represents s.e.m. across images. Asterisks represent statistical 461 
significance (* is p < 0.05, unpaired rank-sum test comparing visual homogeneity 462 
for 32 symmetric and 32 asymmetric objects).  463 

(F) Response time for asymmetric objects in Experiment 4 plotted against visual 464 
homogeneity calculated from Experiment 3. Asterisks represent statistical 465 
significance of the correlation (** is  p < 0.001).  466 

(G) Response time for symmetric objects in Experiment 4 plotted against visual 467 
homogeneity calculated from Experiment 3. Asterisks represent statistical 468 
significance of the correlation (* is p < 0.05).  469 

  470 
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Visual homogeneity is encoded by the VH region during symmetry detection  471 

If visual homogeneity is a decision variable for symmetry detection, it could be 472 

localized to specific regions in the brain. To investigate this issue, we analyzed the brain 473 

activations of participants in Experiment 4.  474 

To investigate the neural substrates of visual homogeneity, we performed a 475 

searchlight analysis. For each voxel, we calculated the correlation between mean 476 

activations in a 3x3x3 voxel neighborhood and visual homogeneity. This revealed a 477 

localized region in the visual cortex as well as some parietal regions where this 478 

correlation attained a maximum (Figure 5A). This VH region (average MNI coordinates 479 

(x, y, z): (-57, -56, -8) with 93 voxels in the left hemisphere; (58, -50, -8) with 73 voxels 480 

in the right hemisphere) overlaps with VH region defined during visual search in 481 

Experiment 3 (for a detailed comparison, see Section S7). We note that it is not 482 

straightforward to interpret the activation differences here, since the objects in this 483 

experiment were present foveally whereas the visual search arrays contained no central 484 

item with items exclusively in the periphery.  485 

To confirm that neural activations in VH region are not driven by other cognitive 486 

processes linked to response time, such as attention, we performed a whole-brain 487 

searchlight analysis using response times across both symmetric and asymmetric 488 

objects. This revealed that mean activations in the VH region were poorly correlated 489 

with response times overall, whereas other parietal and prefrontal regions strongly 490 

correlated with response times consistent with their role in attentional modulation 491 

(Section S6).  492 
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To investigate the perceptual representation that is being used for visual 493 

homogeneity computations, we performed a neural dissimilarity analysis. For each pair 494 

of objects, we took the neural activations in a 3x3x3 neighborhood centered around a 495 

given voxel and calculated the Euclidean distance between the two 27-dimensional 496 

response vectors. In this manner, we calculated the neural dissimilarity for all 64C2 = 497 

2,016 pairs of objects used in the experiment, and calculated the correlation between 498 

the neural dissimilarity in each local neighborhood and the perceptual dissimilarities for 499 

the same objects measured using oddball search in Experiment 3. The resulting map is 500 

shown in Figure 5B. The match between neural and perceptual dissimilarity was 501 

maximum in the lateral occipital region (Figure 5B).  502 

To compare these trends for key visual regions, we repeated this analysis for 503 

anatomically defined regions of interest in the visual cortex: early visual cortex (EVC), 504 

area V4, the lateral occipital (LO) region, and the VH region defined based on the 505 

searchlight map in Figure 5A. These regions are depicted in Figure 5C. We then asked 506 

how mean activations in each of these regions is correlated with visual homogeneity. 507 

This revealed that the match with visual homogeneity is best in the VH region compared 508 

to the other regions (Figure 5D). To further confirm that visual homogeneity is encoded 509 

in a localized region in the symmetry task, we repeated the searchlight analysis on two 510 

independent subgroups of participants. This revealed highly similar regions in both 511 

groups (Section S6).  512 

Finally, we compared neural dissimilarities and perceptual dissimilarities in each 513 

region as before. This revealed that perceptual dissimilarities (measured from 514 

Experiment 3, during visual search) matched best with the LO region (Figure 5E), 515 
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suggesting that object representations in LO are the basis for visual homogeneity 516 

computations in the VH region.  517 

In sum, our results suggest that visual homogeneity is encoded by the VH region, 518 

using object representations present in the adjoining LO region.  519 

  520 
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 521 
Figure 5: Brain region encoding visual homogeneity during symmetry detection  522 

(A) Searchlight map showing the correlation between mean activation in each 3x3x3 523 
voxel neighborhood and visual homogeneity.  524 

(B) Searchlight map showing the correlation between neural dissimilarity in each 525 
3x3x3 voxel neighborhood and perceptual dissimilarity measured in visual 526 
search. 527 

