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Abstract 1 

Our sense of the passage of time flexibly adapts to the statistical properties of the temporal context. 2 

Humans and non-human species exhibit a perceptual bias towards the mean of durations previously 3 

observed as well as serial dependence, a perceptual bias towards the duration of recently processed 4 

events. Here we asked whether those two phenomena arise from a unitary mechanism or reflect the 5 

operation of two distinct systems that adapt separately to the global and local statistics of the 6 

environment. We employed a set of duration reproduction tasks in which the target duration was sampled 7 

from distributions with different variances and means. The central tendency and serial dependence biases 8 

were jointly modulated by the range and the variance of the prior, and these effects were well-captured 9 

by a unitary mechanism model in which temporal expectancies are updated after each trial based on 10 

perceptual observations. Alternative models that assume separate mechanisms for global and local 11 

contextual effects failed to capture the empirical results. 12 

 13 

Teaser  14 

Time perception of humans is shaped by a common mechanism that is sensitive to short-term and long-15 

term environmental changes.  16 
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Introduction  17 

The internal representation of temporal information is essential for a wide range of cognitive functions, 18 

from anticipating future events to controlling movements (1–3). To improve the precision of temporal 19 

perception, the timing system flexibly adapts to the statistical properties of the current context (4, 5). For 20 

example, when presented with a set of durations in a perception task, participants have a strong tendency 21 

to overestimate relatively short durations and underestimate relatively long durations. Thus, the 22 

perceived duration is biased toward the mean of the set (4, 6–9), a phenomenon, known as the “central 23 

tendency effect.” This effect indicates that temporal perception is sensitive to the global temporal 24 

context.  25 

 26 

It has also been shown that temporal perception can adapt on a rapid timescale. Participants’ perception 27 

of the current duration is attracted toward the duration of the previous stimulus(10–12). That is, the 28 

duration is perceived to be longer after a relatively long duration stimulus compared to a relatively short 29 

duration stimulus. This phenomenon, known as serial dependence, suggests that the perceptual system 30 

is also sensitive to the local statistics of the environment (13, 14). 31 

 32 

Central tendency and serial dependence effects have been observed across a wide range of perceptual 33 

tasks(13, 15–19), indicating that they reflect general principles of how the perception system adapts to 34 

the statistics of the environment. Both phenomena can be explained under a Bayesian framework. On the 35 

one hand, the observers appear to construct a relatively stable global prior that reflects the distribution 36 

of the stimulus set (6, 20, 21). Following Bayesian integration, the current perception is biased toward the 37 

mean of the global prior, the central tendency effect. On the other hand, the observer also appears to 38 

build a temporal expectancy based on the most recent stimulus, inducing a bias in judging the duration of 39 

the current stimulus towards recently experienced stimuli, the serial dependence effect (22).  40 

 41 

Although the central tendency and serial dependence effects describe two ways in which context can 42 

influence behavior, it remains unclear whether they reflect the operation of a unitary process or two 43 

separate, adaptive processes. From a unitary view, the perceptual system continuously updates the global 44 

prior based on new observations, and the trial-by-trial updating of the global prior could influence the 45 

subsequent perception, giving rise to serial dependence(10, 11, 23). Alternatively, there may be two 46 

adaptive systems that operate on different timescales in response to environmental statistics, building up 47 

global and local priors that give rise to central tendency and serial dependence, respectively.  48 
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 49 

To arbitrate between these hypotheses, we used a temporal reproduction task (6, 24–26) in which 50 

participants reproduce an interval specified by a visual stimulus. Across conditions, we manipulated the 51 

global distribution by sampling the target durations from different temporal distributions. If serial 52 

dependence and central tendency arise from a shared mechanism, the magnitude of the serial 53 

dependence effect would be impacted by the global temporal distribution. Alternatively, if serial 54 

dependence and central tendency arise from distinct mechanisms, the magnitude of the serial 55 

dependence effect would remain invariant across a wide range of global temporal distributions. We 56 

formalized these hypotheses and compared the predictions of these computational models with the 57 

empirical results. By combining our behavioral experiments and model-based analyses, we sought to 58 

unravel the computational mechanisms underlying the influence of context on temporal perception.  59 

 60 

Results 61 

Serial dependence in time perception is attractive and non-linear 62 

The central tendency effect in temporal perception has been shown in many experimental contexts (4, 6–63 

9). In contrast, the serial dependence effect has not been well established in timing. This motivated us to 64 

begin this project by examining serial dependence in a widely employed temporal reproduction task, the 65 

“ready-set-go” task (6). Participants observed a pair of visual events that defined a target interval (“Ready” 66 

and “Set”) and then made a single button press (“Go”), attempting to produce an interval between the 67 

Set and Go signals that reproduced the target interval (Fig. 1a). The target durations were randomly 68 

sampled from a uniform distribution that ranged from 500 to 900ms.  69 

 70 
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 71 
Figure 1. Trial and task structure. (a) The stimulus sequence used in Experiment 1 (“ready-set-go” task). Two 72 
100-ms stimuli flashed in sequence, signifying first a "Ready" signal and then a "Set" signal; the target duration 73 
was the interval between the onset times of the "Ready" and "Set" signals. Participants were instructed to 74 
press the space bar to reproduce the temporal interval after the “Set” signal. Performance feedback was 75 
conveyed for 50 ms via the color of the fixation cross (green = correct; red = incorrect). (b) The stimulus 76 
sequence used in Experiments 2-4. We used a duration reproduction task including both go and no-Go trials. 77 
A ripple-shaped stimulus was presented for a fixed duration denoting the temporal interval. After a 300 ms 78 
interval, the fixation point became either a "+" sign or “x” sign, signaling either a “go” or “no-go” trial, 79 
respectively. On Go trials, participants reproduced the temporal interval by holding down a key. When the key 80 
was released, the fixation point turned to a grey circle signaling the end of the trial. In the no-Go trial, 81 
participants were asked to withhold any movement and fixate until the "x" switched to a grey circle after 82 
700ms.  83 
 84 

The reproduced durations exhibited robust regression towards the mean (Fig. 2a), replicating the central 85 

tendency effect seen in previous studies (10, 25, 27). Quantitatively, the slope of the reproduced duration 86 

to the target duration was significantly smaller than one (0.65 ± 0.20; t(11) = -6.08; p<0.001, Fig S1a). To 87 

examine serial dependence, we first calculated a “deviation” index, the difference between the 88 

reproduction of a target duration on a given trial and the individual’s mean reproduction to that target 89 

duration across all trials (see Fig. 2a). The serial dependence effect is calculated by the change in the 90 

deviation index as a function of the difference between the previous and the current target durations. 91 
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This method minimizes potential artifacts in the serial dependence function that may be induced by 92 

regression to the mean and reproduction biases (28, 29).  93 

 94 

 95 

 96 
Figure 2. Serial dependence in duration reproduction. Experiment 1: (a) Reproduced durations of a 97 
representative participant. Grey dots represent the reproduced duration of each trial. The blue circle 98 
represents the participant’s mean reproduced duration for each target duration. (b) Serial dependence is 99 
evidence in the non-linear relationship between the deviation index, the current reproduced duration minus 100 
the mean reproduced duration, as a function of the temporal difference between the previous target duration 101 
and the current target duration (positive values indicate previous target was longer). Filled dots denote 102 
individual participants. Empty circles denote the mean of all 12 participants. Red solid line represents the best-103 
fitted Derivative of Gaussian (DoG) model at the group level. (c) Half-height of the best-fitted DoG in 104 
Experiment 1. Error bars represent an estimate of the standard error obtained from jackknife resampling. (d) 105 
Instantaneous slope obtained from the fitted DoG curve for trials n-1, n-2, n-3, and n+1 trials. Experiment 2: 106 
(e) Instantaneous slope obtained from the fitted DoG curve with respect to Go and no-Go trials n-1, n-2, and 107 
n+1 (control condition). (f) Half-height of the best-fitted DoG for trials n-1 and n-2.  108 
 109 

