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Abstract 

Prior knowledge facilitates our perception and goal-directed behaviors in the dynamic world, 
particularly when sensory input is lacking or noisy. However, the neural mechanisms underlying 
the improvement in sensorimotor behaviors by prior expectations remain unknown. In this study, 
we examine the neural activity in the middle temporal (MT) area of visual cortex while monkeys 
perform a smooth pursuit eye movement task with prior expectation of the visual target’s motion 
direction. Prior expectations discriminately reduce the MT neural responses depending on their 
preferred directions, only when the sensory evidence is weak. This response reduction effectively 
sharpens neural population direction tuning. Simulations with a realistic MT population 
demonstrate that sharpening the tuning explains both the biases and variabilities in smooth pursuit, 
thus suggesting that neural computations in the sensory area alone can underpin the integration of 
prior knowledge and sensory evidence. State-space analysis further supports this by revealing 
neural signals of prior expectation in the MT population activity that correlate with behavioral 
changes. 
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Introduction 
 
When interacting with our environment, we quickly adapt to its dynamic changes and adjust our 
actions based on the quality of sensory information. If the available sensory information is 
sufficiently precise to guide behaviors, our actions can depend solely on sensory input. However, 
if the sensory information is imprecise, we combine it with prior knowledge to improve our 
behavioral responses. In particular, we use the reliability of each piece of information as a weight 
when combining multiple pieces of information. This precision-weighted information integration 
explains the fundamental approaches to our interactions with the environment. 
 
The Bayesian inference framework has successfully explained information integration in 
perceptual decision-making 1–4, multisensory integration 5–9, and sensorimotor behaviors 10–13. The 
neural implementation of Bayesian inference has also been demonstrated in studies on sensory and 
motor functions 5,14–22. Notably, preparatory activity in the smooth eye movement region of the 
frontal eye field (FEFSEM) represented the prior distribution for incoming motion speed, 
whereas evoked activity reflected a Bayesian estimate of the stimulus speed during smooth pursuit 
eye movements 14,23,24. However, the effect of prior expectations on neural sensory representation 
has achieved insufficient consensus 25. Human neuroimaging studies have suggested that prior 
expectations reduce neural activity 26–31 and modulate sensory representation in the early visual 
cortex 31–33. By contrast, previous single-cell electrophysiological data have shown that prior 
expectations have no effect on sensory motion representation in the middle temporal (MT) area of 
visual cortex 34. Therefore, although some experimental evidence supports the neural origins of 
Bayesian inference, the effects of prior expectations on cortical sensory neurons are scarce and 
contradictory.  
 
In this study, single neuronal activity was recorded from area MT of two rhesus monkeys 
performing a smooth pursuit eye movement task wherein the strength of the sensory motion 
information and prior knowledge of motion direction were controlled. Consistent with the findings 
of our previous behavioral study 35, the variation in pursuit directions across trials was reduced by 
prior expectations only when the sensory input was weak and imprecise. The neural recordings 
indicated that prior expectations systematically reduced the MT neural responses in a manner that 
sharpened the population direction tuning curve only when the sensory evidence was weak. The 
simulation of a realistic MT population activity demonstrated that this systematic reduction of 
neural responses accounted for the reduction in behavioral variability observed in the initiation of 
smooth pursuit eye movement. The integration of prior knowledge with sensory information in 
area MT and its role in behavioral enhancement were additionally supported by the targeted 
dimensionality reduction analysis of neural population activity. The neural state of the MT 
population represented prior information and its temporal evolution accounted for the dynamic 
modulation of behavioral variability reduction observed in smooth pursuit initiation. 
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Results 
 
In this study, we aimed to identify the neural correlates of prior expectations in area MT using a 
behavioral paradigm that allowed the direct manipulation of prior information with an identical 
sensory stimulus 35. We measured the spiking activity of single neurons in area MT of two rhesus 
monkeys while performing a smooth pursuit eye movement task (Fig. 1a). Each trial began with a 
fixation spot appearing at the center of the monitor screen. A random-dot kinematogram appeared 
after the fixation duration, and all dots of the stimulus moved in a direction within a fixed window 
for 100 ms (local motion). Following the local motion, the dot patch smoothly moved in the same 
direction as the local motion, and the monkeys had to maintain their gaze on the visual target 
during its movement. A liquid droplet was delivered as a reward for the correct behavior at the end 
of the trial. The expectation of motion direction was manipulated in two blocks: “wide prior block” 
and “narrow prior block” (Fig. 1b). Beginning with a randomly selected block, the two prior blocks 
were alternated. In the wide prior block, the direction of the pursuit target was randomly selected 
from three widely distributed directions, which were 120° apart from each other. The number of 
trials in all three directions was the same. In the narrow prior block, the target direction was one 
of the three narrowly distributed directions, wherein the difference between the central direction 
and the others was 15°. The central direction was presented twice as often as the other directions. 
Therefore, the monkeys had prior expectations of the central direction only in the narrow prior 
block. Notably, the central direction of the narrow prior block, termed “prior direction,” was also 
included in the wide prior block to enable comparison of the eye movements and neural responses 
between the two blocks under the identical stimulus condition. The prior direction was set by 
considering the preferred directions of the recorded MT neurons. To change the sensory evidence, 
two different stimulus types, “high contrast” and “low contrast”, were randomly interleaved; these 
had different luminance contrasts (100 % and 12 % for Monkey A; 100 % and 8 % for Monkey B) 
and coherence (without and with random-walk noise) of dots in both blocks (Fig. 1c, see Methods). 
Additionally, in each prior block, the smooth pursuit trials were randomly interrupted using 
direction tuning trials to measure the direction tuning curves of the neurons being recorded (see 
Methods for details). Through direction tuning measurements, neural responses to 12 motion 
directions (from 0° to 330° in 30° increments) were obtained and the direction tuning functions of 
individual neurons were estimated using a Gaussian or circular Gaussian function. 
 
Prior expectation reduces the variability of pursuit eye movements 
 
Our previous study 35 demonstrated that prior expectation of motion direction reduces the variation 
in pursuit directions for moving stimuli. We reconfirmed the effect of the direction prior to the 
smooth pursuit eye movements. To compare the variability in pursuit eye movements in the same 
direction between the wide and narrow prior blocks, the standard deviation (SD) of pursuit 
directions for prior direction was calculated in each block during the open-loop period (100 ms 
from pursuit onset 36) to exclude any impact of feedback signals (see Methods). Figs. 1d, e show 
the mean SD of pursuit directions from the two monkeys (59 days’ data for Monkey A and 67 
days’ data for Monkey B). In Monkey A, the mean SD of the narrow prior block was smaller than 
that of the wide prior block in both high and low contrast cases (mean SD in the wide and narrow 
prior blocks was 10.28° vs. 9.72° for high contrast stimuli, paired t-test, t(58) = 3.72, p = 4.46 × 
10-4, 16.20° vs. 13.64° for low contrast stimuli, paired t-test, t(58) = 12.70, p = 2.18 × 10-18). By 
contrast, the difference was significantly larger when the stimulus contrast was low (mean SD 
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difference between two prior blocks in high and low contrast cases: 0.56 vs. 2.57, paired t-test, 
t(58) = –8.39, p = 1.35×10-11). In Monkey B, the difference in SD between the two blocks was 
significant only for low contrast stimuli (mean SD in the wide and narrow prior block: 6.94° vs. 
7.00° for the high contrast stimuli, paired t-test, t(66) = –0.61, p = 0.54, 11.66° vs. 9.83° for low 
contrast stimuli, paired t-test, t(66) = 6.94, p = 2.33×10-9). These results demonstrate that prior 
expectation of motion direction decreases the variation in pursuit directions, particularly when the 
sensory motion of the pursuit target is weak and imprecise, which is consistent with the prediction 
of Bayesian inference 35. 
 

 
Fig. 1 

Fig. 1: Experimental design and task performance. 
a Trial timeline; Each trial begins with the monkeys fixating their eyes on a spot at the center of 
the monitor screen. After a randomized fixation duration (800, 1300, or 1800 ms), a random-dot 
kinematogram appears at the center of the screen or 1°–2° displaced from the center to the 
opposite direction of the target direction, and all the dots inside the fixed invisible window move 
in the target direction for 100 ms. When the fixation spot disappears after the local motion, the 
dot patch smoothly moves in the same direction as the local motion for 500–700 ms, and the 
animals have to maintain their gaze at the center of the moving patch. b Block design; The 
monkeys’ expectations of the direction of the pursuit target are manipulated by presenting 
different sets of three directions in different proportions in two types of blocks. Both blocks have 
a common direction (“prior direction”), and the angle between that direction and the other 
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directions is 120° and 15° in the wide and narrow prior block, respectively. The number of trials 
for the prior direction is the same as for the other directions in the wide prior block but twice that 
in the narrow prior block. The wide and narrow prior blocks are distinguished by red and green 
fixation points, respectively. c Stimulus type; To control for sensory evidence, two different 
types of random-dot patches are randomly interleaved as visual stimuli in both blocks. The high 
contrast stimuli has 100 % luminance contrast and dot coherence, whereas the low contrast 
stimuli has 12 % (Monkey A) or 8 % (Monkey B) luminance contrast and random-walk noise in 
dot motion. d, e Mean standard deviation (SD) of pursuit directions for the prior direction target. 
The black and red bars show the mean SD for the high-contrast cases in the wide and narrow 
prior blocks, respectively; the gray and yellow bars show the mean SD for the low contrast cases 
in the wide and narrow prior blocks, respectively. The error bars indicate the standard error of 
the mean. 
 
