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Abstract 27 
 28 

Background: Antimicrobial resistance (AMR) is a significant global public health 29 

concern associated with millions of deaths annually. Agriculture has been attributed as 30 

a leading factor in AMR and multidrug resistance (MDR) associated with swine 31 

production estimated as one of the largest agricultural consumers of antibiotics. 32 

Therefore, studying and understanding AMR in swine has global relevance. AMR 33 

research has received increased attention in recent years. However, we are still building 34 

our understanding of genetic variation within a complex gut microbiome system that 35 

impacts AMR and MDR. In order to evaluate the gut resistome, we evaluated genetic 36 

variation before, during, and after antibiotic treatments. We studied three treatment 37 

groups: non-antibiotic controls (C), chlortetracycline (CTC) treated, and tiamulin (TMU) 38 

treated. We collected fecal samples from each group and performed metagenomic 39 

sequencing for a longitudinal analysis of genetic variation and functions. Results: We 40 

generated 772,688,506 reads and 81 metagenome assembled genomes (MAGs). 41 

Interestingly, we identified a subset of 11 MAGs with sustained detection and high 42 

sustained entropy (SDHSE). Entropy described genetic variation throughout the MAG. 43 

Our SDHSE MAGs were considered MDR as they were identified prior to, throughout, 44 

and after CTC and TMU treatments as well as in the C piglets. SDHSE MAGs were 45 

especially concerning as they harbored relatively high variation. Consistently high 46 

variation indicated that these microbial populations may contain hypermutable elements 47 

which has been associated with increased chance of AMR and MDR acquisition. Our 48 

SDHSE MAGs demonstrated that MDR organisms (MDRO) are present in swine, and 49 

likely additional hosts contributing to global AMR. Altogether, our study provides 50 

comprehensive genetic support of MDR populations within the gut microbiome of swine. 51 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.03.518979doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.03.518979


 

Introduction 52 
 53 

Antimicrobial resistance (AMR) is a ubiquitous threat around the world, estimating to be 54 

the third cause of global human deaths1. Antimicrobial resistance was estimated to be 55 

associated with 4.95 million deaths globally in 20191 and 2.8 million illnesses annually in 56 

the US alone2. AMR has also burdened medical systems and economies, and scientists 57 

see this as a sustained trend expecting $100-210 global losses due to AMR by 20503–5. 58 

The burden and repercussions of AMR are a one world health concern as antibiotics are 59 

utilized for animals in addition to humans6. AMR describes bacteria containing genetic 60 

components which allow them to survive through antimicrobial treatment. Particular 61 

concern arises when bacteria exhibit resistance to multiple drugs7,8. These multidrug 62 

resistant (MDR) organisms (MDRO) can persist, at times, beyond all medicinally utilized 63 

antibiotics7–9. Moreover, multidrug resistant bacteria can spread through individuals, and 64 

between humans and animals, increasing the prevalence of AMR10. With the global 65 

burden of AMR, we need an enhanced understanding of AMR to combat infections 66 

caused by MDRO. 67 

 68 

Animal agriculture has been identified as the largest antibiotic consumer11. Antibiotics 69 

have been used in agricultural animals, much like humans, to treat bacterial infections, 70 

but antibiotics are also for growth promotion in agriculture12. Swine production was 71 

estimated to be the current largest agricultural animal antibiotic-use sector in 201711,13. 72 

Moreover, antimicrobial resistance rates are rising in the swine industry as the 73 

proportion of antibiotics, with resistance higher than 50%, increased in the swine 74 

industry from 0.13 to 0.34 from 2000 to 201814. Global surveys15–19 and smaller-scale 75 

studies20–26 have in-large identified high consumption of tetracycline antibiotics in the 76 

past two decades in animal agriculture and swine. Tetracycline was estimated to 77 

account for 43% of antibiotic usage in agricultural animals from 2015 to 201719. 78 

Unfortunately, tetracycline antibiotics are not exclusively utilized in animals. For 79 

example, chlortetracycline is used in both swine and humans27,28. With continued use of 80 

antimicrobial drugs, especially when utilizing the same treatments in humans and 81 
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animals, and increasing resistance to antibiotics, AMR is a global concern to agriculture 82 

and humanity alike. 83 

 84 

In monogastric animals, including pigs and humans, the gut microbiota has been 85 

identified as an AMR reservoir29,30. The gut microbiome has been recognized as a 86 

diverse environment in terms of antimicrobial resistant genes31,32. With oral antibiotic 87 

use, the gut has been demonstrated to increase in resistant bacteria33. Antibiotic 88 

treatments decrease the abundance of susceptible bacteria which allows resistant 89 

bacteria more resources, such as nutrients and space, to increase in abundance34. 90 

While the work in AMR is accumulating at a fast pace, we still have limited 91 

understanding on how genetic variations among the microbial populations contribute to 92 

the resistome.  93 

 94 

Antibiotic use has been associated with bacteria containing increased genetic variation 95 

and so-called hypermutable bacteria35,36. Antibiotic usage selects for bacteria with 96 

genetic variation, or those with relatively high mutation rates termed hypermutable 97 

bacteria35. As bacteria develop variation, this leads to an increased chance of 98 

developing resistance35,36. Therefore with subsequent antimicrobial treatments, we are 99 

continually selecting for hypermutable populations harboring increased variation in turn 100 

having more opportunities for further AMR acquisition and MDR35,36. This can lead to 101 