We found that the deviation is biased towards the previous stimulus (Fig. 2b): When the target duration 110 

on trial n-1 was longer than the stimulus on trial n, the reproduced duration tended to be longer than 111 
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average, and vice-versa. This indicates that the reproduction on the current trial is attracted towards the 112 

stimulus duration (or reproduced duration) of the previous trial. Notably, the shape of serial dependence 113 

is non-linear: The attraction effect peaks when the current stimulus differs from the previous stimulus by 114 

approximately 100ms and then falls off when the difference grows larger.  115 

 116 

This non-linear function is well captured by a derivative of Gaussian (DoG) curve (13, 28). To quantify how 117 

previous stimuli influence the current perception in experiment 1, we fit a DoG to the function of the 118 

difference between the target duration in trial n and trial 1-back, 2-back, or 3-back, respectively. We used 119 

the instantaneous slope at zero to measure the sign of serial dependence (see Fig. 2b). Positive 120 

instantaneous slopes indicate that the current perception is attracted towards the previous stimulus 121 

duration; negative slopes indicate that the current perception is repelled from the previous stimulus 122 

duration. We found a positive slope when calculating serial dependency based on trial n-1 (0.092 ± 0.094, 123 

t(11) = 3.39, p=0.006; Fig. 2d), but not when the calculation was based on trial n-2 (0.009 ± 0.079, t(11) = 124 

0.39, p=0.70) or n-3 (0.028 ± 0.095, t(11) = 1.00, p=0.34). To better estimate the magnitude of the serial 125 

dependence effect in response to the previous stimuli, we fit a DoG at the group level. The DoG provided 126 

a good fit (Fig. 2b), outperforming the null-model (∆AICn = -46.3 ± 7.7) and linear-model (∆AICl = -18.6 ± 127 

4.6) for the trial n-1 function. The half-height of this function is 7.6 ± 0.6ms and the half-width is 95.8 ± 128 

10.1ms (Fig. 2c); thus, at its peak the serial dependence effect is about 8%. When analyzed at the group 129 

level, we also get a significant serial dependence effect from trial n-2 (2.4 ± 0.8 ms, z = 3.00, p=0.001), but 130 

not from trial n-3 (Fig. 2c), indicating there might be a weak attractive effect that is not evident in the 131 

instantaneous slopes calculated at the individual level. We return to this issue below. 132 

 133 

Serial dependence mainly originates from the temporal reproduction 134 

In Experiment 2, we asked whether the serial dependence effect originates from temporal perception or 135 

temporal reproduction. To test this, we included No-Go trials in which participants were instructed to not 136 

respond. Temporal reproductions following Go trials could reflect biases arising from processes associated 137 

only with perception, only with motor production, or both. In contrast, temporal reproductions following 138 

No-Go trials should only be influenced by a perceptual bias. Importantly, the Go/No-Go signal was only 139 

presented after the target duration had been presented, ensuring that participants encoded the target 140 

duration on both Go and No-Go trials (Fig. 1b). 141 

 142 
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In trials immediately following Go trials, we replicated the serial dependence effect observed in 143 

experiment 1 (instantaneous slope: 0.114 ± 0.042; Wilcoxon test: z = 2.03, p = 0.021; Fig. 2e) with a half-144 

height of 7.4 ± 0.9ms (Fig. 2f) and half-width of 111.0 ± 15.6ms (Fig S3a). In contrast, we did not find a 145 

serial dependence effect from the previous stimulus following a No-Go trial, (instantaneous slope: 0.006 146 

± 0.049; Wilcoxon test: z = 0.01, p = 0.97; Fig. 2e; Fig S3). This dissociation suggests that serial dependence 147 

in timing mainly arises from sequential effects associated with temporal reproduction, not temporal 148 

perception. Consistent with this notion, when we examined trial triplets composed of Go-NoGo-Go trials, 149 

we found a serial dependence effect on the second Go trial towards the first Go trial (rather than the 150 

intervening NoGo trial; instantaneous slope, 0.080 ± 0.034, Wilcoxon test: z = 2.25, p=0.012; Fig. 2e-f).  151 

 152 

Modeling central tendency and serial dependence 153 

Having established robust signatures of the central tendency and serial dependence effects, we now ask 154 

whether these two effects are generated by a unitary mechanism or reflect separate mechanisms that are 155 

shaped by global and local statistics respectively. To test this, we formalized our intuitions into a series of 156 

computational models.  157 

 158 

To explain the central tendency effect, we begin with a Bayesian-least-square model (6) that assumes the 159 

observer’s global temporal expectancy is static (i.e., global prior), with bias constrained only by the global 160 

distribution of temporal stimuli (Global-Only model, Fig 3a). The observer’s temporal estimation on a 161 

given trial is the Bayesian integration of the global prior with the actual target duration (corresponding to 162 

the likelihood in Bayesian theory). As such, the estimated duration on each trial is biased towards the 163 

global prior, giving rise to the central tendency effect (Fig. 4a). However, given that the Global-Only model 164 

uses a fixed prior, the observer’s estimate will not be influenced by the local context (e.g., recently 165 

experienced stimuli); that is, the basic Bayesian model cannot account for the serial dependence effect.  166 

 167 
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 168 

 169 
Figure 3. Schematics of different models. (a) In all of the models, the target duration (green) is represented 170 
with a normal distribution (likelihood) centered at the target duration with perceptual noise, and the global 171 
prior (blue) is the distribution of target stimuli. The posterior (yellow) is obtained by multiplying the global prior 172 
with likelihood. (b) In the Global-only and two global prior updating models (BU/MGU), the final estimate of 173 
the target duration is the mean of the posterior. The reproduced duration is a normal distribution centered on 174 
the target duration with motor noise. (c-d) In the BU and MGU models, after making the motor response, the 175 
observer updates the prior based on the reproduced duration. For the MGU (c), a scaled normal distribution 176 
centered at the reproduced duration was added to the old prior and the new prior was normalized. For the BU 177 
(d), the prior is updated with a Kalman filter. (e) For the Local-Only model, the likelihood is integrated with the 178 
local prior in a non-linear manner, with the weight on the local prior increasing when the likelihood and local 179 
prior are close and decreasing when they are far. (f) In the DP model, the observer is assumed to hold two 180 
priors, one global and one local. After the posterior is computed based on the global prior and likelihood, the 181 
posterior is further integrated with the local prior to generate a second posterior (posterior-2). (g) In the second 182 
step of the DP and Local-Only models, the new local prior is fully determined by the motor response of the 183 
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current trial. As with the other three models, the reproduced duration comes from a normal distribution 184 
centered at the mean of the posterior with motor noise.  185 
 186 