Prior expectation systematically reduces MT neural responses only when sensory input is weak 
and imprecise 
 
Recent human functional magnetic resonance imaging studies have reported that prior expectation 
of a stimulus feature reduces neural responses in the primary visual cortex 29,31 and enhances neural 
representations in early visual areas 31,32. A more recent magnetoencephalography study supported 
the role of expectation in perceptual processes by demonstrating that expectations modulate the 
neural representation in early sensory processing 33. In this study, we tested whether the responses 
of the MT neurons were modulated by prior expectations. To determine the neuronal correlates 
underlying the effect of prior expectation on the variation in eye movements, we recorded 257 
well-isolated single neuronal activities (137 for Monkey A and 120 for Monkey B) from area MT 
while the monkeys performed the task. The peristimulus time histograms (PSTHs) in Figs. 2a, b 
show the firing rate of MT neurons in the prior direction as a function of time. When the stimulus 
contrast was low, the firing rate in the narrow prior block was lower than that in the wide prior 
block in the initial neural responses of both monkeys (cluster-based permutation test, alpha = 0.05, 
Monkey A: 61–129 ms; Monkey B: 101–199 ms from the pursuit target onset). However, no 
common decrease in the firing rate was observed between the two monkeys when the stimulus 
contrast was high. We particularly focused on early neural responses because it was difficult to 
determine whether the neural response reduction occurring after the open-loop period (up to 100 
ms after pursuit onset or 200 ms after motion onset) was induced by prior expectation or the 
feedback signal for the difference between the target and eye movements. To further quantify the 
reduction in neural responses, we calculated the firing rates during the initial 100 ms from the 
spike latency of each neuron in response to the pursuit target. The insets in Figs. 2a, b depict the 
mean firing rates of the MT neurons in the time window under the two prior conditions. As shown 
in the PSTHs, the early MT neuronal responses after the spike latency were smaller in the narrow 
prior block than in the wide prior block only when the stimulus contrast was low (mean firing rate 
of the wide and narrow prior block in Monkey A was 43.37 vs. 42.64 for the high contrast case, 
paired t-test, t(135) = 1.82, p = 0.07; 25.21 vs. 23.17 for the low contrast case, paired t-test, t(110) 
= 4.53, p = 1.51×10-5, that in Monkey B: 49.86 vs. 49.38 for the high contrast case, paired t-test, 
t(116) = 1.15, p = 0.25; 25.45 vs. 23.98 for the low contrast case, paired t-test, t(109) = 3.35, p = 
0.001). These results indicate that prior expectation of motion direction reduces the responses of 
MT neurons only when sensory motion is weak and imprecise. 
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The small and uniform decrease in neural responses may not account for the decrease in behavioral 
variability. However, if the response reduction depends on the difference between the preferred 
directions of the neurons and the prior direction, it can enhance the neural representation of the 
motion direction by modulating the population direction tuning function. The reduction in MT 
neuronal responses by prior expectation indeed varied according to the relationship between the 
prior direction and the preferred direction of each neuron. We calculated the ratio of the firing rate 
in the narrow prior block to that in the wide prior block to account for the different firing rates 
between the two prior blocks. We then estimated the correlation coefficient between the firing rate 
ratio (FR ratio) and the difference in the prior and preferred directions (Dq). In this analysis, 
neurons whose direction tuning functions have been relatively well defined (fitted tuning function 
explained more than 50% of data variance) were included for the robust estimation of the preferred 
direction of each neuron. With these additional criteria, 181 (n = 95 for Monkey A and 86 for 
Monkey B) and 144 (n = 75 for Monkey A and 69 for Monkey B) neurons were retained for the 
high and low contrast cases, respectively. The correlation from each monkey and that from the 
combined dataset are plotted as a function of time relative to the pursuit target onset (Figs. 2d, e). 
The correlation did not differ from zero when the stimulus contrast was high (Fig. 2d). However, 
when the stimulus contrast was low, the correlation decreased after the stimulus appeared, and it 
was significantly lower than zero between 80 and 100 ms from the stimulus onset in the combined 
dataset (Fig. 2e, time windows for calculation: ± 30 ms at each time point of 0–180 ms in 5 ms 
intervals, Spearman correlation, false discovery rate (FDR) corrected, alpha = 0.05). Figs. 2g, h 
show the relationship between the FR ratio and Dq at 85 ± 30 ms when they were the most 
negatively correlated in the low contrast stimuli case (Spearman correlation, r = –0.01, p = 0.87 
for high contrast; r = –0.284, p = 0.00059 for low contrast). This means that as the preferred 
direction of an MT neuron was farther from the prior direction, the neuron's response to the prior 
direction decreased further when the sensory input was weak. This relationship was still significant 
for neurons whose preferred direction was less than 90° apart from the prior direction, although 
the overall correlation was smaller (r = –0.18, p = 0.0477 in low contrast condition). 
 
The animals’ behavioral performace on the pursuit task varied from day to day. The difference in 
pursuit direction SD between the wide and narrow prior blocks might depend on changes in the 
use of prior expectation. In both cases, the difference in pursuit directional variation between the 
two blocks indicates whether the behavioral effect of prior expectation was strong or weak that 
day. To further examine whether neural modulation is tightly linked with smooth pursuit behavior, 
we divided the experimental sessions into two groups based on whether the variability of pursuit 
direction was significantly reduced by prior expectations. We compared the reduction in neural 
activity between the two groups, sessions with vs. without behavioral effect by prior expectation 
(number of neurons for significant vs. nonsignificant direction SD reduction in the low contrast 
stimuli case: n = 62 for 29 days vs. n = 75 for 30 days in Monkey A; n = 83 for 35 days vs. n = 37 
for 32 days in Monkey B; two-sample F-test, alpha = 0.05). When the pursuit direction variance 
was significantly reduced by prior expectation, the responses of MT neurons also decreased, and 
the response reduction depended on the difference between the prior and preferred directions, as 
we observed in the entire dataset. However, when the reduction in pursuit direction variance was 
insignificant, even if the prior expectation reduced MT responses, the reduction was not correlated 
with Dq (Fig. 2c: mean firing rate in wide vs. narrow prior block of Monkey A: 30.13 vs. 27.93 on 
the days with significant behavioral effect, paired t-test, t(61) = 2.73, p = 0.009; 21.32 vs. 19.41 
on the days with non-significant behavioral effect, paired t-test, t(74) = 3.83, p = 3.04×10-4; that 
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of Monkey B: 20.52 vs. 18.88 on the days with significant behavioral effect, paired t-test, t(82) = 
2.99, p = 0.004; 35.56 vs. 34.48 on the days with nonsignificant behavioral effect, paired t-test, 
t(36) = 1.51, p = 0.14, Figs. 2f, i: Spearman correlation between FR ratio and Dq in 85 ± 30 ms 
from the stimulus onset: r = –0.39, p = 0.0014 on the days with significant behavioral effect; r = 
–0.18, p = 0.1 on the days with nonsignificant behavioral effect). This relationship indicates that 
the systematic reduction of neural responses was controlled by the strength of the prior expectation 
that monkeys employed, thus suggesting that the decrease in pursuit direction variability by prior 
expectation may be driven by the systematic response reduction of cortical sensory neurons. 
 

 
Fig. 2 

Fig. 2: Effect of prior expectation on the firing rate of MT neurons 
a–c Each colored peristimulus time histograms (PSTHs) shows the firing rate of the MT neurons 
for the prior direction as a function of time relative to the stimulus onset in each condition (black: 
wide prior, high contrast; red: narrow prior, high contrast; gray: wide prior, low contrast; yellow: 
narrow prior, low contrast). The bar graphs show the mean firing rates during the initial 100 ms 
time window from spike latency. d–f Correlation between the difference in the prior and preferred 
directions (Dq) and the firing rate ratio in the narrow prior block to that in the wide prior block 
(firing rate ratio). The lines show the correlation coefficient over time relative to the stimulus onset 
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with a ±30 ms window and 5 ms timestep; the red, blue, and black lines are from Monkey A, 
Monkey B, and the combined dataset of Monkeys A and B, respectively. g–i Correlation between 
Dq and firing rate ratio in the time window of 55-115 ms from stimulus onset in the combined 
dataset. Each point on the plot represents one MT neuron in the combined dataset. The black solid 
lines show the linear regression relationship between Dq and the firing rate ratio. c, f, i The MT 
neuronal responses for low contrast stimuli on the days where the SD in pursuit directions in 
narrow prior block are significantly smaller than those in wide prior block, and the responses on 
the other days with no difference in SD between the two prior blocks. 
 
Decoded direction information from the simulated MT responses can account for the behavioral 
modulation by prior expectation 
 
The systematic reduction in neuronal responses, which depends on the difference between the prior 
direction and the preferred directions of MT neurons, can change the shape of the population 
direction tuning curve in area MT. If the prior expectation is congruent with stimulus motion, it 
can sharpen the population direction tuning curve and enhance the neural representation of motion 
direction (Fig. 3a). To test whether the observed response reduction has a noticeable impact on the 
quality of sensory neural representation and the resulting behavioral performance, neuronal 
activity was simulated using realistic properties obtained from our MT recordings. Using the 
estimated parameters of the circular Gaussian functions for direction tunings of recorded MT 
neurons, we simulated 3600 neuron responses whose preferred directions were randomly selected 
from a uniform distribution bounded by –180° and 180° (see Methods for details). The measured 
tuning shape, average firing rate, Fano factor, and the inter-neuronal correlation were considered 
in the simulation; therefore, the simulated neurons had realistic neural response properties (see 
Methods and Supplementary Fig. 1 for further details). Subsequently, the effect of prior 
expectation on neural activity was modeled by applying slopes of a linear regression between Dq 
(preferred–prior direction) and the log firing rate ratio (narrow/wide prior) that was estimated from 
the recordings (regression coefficient at 85 ± 30 ms from the pursuit target onset: –1.06×10-4 for 
the high contrast case, p = 0.60; –0.0025 for the low contrast case, p = 1.01×10-6). The simulated 
population responses for the high contrast stimuli did not differ between the two prior blocks 
because the slope of regression was close to zero. However, the simulated population tuning curves 
for the low contrast stimuli became narrower in the narrow prior condition because of the negative 
relationship between Dq and the firing rate ratio. Figs. 3b, c show examples of simulated responses 
for high and low contrast cases, respectively, when the target and prior directions are 0°. 
 