MDR bacteria with high mutation rates to evade future antimicrobial treatments. 102 

However, studies related to the understanding of cumulative genetic variation across 103 

AMR genes in MDR bacteria in response to antibiotic supplementation (in vivo) among 104 

piglets are lacking. In studying microbial variation in these circumstances, we can 105 

further evaluate the risk of and potential treatments for MDR bacteria. 106 

 107 

Clearly, we need a deeper understanding of antimicrobial resistance and MDR to 108 

enhance our approach to AMR. Here, we studied gut microbiota through two distinct 109 

antibiotic treatments (in-feed chlortetracycline [CTC] and in-feed tiamulin [TMU]) in 110 

addition to a non-antibiotic control (C). We utilized swine, with tetracycline and 111 

pleuromutilin class antibiotics, to provide an in vivo evaluation of a comparatively high 112 
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and low utilized antibiotic classes11,13, in the global swine industry15–26. As mentioned 113 

previously, tetracycline antibiotics accounted for 43% of antibiotic usage in animal 114 

agriculture during 2015-2017 whereas pleuromutilin only accounted for 3%19. For our 115 

study, we performed metagenomic sequencing to obtain genes for functional analysis. 116 

Following our subsequent genome assembly and manual genome refining, we identified 117 

a subset of 11 metagenome-assembled genomes (MAGs) with high genetic variation 118 

prior to and throughout both antibiotic treatments and in control swine. We also 119 

confirmed consistent detection of the 11 MAGs and termed these MAGs: sustained 120 

detection and high sustained entropy (SDHSE) MAGs. Our SDHSE MAGs are of 121 

concern as they contained genetic variation and demonstrated MDR to both CTC and 122 

TMU. Moreover, we identified 22 distinct AMR genes in our SDHSE MAGs. Altogether, 123 

we provide evidence of MDR bacteria present in swine with concerningly high levels of 124 

genetic variation in 11 distinct microbial populations. Our research transcends global 125 

health with insights into antimicrobial resistance, and especially MDR, from a major 126 

contributor to global AMR. 127 

 128 

Materials and Methods 129 
 130 

Experimental design 131 

The swine study was performed as previously described (Figure 1A-C)37–39. Swine 132 

(genetic line L337×1050, PIC, Hendersonville, TN) were housed in a commercial 133 

research nursery facility. Diets were fed with formulations as previously described40. All 134 

pigs were housed in one room with an enclosed, environmentally controlled, and 135 

mechanical ventilation system. Pens contained slatted floors with deep manure pits. 136 

Feed and water were provided ad libitum per pen with a six-hole stainless steel self-137 

feeder (refilled via a robotic system) and pan waterer (Supplementary Table S1). This 138 

study utilized 648 pigs randomly distributed into 24 pens (27 pigs per pen), while 139 

working to minimize differences in average pen weight during distribution. Three 140 

treatments were administered, according to average pen weight, 7 days after weaning 141 

at 21 days of age, for a total of 14 days, each across 8 pens: control (no antibiotic; C), 142 

in-feed chlortetracycline (CTC; 22 mg/kg body weight; CTC-hydrochloride, Elanco 143 
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Animal Health, Indianapolis, IN), and in-feed tiamulin (TMU; 5 mg/kg body weight; 144 

Denagard®, Elanco, Animal Health, Indianapolis, IN). 145 

 146 

Swine were managed according to protocol #4033 with Kansas State University 147 

Institutional Animal Care and Use Committee (IACUC). The authors also confirmed that 148 

all methods were performed in accordance with relevant guidelines and regulations41, 149 

and we affirmed that all methods were approved by Kansas State University. 150 

 151 

Sample Collection 152 

For this study, we considered each pen as an experimental unit, and there were eight 153 

pens per antibiotic treatment (Figure 1A-C). Fecal collection occurred every seven days, 154 

starting on the day of introduction to the pens (Supplementary Table S1). Fecal samples 155 

were collected via gentle rectal massage from five randomly selected pigs per two 156 

random pens per treatment, and each fecal sample was stored in individual sterile 157 

plastic bags (Whirl-Pak® bags, Nasco, Ft. Atkinson, WI) and kept on ice during 158 

transportation. Processing occurred within 24 hours of collection, with intermittent 159 

storage at 4°C, at the Pre-harvest Food Safety laboratory, College of Veterinary 160 

Medicine, Kansas State University. Laboratory personnel were blinded to the 161 

treatments. 162 

 163 

DNA extraction 164 

Fecal samples were stored at -80°C until DNA extraction. For each pen and time-point, 165 

the five fecal samples were pooled for DNA extraction (Figure 1A-C; n=30 samples [5 166 

time-points*2 pens per treatment/time-point*3 treatments]). Total genomic DNA from 167 

fecal samples was extracted utilizing the DNeasy PowerSoil Pro Kits (QIAGEN Inc.; 168 