 187 
Figure 4. Model simulations. Predicted central tendency (a) and serial dependence (b) effects for the five 188 
models. (c) Predicted relationship between central tendency and serial dependence for the models. Each line 189 
is the prediction of one model and each dot is the prediction with a specific learning rate parameter. The half-190 
height increases with the learning rate. The horizontal purple line indicates the mean of the empirical data and 191 
the vertical purple bar indicates SE. (d) Illustration of how the MGU model generates a non-linear serial 192 
dependence. When the current and previous durations are close (left), the previous duration can influence the 193 
shape of the prior in the range around the current duration and make the current posterior shift more relative 194 
to the likelihood. In this region, the bias of the posterior increases with the distance between two successive 195 
stimuli. However, when the current and previous duration are distinct (Right), the previous duration cannot 196 
influence the shape of the prior around the likelihood and thus, the attraction effect decreases. 197 
 198 

We next considered a unitary mechanism Bayesian Interference model that assumes that the observer 199 

integrates the likelihood and a local prior based solely on the local context (Local-Only model, Fig 3g). The 200 
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weights of the local prior and likelihood are determined by the difference between distributions 201 

associated with the current sample and recently experienced samples. Specifically, the observer will rely 202 

less on the local prior when it is far away from the likelihood, and more on the local prior when it is close 203 

to the likelihood. The Local-Only model can produce a non-linear serial dependence effect (Fig. 3c right). 204 

However, this model produces a small central tendency effect (Fig. 4a), inconsistent with the behavioral 205 

results (Fig. 4c). Thus, a local prior by itself is not sufficient to explain adaptative behavior in the current 206 

experiments, indicating that the central tendency effect is not a by-product of serial dependence. 207 

 208 

We then considered models capable of simultaneously generating serial dependence and central 209 

tendency effects. First, we considered a unitary mechanism model in which the global prior is updated 210 

across trials (Bayes-Updating model). Given that serial dependence is driven by temporal reproduction 211 

(Exp 2), we assume that, following Bayes rule, the prior is updated by integrating a Gaussian centered at 212 

the reproduced duration. Since the priors and posteriors are both Gaussians, the Bayesian integration can 213 

be simplified into a linear weighted sum of the means (i.e., a Kalman filter, fig, 3d). This model is 214 

mathematically similar to what has been previously described as an internal reference model (10, 11). 215 

While this model predicts a central tendency effect and an attractive serial dependence effect. the 216 

predicted serial dependence function is near-linear (Fig. 5b), inconsistent with the empirical results of 217 

Exps 1-2. 218 

 219 

To get a non-linear serial dependence function, the prior can be updated in a non-Bayesian manner. We 220 

assume that the brain creates the prior distribution by summing multiple Gaussian distributions with 221 

different weights (Mixed Gaussian Updating model, MGU). When perceiving a new duration, the prior is 222 

updated by adding a Gaussian centered at the reproduced duration to the old prior, followed by 223 

normalization (Fig. 3c). This kind of computation has previously been suggested to account for how 224 

Purkinje cells in the cerebellum adapt to the prior for representing temporal information (26). Since the 225 

global prior is updated locally, the attraction effect from trial n-1 decreases when the duration of the 226 

current stimulus is far from the duration of the n-1 reproduction (Fig. 5c). Thus, this model predicts a 227 

nonlinear serial dependence function and serial dependence, in accord with the empirical results in 228 

experiment 1-2 (Fig. 4b).  229 

 230 

In contrast to the unitary mechanism models describe above, an alternative way to produce both serial 231 

dependence and central tendency effect is to consider a hybrid model in which the two biases arise from 232 
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two distinct processes (Dual Priors model, DP). Specifically, the DP model assumes that the current 233 

stimulus (likelihood) is integrated with a static global prior (fig. 3a), generating serial dependence. The 234 

posterior is then integrated with a local prior (fig. 3f), inducing non-linear serial dependence. As such, the 235 

Dual Priors model can predict both the central tendency and non-linear serial dependence effects 236 

observed in the data. Note, those two effects are generated by two mechanisms that separately adapt to 237 

the global and local temporal context. 238 

 239 

In sum, our computational analyses point to two candidate models that can account for the observed 240 

central tendency and serial dependence effects. These two models diverge in that the MGU model 241 

postulates that central tendency and serial dependence effects arise from a unitary mechanism (non-242 

linear updates to a global prior), whereas the DP model postulates that these two effects arise from 243 

separate mechanisms (a fixed global prior paired with updates to a local prior). We sought to arbitrate 244 

between the MGU and the DP models in the following sections.  245 

 246 

Contextual effect on serial dependence  247 

A key difference between the MGU and DP models is that the latter assumes the local prior is mainly 248 

determined by the duration on trial n-1; as such, a serial dependence effect from the n-2 trial will be very 249 

weak. In contrast, the MGU predicts a robust serial dependence effect from trial n-2 given that all (recent) 250 

observations are integrated into the prior. In experiment 1, the group level analysis indicated there was a 251 

positive serial dependence effect from the n-2 trial. However, this effect was not observed in the 252 

individual analyses of the instantaneous slope values.  253 

 254 

To address this discrepancy, we sought to enhance the serial dependence effect and examine whether it 255 

will be manifest beyond trial n-1. The MGU and DP models both predict that extending the range of target 256 

durations in the test set will enhance the trial n-1 serial dependence effect (Fig 5). By the MGU, the 257 

observer constructs a concentrated prior when the range is limited (Fig 5d right). As such, the prior is 258 

resistant to updating, yielding a weak serial dependence effect. When the range is expanded, the prior 259 

becomes more distributed (Fig 5d left), resulting in a more pronounced local change after each update 260 

and thus a stronger serial dependence effect (Fig 5b-c). The DP also predicts this pattern but for a different 261 

reason. Perceptual noise scales with duration (9), a form of Weber's law. Because of this, the likelihood 262 

becomes relatively flat when the range is increased (Fig 5e). This will result in a greater influence of the 263 

previous production and a strengthening of the serial dependence effect (Fig. Sf-g). Importantly, as noted 264 
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above, the MGU and DP models generate very different predictions regarding concerning a trial n-2 serial 265 

dependence effect (Fig 6a): The MGU predicts that the serial dependence effect should be observed from 266 

trial n-2, with a half-height slightly attenuated relative to trial n-1, whereas the DP predicts almost no 267 

serial dependence effect from trial n-2.  268 
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Figure 5. The range of the target duration distribution influences the serial dependence effect. (a) Distributions 271 
of target durations in different contexts (b-c) Simulations of the MGU model predict that the half-height of the 272 
serial dependence effect will increase as the range of target duration is increased. (d) In the MGU model, 273 
changing the range of the target durations will impact the width of the prior and therefore the serial 274 
dependence effect. (e) In the PD model, since the scalar property in time perception such that the ratio 275 
between the SD and mean is a constant, the likelihood will become flatter as the target duration increases. (f-276 
g) Simulations of the DP model also predict that the half-height of serial dependence increases substantially as 277 
the range of target duration is increased. (h) Serial dependence effects for trial n-1 in the medium (left) and 278 
long condition (right). Filled dots represent individual participants. Blank circles represent the average of all 279 
participants. The turquoise and blue lines represent the best-fitted DoG in the medium and long conditions, 280 
respectively. The red and green dash lines represent the best-fitted DoG in Experiments 1 and 2, respectively. 281 
(i) Half-height of the best-fitted DoG for serial dependence effect from trial n-1 in Experiments 1, 2, and 3 282 
(medium and long conditions). Each filled dot represents an estimate from jackknife resampling. Error bars 283 
represent standard error. 284 