Using these simulated MT neural responses, we tested whether the neural direction discrimination 
could be improved by the prior factor. Neural population responses to two different motion 
directions were simulated and a binary linear support vector machine (SVM) discriminated the 
two directions, which were 0°, and a direction from 0° to 10° with step sizes of 0.5° (see Methods 
for details). In this simulation, the target and prior directions were identical, and the prior factor 
was applied to each direction separately such that the population tuning curve became centered on 
each stimulus direction (Figs. 3b, c). Therefore, the prior factor only influenced the level of noise 
in the neural direction representation. When the difference between the two directions was small, 
the SVM classifier could not discriminate between the directions (Fig. 3d, direction difference 
<2°). However, its performance rapidly increased as the direction difference increased. The 
performance of the SVM classifier was better in the high contrast condition than in the low contrast 
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condition (mean of the cumulative Gaussian function in high and low contrast conditions of wide 
prior block : 2.97 vs. 4.45, paired t-test, t(99) = –42.26, p = 3.77×10-65; that of narrow prior block: 
2.92 vs. 3.57, paired t-test, t(99) = –19.79, p = 3.52×10-36), where the simulated population 
responses were more robust. However, the effect of the prior factor in the high contrast condition 
was negligible (mean of the cumulative Gaussian function for high contrast stimuli: 2.97 (wide) 
vs. 2.92 (narrow), paired t-test, t(99) = 1.66, p = 0.1). By contrast, the effect of the prior factor on 
neural direction discrimination was significant in the low contrast condition. When the classifier 
was trained and tested on the simulated neural responses in the low contrast, narrow prior condition, 
the neural direction discrimination was significantly better than that when the classifier was trained 
in the wide prior condition (mean of the cumulative Gaussian function for low contrast stimuli: 
4.45 (wide) vs. 3.57 (narrow), paired t-test, t(99) = 26.04, p = 4.28×10-46). These findings suggest 
that the systematic response reduction observed in MT neuronal activity to low contrast stimuli 
has a significant effect on enhancing the neural motion direction representation, probably by 
reducing population-level neural noise. 
 
The SVM demonstrated that prior expectations improve the signal-to-noise ratio in the population-
level neural representation of the motion direction. To determine the behavioral enhancement by 
prior expectation can be accounted for by the modulation of population direction tuning in area 
MT, we compared the neuronal variability (i.e., variance in neural direction representation) with 
behavioral variability (i.e., variance in pursuit direction). For this comparison,  a population vector 
decoder (PVD) 37 and maximum likelihood estimate (MLE) 38–40 were used to directly measure the 
trial-by-trial variability of neural direction estimates (see Methods for details). The direction in 
each trial was decoded from the simulated population response in a 0° motion direction, and the 
SD of the direction estimates was calculated across trials. To estimate the extent to which the 
direction variability was reduced by prior expectation, we computed the ratio of the SDs in the 
narrow and wide prior blocks (SDnarrow prior/SDwide prior). The mean SD ratio of the direction 
estimates from simulations was smaller than 1, which suggests that the simulated SD in the narrow 
prior block was smaller than that in the wide prior block and the effect was stronger when the 
stimulus contrast was low (Figs. 3e, f, mean SD for high contrast stimuli: 0.994 and 0.993, one-
sample t-test, t(99) = 2.74×104 and 384.16, p = 0 and 6.39×10-159; mean SD for low contrast stimuli: 
0.87 and 0.80, one-sample t-test, t(99) = 1.37×103 and 157.58, p = 1.70×10-213 and 1.12×10-120 
from PVD and MLE, respectively). This was consistent with the findings from the behavioral data 
(Figs. 3e, f, mean SD for high contrast stimuli: 0.99, one-sample t-test, t(99) = 89.92, p = 1.83×10-

115; mean SD for low contrast stimuli: 0.87, one-sample t-test, t(99) = 75.47, p = 4.00×10-106). 
Notably, the SD ratio of the directions estimated by PVD was almost the same as the experimental 
SD ratio (experimental vs. simulated SD ratio in the high contrast case: 0.9863 vs. 0.9936, pooled 
t-test, t = –0.60, p = 0.55; those in low contrast case: 0.8677 vs. 0.8721, pooled t-test, t = –0.34, p 
= 0.73). This close correspondence between the experimental and simulated results suggests that 
the modulation of the shape of the population direction tuning curve can fully account for the 
reduction in behavioral variation in smooth pursuit initiation. 
 
As demonstrated before 35, prior expectations introduced an increase in behavioral bias as well as 
a decrease in behavioral variability during the pursuit task, only when the sensory input was weak 
and imprecise. The directions of smooth pursuit eye movements to the outer target directions were 
skewed toward the prior direction; the ratio between the angular difference of two outer target 
directions and that of the corresponding pursuit directions was smaller than 1 in the low contrast 
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cases (Supplementary Figs. 2a, b, 0.997 and 0.801 for high and low contrast stimuli, paired t-test, 
t(42) = –0.25 and –9.66, p = 0.81 and 1.82×10-15). To test if the bias can also be explained by the 
expectation-induced modulations in the population tuning, we simulated population responses in 
±15° motion direction when the prior direction was 0° and decoded using PVD and MLE, 
respectively (see Supplementary Fig. 2 and Methods for details). Consistent with the experimental 
results, the simulation showed that the estimated directions were biased toward the prior direction, 
and this effect was significantly stronger when the stimulus contrast was low (Supplementary Figs. 
2c–f, the ratio between the two differences for high contrast stimuli: 0.994 and 0.987, one-sample 
t-test, t(99) = –244.59 and –57.47, p = 1.57×10-139 and 7.54×10-78; that for low contrast stimuli: 
0.84 and 0.75, one-sample t-test, t(99) = –261.12 and –1.12×103, p = 2.45×10-142 and 8.29×10-205 
from PVD and MLE, respectively). These results demonstrate that the systematic change in the 
population response of MT neurons by prior expectations can explain the bias and variability 
reduction in pursuit directions. Additionally, this further suggests that modulation of MT neural 
responses is sufficient to explain Bayesian inference in smooth pursuit eye movements.  
 

 
Fig. 3 

Fig. 3: In silico simulations to decode population direction information 
a Schematic of the change in the population tuning curve in area MT by prior expectation. The 
black and red curves exhibit the population direction tuning of the model MT neurons in the wide 
and narrow prior blocks when the target direction and prior direction are 0°; responses to the target 
as a function of neuron’s preferred direction. Based on the experimental results, when the sensory 
evidence is weak, prior expectations reduce the MT neuronal responses proportionally to the 
difference between the prior direction and each neuron’s preferred direction. This sharpens the 
shape of the population tuning curve. b, c Example of simulated MT population responses under 
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high/low contrast and wide/narrow prior. Each point on the thin line plots represents the firing rate 
of each model neuron in a single trial with the target (and the prior) direction of 0°. Thick curves 
show the mean population responses across the trials. d Performance of support vector machine 
(SVM) in discriminating between two directions as a function of direction difference (Dq). The 
direction discrimination performances of the SVM classifier (colored circles) at every Dq  were 
fitted to a cumulative Gaussian function (dot-dashed line). e, f Estimation of direction SD ratio 
between the narrow prior block and the wide prior block in the experimental and simulated datasets. 
Gray circles show the SD ratio from individual smooth pursuit direction variability in each session 
of the two monkeys, and black circles represent the mean of the SD ratios. The light red crosses 
show the SD ratio estimated from the population responses in each simulation using a population 
vector decoder (f, left) or using a maximum likelihood estimation method (f, right), and the thick 
red crosses represent the mean SD ratio.  
 
Systematic reduction in neuronal responses occurs only in an active behaving condition 
 
As suggested earlier, prior expectations improve pursuit behavior by sharpening the shape of the 
population neural direction tuning. However, the systematic response reduction might result from 
passive response modulation by the repetitive presentation of similar stimuli. That is, these 
observations could originate from neural adaptation 41, and not prior expectation (although they 
are tightly correlated). To address this possibility, we measured the direction tuning responses of 
MT neurons in the middle of each prior block. Even if the same motion stimuli were presented, 
the monkeys did not have to use prior knowledge because the animals passively fixed their eye 
gazes on the central fixation point. By contrast, changes in the passive properties of individual 
neurons that were induced by the different statistical distributions of motion stimuli across blocks 
could be revealed. To measure direction tuning, we used identical visual stimuli as the pursuit 
targets and placed them in the center of the receptive fields of the neurons. Directions were 
randomly selected from 12 directions (0°, 30°, …, 300°, 330°) in each presentation. To obtain the 
mean direction tuning curve across all neurons from the two monkeys, we pooled the direction 
tuning responses by aligning them relative to the preferred direction of each neuron. Subsequently, 
we fit the realigned mean neural responses to the Gaussian function and compared the averaged 
direction tuning function between the wide and narrow prior blocks. As a result, there was no 
significant difference in mean direction tuning between the two blocks (Figs. 4a–c, the height of 
the Gaussian function in the wide and narrow prior blocks: 51.08 and 50.48 for high contrast 
stimuli, 33.49 and 33.29 for low contrast stimuli in the combined dataset; 45.05 and 44.54 for high 
contrast stimuli, 29.29 and 29.06 for low contrast stimuli in Monkey A; 58.26 and 57.63 for high 
contrast stimuli, 38.72 and 38.56 for low contrast stimuli in Monkey B). Additionally,  the tuning 
function of individual neurons was estimated by fitting Gaussian or circular Gaussian functions 
(selected better function between the two for each neuron). The amplitudes and half-widths of the 
tuning curves were not different across the blocks in both high and low contrast cases (paired t-
test, mean tuning amplitude: 55.48 vs. 55.05 for high contrast, t(164) = 0.86, p = 0.39, 32.03 vs. 
31.88 for low contrast, t(164) = 0.32, p = 0.75, mean tuning half-width: 85.11 vs. 86.71 for high 
contrast, t(164) = –0.82, p = 0.41, 87.88 vs. 87.08 for low contrast, t(164) = 0.18, p = 0.86). 
 