Valencia, CA), following the manufacturer protocols. We then quantified the extracted 169 

genomic DNA with a Nanodrop and Qubit™ (dsDNA BR Assay Kit [Thermo Fisher; 170 

Waltham, MA]) for DNA quality and concentration. Final storage of extracted DNA was 171 

at -80°C until library preparation and sequencing. 172 

 173 

Metagenomic sequencing and ‘omics workflow 174 
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Library preparation was performed on 30 samples with Nextera DNA Flex (Illumina, Inc.; 175 

San Diego, CA) (Figure 1B; Supplementary Table S1). A Tapestation 4200 (Agilent; 176 

Santa Clara, CA) was employed to visualize libraries followed by size-selected via a 177 

BluePippin (Sage Science; Beverly, MA). The final library pool of 30 samples was 178 

quantified with the Kapa Biosystems (Roche Sequencing; Pleasanton, CA) qPCR 179 

protocol, and sequenced on an Illumina NovaSeq S1 chip (Illumina, Inc.; San Diego, 180 

CA) with a 2 x 150 bp paired-end sequencing strategy. 181 

 182 

We performed a bioinformatics workflow using anvi’o v.7.1 (https://anvio.org/install/; 183 

‘anvi-run-workflow’ program)42,43. The workflow utilized Snakemake44 to perform multiple 184 

tasks: short-read quality filtering, assembly, gene calling, functional annotation, hidden 185 

Markov model search, metagenomic read-recruitment and binning45. Briefly, we 186 

processed sequencing reads using anvi’o’s ‘iu-filer-quality-minoche’ program removing 187 

low-quality reads following criteria described in Minoche et al.46. We termed the 188 

resulting quality-control reads “metagenome” per sample. We co-assembled quality-189 

control short reads from metagenomes into longer contiguous sequences (contigs) 190 

according to no-treatment (prior to treatment/after) and treatment groups (C, CTC, 191 

TMU). We utilized MEGAHIT v1.2.942,47 for co-assembly. The following anvi’o methods 192 

were then performed to further process contigs: (1) ‘anvi-gen-contigs-database’ to 193 

compute k-mer frequencies and identify open reading frames (ORFs) using Prodigal 194 

v2.6.342,48; (2) ‘anvi-run-hmms’ to annotate bacterial and archaeal single-copy, core 195 

genes using HMMER v.3.2.142,49; (3) ‘anvi-run-ncbi-cogs’ to annotate ORFs with NCBI’s 196 

Clusters of Orthologous Groups (COGs; https://www.ncbi.nlm.nih.gov/research/cog)50; 197 

and (4) ‘anvi-run-kegg-kofams’ to annotate ORFs from KOfam HMM databases of 198 

KEGG orthologs (https://www.genome.jp/kegg/)51. 199 

  200 

We mapped all metagenomes’ short reads to contigs with Bowtie2 v2.3.552. We 201 

converted mappings with samtools v1.942,53,54 into BAM files. We profiled BAM mapping 202 

files (‘anvi-profile’)42 with a minimum length of 1,000 bp. We then combined profiles with 203 

‘anvi-merge’ into a single anvi’o profile. Next, we used CONCOCT v1.1.055 to group 204 

contigs into bins. We manually refined bins with ‘anvi-refine’ using bin tetranucleotide 205 
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frequency and coverage across sample metagenomes42,56,57. After manual refining, we 206 

labeled bins that had ≥70% completion and <10% redundancy (both based on single-207 

copy core gene annotation58) as metagenome-assembled genomes (MAGs). We 208 

analyzed MAG occurrences according to the “detection” metric. We determined single-209 

nucleotide variants (SNVs) on all MAGs after read mapping with ‘anvi-gen-variability-210 

profile’ and ‘--quince-mode’42. We used anvi’o’s DESMAN v2.1.1 to analyze SNVs to 211 

determine the number and distribution of subpopulations in the MAGs59. We accounted 212 

for non-specific mapping by removing any MAG subpopulations that made up less than 213 

1% of the entire population and were explained by a singular MAG. 214 

 215 

Data analyses 216 

We used RStudio v1.3.109360 to visualize MAGs detection and entropy patterns in 217 

RStudio (https://www.rstudio.com/products/rstudio/) using: pheatmap (pretty heatmaps) 218 

v1.0.1261, ggplot2 v3.3.5 (https://ggplot2.tidyverse.org/)62, forcats v0.5.1 219 

(https://forcats.tidyverse.org/)63, dplyr v1.0.8 (https://dplyr.tidyverse.org/)64, and ggpubr 220 

v0.4.0 (https://CRAN.R-project.org/package=ggpubr)65. We generated SNVs counts 221 

according to individual sample with anvi’o, anvi-summarize, and MAG entropies66 were 222 

generated with anvi’o’s anvi-gen-variability-profile42,57. Individual MAG entropy files and 223 

individual MAG statistical analysis files were combined respectively in RStudio with: 224 

tidyverse 1.3.1 (https://cran.r-project.org/web/packages/tidyverse/citation.html)67 and 225 

1.4.0 (https://stringr.tidyverse.org/)68. We performed Welch two sample T-test69 226 

statistical analysis on detection and entropy according to pre-treatment versus post-227 

treatment and treatment groups. We used anvi’o COG annotations, as described above, 228 

for metabolic function analyses42. Our final figures were edited in Inkscape v1.2.170. 229 