 285 

 286 

Given the predictions of the two models, we extended the range of the target durations in experiment 3. 287 

We applied two test sets, one ranging from 520-1260ms (Medium range) and the other from 560-1860ms 288 

(Large range, Fig. 5a). We compared the results with those obtained in Experiment 1 in which the target 289 

durations ranged from 520-880ms (Short range). Extending the range of target duration successfully 290 

enhanced the serial dependence effect from trial n-1. The best-fitted DoG of the medium condition 291 

(∆AICn= -27.5 ± 4.2; ∆AICl = -10.8 ± 2.2) and long condition (∆AICn = -20.7 ± 4.4; ∆AICl = -10.0 ± 2.1) had a 292 

higher peak and was broader than that for the short condition (Fig. 5h). Correspondingly, the half-height 293 

increased as the distribution became wider (Fig. 5i; medium: 11.8 ± 0.9 ms; long: 22.6 ± 2.0 ms; Zs > 4.9, 294 

ps < 0.001). Similarly, the half-widths also increased as the distribution became wider (Zs > 10.5, ps < 295 

0.001), indicating an influence from more distant productions on the previous trial when the test set range 296 

increased.  297 

 298 

The key question in Experiment 3 centers on the trial n-2 data: Will the increase in the magnitude of the 299 

serial dependence effect from trial n-1 be accompanied by a stronger serial dependence effect from non-300 

adjacent trials? In the analysis of the individual functions, there was a significant positive instantaneous 301 

slope for the trial n-2 data in both the median and long conditions (Fig 6b). Trial n-3 also showed a 302 
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tendency for a positive bias although this did not reach significance. Moreover, fitting the DoG at the 303 

group level showed a significant positive half-height for the serial dependence function from trial n-2 (Fig 304 

6c). Thus, the results are consistent with the prediction of the MGU model and fail to support the DP 305 

model (Fig 6a). Moreover, the MGU is consistent with the central tendency effect in all conditions (short, 306 

medium, long), further supporting the idea that the process that produces the serial dependence effect 307 

uses local information to update the prior (Fig 5g). 308 

 309 

 310 

 311 
Figure 6. The serial dependence effect becomes stronger when the range of the test distribution increases. (a) 312 
Simulation of the half-height with the MGU model (left) and the DP model(right). The upper two panels depict 313 
simulations for the long-range condition and the lower two panels depict simulations for the medium range 314 
condition. Simulations of the MGU model can produce robust serial dependence effects from trial n-2, whereas 315 
the DP model fails to predict this effect. (b) Instantaneous slope of the DoG-fitting curve for trials n-1, n-2, and 316 
n-3, and n+1 (control condition) in the medium and long conditions. The p-values are with respect to difference 317 
from zero. (c) Half-height of the best-fitted DoG for the n-1 and n-2 trials in the medium (left) and long (right) 318 
conditions.  319 
 320 

The variance of prior increases serial dependence 321 

The MGU and DP models also make differential predictions when the variance of the target distribution 322 

is manipulated (Fig 7a). In Experiment 4, we set the mean of the target set distribution to 900 ms (the 323 

medium condition of Experiment 3). In one condition, we created a set with low variance (720-1080ms, 324 

short-900) compared to that used in experiment 3 where the variance was larger (540-1260ms). In the 325 

second condition, we used a bimodal distribution to increase variance. The GMU predicts that the serial 326 

dependence effect will be enhanced as the variance of the target distribution is increased. The logic here 327 

is similar to that described above in terms of the range of the distribution: Because a low variance test 328 
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set, by definition, is more concentrated, the effect of trial-by-trial updating of the prior will be smaller 329 

relative to when the variance is high. In contrast, the DP predicts that the variance of the test set will have 330 

little effect on serial dependence (Fig 7b). 331 

 332 

 333 

 334 
Figure 7. Serial dependence effect becomes stronger when the variance of the test distribution increases. (a) 335 
Illustration of the distributions of target durations in experiment 4. The short-900 condition (purple) has the 336 
same mean as the medium condition (turquoise). The bimodal (orange) has the same range as the medium 337 
condition but has larger variability. (b-c) Predicted half-heights of the DoGs for the different conditions by the 338 
MGU and the DP models. (d-e) Serial dependence effect for trial n-1 of the short-900 condition (d) and bimodal 339 
condition (e). Note the scale for the x-axis is different in d and e (and thus, the function for the medium 340 
condition looks different). Each filled dot represents a participant. The open circles indicate the average across 341 
participants. The purple, orange, and turquoise lines represent the best-fitted DoG for the short-900, the 342 
bimodal-medium, and the medium condition, respectively. Each filled dot represents one participant. Error 343 
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bars represent standard error. (f) Half-height of the best-fitted DoG for the trial n-1 data in Experiments 1, 2, 344 
and 4. Each filled dot represents an estimate from jackknife resampling. Error bars represent standard error. 345 
 346 

Consistent with the prediction of the MGU, the serial dependence effect was modulated by the variance 347 

of the test set. For the trial n-1 data, the best-fitted DoG in the bimodal condition (∆AICn = -78.6 ± 5.6; 348 

∆AICl = -18.3 ± 3.6) yielded the highest and broadest serial dependence function of the three conditions 349 

(fig. 5e); the short-900 condition (short-900: ∆AICn = -48.3 ± 7.8) showed the lowest and narrowest 350 

function (fig. 5d). Statistically, the half-heights of the functions increased as the variance of the prior 351 

increased (short-900: 8.7 ± 0.6 ms; medium: 11.8 ± 0.9 ms; bimodal: 18.7 ± 0.8ms, Zs>4.2, ps<0.001). In 352 

the analysis of the individual functions, the serial dependence effect was found from both trial n-1 and 353 

trial n-2 in the bimodal condition, similar to what was found in the medium condition. In the short-900 354 

serial dependence effect was only significant from trial n-1 (Fig S4). In sum, the results provide additional 355 

evidence that serial dependence is enhanced in higher variance test sets.  356 

 357 

Taken together, the results from Experiments 3 and 4 are consistent with the predictions of the MGU 358 

model and at odds with the predictions of the DP model. Manipulations of the distributional properties 359 

of the test set indicate that a unitary process gives rise to both the central tendency and serial dependence 360 

effects.  361 

 362 

Discussion 363 

The internal representation of duration is context dependent. Previous work has identified two sources 364 

of contextual bias, a central tendency bias in which the temporal representation is attracted towards the 365 

mean of a global prior, and a serial dependence effect in which recently experienced durations serve as 366 

attractors on the current representation of a stimulus duration (6, 15, 20, 23, 27). In the current study, we 367 

asked whether the central tendency and serial dependence effects arise from a common mechanism or 368 

separate mechanisms.  369 

 370 

We performed a series of temporal reproduction tasks in which we manipulated the distribution of the 371 

target duration. We observed central tendency and serial dependence effects in all of the experiments. 372 