(C) Key visual regions identified using standard anatomical masks: early visual 528 
cortex (EVC), area V4, Lateral occipital (LO) region. The visual homogeneity 529 
(VH) region was identified using searchlight map in Panel A. 530 

(D) Correlation between the mean activation and visual homogeneity  in key visual 531 
regions EVC, V4, LO and VH. Error bars represent standard deviation of the 532 
correlation obtained using a boostrap process, by repeatedly sampling 533 
participants with replacement for 10,000 times. Asterisks represent statistical 534 
significance, estimated by calculating the fraction of bootstrap samples in which 535 
the observed trend was violated (* is p < 0.05, ** is p< 0.01, **** is p < 0.0001).  536 

(E) Correlation between neural dissimilarity in key visual regions with perceptual 537 
dissimilarity. Error bars represent the standard deviation of correlation obtained 538 
using a bootstrap process, by repeatedly sampling participants with replacement 539 
10,000 times. Asterisks represent statistical significance, estimated by calculating 540 
the fraction of bootstrap samples in which the observed trend was violated (** is 541 
p < 0.001). 542 
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Target-absent responses predict symmetry detection 543 

 So far, we have shown that visual homogeneity predicts target present/absent 544 

responses in visual search as well as symmetry detection responses. These results 545 

suggest a direct empirical link between these two tasks. Specifically, since target-absent 546 

response time is inversely correlated with visual homogeneity, we can take its reciprocal 547 

as an estimate of visual homogeneity. This in turn predicts opposite correlations 548 

between symmetry detection times and reciprocal of target-absent response time: in 549 

other words, we should see a positive correlation for asymmetric objects, and a 550 

negative correlation for symmetric objects. We confirmed these predictions using 551 

additional experiments (Section S8). These results reconfirm that a common decision 552 

variable, visual homogeneity, drives both target present/absent and symmetry 553 

judgements.  554 

 555 

Visual homogeneity explains animate categorization 556 

Since visual homogeneity is always calculated relative to a location in perceptual 557 

space, we reasoned that shifting this center towards a particular object category would 558 

make it a decision variable for object categorization. To test this prediction, we 559 

reanalyzed data from a previous study in which participants had to categorize images 560 

as belonging to three hierarchical categories: animals, dogs or Labradors (Mohan and 561 

Arun, 2012). By adjusting the center of the perceptual space measured using visual 562 

search, we were able to predict categorization responses for all three categories 563 

(Section S9). We further reasoned that, if the optimum center for animal/dog/Labrador 564 

categorization is close to the default center in perceptual space that predicts target 565 

present/absent judgements, then even the default visual homogeneity, as indexed by 566 
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the reciprocal of target-absent search time, should predict categorization responses. 567 

Interestingly, this was indeed the case (Section S9). We conclude that, at least for the 568 

categories tested, visual homogeneity computations can serve as a decision variable for 569 

object categorization.  570 

  571 
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DISCUSSION 572 

 Here, we investigated three disparate visual tasks: detecting whether an oddball 573 

is present in a search array, deciding if two items are same or different, and judging 574 

whether an object is symmetric/asymmetric. Although these tasks are superficially quite 575 

different, they all involve discriminating between homogeneous and heterogeneous 576 

displays. We defined a new image property computable from the underlying perceptual 577 

representation, namely visual homogeneity, that can be used to solve these tasks. We 578 

found that visual homogeneity can predict response times in all three tasks. Finally we 579 

have found that visual homogeneity is encoded in a highly localized brain region in both 580 

visual search and symmetry tasks. Below we discuss these findings in relation to the 581 

existing literature.  582 

 583 

Visual homogeneity unifies visual search, same-different and symmetry tasks 584 

 Our main finding, that a single decision variable (visual homogeneity) can be 585 

used to solve three disparate visual tasks (visual search, same/different and symmetry 586 

detection) is novel to the best of our knowledge. This finding is interesting and important 587 

because it establishes a close correspondence between all three tasks, and explains 588 

some unresolved puzzles in each of these tasks, as detailed below.  589 

First, with regards to visual search, theoretical accounts of search are based on 590 

signal detection theory (Verghese, 2001; Wolfe and Horowitz, 2017), but define the 591 

signal only for specific target-distractor pairs. By contrast, the task of detecting whether 592 

an oddball item is present requires a more general decision rule that has not been 593 

identified. Our results suggest that visual homogeneity is the underlying decision 594 
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variable. In visual search, target-present search times are widely believed to be driven 595 

by target-distractor similarity (Duncan and Humphreys, 1989; Wolfe and Horowitz, 596 