 230 

Data availability 231 

We uploaded our metagenome raw sequencing data to the SRA under NCBI BioProject 232 

PRJNA899060. All other analyzed data, in the form of databases and fasta files, and 233 

bioinformatic scripts are accessible at figshare 234 

(https://doi.org/10.6084/m9.figshare.21548445.v1). 235 

 236 
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Results and Discussion 237 
 238 

Antimicrobial resistance (AMR), and especially multidrug resistance (MDR), are a global 239 

concern. Animal agriculture has been identified as the top consumer of antibiotics with 240 

the swine industry consuming the most of any agricultural sector11,13. In order to better 241 

understand AMR and MDR dynamics of the swine gut microbiome, we collected 242 

samples prior to, during and after antibiotic treatment. We utilized three distinct 243 

treatment groups: chlortetracycline, tiamulin, and non-antibiotic control. These 244 

antibiotics were utilized to allow analysis of distinctly utilized microbial classes across 245 

swine. Interestingly, we identified 11 distinct bacterial populations with similar detection 246 

levels pre- and post-treatment and between treatments. These bacteria harbored high 247 

genetic variation. The 11 microbial populations, assembled from our metagenomic data, 248 

were termed sustained detection and high sustained entropy (SDHSE) metagenome-249 

assembled genomes (MAGs). Already exhibiting MDR, high variation in our resolved 250 

SDHSE MAGs could result in enhanced multidrug resistance. We further identified 22 251 

unique AMR genes with varying detection in SDHSE MAGs. Altogether, we detailed 252 

AMR of swine microbiota with genetic support of existing MDR prior to antibiotic 253 

treatments and sustained variation throughout treatments. Our study advances AMR 254 

and MDR research by providing reflection on antibiotic and resistome association with 255 

animal agriculture, and potentially additional monogastric hosts. 256 

 257 

Resolved identify of gut metagenome-assembled genomes 258 

We assembled and analyzed high resolution metagenome-assembled genomes 259 

(MAGs) to postulate functional distinctions between gut microbiota before and after 260 

antibiotic treatment. Each MAG represents a “microbial population.” We described a 261 

microbial population as an assemblage of coexisting microbial genomes in an 262 

environment that are similar enough to map metagenomic reads to the same reference 263 

genomes71. Metagenomic sequencing on an Illumina NovaSeq produced 772,688,506 264 

paired-end reads from 30 fecal samples (Figure 1B; Supplementary Table S2). After 265 

quality filtering, 741,143,268 paired reads (96%) were utilized in contig co-assembly. 266 

We generated 330,769 contigs from assembly which described 1,018,536,193 267 
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nucleotides and 1,270,711 genes. We performed contig binning to create 369 bins, and 268 

after automatic and manual refinement we resolved 205 MAGs (Supplementary Table 269 

S3). To ensure high quality MAGs in our analysis, we performed downstream analysis 270 

with MAGs greater than 2M nucleotides (n=81), as these would more accurately 271 

represent bacterial genomes72. Of these 81 MAGs, each MAG, contained 360 ± 232 272 

contigs and an N50 value of 18,345 ± 16,569 nucleotides. MAG GC contents ranged 273 

from 26% to 62%. Moreover, the average MAG size was 2,424,923 nucleotides. The 274 

MAGs were assigned to 6 bacterial phyla (Actinobacteriota, n=3; Bacteroidota, n=37; 275 

Firmicutes, n=38; Planctomycetota, n=1; Proteobacteria, n=1; and Verrucomicrobiota, 276 

n=1) with 96% of the MAGs resolved to 48 distinct genera. 277 

 278 

We mapped each sample’s metagenomic reads (i.e. metagenome) to the 81 MAGs to 279 

determine detection throughout the study (Figure 2 and Supplementary Table S4). We 280 

confirmed detection of all 81 MAGs and determined general differential detection 281 

patterns according to detection clustering. The top branches broadly depict MAGs 282 

detected in the pre-treatment period. Comparatively, the middle clusters were sparsely 283 

detected. Finally, the bottom clusters were, in general, detected relatively high, 284 

compared to previous clusters, throughout the experiment regardless of pre- or post-285 

treatment or treatment group. Altogether, our detection analysis suggested that 286 

association of microbial populations with  swine hosts was far more complex than just 287 

what bacteria were affected by the use of antibiotics. 288 

 289 

Previous studies suggested environmental pressures, such as antibiotic administration, 290 

increased genetic variation in microorganisms73,74. The genetic variation in bacteria 291 

results from single nucleotide polymorphisms (SNPs), and could lead to generation of 292 

novel bacterial strains73. Studies further demonstrated that bacteria often used 293 

mutations as a mechanism for stress response, which is termed as stress-induced 294 

mutagenesis75. Since one of the mechanisms for the diversification and adaptation of 295 

the genomes operates at the single nucleotide level, we proceeded to resolve a more 296 

complete understanding of the environmental forces that affect adaptive strategies of 297 

our resolved MAGs to survive in the environment they resided in. Therefore, while our 298 
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MAGs were detected throughout the study, we were particularly interested in how MAG 299 

variants were changing according to treatment. Our bioinformatic analysis generated 300 

single nucleotide variants (SNVs) according to sample (Figure 2). We noticed relatively 301 

more SNVs associated with the post-treatment samples, which suggested that our 302 

resolved MAGs might respond to the antibiotic induced environmental pressure leading 303 

to the generation of new strains73. In light of this discovery, we proceeded to evaluate 304 

which MAGs were consistently high variation while maintaining detection even with 305 

different antibiotic treatments. These MAGs could potentially evade antimicrobial 306 

treatment with a multitude of variants, as demonstrated through sustained detection. 307 