To further test whether the change in the direction tuning function of MT neurons occurred only 
when the preferred direction of each neuron was far from the prior direction, we divided the 
neurons into two groups; one with larger direction discrepancies between each neuron’s preferred 
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direction and the prior direction, and the other with smaller discrepancies (i.e., top and bottom 30 % 
of neurons based on the direction discrepancies). We then averaged the direction tunings of the 
neurons in each group. As shown in the results from the entire population, the direction tunings of 
the neurons in both groups were not different between the wide and narrow prior blocks (Figs. 4d, 
e, the height of Gaussian function in the wide and narrow prior blocks; bottom 30 % group of 54 
for high contrast: 64.33 and 63.36, bottom 30 % group of 53 for low contrast: 37.89 and 37.86, top 
30 % group of 54 for high contrast: 39.68 and 38.68, top 30 % group of 53 for low contrast: 26.44 
and 26.86). This suggests that the systematic response reduction did not result from the passive 
neural response changes induced by the repetitive presentation of the motion stimulus. These 
results exclude adaptation accounts and demonstrate that the systematic reduction in neuronal 
response only appears when prior knowledge of motion direction is used. 
 

 
Fig. 4 

Fig. 4: Direction tuning responses of MT neurons in a passive fixation task 
a Mean direction tuning across all MT neurons in the combined data from the two monkeys. The 
direction tuning responses of individual neurons are realigned relative to each neuron’s preferred 
directions (filled circles) and fitted to a Gaussian function (dash-dotted lines). b, c Mean 
direction tuning of MT neurons in each monkey. d, e Mean direction tuning of top and bottom 
30 % neurons based on the size of the difference between each neuron’s preferred direction and 
prior direction in the combined dataset. 
 
Prior expectation is represented in the neural subspaces 
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The monkeys would switch the usage of prior expectation across blocks of trials; therefore, in the 
narrow prior block, the expectation-related signal could modulate the activity of area MT neurons 
even before the pursuit target appearance. When this possibility was tested in the average PSTHs 
during the pursuit task (and fixation task), prior expectations did not modulate the preparatory 
activities (Figs. 2a, b for both monkeys, Figs. 5a, d for Monkey A and Supplementary Figs. 3a, d 
for Monkey B). The mean firing rate of the MT neurons differed only between the wide and narrow 
prior blocks after pursuit target onset (Figs. 2a, b). Although there was no effect of prior 
expectations on average preparatory neural activity, it may be present in the activity pattern of the 
neural population. Recent work has shown that context, sensory inputs, and perceptual choices can 
be represented in task-relevant dimensions of population responses as well as in single-unit 
responses in the prefrontal cortex 42,43. To identify whether the MT population encodes the task 
variables, including prior expectation and sensory information, we used the targeted 
dimensionality reduction (TDR) method 42. As only the pursuit targets of the prior directions were 
presented in both the wide and narrow prior blocks, we restricted subsequent analyses to the neural 
responses to the prior directions (see Supplementary Fig. 4 for the analysis that included responses 
to all stimulus directions). For the population analysis, we constructed population responses by 
pooling all the units that were recorded primarily in separate sessions. First, we estimated linear 
regression coefficients for the prior expectation and stimulus contrast, respectively. To de-noise  
the regression coefficients, we projected them into the subspace spanned by dominant 12 principal 
components of population activity and then reprojected the denoised coefficients in the orginal 
basis. The regression coefficients for the prior, showing dependencies of the MT neural responses 
on the prior block, were temporally correlated during the preparatory period (Fig. 5b for Monkey 
A and Supplementary Fig. 3b for Monkey B, see Supplementary Figs. 4a, b for the regressions 
coefficients for the contrast). This temporal correlation suggests that the MT population activity 
retains prior information, even before the appearance of the pursuit targets. Next, we defined task-
related axes by time averaging the regression coefficients for prior and contrast and then 
orthogonalizing them. The averaged population responses across trials were projected onto these 
axes, generating neural trajectories in the task-related subspace (see Methods for details). Neural 
trajectories show the temporal evolution of the average population response during the pursuit task 
trial. The projected population response moved in the direction of high contrast (upward) and wide 
prior (rightward) after target onset, driven by sensory information from the stimulus (Figs. 5c, f 
and Supplementary Figs. 3c, f). The general direction of these trajectory changes is due to the 
sensory inputs: sensory stimuli have luminance contrast information, which has a range of 0-100 % 
(upward changes), and the appearance of the sensory stimulus will reduce the need for the specific 
expectations about the stimulus (rightward changes). Notably, the population responses in the wide 
and narrow prior blocks were separable in the prior-axis (Fig. 5c and Supplementary Fig. 3c for 
Monkey A and B, respectively), where clear separation was already observed at the preparatory 
activity (Insets in Fig. 5c and Supplementary Fig. 3c). We quantified this separation by estimating 
the distance of neural trajectories on the prior-axis between the two prior blocks. The subspace 
distance was roughly maintained throughout the trial including the preparatory period in the pursuit 
task (Fig. 5h for Monkey A and Supplementary Fig. 3h for Monkey B, the mean difference of 
prior-axis projected population responses between the wide and narrow prior blocks during the 
pursuit task was 1.04 and 1.18 in Monkey A; 0.60 and 0.72 in Monkey B for high and low contrast 
cases, and that during the preparatory period was 0.42 and 0.60 in Monkey A; 0.48 and 0.35 in 
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Monkey B for high and low contrast cases, two-sided permutation test, p < 0.05, see Methods for 
details). 
 
Latent dynamics along the prior-axis had functional relevance to pursuit behaviors, consistent with 
the simulation results. We calculated the SDs of the pursuit directions as a function of time to 
obtain the dynamics of behavioral variability during the pursuit trial (Fig. 5g for Monkey A and 
Supplementary Fig. 3g for Monkey B). The SDs rapidly decreased during the open-loop period 
(approximately 100-200ms from the stimulus onset). The reduction in SD in the narrow prior block 
was stronger than that in the wide prior block, particularly when the contrast of the sensory 
stimulus was low. To determine whether the subspace distance is related to behavioral variance, 
we compared the temporal change in neural distances with that in pursuit SD differences. Both the 
subspace distances and SD differences were the highest shortly after the pursuit target onset (Fig. 
5h for Monkey A and Supplementary Fig. 3h for Monkey B). Only in the low contrast condition, 
the subspace distance showed a high temporal correlation with the SD differences, and the 
subspace distances always lead the SD differences (significant correlation of 0.5 between the two 
indicates that SD differences appeared 60-120ms later than subspace distances in Monkey A; 40-
80ms later in Monkey B, Insets in Fig. 5h and Supplementary Fig. 3h, FDR corrected, alpha = 
0.05). This result additionally suggests that the neural modulation of MT population responses by 
prior expectations may contribute to reducing the variability in oculomotor behavior. 
 
Neural subspace modulation was specific to the pursuit task. When the same population analysis 
was applied to the neural population data from the fixation task, the modulation of the population 
neural spontaneous activity along the prior-axis of the subspace disappeared. Regression 
coefficients for the prior were not correlated across time for almost the entire duration (Fig. 5e for 
Monkey A and Supplementary Fig. 3e for Monkey B). Furthermore, the trajectories within the 
neural subspace were not separable between the wide and narrow prior blocks before visual 
stimulus appeared, thus demonstrating the absence of prior expectation-related input to the area 
MT (Inset in Fig. 5f for Monkey A and Inset in Supplementary Fig. 3f for Monkey B). There was 
no difference in neural trajectories projected to the prior-axis between the wide and narrow prior 
blocks during the fixation task (two-sided permutation test, p > 0.5). These results suggest that the 
expectation signal was present in the neural subspace of MT activity only when the monkeys were 
engaged in using prior knowledge in the task.   
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.516847doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.04.516847
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

 
Fig. 5 

Fig. 5: Latent dynamics of MT population responses during pursuit and fixation task 
a,d PSTHs relative to the target onset and mean preparatory activities of the recorded MT neurons 
(inset), in each prior block during the pursuit task (a) and fixation task (d). b,e Autocorrelation 
matrix of regression coefficients for prior during the pursuit task (b) and fixation task (e). c, f 
Temporal trajectories of average population responses in the task-related subspace consisting of 
prior and contrast axes during the pursuit task (c) and fixation task (f). Trajectories of preparatory 
activity(–400ms-0ms in the pursuit task and –40ms-0ms in the fixation task) are shown in the inset 
plots. g SDs of pursuit directions with high (left) and low (right) contrast stimuli as a function of 
time relative to the target onset. The red and yellow thick lines indicate that the SD differences 
between the two blocks are significant (cluster-based permutation test, p <0.05). h Distances in 
population responses projected on the prior-axis of the subspace between the wide and narrow 
prior blocks as a function of time (solid lines), and the differences of pursuit direction SDs between 
the two priors as a function of time (dotted lines). The blue and magenta lines indicate the high 
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contrast and low contrast conditions, respectively. Temporal coherences between subspace 
distances and SD differences with different latencies of SD differences from subspace distances 
are shown in the inset plots. The thick top line in the inset indicates that the FDR-corrected p-
values are less than 0.05. i Distances in the prior-axis projected population responses between the 
two prior blocks during the fixation task.  
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Discussion 
 
In this study, prior expectations reduced the variation in pursuit directions and discriminately 
reduced the responses of MT neurons, only when the sensory evidence was weak, depending on 
their preferred directions. Using data-based simulations and multiple decoders (SVM, PVD, and 
MLE), we demonstrated that the systematic response reduction improves the neural representation 
of motion direction by sharpening population tuning in area MT, which accounts for the behavioral 
improvement. Additionally, TDR analysis of the population neural responses demonstrated the 
existence of the prior expectation signal in the neural subspace of spontaneous activity and the 
functional relevance of the subspace dynamics to the behavioral variability reduction observed in 
pursuit initiation. 
 