2004). But target-absent search times also vary systematically for reasons that have not 597 

been elucidated previously. The slope of target-absent search times as a function of set 598 

size are typically twice the slope of target present searches (Wolfe, 1998). However this 599 

observation is based on averaging across many target-present searches. Since there is 600 

only one unique item in a target-absent search array, there must be some image 601 

property that causes systematic variations. Our results elucidate this puzzle by showing 602 

that this systematic variation is driven by visual homogeneity. We speculate that visual 603 

homogeneity might explain many other search phenomena, such as search 604 

asymmetries. Finally, our findings also help explain why we sometimes know a target is 605 

present without knowing its exact location – this is because the underlying decision 606 

variable, visual homogeneity, arises in high-level visual areas with relatively coarse 607 

spatial information.  608 

 Second, with regards to same-different tasks, most theoretical accounts use 609 

signal detection theory but usually with reference to specific stimulus pairs (Nickerson, 610 

1969; Petrov, 2009). It has long been observed that "different" responses become faster 611 

with increasing target-distractor dissimilarity but this trend logically predicts that "same" 612 

responses, which have zero difference, should be the slowest (Nickerson, 1967, 1969). 613 

But in fact, "same" responses are faster than "different" responses. This puzzle has 614 

been resolved by assuming a separate decision rule for "same" judgements, making the 615 

overall decision process more complex (Petrov, 2009; Goulet, 2020). Our findings 616 

resolve this puzzle by identifying a novel variable, visual homogeneity, which can be 617 
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used to implement a simple decision rule for making same/different responses. Our 618 

findings also explain why some images elicit faster "same" responses than others: this 619 

is due to image-to-image differences in visual homogeneity.  620 

Third, with regard to symmetry detection, most theoretical accounts assume that 621 

symmetry is explicitly detected using symmetry detectors along particular axes 622 

(Wagemans, 1997; Bertamini and Makin, 2014). By contrast, our findings indicate an 623 

indirect mechanism for symmetry detection that does not invoke any special symmetry 624 

computations. We show that visual homogeneity computations can easily discriminate 625 

between symmetric and asymmetric objects. This is because symmetric objects have 626 

high visual homogeneity since they have repeated parts, whereas asymmetric objects 627 

have low visual homogeneity since they have disparate parts (Pramod and Arun, 2018). 628 

In a recent study, symmetry detection was explained by the average distance of objects 629 

relative to other objects (Pramod and Arun, 2018). This finding is consistent with ours 630 

since visual homogeneity is correlated with the average distance to other objects 631 

(Section S1). However, there is an important distinction between these two quantities. 632 

Visual homogeneity is an intrinsic image property, whereas the average distance of an 633 

object to other objects depends on the set of other objects on which the average is 634 

being computed. Indeed, we have confirmed through additional experiments that visual 635 

homogeneity is independent of experimental context (Section S4). We speculate that 636 

visual homogeneity can explain many other aspects of symmetry perception, such as 637 

the relative strength of symmetries.  638 

 639 

 640 
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Visual homogeneity in other visual tasks  641 

 Our finding that visual homogeneity explains generic visual tasks has several 642 

important implications for visual tasks in general. First, we note that visual homogeneity 643 

can be easily extended to explain other generic tasks such as delayed match-to-sample 644 

tasks or n-back tasks, by taking the response to the test stimulus as being averaged 645 

with the sample-related information in working memory. In such tasks, visual 646 

homogeneity will be larger for sequences with repeated compared to non-repeated 647 

stimuli, and can easily be used to solve the task. Testing these possibilities will require 648 

comparing systematic variations in response times in these tasks across images, and 649 

measurements of perceptual space for calculating visual homogeneity.  650 

 Second, we note that visual homogeneity can also be extended to explain object 651 

categorization, if one assumes that the center in perceptual space for calculating visual 652 

homogeneity can be temporarily shifted to the center of an object category. In such 653 

tasks, visual homogeneity relative to the category center will be small for objects 654 

belonging to a category and large for objects outside the category, and can be used as 655 

a decision variable to solve categorization tasks. This idea is consistent with prevalent 656 

accounts of object categorization (Stewart and Morin, 2007; Ashby and Maddox, 2011; 657 

Mohan and Arun, 2012). Indeed, categorization response times can be explained using 658 

perceptual distances to category and non-category items (Mohan and Arun, 2012). By 659 

reanalyzing data from this study, we have found that, at least for the animate categories 660 

tested, visual homogeneity can explain categorization responses (Section S9). 661 

However, this remains to be tested in a more general fashion across multiple object 662 

categories.   663 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.03.518965doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.03.518965
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