Although many studies have showed central tendency in duration perception(6, 20), the presence of a 373 

short-term contextual effect, serial dependency, is less clear. Moreover, the designs and analyses used in 374 

previous work has precluded the analysis of the whole serial dependence function(11, 23). In the current 375 
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study, we consistently observed a non-linear serial dependence effect in temporal reproduction. By using 376 

a Go/No-Go task(28), we found that the effect was dependent on movement reproduction: There was an 377 

attraction effect from the previous target duration after a Go trial, but no observable effect after a No-Go 378 

trial. 379 

 380 

To determine if long- and short-term contextual effects arise from a single or distinct Bayesian processes, 381 

we compared five computational models. We first examined two unitary models, one with a static global 382 

prior established during the initial phase of the experiment(6), and one with a local prior dictated by 383 

recent experience. Each unitary models could not account for both the observed central tendency and 384 

serial dependence effects. To generate both effects, we considered three more complex models. In one 385 

of these, we assumed that there were two separate mechanisms, one based on a global prior and one 386 

based on a local prior. For the other two models, a unitary mechanism included a process by which the 387 

global prior was continuously updated by recent experience. We rejected the unitary model in which the 388 

prior is updated in a Bayesian optimal manner since it generated a near-linear serial dependence function. 389 

In contrast, simulations of the MGU unitary and DP models yield central tendency and non-linear serial 390 

dependence effects.   391 

 392 

To further explore the viability of the MGU and DP models, we considered predictions of the two models 393 

when we manipulated either the range or variance of the test stimuli. While both models predict that the 394 

amplitude of the serial dependence effect from the preceding trial will increase with the range of the test 395 

stimuli, only the MGU model predicts that this manipulation will also enhance the serial dependence 396 

effect from earlier trials (e.g., n-2). Moreover, the MGU model predicts that the serial dependence effect 397 

will be enhanced when the variance of the test set is increased, even when the mean duration is fixed, 398 

whereas the DP model predicts that the variance of the prior should have negligible influence on serial 399 

dependence. The results showed that, when extending the range of the test set, the serial dependence 400 

effect was enhanced and evident in terms of the context established from the n-2 as well as n-1 stimulus. 401 

Similarly, the serial dependence effect was enhanced when increasing the variance of the test set. 402 

Together, these results provide strong support for the MGU model, indicating that the global bias and 403 

serial dependence effects arise from a unitary mechanism in which a single global prior is continuously 404 

updated after each trial by the reproduced stimulus duration.  405 

 406 
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The nonlinearity of the serial dependence function sheds light on how the prior is updated based on recent 407 

experience. Updating could follow a simple Bayesian optimal integration rule with the prior represented 408 

as a Gaussian. While this model generates a serial dependence effect, the shape of the function is 409 

approximately linear (BU, see Fig 4b). To capture a non-linear serial dependence function, we assumed 410 

that the prior is updated by increasing the weight of the Gaussian centered at the recently reproduced 411 

duration. One benefit of representing the prior with a Gaussian mixture model is that it provides a way to 412 

represent the effects of any test set, regardless of its distributional shape. Indeed, previous studies have 413 

also shown that a mixture of Gaussians provides a good fit of the internal prior in duration perception 414 

experiments (26, 30). Here we show that an updating rule based on this assumption can account for the 415 

non-linear serial dependence function as well as how the function will shift when the variance of the test 416 

set is manipulated.  417 

 418 

As noted above, the serial dependence effect was contingent on the participant having produced a 419 

response; it was markedly attenuated after No-Go trials. In theory, it is possible that this local effect is 420 

reflective of some sort of motor memory, where the current motor reproduction is directly biased by the 421 

previous motor reproduction, with the perceived duration unbiased. However, we think it more likely that 422 

the serial dependence effect is mediated by perception: A prior of temporal expectation is constructed 423 

from the reproduced duration, and this prior biases the perception of subsequent target stimuli which in 424 

turn, will be reflected in the next reproduced duration. In support of this idea, several studies have shown 425 

that making a movement of a variable duration influences performance on a subsequent duration 426 

comparison task in which no motor reproduction was made (12, 31, 32).  427 

 428 

We note that serial dependence effects have been observed in previous visual perception studies of 429 

orientation and position that do not involve motor responses (28, 29, 33). Thus, we do not claim that the 430 

absence of a serial dependence effect in the No-Go condition of Exp 2 should be taken to mean that 431 

movement is a necessary prerequisite. As with all null results, caution is warranted. The design used in 432 

Exp 2 may have been insensitive to capture the contribution of a purely perceptual component to the 433 

prior. Indeed, there is evidence from duration comparison tasks without reproduction of an attractive 434 

sequential effect (11, 34). Follow-up experiments are needed to understand the factors that determine 435 

the weight given to perception and production in forming the prior.  436 

 437 
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We recognize that, in evaluating the five models, we assumed that a global prior was established during 438 

the initial phase of the experiment. Establishing a global prior obviously requires some integration of the 439 

local context as the participant becomes familiar with the stimulus set. We set our initial “training” phase 440 

based on previous studies which have shown that participants are able to generate a relatively accurate 441 

global prior of the temporal context after about 100 trials (17). One open question is how the prior 442 

updating rate changes as a function of training. In our dynamic models, we assumed that the rate 443 

remained constant over the course of the experiment. However, it is possible that the rate of updating 444 

weakens as the prior becomes more established. Correspondingly, the serial dependence effect might 445 

become weaker over time. However, this temporal expectation system might be a rigid system that 446 

recalibrates to the environment with an invariant learning rate. This characterization conforms with a 447 

conceptualization of the operation of the cerebellum in sensorimotor adaptation, and the same principles 448 

might apply to duration representation, another function associated with the cerebellum (35, 36). The 449 

data set in the current experiments are insufficient to examine the dynamics of updating, and we see this 450 

as an important issue to be addressed in future studies. 451 

 452 

In summary, the current study provides new insights into how context influences our sense of duration. 453 

The perception of the duration of a stimulus is sensitive to both the global distribution of the stimulus set 454 

as well as recent experience. Importantly, by examining the central tendency and serial dependence 455 

effects in a joint manner, we observed that these two forms of bias are best explained by a unitary 456 

mechanism in which a global prior is updated in an iterative manner based on each observation. Given 457 

that central tendency and serial dependence effects are ubiquitous in perception tasks (6, 14, 15, 19, 27, 458 

33), the common Bayesian framework developed here may provide a general account of how perceptual 459 

systems adapt to environmental statistics.  460 

 461 

 462 

Methods 463 

Participants 464 

A total of sixty-four students at Peking University were recruited for the four experiments. All participants 465 

were right-handed with normal or corrected-to-normal vision. In Experiment 1, thirteen participants (8 466 

females, mean age = 21.1, SD ± 1.0) were recruited for the two 1-hour sessions. One participant did not 467 

return for the second session. In Experiment 2, twelve participants (8 females, mean age = 24.1, SD ± 4.2) 468 

completed two 1.5-hour sessions. In Experiment 3 and 4, 52 participants (15 females, mean age = 21.1, 469 
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SD ± 2.1, 13 for each of the four conditions) completed a 1-hour experiment. Participants received $10/h 470 

as compensation. All experimental protocols were approved by the institutional review board of the 471 