Therefore, we next evaluated entropy throughout all 81 MAGs. 308 

 309 

MAGs harboring high genetic variation persisted through antimicrobial treatment 310 

We performed single nucleotide variant (SNV) analysis to calculate entropy on our 81 311 

MAGs to investigate genetic variation due antibiotic induced environmental pressure 312 

(Supplementary Table S5). Entropy describes nucleotide ratios for a given position, and 313 

entropy is measured from 0 (no variation; A=0, T=0, G=0, C=1) to 1 (complete variation; 314 

A=0.25, T=0.25, G=0.25, C=0.25)76. We performed statistical analysis to determine 315 

which MAGs held high sustained variation in the form of entropy and sustained 316 

detection (Supplementary Table S6). We discovered 31 MAGs with no statistical 317 

difference in entropy and detection (Supplementary Table S6). These MAGs 318 

represented microbial populations that were detected consistently regardless of 319 

antibiotic treatment. We further narrowed our selection to 11 MAGs with the relatively 320 

highest (33%) variation (Supplementary Table S6) because we were interested in 321 

MAGs harboring high variation, with potential multidrug evasion. Previous publications 322 

demonstrated the use of relative entropy analysis versus discrete entropy thresholds77–323 
79. These 11 MAGs were termed sustained detection and high sustained entropy 324 

(SDHSE) MAGs (Figure 3; Table 1). Of these SDHSE MAGs, 5 (45%) were assigned to 325 

the gram negative Bacteroidota (also known as Bacteroidetes)80 phylum, while 6 (55%) 326 

were annotated to gram positive Firmicutes. While members of both phyla have been 327 

associated with resistance to CTC and TMU, we identified only 2 (Prevotella81–83 and 328 

Ruminococcus84–86) of 9 genera associated with CTC resistance and 0 with TMU. Of our 329 
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11 SDHSE MAGs, 8 (73%) MAGs were annotated to 8 distinct species. Akin to the 330 

genus level, we provided novel associations of bacterial species, within the SDHSE 331 

MAG populations, exhibiting MDR. The finding indicated there are likely additional 332 

genera and species, with CTC and TMU resistance, then are currently known. Still, we 333 

wanted to investigate how the genetic variation of our SDHSE MAGs was related to 334 

AMR and MDR. 335 

 336 

Our SDHSE MAGs satisfied three important criteria - 1) consistent detection; 2) 337 

consistent high coverage of MAGs in the metagenomes; 3) consistent high variation of 338 

the MAGs in the metagenomes. Consistent detection demonstrated MDR, at least 339 

encompassing resistance to CTC and TMU, of the microbial populations. Consistent 340 

high coverage of the MAGs removed biases of identifying false variations among 341 

metagenomes due to coverage differences. Finally, previous publications have 342 

described how bacteria harboring variation are a concern for antimicrobial 343 

resistance35,87,88. When a microbial population contains a relatively high number of 344 

SNVs or contains a highly variable genetic background, the population contains genetic 345 

variation which may allow bacteria to persist even with antibiotic treatments. Here we 346 

demonstrated that our 11 SDHSE MAGs showed similar detection prior to and after 347 

distinct antibiotic treatments (CTC and TMU). The specific variants harbored in these 348 

MAGs are of particular interest to antimicrobial resistance (AMR) studies, thus, we 349 

surmised that the broad variation within these SDHSE MAGs likely contributed to the 350 

bacteria’s adaptive ability to survive antibiotic induced environments. Moreover, 351 

harboring continued high variation even after antibiotic treatment suggested many 352 

variants were able to persist during and after CTC and TMU treatment35,87,88. Previous 353 

studies highlight the role of antibiotic selection for populations with higher mutations, 354 

called hypermutable bacteria, which leads to high genetic variation in subsequent 355 

generations35,36. Our SDHSE MAGs were concerning as they contained high variation 356 

prior to antibiotic treatment and were able to remain present in the gut microbiome 357 

following antimicrobial treatment. Additional research is crucial to determine the 358 

presence of MDR organisms (MDRO) in additional hosts, regardless of previous 359 

antibiotic treatment. Our results suggested that there are likely numerous MDRO 360 
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already present in hosts. Further antimicrobial treatments could continually be selecting 361 

for further MDR and hypermutable bacteria across all hosts, including across swine, 362 

monogastric and additional hosts. Hypermutable bacteria, including our SDHSE MAGs 363 

harboring numerous variants, are a concern to AMR with their MDR potential35,36. 364 