Page 34 of 52 

Neural encoding of visual homogeneity 664 

 We have found that visual homogeneity is encoded in a specific region of the 665 

brain, which we denote as region VH, in both visual search and symmetry detection 666 

tasks (Figure 3D, 5D). This finding is consistent with observations of norm-based 667 

encoding in IT neurons (Leopold et al., 2006) and in face recognition (Valentine, 1991; 668 

Rhodes and Jeffery, 2006; Carlin and Kriegeskorte, 2017). However our finding is 669 

significant because it reveals a dedicated region in high-level visual cortex for solving 670 

generic visual tasks.  671 

We have found that the VH region is located just anterior to the lateral occipital 672 

(LO) region, where neural dissimilarities match closely with perceptual dissimilarities 673 

(Figure 3E, 5E). Based on this proximity, we speculate that visual homogeneity 674 

computations are based on object representations in LO. However, confirming this 675 

prediction will require fine-grained recordings of neural activity in VH and LO. An 676 

interesting possibility for future studies would be to causally perturb brain activity 677 

separately in VH or LO using magnetic or electrical stimulation, if at all possible. A 678 

simple prediction would be that perturbing LO would distort the underlying 679 

representation, whereas perturbing VH would distort the underlying decision process. 680 

We caution however that the results might not be so easily interpretable if visual 681 

homogeneity computations in VH are based on object representations in LO.  682 

Recent observations from neural recordings in monkeys suggest that perceptual 683 

dissimilarities and visual homogeneity need not be encoded in separate regions. For 684 

instance, the overall magnitude of the population neural response of monkey inferior 685 

temporal (IT) cortex neurons was found to correlate with memorability (Jaegle et al., 686 
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2019). We speculate that this quantity might be related to visual homogeneity. At the 687 

same time, the neural responses of IT neurons predict perceptual dissimilarities (Op de 688 

Beeck et al., 2001; Sripati and Olson, 2010; Zhivago and Arun, 2014; Agrawal et al., 689 

2020). Taken together, these findings suggest that visual homogeneity computations 690 

and the underlying perceptual representation could be interleaved within a single neural 691 

population. Indeed, in our study, the mean activations of the LO region were also 692 

correlated with visual homogeneity for symmetry detection (Figure 5A), but not for target 693 

present/absent search (Figure 3A). We speculate that perhaps visual homogeneity 694 

might be intermingled into the object representation in monkeys but separated into a 695 

dedicated region in humans. These are interesting possibilities for future work.  696 

 Although many previous studies have reported brain activations in the vicinity of 697 

the VH region, we are unaware of any study that has ascribed a specific function to this 698 

region. The localized activations in our study match closely with the location of the 699 

recently reported ventral stream attention module in both humans and monkeys (Sani et 700 

al., 2021). Previous studies have observed important differences in brain activations in 701 

this region, which we can be explained using visual homogeneity, as detailed below.  702 

First, previous studies have observed larger brain activations for animate 703 

compared to inanimate objects in higher visual areas which have typically included our 704 

newly defined VH region (Bracci and Op de Beeck, 2015; Proklova et al., 2016; Thorat 705 

et al., 2019). These observations would be consistent with our findings if visual 706 

homogeneity is smaller for animate compared to inanimate objects, which would result 707 

in weaker activations for animate objects in region VH. Indeed, visual homogeneity, as 708 

indexed by the reciprocal of target-absent search time, is smaller for animate objects 709 
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compared to inanimate objects (Section S9). Likewise, brain activations were weaker for 710 

animate objects compared to inanimate objects in region VH (average VH activations, 711 

mean ± sd across participants: 0.50 ± 0.61 for animate target-absent displays, 0.64 ± 712 

0.59 for inanimate target-absent displays, p < 0.05, sign-rank test across participants). 713 

Based on this we speculate that visual homogeneity may partially explain the animacy 714 

organization of human ventral temporal cortex. Establishing this will require controlling 715 

animate/inanimate stimuli not only for shape but also for visual homogeneity.  716 

 Second, previous studies have reported larger brain activations for symmetric 717 

objects compared to asymmetric objects in the vicinity of this region (Sasaki et al., 2005; 718 

Van Meel et al., 2019). This can be explained by our finding that symmetric objects 719 

have larger visual homogeneity (Figure 4E), leading to activation of the VH region 720 

(Figure 5A). But the increased activations in previous studies were located in the V4 & 721 

LO regions, whereas we have found greater activations more anteriorly in the VH 722 

region. This difference could be due to the stimulus-related differences: both previous 723 

studies used dot patterns, which could appear more object-like when symmetric, leading 724 

to more widespread differences in brain activation due to other visual processes like 725 

figure-ground segmentation (Van Meel et al., 2019). By contrast, both symmetric and 726 

asymmetric objects in our study are equally object-like. Resolving these discrepancies 727 

will require measuring visual homogeneity as well as behavioural performance during 728 

symmetry detection for dot patterns.  729 

 730 

 731 

 732 
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Relation to image memorability  733 