School of Psychological and Cognitive Sciences, Peking University, and carried out according to the 472 

approved guidelines. Written informed consent was obtained from all participants.  473 

 474 

Testing was conducted in a dark room and the stimuli were presented on a 27-inch LCD monitor 475 

(resolution of 1,024 × 768), viewed from a distance of 65 cm. The computer used a Windows 8 operating 476 

system with a refresh rate of 100 Hz. The experiment was written in MATLAB (Mathworks, Natick, MA; 477 

Psychophysics Toolbox Brainard, 1997;(37)).  478 

 479 

Procedure and design  480 

Experiment 1 481 

We used a “ready-set-go” time-reproduction task(6) (Fig. 1a) to measure global (central tendency effect) 482 

and local (serial dependence effect) biases. Each trial started with the presentation of a gray fixation point 483 

(0.5 degrees diameter) at the center of the screen. After a random interval ranging from 0.7-1.2 s (drawn 484 

from an exponential distribution), two 100-ms stimuli flashed in sequence, with the first serving as the 485 

"Ready" signal and the second serving as the "Set" signal. The visual stimulus was either a grey ripple-486 

shaped arc (Exp 1) or circle (Exps 2-4) (see Fig 1) with a radius of around 12 degrees.  487 

 488 

The interval between the onset times of the "Ready" and "Set" signals defined the target interval. 489 

Participants were instructed to press the space bar (“Go”) to reproduce the target interval, with the onset 490 

of the reproduction interval defined by the “Set” stimulus. After the keypress, performance feedback was 491 

provided for 50 ms via a change in color of the fixation point: Green indicated that the reproduced 492 

duration was within an acceptable window and red indicated that the reproduced duration fell outside 493 

this window. The criterion window was continuously adapted based on the participant's performance 494 

such that green and red appeared with roughly equal probability. The feedback was provided to 495 

encourage the participant to pay attention to the task. It was relatively uninformative (e.g., did not provide 496 

signed information) because we did not want participants to correct their timing based on the feedback. 497 

 498 

Each participant completed two sessions, with each session composed of 10 blocks of 200 trials (2000 499 

trials total). A one-minute break was provided every two blocks. The stimulus set consisted of ten target 500 
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durations, ranging from 520 to 880 ms (step size of 40 ms). Target duration was randomized within a block 501 

of 100 trials with the constraint that each duration was presented 10 times.  502 

 503 

Experiment 2 504 

The goal of Experiment 2 was to evaluate whether the source of the serial dependence effect is 505 

perceptual, motoric, or a combination of both. To test this, we included Go and No-Go trials in a duration 506 

reproduction task.  507 

 508 

After a random interval ranging from 0.7-1.2s (following an exponential distribution), a ripple-shaped 509 

stimulus was presented for the target duration. The spatial distribution of brightness was constant, but 510 

the actual shape varied across trials to avoid repetition suppression effects (38–41). Crucially, 300 ms after 511 

the offset of the target stimulus, the fixation point changed to either a "+" or “x”, with these symbols 512 

indicating that the current trial was a Go or No-Go trial, respectively. On Go trials, participants were 513 

instructed to depress the space bar for a duration that matched the target duration. The fixation point 514 

changed back to a grey circle right after the release of the keypress. On No-Go trials, participants were 515 

asked to fixate without movement until the "x" disappeared. On these trials, the grey circle reappeared 516 

after 700ms, indicating the start of a new trial. Note that no time constraints were imposed on Go trials; 517 

thus, we anticipated there would be few errors of omission (Go trials) or commission (No-Go trials). 518 

However, we assumed that the target duration would be similarly encoded on all trials since the “+” or 519 

“x” did not appear until after the target stimulus. 520 

 521 

There were five target durations (540, 620, 700, 780, 860 ms) with each target duration repeated on 360 522 

trials. For each target duration, 60% were Go trials and 40% were No-Go trials. Target duration and 523 

response requirement were randomized within blocks of 180 trials. Each session consisted of five blocks 524 

(1800 total trials across the two sessions), with a one-minute break between every two blocks. 525 

 526 

Experiment 3 527 

The goal of Experiment 3 was to assess how the serial dependence effect is impacted by the range of the 528 

stimulus set. To test this, we employed two new stimulus sets: A medium condition (540, 720, 900, 1080, 529 

1260ms) and a long condition (560, 880, 1200, 1520, 1840ms). We compared performance with these sets 530 

to the data from Experiments 1-2 (where the range was shorter, 540-860ms). The procedure in 531 

Experiment 3 was identical to that of Experiment 2, except that only Go trials were included. There were 532 
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five blocks of 150/120 trials (medium/long condition), resulting in a total of 750 trials for the medium 533 

condition and 600 trials for the long condition. The difference was imposed to keep all sessions within one 534 

hour. The target duration was selected at random on each trial with the constraint that each condition 535 

occurred an equal number of times within each block.  536 

 537 

Experiment 4 538 

The goal of Experiment 4 was to examine how the serial dependence effect is impacted by the variability 539 

of the stimulus set. To test this, we employed two new stimulus sets. For the short-900 condition, the test 540 

set ranged from 720-1080 ms (steps of 40 ms, mean = 900 ms). This group has the same mean as the 541 

medium condition in Experiment 3 but with a shorter range (equal to that used in Exps 1 and 2). In this 542 

way, the variance of the test set is smaller than that of the medium condition. For the bimodal-medium 543 

condition, the test values were the same as that used in the medium condition of Experiment 3, but the 544 

extreme values (540 ms and 1160 ms) were presented three times as often as the other three test 545 

durations (670, 900, 1030ms). Short-900 condition included 10 blocks of 200 trials and the bimodal 546 

condition includes 10 blocks of 135 trials. 547 

 548 

Data analysis.  549 

The logic of these experiments is predicated on the assumption that participants are familiar with the 550 

temporal context. Given this, the first block of each experiment (approx. 7-10 minutes of data collection) 551 

was treated as the familiarization phase and not included in the analysis. In addition, reproduced 552 

durations shorter than 0.3 s or longer than 1.5s (2.5s for Experiments 3-4) were considered outliers and 553 

excluded from the analyses (less than 0.1 % of trials).  554 

 555 

The central tendency bias, or regression to the mean was quantified as the regression coefficient between 556 

the reproduced durations and the target durations. To analyze the serial dependence effect, we used a 557 

“deviation” index. For each individual, the average reproduced duration was calculated for each target 558 

duration. The deviation was defined as the reproduced duration for a given trial minus the mean 559 

reproduced duration of all trials with that target duration (28, 29). Positive values indicate that the 560 

reproduced duration for the present trial was longer than the average reproduction for that target and 561 

negative values indicate that the reproduced duration was less than the average reproduction.  562 

 563 
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To quantify the magnitude of the serial dependence effect, a simplified DoG curve was fit to describe the 564 

deviation index as a function of the difference between the current target duration and reference 565 

duration, where the reference could be the target duration of the previous trial (n-1), two trials back (n-566 