 365 

We hypothesized that out 11 SDHSE MAGs likely contained AMR genes contributing to 366 

their continued detection. Therefore, we evaluated the MAGs for AMR genes within our 367 

functional potential annotations. 368 

 369 

Abundance of antimicrobial resistance (AMR) genes associated with sustained 370 
detection and high sustained entropy (SDHSE) MAGs 371 

We hypothesized that genetic components associated with AMR supported the ability 372 

for SDHSE MAGs to prevail regardless of CTC and TMU use. We used COG 373 

annotations to investigate genetic functions for our 11 SDHSE MAGs, and we obtained 374 

a total of 21,025 COG annotations (average 1,911 per MAG). We observed numerous 375 

AMR genes within the high entropy contigs among the SDHSE MAGs (Supplementary 376 

Table S7). Within the COG annotations, we identified 19 unique gene annotations that 377 

coded for 18 distinct proteins or protein complexes related to AMR with an additional 378 

three genes (two complexes: YadH/YadG and RhaT) for drug efflux (Figure 4, Table 2, 379 

and Supplementary Table S8)89–126. We identified genes associated with six different 380 

drug efflux pump superfamilies (ATP-binding cassette [ABC], multidrug and toxic 381 

compound extrusion [MATE], drug/metabolite transporter [DMT], major facilitator [MFS], 382 

resistance-nodulation-division [RND], and small multidrug resistance [SMR]) alongside 383 

genes coding for: antimicrobial peptides (AMP), �-lactamases, �-lactamase regulators, 384 

and penicillin binding protein (PBP) relatives. Interestingly, of the 11 SDHSE MAGs, the 385 

gram negative MAGs (n=5) were, on average, annotated with 13 (57%) of the 22 genes, 386 

whereas the gram positive MAGs (n=6) were annotated on average with 12 (52%) 387 

genes. This agrees with previous literature indicating AMR is more often associated with 388 

gram negative bacteria relative to gram positive bacteria127. Still, both gram negative 389 

and gram positive bacteria cause significant illnesses and mortalities globally127–129. 390 

Given the risk MDR bacteria, including our SDHSE MAGs, pose to society, we further 391 
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investigated individual resistance genes and proteins to build the knowledge 392 

surrounding AMR and MDR. 393 

 394 

We noticed all SDHSE MAGs contained a variety of drug efflux pump and other (non-395 

efflux pump) genes. Looking further into suspected resistance to antibiotics, based on 396 

AMR gene annotations, we discovered all SDHSE MAGs harbored AMR genes 397 

associated with 5 distinct antibiotic classes (Table 2)89–115. Tetracycline resistance, 398 

including resistance to CTC, is suspected across all SDHSE MAGs due to shared 399 

presence of ftsI and mepA, alongside mdlB, norB, tetA, acrA-acrB-tolC, emrE, and 400 

tetD89–115. The shared presence of multiple AMR genes could explain the consistent 401 

identification of these MAGs, regardless of antibiotic use. These bacteria could have 402 

repressed effects of the antibiotics as a result of these, and likely other, AMR genes. As 403 

expected, our gram negative MAGs contained, on average, a broader antibiotic class 404 

resistance (n=8.8) compared to gram positive MAGs (n=7.0)127. The physical membrane 405 

distinctions between gram positive and gram negative bacteria have resulted in greater 406 

antimicrobial resistance in gram negative bacteria127. Overall, we showed that all 407 

SDHSE MAGs demonstrated multidrug resistance potential which likely contributed to 408 

their continual presence even after antibiotic treatment. 409 

 410 

We identified tripartite efflux pumps solely in gram negative MAGs. We identified the 411 

RND tripartite AcrAB-TolC complex genes in nearly of all our SDHSE gram negative 412 

genomes; only SDHSE-03 lacked AcrAB-TolC identification. RND pumps facilitate efflux 413 

across the outer membrane124. Gram positive bacteria lack this outer membrane which 414 

coincided with the absence of acrA-acrB-tolC annotation in our gram positive MAGs124. 415 

Moreover, since the majority of efflux pumps only facilitate efflux across the first 416 

membrane, RND pumps such as acrA-acrB-tolC have been described as broader and 417 

supports association of acrA-acrB-tolC with CTC and TMU resistance (Supplementary 418 

Table S8)89,109,124. A similar tripartite structure and efflux action have been described in 419 

the MFS efflux pump EmrAB-TolC, again in gram negative bacteria124. Although, 420 

EmrAB-TolC, to the best of our knowledge, has not been associated with CTC or TMU 421 

resistance. In our study, the identification of EmrAB-TolC in the CTC and TMU 422 
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treatments suggested that EmrAB-TolC could have roles in CTC and TMU resistance. 423 

Further research is crucial to discover the range and action of tripartite efflux pumps in 424 

resistance and especially MDR. 425 

 426 

We identified six of seven distinct efflux superfamilies, but we did not identify any 427 

proteobacterial antimicrobial compound efflux (PACE) annotations130. Although PACE 428 

has been demonstrated as prevalent in gram negative bacteria, previous literature has 429 

lacked identification in gram negative Bacteroidota, while PACE has been identified in 430 

gram positive Firmicutes131. PACE, the newest antibiotic class, was first described in 431 