Neural origins of prior expectation 
 
The Bayesian observer model has successfully revealed the integration of prior expectation and 
sensory information in smooth pursuit eye movements 35; however, the corresponding neural areas 
and mechanisms for this inference are largely unknown. Notably, whether the sensory area only 
represents the likelihood function of visual input or also represents the prior information and the 
posterior probability distribution is unknown. The hierarchical Bayesian inference framework for 
visual processing provides a theoretical ground for understanding the neural mechanisms 
underlying the interplay between sensory and top-down signals 44–47. Within this framework, 
higher-order brain regions may suppress lower-order neural responses, particularly when they are 
“incongruent” with prior expectations 46. Thus, bottom-up sensory signals are reduced in such a 
manner as to increase the signal-to-noise ratio. Recent human neuroimaging studies have provided 
empirical support for this hypothesis by showing expectation-driven modulation of neural activity 
and representation in the visual cortex 29,31,32. However, these neuroimaging data cannot explain 
how the visual system improves the sensory representation by silencing the incongruent responses; 
additionally, the neural responses that are incongruent with the expectations are ambiguous. Here, 
we propose a neural substrate of prior expectation in the visual cortex that the neural responses 
reduce to sharpen population direction tuning. The simulation revealed that prior expectations can 
change pursuit direction bias and variability via the systematic reduction in MT neural responses. 
These results underpin the Bayesian brain hypothesis by showing that the sensory area may 
represent not only the likelihood function but also the posterior distribution to which prior 
information is applied.  
 
A possible alternative framework for sensory processing is the traditional feedforward model. 
Under this framework, the integration of sensory evidence and prior information occur in the 
parietal and frontal areas but not in the sensory areas 48,49. A neurophysiological study by Rao et 
al. 34 supported this perspective; the responses of neurons in the macaque lateral intraparietal area 
were affected by prior expectations of stimulus motion, whereas almost no change was observed 
in MT neuronal responses during a direction discrimination task using saccadic eye movements. 
However, our results of the reduced MT responses by prior expectation contrast these findings. At 
least two possible factors could attribute to the different effects of prior expectations on area MT 
neurons. First, the previous research and this study used different eye movement systems (saccades 
and pursuits) for behavioral tasks. Although saccadic and pursuit eye movements share some 
common parts of the oculomotor network, they have largely disparate phylogenies and functions 
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50. Therefore, although area MT is involved in both saccades and pursuits, the influence of 
cognitive modulation on MT neural activity may differ depending on the eye movement system. 
Second, the two studies used different behavioral paradigms to control the monkeys’ prior 
expectations of the motion direction of the stimuli. Rao et al. used an arrow cue for “transient” 
top-down modulation, whereas we used “cumulative” learning based on experience-dependent 
prior knowledge from previous trials. These different strategies for developing an expectation of 
motion direction may have resulted in different neural mechanisms.  
 
In our results, the prior expectation signal was present in single neuronal responses in area MT 
only after the pursuit target appeared but was also represented as the pattern of population 
responses even before the pursuit target onset. TDR analysis 42,51 clearly showed the effect of prior 
expectation on spontaneous population activity (Figs. 5b, c for Monkey A, Supplementary Figs. 
3b, c for Monkey B), and this effect was task-specific (absence of the effect in the fixation task, 
Figs. 5e, f for monkey A, Supplementary Figs. 3e, f for monkey B). These results strongly suggest 
the existence of the ‘prior’ inputs in the activity of MT neurons. Notably, the prior expectation 
signal that appeared in the spontaneous activity was maintained during smooth pursuit initiation, 
regardless of the strength of sensory inputs (neural subspace distance between the wide and narrow 
prior blocks: Figs. 5c, h for Monkey A, Supplementary Figs. 3c, h for Monkey B). Neurons in area 
MT may receive top-down expectation-related inputs from other brain regions, and these signals 
may be dynamically integrated with feedforward sensory inputs evoked by the pursuit target. 
Therefore, the neural activity in area MT may represent the posterior probability distribution by 
integrating the prior inputs and sensory inputs during the presentation of the pursuit target. Both 
univariate (unit) and multivariate (population) analyses suggest the reliability-weighted integration 
of these two inputs by showing that the expectation-evoked neural changes accounted for the 
behavioral modulation in pursuit initiation only when the sensory evidence is weak (Figs. 3 d-f 
and Fig. 5 h). However, because most neurons were not simultaneously recorded, our analyses 
could not directly show the modulation of both the population tuning and population response 
pattern by prior expectations. Future work should aim to identify the contribution of population-
level representations of sensory and cognitive information to behavior through direct analysis of 
the trial-by-trial relationship between population activity and behavior. 
 
Which brain regions provide this task-specific expectation signal to area MT? A recent study 14 
demonstrated that FEFSEM represents the prior expectation of speed through preparatory activity; 
prior expectation of faster speed results in higher spontaneous activity during fixation before visual 
motion onset. If the preparatory activity in FEFSEM also represents the prior expectation of motion 
direction, the source of prior information could be FEFSEM, although the manner of representing 
the directional expectation might be different from simple gain modulation. In addition, the 
precision-weighted integration between the prior and likelihood functions of motion speed was 
represented in the evoked responses of FEFSEM. Because both area MT and FEFSEM represented 
prior-likelihood integration, the two sites appear to have an essential role in the effect of prior 
expectation on smooth pursuit eye movements while interacting with each other. A previous study 
reported that prior expectations of the direction of a visual stimulus increase the functional 
connectivity between area MT and prefrontal cortex 52. Investigating the role of each region and 
the interaction between the two in implementing Bayesian inference during perceptual decision-
making and sensorimotor behavior is an important direction for future research. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.516847doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.04.516847
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

Expectation and Attention 
 
Expectation and attention have a similar facilitatory effect on visual perception: expected and 
attended stimuli are more easily detected and recognized than unexpected or unattended stimuli. 
Therefore, the effects of expectation on perceptual decisions and sensorimotor behavior have often 
coalesced with those of attention in the empirical literature. In numerous cases, changes in 
perception and behavior due to expectation can also be explained by attention, and the distinction 
between these effects is unclear. For example, the behavioral and neural effects of expected stimuli 
might be caused by decreased attention and vice versa. Although the mechanisms overlap and 
interact, neither expectation nor attention is solely responsible for the influences of the two on 
visual perception. For fully understanding expectation and attention, they must be conceptually 
dissociated 53–56. Although expectation and attention were not strictly separated in our task design, 
the behavioral results were not due to spatial attention as the pursuit targets were always presented 
at the same position (fovea) between the two prior blocks. Unlike spatial attention, feature-based 
attention (i.e., attending to the direction of motion) affecting the perceptual behavior during our 
task might be concerning. Determining whether the results were from prior expectation or feature-
based attention from behavioral data alone is challenging; however, the neural results may provide 
insight into this. 
 
In terms of neural modulation, attention increases the responsivity of sensory neurons 57, whereas 
expectations decrease the neural activity in sensory areas 29,31,58. In area MT, spatial 59,60 and 
feature-based attention 61,62 increase the gain of the direction tuning curves of MT neurons without 
changing the tuning bandwidths. However, the effects of expectation on these neurons remain 
largely unknown. In this study, prior expectation reduced the visual responses of MT neurons, 
which is consistent with the results of previous neuroimaging studies, and importantly, the 
reduction in neural activity might contribute to improving behavioral reliability. This supports the 
observation that the reduced responses were not due to lower attention but a higher expectation 
because less attention to stimuli cannot enhance behavioral performance.  
 
Furthermore, previous attention studies reported that behavioral performance can be improved by 
reducing the trial-by-trial variability of single neuronal responses in the visual cortex 63–65. Thus, 
if prior expectation and attention operate on a shared mechanism, prior expectations may reduce 
the variation in eye movements by modulating spike count variability of MT neuronal responses. 
We measured the mean-normalized variance (i.e. Fano factor) of spike counts and compared it 
across different conditions. A transient decrease in the Fano factor occurred after stimulus onset 
in all conditions (wide/narrow prior × high/low contrast) and the decrease was larger in the high 
contrast cases than in the low contrast cases (Supplementary Figs. 6a, b), which was consistent 
with previous results 66. However, the Fano factor did not differ between prior conditions. In 
Monkey A, when the stimulus contrast was high, there was a period in which the Fano factor in 
the narrow prior block was lower than that in the wide prior block (cluster-based permutation test, 
p < 0.05). However, this effect was observed after the eye began to move; therefore, it might be 
caused by the difference in eye movements. Additionally, this effect was negligible in Monkey B. 
These results suggest that the prior expectation of motion direction does not significantly change 
the variability of single-neuronal spiking.  
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In addition to single neuronal variability, the modulation of the trial-by-trial spike count correlation 
between neurons can affect perceptual performance. Previous studies demonstrated that the 
attention-induced reduction in the inter-neuronal correlation has a tight relationship with 
enhancing behavioral performance 63,65,67,68. To test if prior expectations modulate the inter-
neuronal correlation, we measured and compared the trial-by-trial correlations between pairs of 
neurons across the wide and narrow prior blocks. However, the pairwise spike count correlations 
between neurons did not differ between prior conditions (Supplementary Figs. 6c–f). These results 
suggest that, unlike the attentional modulation in the neural variability, neither the trial-by-trial 
spike count variability of single neurons nor trial-by-trial correlation between pairs of neurons can 
explain the reduction in the behavioral variability by prior expectations. Therefore, the neural 
mechanisms of expectation and attention may differ during visual perception and oculomotor 
responses. A well-designed experimental paradigm would be necessary to properly dissociate 
expectation effects from attention effects and systemically explore the similarities and differences 
between the two mechanisms. 
 
Expectation and Neural adaptation 
 
Previous studies have reported the adaptation of MT neurons to the repeated motion direction of 
visual stimuli 41,69–71; neural adaptation reduced the amplitude and width of the direction tuning 
curves of MT neurons, and the effects were the largest when the preferred direction of the MT 
neuron and the direction of the adapting stimulus matched. In this study, pursuit targets were 
presented for the prior direction twice as often as for the other directions in the narrow prior block. 
However, although the neuronal responses to the prior direction were reduced, this reduction 
differed from the passive response modulation of neural adaptation for the following reasons. First, 
the direction tuning curves of MT neurons in the narrow prior block were similar to those in the 
wide prior block when the animals passively fixed their eye gazes at the central fixation point (Fig. 
4). Second, contrary to what was expected from neural adaptation, the effect was stronger when 
the prior direction differed from the preferred direction. In addition, the amount of response 
reduction by prior expectation did not depend on the extent to which the receptive field and pursuit 
target overlapped (Supplementary Fig. 5). These differences imply that the reduced responses of 
MT neurons in this study may not have been due to prolonged exposure to repeated visual motion 
but rather because of cognitive feedback signaling, which is different from the simple mechanistic 
reaction of the neurons to adjust constant sensory input. 
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Methods 
 
Two adult male rhesus monkeys (Macaca mulatta) weighing 9–11 kg were used for the 
neurophysiological experiments. All research protocols were approved by the Sungkyunkwan 
University Institutional Animal Care and Use Committee. Before the experiments, we performed 
two separate surgeries. A head holder was implanted on the skull for head restraint, and after which 
a cylindrical chamber fabricated from PEEK was implanted on the skull close to the lunate sulcus 
for an angled approach to area MT. During the surgeries, each monkey was under isoflurane 
anesthesia, while antibiotics and analgesics were administered postoperatively to minimize 
infection and pain.  
 