2), etc., as well as following trial (n+1, serving as a baseline): 567 

𝑦 = 𝑎𝑏𝑐𝑥𝑒!(#$)! ,	568 
where y is the deviation, x is the relative target duration of the previous trial,	𝑎 is half the peak-to-trough 569 

amplitude of the derivative-of-Gaussian, 𝑏 scales the width of the Gaussian derivative, and 𝑐 is a constant, 570 

√2/𝑒!&.(, which scales the curve to make the 𝑎 parameter equal to the peak amplitude. As a measure of 571 

serial dependence, we report half the peak-to-trough amplitude (half-height) and half the width of the 572 

best-fitted derivative of a Gaussian. A positive value for the 𝑎  parameter indicates a perceptual bias 573 

toward the target durations of the previous trials. A negative value for the 𝑎  parameter indicates a 574 

perceptual bias away from the target durations of the previous trials.  575 

 576 

We fit the Gaussian derivative at the group and individual level using constrained nonlinear minimization 577 

of the residual sum of squares. Jackknife resampling was applied to estimate the variation of the 578 

parameters for the group-level fit, where each participant was systematically left out from the pooled 579 

sample. The standard deviation of those estimates represented the standard error of the parameter at 580 

the group level. The half-height and half-width of the best-fitted DoG were compared between groups 581 

with a t-test, where the t-value was computed with the mean and the variance of the parameters 582 

estimated from the jackknife resampling procedure. Bonferroni correction was applied for multiple 583 

comparisons. To test the goodness-of-fit of our model, we computed the ∆AIC for the DoG model 584 

compared with either a non-model (y = 0, ∆AICn) or a linear model (y = 𝑘𝑥, ∆AICl). A negative ∆AIC indicates 585 

DoG performed better than the alternative models. 586 

 587 

To determine the extent of serial dependency, we fitted individual serial dependence functions in which 588 

the reference could be the target duration of the previous trial (n-1), two trials back (n-2), etc. We also 589 

tested the serial dependence function for the n+1 trial. Given that this the reference stimulus has not 590 

been experienced, there should be no serial dependence effect here, providing a test of whether the 591 

deviation measure is a valid index to analyze serial dependence. Since individual serial dependence 592 

functions do not always show a strong nonlinearity,	𝑎 parameter (half-height) can become unreasonably 593 

large. Thus, we opted to use the instantaneous slope of the DoG at the inflection point (𝑎𝑏𝑐) when 594 
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estimating the presence of a serial dependence effect at the individual level. Note that this index measures 595 

the sign of the serial dependence independent of whether or not the function is linear.  596 

 597 

In Experiment 2, the Go trials were sorted into two groups based on whether the reproduced interval on 598 

that trial was preceded by a Go trial or a No-Go trial. We calculated the average reproduced durations 599 

and the deviation using the same protocol as Experiment 1 and then fit DoG functions separately for the 600 

Go/Go trial sequence and the No-Go/Go trial sequence to measure the serial dependence effect from trial 601 

n-1. For each function, we calculated the instantaneous slope of the DoG at the inflection point. Note that 602 

if the serial dependence effect is dependent on a motor response, there should be no serial dependence 603 

effect when the preceding trial was a No-Go trial. For Go trials preceded by a No-Go trial, we also analyzed 604 

the serial dependence effect from n-2 Go trials. Group-level DoG fitting was performed on n-1 and n-2 Go 605 

trials separately to quantify the amplitude of serial dependence. 606 

 607 

One-sample t-tests and paired t-tests were applied at the group level for comparisons. Normality and 608 

equal variance assumptions were assessed prior to the t-tests. The Wilcoxon Sign-rank test was applied 609 

when the normality assumption was violated. Two-tailed P values are reported for all statistic tests, and 610 

the significance level was set as p < 0.05. All analyses were performed with MATLAB 2018b (The 611 

MathWorks, Natick, MA).  612 

 613 

Models 614 

To account for central tendency and serial dependence effects, we implemented five Bayesian models: 615 

Two single process models (Global-only, Local-Only), a model with both a static global prior and and local 616 

prior (Dual-prior), and two unitary models that capture how a global prior is dynamically updated by 617 

recent experience (Bayes-Updating & Mix-Gaussian-Updating). 618 

 619 

Global-Only model 620 

This model is based on a Bayesian observer model that uses a Bayes-Least-square as the mapping rule (6). 621 

We assume that the observer builds up an internal prior, 𝜋(𝑡)) based on the target durations (𝑡)) observed 622 

during an initial exposure phase, and subsequent judgments are made by reference to this static prior. 623 

The likelihood function describes the probability of the perceived duration (𝑡*) given 𝑡). 624 

p3t+5t,6 = 	N3t+5t,, v+6                                                                       [1] 625 
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where 𝑁(𝑥|𝑚, 𝑠) represents a normal distribution with mean m and standard deviation s, and 𝑣*  scales 626 

the perception noise. The posterior, π(𝑡)|𝑡*), is the product of the prior multiplied by the likelihood 627 

function and appropriately normalized. 628 

π3t,5t+6 =
+-t+.t,/	1(2")

∫+-t+.t,/	1(2")42"	
                                                         [2] 629 

The loss function, 𝑙(𝑡5 , 𝑡)), was used to convert the posterior into a single estimate, 𝑡5, the mean of the 630 

posterior in the present situation. 631 

l(t6, t,) = (t6 −	t,)7                                                               [3] 632 

t6 = argmin
2#

H∫ l(t6, t,) ∗ π3t,5t+6	dt,	L                                                         [4] 633 

The Bayesian observer makes a response based on 𝑡5 ∶ 634 

p(t8|t6) = 	N(t8	|	t6, v9)                                                               [5] 635 

where 𝑡:  is the reproduced duration, and 𝑣; scales the motor noise. Previous studies (6, 9) have shown 636 

that scalar forms of perceptual and motor noise provide a better fit of the behavior compared to when 𝑣* 637 

and 𝑣;  are treated as constants. Thus, we set	𝑣*  as 𝑛* ∗ 𝑡) , and 𝑣; = 𝑛; ∗ 𝑡5 , where 𝑛*  and 𝑛;  are 638 

constants.  639 

 640 

For this baseline, Global-only model, we simulated the results under the assumption that the prior was 641 

established based on a data set that would be experienced during the first 7-10 minutes of the 642 

experiments, and then remained fixed for the duration of the experiment. We assumed that participants 643 

learn the true distribution of target durations as the prior:  644 

𝜋(𝑡𝑠) = 𝑈(𝑡𝑠, [500	𝑚𝑠, 900	𝑚𝑠])                                                         [6] 645 

where 𝑈(𝑥, [𝑦, 𝑧]) represents a uniform distribution ranging from	𝑦	to 𝑧.  646 

 647 

Local-Only Model 648 

To capture the serial dependence effect, we adapted a Bayesian integration model from a previous study 649 

that examined serial dependence in magnitude estimation (22). In the current context, this model 650 

assumes that the observer integrates the previous response (𝑡: ) with the current stimulus (𝑡) ) when 651 

estimating the duration of the current stimulus:  652 

𝑡5,> = (1 −𝑊>!?)𝑡),> +𝑊>!?𝑡:,>!?                                                        [7] 653 
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where	𝑡5,>  and 𝑡),>  indicate the 𝑡5 and 𝑡)  of trial i, and 𝑡:,>!? is the reproduced duration of trial i-1. 𝑊>!? is 654 

the weight the observer assigns to the trial n-1 response when estimating the current duration. Following 655 

Bayes rule to integrate the two samples dictating the current percept, the observer specifies 𝑊>!? as 656 

𝑊>!? =
?/A$%&

!