2015, with the second newest antibiotic class having been found in 2000132. Therefore, 432 

the breadth of knowledge surrounding PACE is growing and our MAGs could contain 433 

PACE efflux pump genes which have not been annotated within the COG database to 434 

date. 435 

 436 

Beyond drug efflux pumps, we also identified genes coding for additional AMR proteins. 437 

As expected, we did not associate CTC or TMU resistance with �-lactamase or 438 

penicillin binding protein (PBP) related genes (Supplementary Table S8). �-lactamase 439 

inactivates �-lactam antibiotics, including penicillins, carbapenems, and 440 

cephalosporins133. We surmised that genes coding for these AMR proteins identified in 441 

our SDHSE MAGs have not previously been associated with CTC and TMU resistance 442 

due to their biochemical action, limiting their range of resistance133. 443 

 444 

We did not identify any genes, outside of drug efflux genes, with suspected 445 

pleuromutilin (TMU) resistance. The only gene with suspected TMU resistance was the 446 

RND pump AcrAB-TolC113, which has also been associated with resistance of 5 other 447 

antibiotic classes. Only 36% of SDHSE MAGs contained genes with resistance to 448 

pleuromutilin antibiotics like TMU109. There are likely additional genes beyond the COG 449 

annotations we evaluated, and perhaps additional resistance which has yet to be 450 

discovered134. Additionally, we found that the majority of proteins (56%) associated with 451 

our genes had no previous support for resistance to CTC or TMU. Together, these 452 

results indicated a sizable knowledge gap in understanding the implications of strain 453 
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level genetic variations among bacterial populations. Our SDHSE MAGs are likely 454 

harboring MDR to not only CTC and TMU, but other drugs, with genetic variations 455 

hindering targeted therapeutics135. While there has been a call for shifting our antibiotic 456 

usage to narrow or even strain-specific antibiotics to limit further AMR with application of 457 

broad antibiotics136, bacterial populations with high genetic variation could minimize the 458 

success of such therapies35. Clearly bacterial populations, such as SDHSE bacteria, 459 

with high genetic variation are concerning as they demonstrate increased AMR and 460 

threaten further AMR through targeted antimicrobials35. Future research needs to 461 

investigate similar SDHSE populations to determine their prevalence and risk they pose 462 

to global health. 463 

 464 

Conclusions 465 
 466 

In order to investigate genetic variations pertaining MDR and AMR, we evaluated the 467 

gut microbiome for population dynamics before, during and after antimicrobial 468 

treatment. Our research is critical to understanding the implications of AMR on global 469 

health as we evaluated resistance in a sector dominating antibiotic use: swine 470 

production11,13. We demonstrated evidence of MDR bacterial populations present prior 471 

to antibiotic administration through 11 distinct bacterial populations we termed sustained 472 

detection and high sustained entropy (SDHSE) MAGs.  473 

 474 

Within these MAGs, we indicated novel CTC and TMU resistance association with their 475 

taxonomic classifications at the genus and species levels. As work continues to 476 

discover gut-associated bacteria, we should evaluate their AMR characteristics to 477 

combat further resistance. Further highlighting the need for heightened AMR research, 478 

we found that approximately a third of our SDHSE MAGs contained annotated genes 479 

associated with TMU resistance. Although given the consistent identification of these 480 

MAGs during TMU treatment, there must be TMU resistance genes within the SDHSE 481 

genomes resulting in TMU resistance. Our SDHSE microbial populations harbored 482 

variation and AMR genes prior to antimicrobial treatment. We demonstrated that, 483 

although antimicrobial resistance is known to select for resistance35,87,88, resistant 484 
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populations are currently present in the swine gut, indicating there are likely similar 485 

situations across additional hosts. While the number of antimicrobial resistance studies 486 

published has increased substantially since 2010137, the scientific community still has 487 

numerous topics to evaluate to better target AMR and MDR, all while under the 488 

pressure of rising antimicrobial resistance concerns138.  489 
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Figures 848 
 849 

 850 

Figure 1. A) Pig and pen housing* allocation to treatments. B) Timeline of study. C)851 

Fecal sample collection and pooling. D) Bioinformatics from sequencing reads to refined852 

MAGs.  853 

*Image denotes pen treatments in same location for simplification. Note that pens were854 

not all located in one region of room, instead pens were dispersed to control for855 

adjoining pen interactions37–39. 856 
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857 
Figure 2. MAG detection heatmap (top) and single nucleotide variants (SNVs; bottom)858 

according to treatment group and pre-/post-treatment (from left to right is earliest859 

sampling [day -7] to last sampling [day 28] per treatment group) per sample. 860 
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861 
Figure 3. Detection boxplot and entropy bar graphs of our 11 sustained detection and862 

high sustained entropy (SDHSE) MAGs. 863 

nd 
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864 
Figure 4. AMR genes detected in SDHSE MAGs annotated according to presence in865 

our gram negative/positive MAGs and according to association with CTC (or866 

tetracycline) or TMU (or pleuromutilin) previously89–126. Acronyms: ABC, ATP-binding867 

cassette; MATE, multidrug and toxic compound extrusion; DMT, drug/metabolite868 

transporter; MFS, major facilitator; RND, resistance-nodulation-division; SMR, small869 

multidrug resistance; PBP, penicillin binding protein. 870 

in 

or 

ng 

ite 

all 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.03.518979doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.03.518979