Visual stimuli and behavioral paradigm 
 
Visual stimuli were presented on a gamma-corrected 24″ CRT monitor (HP1230, 1600 × 1200 
pixels, 85 Hz vertical refresh rate). The monitor was placed 570 mm from the animal, and it 
covered 38.67° by 29.49° of the horizontal and vertical visual field, respectively. The background 
on which visual stimuli were presented was gray with a luminance level of 36.8 cd/m2 (luminance 
range was 0-73.68 cd/m2). The presentation of visual stimuli and recording of eye movement data 
were controlled using a real-time data acquisition system (Maestro version 3.3.11). A custom-built 
photodiode system was used to ensure the accurate timing of the visual stimuli. 
 
The two monkeys were trained in a smooth pursuit eye movement task (Fig. 1a). The pursuit target 
was a random dot kinematogram, and its size in each day’s experiment was determined as one of 
4° × 4°, 8° × 8°, or 12° × 12° depending on the location and size of the receptive fields of the 
recorded MT neurons. Each trial began when the animals fixated their eyes on a small dot (fixation 
spot) at the center of the monitor screen. After a randomized fixation duration (800, 1300, or 1800 
ms), the dot patch appeared at the center of the screen or 1°–2° displaced from the center to the 
opposite direction of the target direction. Subsequently, a local motion, whereby all the dots inside 
the invisible circular window moved in the target direction at a given speed but the invisible 
window did not move, was implemented. Following the local motion, both the dots and windows 
moved together at the same speed and in the same direction as the local motion for 500–700 ms. 
If the animals maintained their eyes at the center of the pursuit target within a 4° window during 
the target movements, they were rewarded with a drop of water or juice. 
 
To control the animals’ prior expectation of the motion direction of the pursuit target, we used 
two types of blocks: wide and narrow prior blocks (Fig. 1b). In the wide prior block, the fixation 
spot was red and the pursuit target direction was randomly and evenly selected from three 
directions, which were 120° apart from each other. Therefore, the animals’ expectations for the 
incoming motion direction would be widely distributed across the directions. Conversely, in the 
narrow prior block, the fixation spot was green and the direction of the pursuit target was one of 
the three narrowly distributed directions (a central direction and ± 15° of the direction). The 
central direction was presented twice as often as the other two directions. Therefore, the animals 
tended to develop a prior expectation for this central motion direction or the expectation would 
be narrowly distributed around the central direction. Therefore, we termed this direction the 
“prior direction.” The prior direction was set by considering the preferred directions of the 
recorded neurons. Notably, the identical prior directions were included in both the wide and 
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narrow prior blocks to compare the effect of prior expectations on behavioral and neural 
responses under the identical sensory stimuli. The narrow and wide prior blocks consisted of 252 
and 378 trials, respectively. The first block in each day’s experiment was randomly selected and 
alternated between the two prior blocks. We typically collected four blocks for each category, 
resulting in 2520 trials in total. 
  
Further, the precision of the sensory evidence (sensory stimulus) was controlled by randomly 
selecting a pursuit target stimulus from the two stimulus types in each trial: one was a random-dot 
kinematogram with 100 % luminance contrast (high contrast) and the other was a random-dot 
kinematogram with 12 % or 8 % (for Monkey A and B, respectively) luminance contrast (low 
contrast). To reduce the precision of motion direction further in the low contrast case, a random-
walk direction noise 72 was included in the stimulus; the directions of all dots were randomly 
selected from uniform distribution bounded by ±60° of the target direction (Fig. 1c). 
 
Data collection and analysis 
 
Horizontal and vertical eye positions were separately recorded at a sampling rate of 1 kHz using 
an infrared video tracking system (EyeLink 1000 Plus, SR Research Ltd). A low-pass Butterworth 
filter with an order of two and cutoff frequency of 20 Hz was applied on the horizontal and vertical 
components of the eye position. Subsequently, the filtered eye positions were differentiated to 
obtain the horizontal and vertical eye velocities. To focus on the initiation of the smooth pursuit 
eye movements and remove the influence of saccadic eye movements (saccades) on the behavioral 
and neural responses, trials with saccades that occured in a time window between –100 and 250 
ms were removed from the onset of the pursuit target. Next, the eye velocity traces were rotated 
such that their average direction was 45°. The rotated eye velocity during the open-loop period 
(100 ms from pursuit onset 36) was decomposed by using horizontal and vertical templates 73,74, 
which were the average of each rotated eye velocity component between –20 and 100 ms from the 
average pursuit latency (mean pursuit onset for high and low contrast stimuli: 76 ms and 123 ms 
in Monkey A; 57 ms and 105 ms in Monkey B). The optimal pursuit latency and scaling factors 
were estimated through the sliding and scaling of the two templates with the least-squares method 
and NOMAD algorithm 75. 
 
A single electrode or an 8-channel laminar probe (Multitrode Type I, Thomas RECORDING) with 
impedances from 0.5 to 1 MΩ (at 1 kHz) was used to record spikes and local field potentials (LFPs) 
in the MT using the Motorized Electrode Manipulator (MEM) system (Thomas RECORDING). 
Extracellular electrical signals from the electrode were high-pass filtered at a cutoff frequency of 
150 Hz, digitized at a sampling rate of 40 kHz for action potentials, and low-pass filtered at a 
cutoff frequency of 170 Hz, and digitized at a sampling rate of 1 kHz for LFPs (OmniPlex). The 
approximate receptive field location and size of a well-isolated MT neuron were measured using 
a hand-controlled visual stimulus while the monkeys fixated their eye gaze on a stationary spot at 
the center of the monitor. The MT neurons whose receptive fields were near the fovea were 
analyzed as the pursuit targets were presented at or near the fovea. 
 
To isolate single-unit responses, we sorted the spikes offline (Offline Sorter, Plexon) using 
principal component analysis and the waveforms of recorded neural activities. For further analysis, 
we included only the neurons whose spikes formed distinct clusters in the principal component 
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space. Additionally, we checked and removed sorting errors by inspecting time stamps of the 
sorted spikes with a time resolution of 1 ms. Thus, we obtained 137 neurons from 59 days of 
recordings of Monkey A and 120 neurons from 67 days of recordings of Monkey B. For behavioral 
analysis, only days with more than 50 trials for each condition (four conditions: wide/narrow prior 
block and high/low contrast stimuli) were used (59 days for Monkey A and 65 days for Monkey 
B). 
 
Spike count analysis 
 
The responses of MT neurons to the prior direction stimulus between the wide and narrow prior 
blocks were compared to probe the effect of prior expectations on the neural responses. This was 
conducted by constructing a PSTH for each prior condition and smoothing it using a 10 ms SD 
Gaussian filter (Figs. 2a, b). Additionally, the spikes in the 100 ms duration time window from the 
spike latency of each neuron were counted and compared between the prior blocks (Insets in Figs. 
2a, b, and Fig. 2c). To measure each neuron’s spike latency, the spiking responses across all 
repetitions of the given stimulus contrast (high or low) were averaged over time, and the latency 
was estimated by visual inspections of the mean PSTH. If the neuronal latency could not be 
visually determined because of the lack of distinct stimulus-related responses, the neuron was 
excluded from the analysis. Thus, in monkey A, 136 and 111 neurons were used for the high and 
low contrast cases, respectively, and in monkey B, 117 and 110 neurons were used for each 
contrast case. To calculate the mean-normalized variance (variance/mean; Fano factor) of spike 
counts as a function of time, a 100 ms (±50 ms) sliding time window with 20ms steps was used 
(Supplementary Figs. 6a, b). For the in silico simulations, the Fano factor estimated from the time 
period between 0 and 200 ms after the pursuit target onset was imposed (Fig. 3 and Supplementary 
Fig. 2). To estimate the correlation between the difference in the prior and preferred directions and 
the firing rate ratio of the narrow prior block to the wide prior block over time, the Spearman's 
correlation coefficient was computed for each 60 ms (±30 ms) sliding time window from pursuit 
target onset to 180 ms with 5 ms time intervals (Figs. 2d–i). If the neuronal latency or preferred 
direction was unclear, the neuron was excluded from this analysis. Thus, 95 and 75 neurons from 
Monkey A were used for the high and low contrast cases, respectively, and 86 and 69 neurons 
from Monkey B were used for each contrast cases. 
 
Direction tuning measurement and estimation 
 
Before the smooth pursuit eye movement task, the direction and speed tuning of the isolated MT 
neurons were estimated in a separate direction tuning task. To assess the direction tuning of the 
neurons, stimulus motion was presented in 12 directions (0°–330° in 30° increments) at the 
preferred speed of the MT neurons while animals fixated their eye gaze on a central stationary spot. 
A circular patch of random dots with 100 % coherence served as the visual stimulus, and the 
location and size of the visual stimulus were set according to the cells' receptive field properties. 
Each trial began with a fixation duration between 600 and 1200 ms, and then six different motion 
stimuli were presented for 256 ms with 300 ms of interposed stationary epochs. For the direction 
tuning curve, the spike counts for 256 ms, after 50 ms from the stimulus onsets, were fitted to a 
Gaussian or circular Gaussian function: 
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where 𝜃 is the 12 motion directions of the visual stimulus; 𝑎!, 𝑏!, 𝜃!

0123, and 𝜎! are the parameters 
of the Gaussian function of ith MT neuron, where 𝜃!