We have defined a novel image property, visual homogeneity, which refers to the 734 

distance of a visual image to a central point in the underlying perceptual representation. 735 

It can be reliably estimated for each image as the inverse of the target-absent response 736 

time in a visual search task (Figure 2) and is independent of the immediate 737 

experimental context (Section S4).  738 

The above observations raise the question of whether and how visual 739 

homogeneity might be related to image memorability. It has long been noted that faces 740 

that are rated as being distinctive or unusual are also easier to remember (Murdock, 741 

1960; Valentine and Bruce, 1986a, 1986b; Valentine, 1991). Recent studies have 742 

elucidated this observation by showing that there are specific image properties that 743 

predict image memorability (Bainbridge et al., 2017; Lukavský and Děchtěrenko, 2017; 744 

Rust and Mehrpour, 2020). However, image memorability, as elegantly summarized in a 745 

recent review (Rust and Mehrpour, 2020), could be driven by a number of both intrinsic 746 

and extrinsic factors. It would therefore be interesting to characterize how well visual 747 

homogeneity, empirically measured using target-absent visual search, can predict 748 

image memorability.  749 

  750 
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MATERIALS AND METHODS 751 

All participants had a normal or corrected-to-normal vision and gave informed 752 

consent to an experimental protocol approved by the Institutional Human Ethics 753 

Committee of the Indian Institute of Science (IHEC # 6-15092017). Participants 754 

provided written informed consent before each experiment and were monetarily 755 

compensated. 756 

 757 

Experiment 1. Oddball detection for perceptual space (natural objects)  758 

 759 

Participants. A total of 16 participants (8 males, 22 ± 2.8 years) participated in this 760 

experiment.  761 

 762 

Stimuli. The stimulus set comprised a set of 32 grayscale natural objects (16 animate, 763 

16 inanimate) presented against a black background.  764 

 765 

Procedure. Participants performed an oddball detection task with a block of practice 766 

trials involving unrelated stimuli followed by the main task. Each trial began with a red 767 

fixation cross (diameter 0.5°) for 500 ms, followed by a 4 x 4 search array measuring 768 

30° x 30° for 5 seconds or until a response was made. The search array always 769 

contained one oddball target and 15 identical distractors, with the target appearing 770 

equally often on the left or right. A vertical red line divided the screen equally into two 771 

halves to facilitate responses. Participants were asked to respond as quickly and as 772 

accurately as possible using a key press to indicate the side of the screen containing 773 
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the target ('Z' for left, M’ for right). Incorrect trials were repeated later after a random 774 

number of other trials. Each participant completed 992 correct trials (32C2 object pairs x 775 

2 repetitions with either image as target). The experiment was created using PsychoPy 776 

(Peirce et al., 2019) and ported to the online platform Pavlovia for collecting data.  777 

Since stimulus size could vary with the monitor used by the online participants, 778 

we equated the stimulus size across participants using the ScreenScale function 779 

(https://doi.org/10.17605/OSF.IO/8FHQK). Each participant adjusted the size of a 780 

rectangle on the screen such that its size matched the physical dimensions of a credit 781 

card. All the stimuli presented were then scaled with the estimated scaling function to 782 

obtain the desired size in degrees of visual angle, assuming an average distance to 783 

screen of 60 cm.  784 

 785 

Data Analysis. Response times faster than 0.3 seconds or slower than 3 seconds were 786 

removed from the data. This step removed only 1.25% of the data and improved the 787 

overall response time consistency, but did not qualitatively alter the results.  788 

 789 

Characterizing perceptual space using multidimensional scaling. To characterize the 790 

perceptual space on which present/absent decisions are made, we took the inverse of 791 

the average response times (across trials and participants) for each image pair. This 792 

inverse of response time (i.e. 1/RT) represents the dissimilarity between the target and 793 

distractor (Arun, 2012), indexes the underlying salience signal in visual search (Sunder 794 

and Arun, 2016) and combines linearly across a variety of factors (Pramod and Arun, 795 