?/A$
!B?/A$%&

! = A$
!

A$
!BA$%&

!                                                          [8] 657 

where 𝜎 is the variance of the estimate. The weight is influenced by the distance between the two stimuli, 658 

𝑊>!? =
A$
!

A$
!BA$%&

! BCD',$!D',$%&E
!                                                         [9] 659 

The variance is assumed to follow a power law. 660 

𝜎 = 𝐾𝑡)F                                                                              [10] 661 

Assuming that time perception follows a scalar rule, 𝛼 = 1. 𝐾 is a free parameter regulating the behavior 662 

of the model. 663 

 664 

Dual Prior model 665 

We combined the Local-Only and Global-Only models to create a Dual Prior model. It contained two 666 

Bayesian processes. For the first integration, the observer integrates the current stimulus (𝑡)) with the 667 

prior 𝜋(𝑡𝑠) to get an estimation	𝑡5G, following Global-Only model (Eq [4]-[7]). The second integration 668 

estimates 𝑡5,>  based on 𝑡:,>!?  , 	𝑡5,>G	and	𝑡5,>!?G	following the Local-Only model. The formulas [11] and [13] 669 

are rewritten as 670 

𝑡5,> = 	(1 −𝑊>!?)𝑡5,>
G +𝑊>!?𝑡:,>!?                                            [11] 671 

𝑊>!? =
A$
!

A$
!BA$%&

! BC	D),$*!	D),$%&*	E
!                                                    [12] 672 

 673 

 674 

Bayes Updating model  675 

We also considered two unitary process models in which a global prior is updated in a dynamic manner. 676 

For the Bayes Updating model, the prior is updated following Bayes rule after each observation. Since the 677 

prior and likelihood are Gaussian, this model can be expressed as a Kalman filter. On each trial, the 678 

estimated duration (te) is a weighted sum of to and the duration of the stimulus (ts). 679 

t6 = (1 − 𝑤) ∗ tH +𝑤 ∗ t,                                                            [13] 680 

where the weight w is determined by the perceptual noise and variance of the prior. As such, as w 681 

increases, the weight given to the prior will increase (i.e., attraction to central tendency). Participants 682 

make a motor response based on t6 with Gaussian motor noise (see equation [5]). Given that Experiment 683 
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2 showed that serial dependence is primarily induced by the reproduction component rather than the 684 

perceptual component, we assumed the prior is updated according to 𝑡:. After the motor response, t0 is 685 

updated based on tr following another Kalman filter: 686 

 tHG = (1 − 𝑘) ∗ tH + 𝑘 ∗ t8                                                           [14] 687 

where tHG  is the new reference point for the next trial, and	𝑘	represents the learning rate. To address the 688 

scalar property of timing noise (Weber law), tr, ts, te, and to are taken to be the log value of the respective 689 

durations. Note, that an alternative version of this model could have the observer directly use the 690 

posterior as a new prior (what is known as a fully irritative model). However, as with the Local-Only model, 691 

a fully irritative model will largely overestimate serial dependence given a reasonable central tendency 692 

effect.  693 

 694 

Mixed-Gaussian Updating model 695 

In a second unitary model, the prior is represented as a Gaussian mixture model. This model is identical 696 

to the Global-Only model (equation [1-5]) except that the prior is updated after each trial to generate a 697 

better estimate of the temporal context. We applied a simple updating rule here, in which the observer 698 

adds a normal distribution centered at 𝑡:  with a standard deviation of 	𝑣* to the old test set. The posterior 699 

is then appropriately normalized: 700 

πG(t,) = 	
1(2")B:∗J-t,.t8, v+	/

∫K1(2")B:∗J-t,.t8, v+	/L42"	
                                              [15] 701 

where 𝜋G(𝑡)) is the new test set, and 𝑟 is the learning rate.  702 

 703 

Simulation procedure.  704 

Simulations of each model were conducted to evaluate the results of Experiment 1. The data from 100 705 

pseudo-participants were generated for each simulation. To determine the values of the free parameters 706 

for the simulations, we referred to a previous study that used a similar design to that employed here and 707 

evaluated the results with the BLS model, or what we refer to as the Global-Only model (6). Based on their 708 

results, we set 𝑛*= 0.10 and 𝑛; = 0.06 for the Global-Only, MGU, and DP models. Other parameters were 709 

determined to make the amplitude of the serial dependence function roughly similar to the behavioral 710 

results. Specifically, we set w = 0.7 and k = 0.3 for the BU model, the learning rate r = 0.3 for the MGU 711 

model, and K = 0.06 for the Local-Only and DP models. We designed Experiments 3 and 4 to focus on the 712 

MGU and DP models, the two models that produce both central tendency and non-linear serial 713 

dependence effects. For simulations of the short conditions, the step between each two adjacent stimuli 714 
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was the same as what was used in the other experiments (40 ms). For simulations of the medium and the 715 

long conditions, the step size was set to a smaller value (70 ms) than used in the experiments to improve 716 

resolution. The parameters 𝑛* and 𝑛; were fixed at the values used in the previous simulations, while a 717 

series of r and K values were tested.  718 
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Supplementary information 821 

 822 

 823 

Figure S1. Central tendency of the reproduced duration as predicted by the MGU model in all experiments. 824 

(a-e) Reproduced duration is plotted as a function of target duration for Experiments 1, 3, & 4. The shaded 825 

area indicates S.E. The median slope ± S.E. is reported on each figure. (f) The predicated slopes for the 826 

central tendency of the MGU model provide a good fit to the data. The dots and error bars indicate median 827 

slope ± S.E.  828 

  829 
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 830 

 831 

Figure S2. Histogram of the difference between the previous target duration (Sn-1) and the current target 832 

duration (Sn). For individual participants, there are few trials with a large difference between stimuli, 833 

especially for experiment 1 and the short-900 condition. As such, the DoG may not provide a good fit 834 

when used to estimate serial dependence curves at the individual level.  835 

  836 
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 837 

 838 
Figure S3. Deviation index functions for Experiment 2. (a) A prominent DoG curve can be seen for the n-1 839 

data when trial n-1 was a Go trial. (b) This curve is markedly attenuated when trial n-1 was a no-Go trial. 840 

(c) A small DoG curve is evident for the n-2 trial when n-1 was a No-Go trail and n-2 is a Go trial. The thick 841 

dashed line is the best-fitted DoG curve. Shaded areas indicate standard error. 842 
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 845 

Figure S4. Instantaneous slope of the fitted DoG functions for trials n-1, n-2, and n-3, and future (n+1) 846 

trials in the short-900 (a) and bimodal conditions (b). A significant serial dependence effect can be 847 

observed from the n-2 trial in the bimodal condition rather than the short-900 condition in experiment 4. 848 

Dots indicate individual data points and error bars represent standard error. The p-values are based on a 849 

test of whether the observed values differ from zero. 850 
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