0123and 𝜎! denote the mean and SD of the 
Gaussian function, respectively; 𝑐! and	𝑑! are the parameters of the circular Gaussian function of 
ith MT neuron, and 𝜃!

0123indicates the preferred direction of the MT neuron. The direction tuning 
responses for the different luminance contrasts were obtained by randomly interleaving the high 
contrast (100 % luminance contrast for both monkeys) and low contrast (luminance contrast of 
12 % for Monkey A and 8 % for Monkey B) patches as the visual stimuli. For speed tuning of the 
neurons, the motions at nine speeds (0, 1, 2, 4, 8, 16, 32, 64, and 128 °/s) with the preferred 
direction of the neurons were presented. The speed tuning responses were fitted to a log Gaussian 
function 76. If the direction tuning exhibited a bimodal shape or the estimated preferred speed was 
extremely high or low, the orientation tuning was also quantified to identify whether the neuron 
had an orientation selectivity rather than direction selectivity. Six orientations (0°, 30°, 60°, 90°, 
120°, 150°) were used for the orientation tuning task and excluded the neurons when its orientation 
tuning responses were more robust than the direction tuning responses.  
 
Additionally, the direction tuning responses of MT neurons in the middle of the smooth pursuit 
task were intermittently measured by randomly inserting trials of the direction tuning task. The 
visual stimuli for the direction tuning measurement were identical to the pursuit targets, but they 
were placed and remained in the center of the receptive fields to evoke strong MT neuronal 
responses. To characterize the tuning properties, the directional responses of each neuron 
measured during the pursuit task was fitted to a Gaussian or circular Gaussian function based on 
their explained variance, except that only a circular Gaussian function was used to estimate the 
direction tuning functions of the MT neurons for the simulation. We excluded neurons from the 
further analysis if the fitted tuning curves explained less than 50 % of the response variance or if 
the tuning measurement in either prior block was missing. Accordingly, 82 and 86 neurons from 
Monkey A were used for the high and low contrast cases, respectively, and 83 and 80 neurons 
from Monkey B were used for each contrast case to quantify the direction tuning measured during 
the smooth pursuit task. To obtain the average tuning responses of the neurons, we realigned the 
direction tuning responses of individual neurons relative to each neuron’s preferred direction such 
that all preferred directions were 0° (Fig. 4). The preferred direction of each neuron was 
determined based on the tuning function for the high contrast stimulus to obtain more stable tuning 
parameters. The width of the tuning function was estimated by calculating its full width at half 
maximum of the tuning function.  
 
Inter-neuronal spike count correlation 
 
Trial-by-trial spike count correlations between pairs of MT neurons were calculated using 
Spearman's correlation coefficient (Supplementary Figs. 6c–f). We used 100 ms (±50 ms) sliding 
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time windows from –200 to 400 ms after the pursuit target onset with a step size of 20 ms. Pairs 
of neurons were included in the sample only if the number of trials for the prior direction was more 
than 50 in both the wide and narrow prior blocks. This criterion was applied separately for each 
stimulus contrast condition. This resulted in the analysis of 165 (high contrast) and 99 (low contrast) 
pairs from Monkey A and 123 (high contrast) and 117 (low contrast) pairs from Monkey B. 
 
Simulating and decoding of MT population responses 
 
For the in silico simulations, the firing rates of MT neurons in response to stimulus motion were 
modeled as a circular Gaussian function (Eq. 2) based on our experimental dataset 69. Each circular 
Gaussian function parameter for the responses of ith model MT neuron (𝑐′! 	and	𝑑′!) was randomly 
selected from a gamma distribution fitted to the estimated parameters of the direction tuning 
functions of the recorded MT neurons using the gamfit function in MATLAB: 
 
𝑐′! 	~	Γ	(𝑘4 , 𝜃4), 𝑑′! 	~	Γ	(𝑘( , 𝜃()  (3) 
 
where 𝑘4  is the shape parameter; 𝜃4  is the scale parameter of the gamma distribution of 𝑐;	𝑘( 
and	𝜃(  are the shape and scale parameters of the gamma distribution of 𝑑 , respectively. MT 
neuronal responses to the high and low contrast stimuli were simulated (𝑘4= 1.74 and 1.28; 𝜃4 = 
36.83 and 31.16; 	𝑘( = 1.30 and 1.18; 𝜃( = 1.19 and 0.73 for the high and low contrast stimuli, 
respectively). Preferred directions (𝜃!

0123) ranged from –179° to 180° in 1° increment, and each 
preferred direction was assigned to 10 simulated neurons. Thus, the model totally included 3600 
(360 × 10) neurons for every simulation. Trial-by-trial variation in individual neuronal responses 
and trial-by-trial correlation between neurons were simulated using the mean Fano factor and mean 
inter-neuronal correlation over 200 ms from the pursuit target onset estimated from the MT 
recordings. Because we could not find any evidence of significant changes in Fano factors and 
inter-neuronal correlations across prior conditions, we averaged Fano factors and inter-neuronal 
correlation coefficients from the wide and narrow prior blocks in each contrast case. (Fano factor 
for high contrast: 1.11, low contrast: 1.37; inter-neuronal correlation for high contrast: 0.02, low 
contrast: 0.06). The correlation between neuronal responses was simulated using the Cholesky 
decomposition method with a constant inter-neuronal correlation coefficient for each contrast 
condition 77. To model the reduction effect of prior expectation on neuronal responses, we 
multiplied the simulated MT responses by the exponential of the regression coefficient between 
Dq (preferred direction–prior direction) and the log firing rate ratio (narrow/wide prior) computed 
from the experimental data (regression slope at 85 ± 30 ms from the pursuit target onset for high 
contrast, –0.0003, and for low contrast, –0.0025, see Figs. 2g, h). 
 

𝑀𝑇!
5!65,8911:;(𝜃) = 𝑒#<.<<<>×@-$

%&'(#-%&$.&@ ×𝑀𝑇!
5!65(𝜃)  (4) 

 

𝑀𝑇!
A:;,8911:;(𝜃) = 𝑒#<.<<BC×@-$

%&'(#-%&$.&@ ×𝑀𝑇!A:;(𝜃)  (5) 
 
where 𝜃is the direction of target motion; 𝜃!

0123is the preferred direction of the ith neuron; 𝜃01!:1 is 
the expected direction (the prior direction); and 𝑀𝑇!4:8D19ED  is the average firing rate of the ith 
neuron to the target direction in each contrast, from Eq. 1. 
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Support Vector Machine 
 
The SVM classifiers were trained with 80 % of the model MT population to discriminate two 
motion directions using the fitclinear function in MATLAB. With the remaining 20 % of the 
population neural activity, the trained classifier predicted one of two directions, which were 0° and 
a direction between 0° and 10° (step sizes of 0.5°). We simulated 200 trials of neuronal population 
responses to each motion direction and repeated each pair of simulations 100 times to validate the 
predictive performance of the SVM classifier. 
 
Population Vector Decoder 
 
Population vector averaging was used to estimate the direction information represented in the 
neuronal population activity. Using the simulated MT neuronal responses, the PVD predicted the 
direction of the stimulus motion as follows: 
 

𝜃F =
∑ -$

%&'(HI$(-)
/
$01
∑ HI$(-)/
$01

    (6) 

 
where 𝜃 is the direction of motion of the visual stimulus; 𝜃!

0123is the preferred direction of ith 
model MT neuron; MTi(𝜃) is the response of the ith neuron obtained from Eq. 1. The target 
direction 𝜃  was set to 0° for the prior direction (Fig. 3e) or ±15° for the outer directions 
(Supplementary Fig. 2c, d). To compensate for the estimation error resulting from asymmetries in 
contributing neural population in PVD, the preferred directions of model MT neurons ranged from 
–194° to 165° or from –164° to 195° (instead of the ranging from –179° to 180°) when the target 
direction was –15° or 15°, respectively. We simulated 200 trials and computed the SD of the 
predicted directions	(𝜃F) in each simulation. This procedure was repeated 100 times.  
 
Maximum Likelihood Estimation 
 
The simulated MT responses were also decoded using maximum likelihood estimation 38–40. The 
log likelihood of a motion direction 𝜃L can be expressed as: 
 

𝐿- = k; 𝑛!cos	(𝜃 − 𝜃!
0123)

8

!M%
     (7) 

 
where k is the concentration parameter of the circular Gaussian function, which is the tuning 
function of the neurons; 𝑛! is the spike counts of ith MT neuron in response to the direction 𝜃. The 
log likelihood of any direction of motion can be computed from any other two non-degenerate log 
likelihoods, 𝐿-1 and 𝐿-*: 
 

A
𝐿-1
𝐿-*

B = Acos(𝜃%) sin(𝜃%)
cos(𝜃B) sin(𝜃B)

B E
∑ 𝑛!cos	(𝜃!

0123)N
!M%

∑ 𝑛!sin	(𝜃!
0123)N

!M%
G   (8) 

 
From this equation, the log likelihood of any other direction 𝜃> can be computed as follows: 
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𝐿-2 = [cos(𝜃>) sin(𝜃>)] A
cos(𝜃%) sin(𝜃%)
cos(𝜃B) sin(𝜃B)

B
#%
A
𝐿-1
𝐿-*

B  (9) 

 
In each trial, we calculated the log likelihoods for 0° and 45°, 𝐿-3°	and 𝐿-67°	 , as 𝐿-1	and 𝐿-*	 and 
then computed the log likelihoods of all other directions between –179° and 180° using 𝐿-3°	 and 
𝐿-67°	. The direction with the largest log likelihood was used as an estimate of the stimulus motion, 
indicating the direction representation of the population response.  
 
Targeted dimensionality reduction (TDR) 
 
To understand the effects of prior expectations on MT neural activity at the population level, we 
used targeted dimensionality reduction (TDR) method. A detailed explanation of TDR can be 
found in Mante et al. 42 For the population analysis, we constructed the population activity by 
pooling the responses of all the MT neurons across conditions (stimulus contrast, prior block, and 
target direction) in each monkey (Pursuit task: 137 neurons from Monkey A and 120 neurons from 
Monkey B; Fixation task: 82/86 neurons in the high/low contrast cases from Monkey A and 83/80 
neurons in the high/low contrast cases from Monkey B). In the pursuit data, although the prior 
directions and the outer directions (± 15° and  ± 120° from the prior direction) were not the same 
across sessions, the relative relationships between the prior direction and outer directions were the 
same. Therefore, a pseudo population was composed by aligning each neuron’s responses relative 
to the prior direction and combining them, meaning that each neruon’s preferred direction was 
redefined depending on the difference between the preferred direction and the prior direction.  
 