2014, 2016; Jacob and Arun, 2020). Since there were 32 natural objects in the 796 
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experiment and all possible (32C2 = 496) pairwise searches in the experiment, we 797 

obtained 496 pairwise dissimilarities overall. To calculate target-present and target-798 

absent array responses, we embedded these objects into a multidimensional space 799 

using multidimensional scaling analysis (mdscale function; MATLAB 2019). This 800 

analysis finds the n-dimensional coordinates for each object such that pairwise 801 

distances between objects best matches with the experimentally observed pairwise 802 

distances. We then treated the activations of objects along each dimension as the 803 

responses of a single artificial neuron, so that the response to target-present arrays 804 

could be computed as the average of the target and distractor responses.  805 

 806 

Experiment 2. Target present-absent search during fMRI 807 

Participants. A total of 16 subjects (11 males; age, mean ± sd: 25 ± 2.9 years) 808 

participated in this experiment. Participants with history of neurological or psychiatric 809 

disorders, or with metal implants or claustrophobia were excluded through screening 810 

questionnaires.  811 

 812 

Procedure. Inside the scanner, participants performed a single run of a one-back task 813 

for functional localizers (block design, object vs scrambled objects), eight runs of the 814 

present-absent search task (event-related design), and an anatomical scan. The 815 

experiment was deployed using custom MATLAB scripts written using Psychophysics 816 

Toolbox (Brainard, 1997).  817 

 818 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.03.518965doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.03.518965
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

Page 41 of 52 

Functional localizer runs. Participants had to view a series of images against a black 819 

background and press a response button whenever an item was repeated. On each 820 

trial, 16 images were presented (0.8 s on, 0.2 s off), containing one repeat of an image 821 

that could occur at random. Trials were combined into blocks of 16 trials each 822 

containing either only objects or only scrambled objects. A single run of the functional 823 

localizers contained 12 such blocks (6 object blocks & 6 scrambled-object blocks). 824 

Stimuli in each block were chosen randomly from a larger pool of 80 naturalistic objects 825 

with the corresponding phase-scrambled objects (created by taking the 2D Fourier 826 

transform of each image, randomly shuffling the Fourier phase, and performing the 827 

Fourier inverse transform). This is a widely used method for functional localization of 828 

object-selective cortex. In practice, however, we observed no qualitative differences in 829 

our results upon using voxels activated during these functional localizer runs to further 830 

narrow down the voxels selected using anatomical masks. As a result, we did not use 831 

the functional localizer data, and all the analyses presented here are based on 832 

anatomical masks only.  833 

 834 

Visual search task. In the present-absent search task, participants reported the 835 

presence or absence of an oddball target by pressing one of two buttons using their 836 

right hand. The response buttons were fixed for a given participant and counterbalanced 837 

across participants. Each search array had eight items, measuring 1.5° along the longer 838 

dimension, arranged in a 3 x 3 grid, with no central element to avoid fixation biases (as 839 

shown in Figure 2C). The entire search array measured 6.5°, with an average inter-item 840 

spacing of 2.5°. Item positions were jittered randomly on each trial according to a 841 
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uniform distribution with range ± 0.2°. Each trial lasted 4 s (1 s ON time and 3 s OFF 842 

time), and participants had to respond within 4 s. Each run had 64 unique searches (32 843 

present, 32 absent) presented in random order, using the natural objects from 844 

Experiment 1. Target-present searches were chosen randomly from all possible 845 

searches such that all 32 images appeared equally often. Target-absent searches 846 

included all 32 objects. The location of the target in the target-present searches was 847 

chosen such that all eight locations were sampled equally often. In this manner, 848 

participants performed 8 such runs of 64 trials each.  849 

 850 

Data acquisition. Participants viewed images projected on a screen through a mirror 851 

placed above their eyes. Functional MRI (fMRI) data were acquired using a 32-channel 852 

head coil on a 3T Skyra (Siemens, Mumbai, India) at the HealthCare Global Hospital, 853 

Bengaluru. Functional scans were performed using a T2*-weighted gradient-echo- 854 

planar imaging sequence with the following parameters: repetition time (TR) = 2s, echo 855 

time (TE) = 28 ms, flip angle = 79°, voxel size = 3 × 3 × 3 mm3, field of view = 192 × 192 856 

mm2, and 33 axial-oblique slices for whole-brain coverage. Anatomical scans were 857 

performed using T1-weighted images with the following parameters: TR = 2.30 s, TE = 858 

1.99 ms, flip angle = 9°, voxel size = 1 × 1 × 1 mm3, field of view = 256 × 256 × 176 859 

mm3. 860 

 861 

Data preprocessing. The raw fMRI data were preprocessed using Statistical Parametric 862 