 

Tables 871 
 872 

Table 1. Taxonomic assignment and assembly statistics, of sustained detection and high sustained entropy (SDHSE) 873 

MAGs. 874 

 875 

MAG ID 
Total length 

(nucleotides) 
Number of 

contigs 
N50 GC content 

Percent 

completion 
Percent 

redundancy 
Domain Phylum Class Order Family Genus Species 

SDHSE-03 2,629,111 365 15,755 44% 79% 7% Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Prevotella N/A 

SDHSE-04 2,458,376 727 4,266 48% 93% 8% Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae UBA6382 UBA6382 sp002439755 

SDHSE-01 2,343,180 332 9,899 49% 96% 8% Bacteria Bacteroidota Bacteroidia Bacteroidales Muribaculaceae C941 C941 sp004557565 

SDHSE-02 2,593,352 391 11,592 51% 86% 8% Bacteria Bacteroidota Bacteroidia Bacteroidales UBA932 RC9 RC9 sp000431015 

SDHSE-05 2,812,877 455 10,884 52% 87% 3% Bacteria Bacteroidota Bacteroidia Bacteroidales UBA932 RC9 RC9 sp000433355 

SDHSE-08 2,753,895 203 29,028 41% 90% 6% Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia N/A 

SDHSE-10 2,095,569 581 4,928 42% 94% 7% Bacteria Firmicutes Clostridia Oscillospirales Acutalibacteraceae Ruminococcus N/A 

SDHSE-06 2,196,155 223 21,375 52% 96% 1% Bacteria Firmicutes Clostridia Oscillospirales Acutalibacteraceae Ruminococcus Ruminococcus sp003531055 

SDHSE-07 2,289,369 499 7,653 56% 80% 4% Bacteria Firmicutes Clostridia Oscillospirales Oscillospiraceae CAG-170 CAG-170 sp003516765 

SDHSE-11 2,034,772 145 22,117 61% 87% 1% Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Gemmiger Gemmiger sp004561545 

SDHSE-09 2,432,201 438 8,763 54% 96% 8% Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Ruthenibacterium Ruthenibacterium sp002315015 
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Table 2. Antibiotic class resistance, based on previous publications and our annotated AMR and drug efflux genes, for our 877 

SDHSE MAGs89–126; green filled boxes indicate resistance associated with gene(s) whereas white demonstrates no AMR 878 

association. 879 
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SDHSE-01 Yes Yes Yes Yes Yes Yes   Yes Yes     8 

8.8 1.7 

SDHSE-02 Yes Yes Yes Yes Yes Yes Yes Yes Yes     9 

SDHSE-03 Yes Yes Yes Yes Yes           Yes 6 

SDHSE-04 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 11 

SDHSE-05 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes   10 
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SDHSE-06 Yes Yes Yes Yes Yes Yes Yes         7 

7 0.0 

SDHSE-07 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-08 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-09 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-10 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-11 Yes Yes Yes Yes Yes Yes Yes         7 

MAGs with 
Resistance 

Genes 

Count 11 11 11 11 11 10 9 4 4 2 2    

Percent 100% 100% 100% 100% 100% 91% 82% 36% 36% 18% 18%    
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Supplementary Files 880 
 881 

Supplementary Table S1. Demographics (diet, birth date, housing group, etc.) of swine 882 

hosts and dams, and sample metadata (swine age, host ID, stage and general health 883 

information, etc.). 884 

 885 

Supplementary Table S2. Sequencing and assembly analysis including: metagenomic 886 

read counts initially obtained and assembly statistics according to co-assembly group. 887 

 888 

Supplementary Table S3. Anvi’o results from initial bins and resulting MAGs, including 889 

taxonomic classification42. 890 

 891 

Supplementary Table S4. Detection results from metagenome mapping to MAGs and 892 

SNV counts according to sample. 893 

 894 

Supplementary Table S5. Entropy results from anvi’o. 895 

 896 

Supplementary Table S6. Detection and entropy statistic results, and selection of 897 

SDHSE analysis. 898 

 899 

Supplementary Table S7. COG annotations, including AMR annotations and AMR 900 

annotation summary, for SDHSE MAGs. Acronyms: ABC, ATP-binding cassette; MATE, 901 

multidrug and toxic compound extrusion; DMT, drug/metabolite transporter; MFS, major 902 

facilitator; RND, resistance-nodulation-division; SMR, small multidrug resistance; AMP, 903 

antimicrobial peptide; PBP, penicillin binding protein. 904 

 905 

Supplementary Table S8. Antibiotic class resistance, based on previous publications, 906 

for our annotated AMR and drug efflux genes89–126; green filled boxes indicate 907 

resistance associated with gene(s) whereas white demonstrates no AMR association. 908 

Acronyms: ABC, ATP-binding cassette; MATE, multidrug and toxic compound extrusion; 909 

DMT, drug/metabolite transporter; MFS, major facilitator; RND, resistance-nodulation-910 
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division; SMR, small multidrug resistance; AMP, antimicrobial peptide; PBP, penicillin 911 

binding protein. 912 
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