During the pursuit task, targets in prior directions were presented in both the wide and narrow prior 
blocks but other targets in the outer directions were presented either in wide or narrow prior blocks. 
Therefore, we used linear regression with the neural responses to only the prior direction to 
describe the population responses as a linear combination of task variables (stimulus contrast and 
prior): 
 
𝑟!,D(𝑗) = 	𝛽!,D(1)	𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑗) + 𝛽!,D(2)	𝑝𝑟𝑖𝑜𝑟(𝑗) +	𝛽!,D(3)     (10) 
 
where 𝑟!,D(𝑗) is the z-scored response of neuron 𝑖 at time 𝑡 on trial j (mean and standard deviation 
are computed from the neuron’s responses across all trials and times); 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑗) is the stimulus 
type on trial 𝑗 (1: high contrast; 0: low contrast); 𝑝𝑟𝑖𝑜𝑟(𝑗) is the block type on trial 𝑗 (1: wide prior 
block; 0: narrow prior block); 𝛽!,D(1)	and 𝛽!,D(2) are the regression coefficients that reflect the 
extent to which the trial-by-trial firing rate of neuron 𝑖 at time 𝑡 dependents on the corresponding 
task variable, contrast and prior, respectively; 𝛽!,D(3) is the regression coefficient responsible for 
the trial-by-trial variation in firing rates due to time rather than task variables. 
 
On the other hand, during the fixation task, all stimulus motions in 12 directions (0°, 30°, … , 300°, 
330°) were presented in both prior blocks across all sessions. Therefore, the MT neural responses 
to all motion directions were used to compute the regression coefficients for contrast, prior and 
stimulus motion:  
 
𝑟!,D(𝑗) = 	𝛽!,D(1)	𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑗) + 𝛽!,D(2)	𝑝𝑟𝑖𝑜𝑟(𝑗) +	𝛽!,D(3)	𝑚𝑜𝑡𝑖𝑜𝑛(𝑗) +	𝛽!,D(4)  (11) 
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where 𝑟!,D(𝑗) is the z-scored response of neuron 𝑖 at time 𝑡 on trial j; 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑗) is the stimulus 
type on trial 𝑗; 𝑝𝑟𝑖𝑜𝑟(𝑗) is the block type on trial 𝑗; 𝑚𝑜𝑡𝑖𝑜𝑛(𝑗) is the motion direction of the 
stimulus (angles in radians); 𝛽!,D(1~3) are the regression coefficients of neuron 𝑖 at time 𝑡 for 
stimulus contrast, prior, and motion direction of the stimulus, respectively; 𝛽!,D(4) is the regression 
coefficient of neuron 𝑖 at time 𝑡, which captures the differences in firing rates across time. 
 
We denoised the regression coefficients by projecting them into the population subspace spanned 
by the first 12 principal components from PCA, and then represented the denoised coefficients on 
the original basis (Figs. 5d, e, Supplementary Figs. 3d, e and Supplementary Figs. 4a-f). Next, we 
estimated the fixed regression vectors by time-averaging and orthogonalizing the regression 
coefficients. The fixed regression vectors were defined as task-related subspace axes that 
independently accounted for the trial-by-trial variance of population response due to task variables 
(contrast and prior for the pursuit task; contrast, prior, and stimulus motion for the fixation task). 
The average population responses were projected onto these axes to investigate the temporal 
dynamics of the population responses in the task-related neural subspace. 
 
Additionally, we performed the TDR analysis on the pursuit task data using all motion direction 
conditions (the prior and outer directions) such that stimulus motion was included as a task variable. 
The analytical method was identical to that described above and the conclusions were similar 
(Supplementary Figs. 4g-t).  
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Supplementary Fig. 1 

Supplementary Fig. 1: Distributions of circular Gaussian parameters 
Distributions of 𝑐! (blue) and	𝑑! (red), which are the parameters of the circular Gaussian function 

fitted to the responses of ith recorded MT neuron:	𝑀𝑇!(𝜃) = 	 𝑐!𝑒
'($)*+,)-#-$

%&'(.#%./, where 𝜃 is 
the 12 motion directions (0°, 30°, … , 330°) of the visual stimulus, and 𝜃!

0123is the mean of the 
circular Gaussian function. The histograms show the frequency of the parameters estimated from 
the recorded data. The lines indicate the gamma distribution fitted to the estimated circular 
Gaussian parameters. The parameters ( 𝑐!′  and 	𝑑!′ ) are randomly selected from the gamma 
distribution for ith simulated MT neuron: 𝑐′! 	~	Γ	(𝑘4 , 𝜃4), 𝑑′! 	~	Γ	(𝑘( , 𝜃(), where 𝑘4 and 𝜃4 are 
the shape and scale parameters of the gamma distribution of 𝑐;		𝑘( and	𝜃( are the shape and scale 
parameters of the gamma distribution of 𝑑, respectively.  
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Supplementary Fig. 2 

Supplementary Fig. 2: Experimental and simulated pursuit directions for outer target 
directions 
The black dotted line indicate the prior direction and the blue dotted lines indicate the outer 
directions. The red solid lines indicate the average pursuit directions for the two outer directions 
in high (a, c, e) and low (d, e, f) contrast cases of the narrow prior block. The ratio between the 
angular difference in the two outer target directions and that in the corresponding pursuit 
directions quantifies the effect of prior expectation on the bias of pursuit direction traces 35. a, b 
Average pursuit directions from the combined dataset of the two monkeys. All prior directions 
were rotated to 0°, thus, the outer directions were aligned to ±15°. Only the days with more than 
50 trials for each condition were included (46 days for Monkey A and 43 days for Monkey B) c–
f Average pursuit directions estimated from simulated MT neuronal responses to ±15° directions 
using PVD (c, d) or MLE (e, f). Both experimental and simulated pursuit directions are biased in 
the prior direction (0°) by a similar amount. 
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Supplementary Fig. 3 

Supplementary Fig. 3: Temporal dynamics of MT population responses in Monkey B 
during pursuit and fixation task  
Same as Fig. 5 but for Monkey B. a-c for the pursuit task. a PSTHs and mean preparatory 
responses of the MT neurons (inset). b Autocorrelation matrix of regression coefficients for 
prior. c Temporal trajectories of average population responses in the task-related subspace using 
the prior and contrast as axes. d-f Same as a-c but for the fixation task. g SDs of pursuit 
directions with high (left) and low (right) contrast stimuli as a function of time relative to the 
target onset. h Distances of prior-axis projected population responses between the wide and 
narrow prior blocks as a function of time (solid lines), and the differences in pursuit direction 
SDs between the two priors as a function of time (dotted lines). The blue and magenta lines 
indicate the high contrast and low contrast conditions, respectively. Temporal coherence between 
subspace distances and SD differences with different latencies of SD differences from subspace 
distances is shown in the inset plots. The thick top line in the inset indicates that the FDR-
corrected p-values are less than 0.05. i Distances of population responses between the two prior 
blocks on the prior axis of the subspace during the fixation task. 
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Supplementary Fig. 4 
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Supplementary Fig. 4: Temporal dynamics of MT population responses for other 
properties 
a, b Autocorrelation matrix of regression coefficients for contrast during the pursuit task in 
Monkey A and B, respectively. c, d Autocorrelation matrix of regression coefficients for contrast 
during the fixation task in Monkey A and B, respectively. Temporal generalization of regression 
coefficients for contrast before stimulus onset is due to the stimulus presentation sequence in the 
fixation task. Four or five of stimuli with random directions were presented in one trial, but the 
stimulus contrast was identical in each trial. Therefore, monkeys were aware of the contrast in 
the stimulus sequence in each trial, which contributed to the generalized pattern of spontaneous 
activity. e, f Autocorrelation matrix of regression coefficients for target direction during the 
fixation task in Monkey A and B, respectively. g-l Autocorrelation matrix of regression 
coefficients for contrast (g, h), prior (i, j), target direction (k, l) during the pursuit task, where the 
regression coefficients were calculated from the population responses to all the target directions 
(–120°,–30°,0°,30°,120°). m-t Temporal trajectories of average population responses in task-
related subspace using prior and target direction as axes. Trajectories of preparatory population 
responses in the subspace (m-p) and trajectories of population responses in the subspace before 
and after pursuit target onset (q-t).  
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Supplementary Fig. 5 

Supplementary Fig. 5: Relationship between the response reduction and receptive field 
location 
a, c Relationship between the distance of each neuron’s receptive field from the central fixation 
point (RF location) and the ratio of firing rate in the narrow prior block to that in the wide prior 
block (firing rate ratio) for the high contrast case. The data points in the plot represent the firing 
rate ratio of MT neurons between the two prior blocks at each RF location. The red line 
represents the linear regression line of the RF location on the firing rate ratio. b, d Relationship 
between the receptive field location and firing rate ratio for the low contrast case: no significant 
relationship between the two under all the conditions for either monkey. 
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Supplementary Fig. 6 

Supplementary Fig. 6: Spike count variability and inter-neuronal correlation 
To calculate the spike count variability and inter-neuronal correlation as a function of time 
relative to the pursuit target onset, 100 ms (±50 ms) sliding time windows were used from –200 
to 400 ms after the stimulus onset with a step size of 20 ms. a, b Mean normalized variance 
(Fano factor) of spike counts over time under four different conditions. The black and red lines 
show the mean Fano factors for high contrast cases in the wide and narrow prior blocks, 
respectively. The gray and yellow lines show the mean Fano factors for the low contrast cases in 
the wide and narrow prior blocks, respectively. Colored error bands indicate the standard error. c, 
d Pairwise spike count correlation as a function of time in the high contrast condition. e, f 
Pairwise spike count correlation as a function of time in the low contrast condition. 
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