Mapping (SPM) software (Version12; Welcome Center for Human Neuroimaging; 863 

https://www.fil.ion.ucl.ac.uk/spm/software /spm12/), running on MATLAB 2019b. Raw 864 
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images were realigned, slice-time corrected, co-registered to the anatomical image, 865 

segmented, and normalized to the Montreal Neurological Institute (MNI) 305 anatomical 866 

template. Repeating the key analyses with voxel activations estimated from individual 867 

subjects yielded qualitatively similar results. Smoothing was performed only on the 868 

functional localizer blocks using a Gaussian kernel with a full-width half-maximum of 5 869 

mm. Default SPM parameters were used, and voxel size after normalization was kept at 870 

3×3×3 mm3. The data were further processed using GLMdenoise (Kay et al., 2013). 871 

GLMdenoise improves the signal-to-noise ratio in the data by regressing out the noise 872 

estimated from task-unrelated voxels. The denoised time-series data were modeled 873 

using generalized linear modeling in SPM after removing low-frequency drift using a 874 

high-pass filter with a cutoff of 128 s. In the main experiment, the activity of each voxel 875 

was modeled using 83 regressors (68 stimuli + 1 fixation + 6 motion regressors + 8 876 

runs). In the localizer block, each voxel was modeled using 14 regressors (6 stimuli + 1 877 

fixation + 6 motion regressors + 1 run). 878 

 879 

ROI definitions. The regions of interest (ROI) of Early Visual Cortex (EVC) and Lateral 880 

Occipital (LO) regions were defined using anatomical masks from the SPM anatomy 881 

toolbox (Eickhoff et al., 2005). All brain maps were visualized on the inflated brain using 882 

Freesurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/).  883 

 884 

Behavioral data analysis. Response times faster than 0.3 seconds or slower than 3 885 

seconds were removed from the data. This step removed only 0.75% of the data and 886 
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improved the overall response time consistency, but did not qualitatively alter the 887 

results.  888 

 889 

Model fitting for visual homogeneity.  890 

We took the multi-dimensional embedding returned by the perceptual space 891 

experiment (Experiment 1) in 5 dimensions as the responses of 5 artificial neurons to 892 

the entire set of objects. For each target-present array, we calculated the neural 893 

response as the average of the responses elicited by these 5 neurons to the target and 894 

distractor items. Likewise, for target-absent search arrays, the neural response was 895 

simply the response elicited by these 5 neurons to the distractor item in the search 896 

array. To estimate the visual homogeneity of the target-present and target-absent 897 

search arrays, we calculated the distance of each of these arrays from a single point in 898 

the multidimensional representation. We then calculated the correlation between the 899 

visual homogeneity calculated relative to this point and the response times for the 900 

target-present and target-absent search arrays. The 5 coordinates of this center point 901 

was adjusted using constrained nonlinear optimization to maximize the difference 902 

between correlations with the target-present & target-absent response times 903 

respectively. This optimum center remained stable across many random starting points, 904 

and our results were qualitatively similar upon varying the number of embedding 905 

dimensions. 906 

Additionally, we performed a leave-one-out cross-validation analysis to validate 907 

the number of dimensions or neurons used for the multidimensional scaling analysis in 908 

the visual homogeneity model fits. For each choice of number of dimensions, we 909 
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estimated the optimal centre for visual homogeneity calculations while leaving out all 910 

searches involving a single image. We then calculated the visual homogeneity for all the 911 

target-present and target-absent searches involving the left-out image. Compiling these 912 

predictions by leaving out all images by turn results in a leave-one-out predicted visual 913 

homogeneity, which we correlated with the target-present and target-absent response 914 

times. We found that the absolute sum of the correlations between visual homogeneity 915 

and present/absent reaction times increased monotonically from 1 to 5 neurons, 916 

remained at a steady level from 5 to 9 neurons and decreased beyond 9 neurons. 917 

Furthermore, the visual homogeneity using the optimal center is highly correlated for 5-9 918 

neurons. We therefore selected 5 neurons or dimensions for reporting visual 919 

homogeneity computations.  920 

 921 

Searchlight maps for mean activation (Figure 3A, Figure 5A) 922 

 To characterize the brain regions that encode visual homogeneity, we performed 923 

a whole-brain searchlight analysis. For each voxel, we took the voxels in a 3x3x3 924 

neighborhood and calculated the mean activations across these voxels across all 925 

participants. To avoid overall actiaviton level differences between target-present and 926 

target-absent searches, we z-scored the mean activations separately across target-927 

present and target-absent searches. Similarly, we calculated the visual homogeneity 928 

model predictions from behaviour, and z-scored the visual homogeneity values for 929 

target-present and target-absent seaches separately. We then calculated the correlation 930 

between the normalized mean activations and the normalized visual homogeneity for 931 
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each voxel, and displayed this as a colormap on the flattened MNI brain template in 932 

Figures 3A & 5A.  933 

Note that the z-scoring of mean activations and visual homogeneity removes any 934 

artefactual correlation between mean activation and visual homogeneity arising simply 935 

due to overall level differences in mean activation or visual homogeneity itself, but does 936 

not alter the overall positive correlation between the visual homogeneity and mean 937 

activation across individual search displays.  938 

 939 

Searchlight maps for neural and behavioural dissimilarity (Figure 3B, Figure 5B) 940 

 To characterize the brain regions that encode perceptual dissimilarity, we 941 

performed a whole-brain searchlight analysis. For each voxel, we took the voxel 942 

activations in a 3x3x3 neighborhood to target-absent displays as a proxy for the neural 943 

response to the single image. For each image pair, we calculated the pair-wise 944 

Euclidean distance between the 27-dimensional voxel activations evoked by the two 945 

images, and averaged this distance across participants to get a single average 946 

distance. For 32 target-absent displays in the experiment, taking all possible pairwise 947 

distances results in 32C2 = 496 pairwise distances. Similarly, we obtained the same 496 948 

pairwise perceptual dissimilarities between these items from the oddball detection task 949 

(Experiment 1). We then calculated the correlation between the mean neural 950 

dissimilarities at each voxel with perceptual dissimilarities, and displayed this as a 951 

colormap on the flattened MNI brain template in Figures 3B & 5B.  952 

 953 
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Experiment 3. Oddball detection for perceptual space (Symmetric/Asymmetric 954 

objects)   955 

 956 

Participants. A total of 15 participants (11 males, 22.8 ± 4.3 years) participated in this 957 

experiment.  958 

 959 

Paradigm. Participants performed an oddball visual search task. Participants completed 960 

4032 correct trials (64C2 shape pairs x 2 repetitions) as two sessions in two days. We 961 

used a total of 64 baton shapes (32 symmetric and 32 asymmetric), and all shapes 962 

were presented against a black background. We created 32 unique parts with the 963 

vertical line as part of the contour. We created 32 symmetric by joining the part and its 964 

mirror-filled version, and 32 asymmetric objects were created by randomly pairing the 965 

left part and mirror flipped version of another left part. All parts were occurring equally 966 

likely. All other task details are the same as Experiment 1.  967 

 968 

Experiment 4 Symmetry judgment task (fMRI & behavior)  969 

 970 

Participants. A total of 15 subjects participated in this study. Participants had normal or 971 

corrected to normal vision. Participants had no history of neurological or psychiatric 972 

impairment. We excluded participants with metal implants or claustrophobia from the 973 

study.  974 

 975 
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Paradigm. Inside the scanner, participants performed two runs of one-back identity task 976 

(functional localizer), eight runs of symmetry judgment task (event-related design), and 977 

one anatomical scan. We excluded the data from one participant due to poor accuracy 978 

and long response times. 979 

 980 

Symmetry Task. On each trial, participants had to report whether a briefly presented 981 

object was symmetric or not using a keypress. Objects measured 4° and were 982 

presented against a black background. Response keys were counterbalanced across 983 

participants. Each trial lasted 4 s, with the object displayed for 200 ms followed by a 984 

blank period of 3800 ms. Participants could respond at any time following appearance 985 

of the object, up to a time out of 4 s after which the next trial began. Each run had 64 986 

unique conditions (32 symmetric and 32 asymmetric).  987 

 988 

1-back task for functional localizers. Stimuli were presented as blocks, and participants 989 

reported repeated stimuli with a keypress. Each run had blocks of either silhouettes 990 

(asymmetric/symmetric), dot patterns (asymmetric/symmetric), combination of baton 991 

and dot patterns (asymmetric/symmetric) and natural objects (intact/scrambled).  992 

 993 

Data Analysis 994 

Noise Removal in RT. Very fast (< 100 ms) reaction times were removed. We also 995 

discarded all reaction times to an object if participant’s accuracy was less than 80%. 996 

This process removed 3.6% of RT data.  997 

 998 
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Model fitting for visual homogeneity. We proceeded as before by embedding the oddball 999 

detection response times into multidimensional space with 3 dimensions. For each 1000 

image, the visual homogeneity was defined as its distance from an optimum center. We 1001 

then calculated the correlation between the visual homogeneity calculated relative to 1002 

this optimum center and the response times for the target-present and target-absent 1003 

search arrays separately. This optimum center was estimated using a constrained 1004 

nonlinear optimization to maximize the difference between the correlations for 1005 

asymmetric object response times and symmetric object response times. Other details 1006 

were the same as in Experiment-2.  1007 

  1008 
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